Patente de Invención

Fecha de Presentación:
08.01.2015

Fecha de Publicación de la Solicitud:
08.08.2016

Fecha de Concesión:
05.05.2017

Fecha de Publicación de la Concesión:
12.05.2017

Se remite a la solicitud internacional:
PCT/ES2016/070003

Título: PROCEDIMIENTO DE ANÁLISIS FUNCIONAL DE SEMICONDUCTORES ALIMENTADOS INALÁMBRICAMENTE

Resumen:
Procedimiento de análisis funcional de semiconductores alimentados inalámbricamente. Se describe un procedimiento para analizar semiconductores alimentados inalámbricamente en estado de condiciones de trabajo, es decir el análisis es funcional y permite obtener datos reales del componente en aquellas condiciones en las que será sometido cuando esté funcionando. Se basa en la toma de datos relacionados con las temperaturas que se producen en el semiconductor cuando se encuentra operativo, es decir se toman datos referidos a la hipertermia inducida por el paso de corriente por el semiconductor en funcionamiento. La señal que alimenta el componente semiconductor se somete, mientras se está alimentando y se están tomando datos de su temperatura, a una serie de modulaciones que generan una serie de efectos en su superficie, nos permite ver reacciones a las modulaciones y obtener datos como fallos o puntos de interés relacionados con el semiconductor mientras se encuentra en funcionamiento.

Aviso: Se puede realizar consulta prevista por el art. 37.3.8 LP 11/1986.
DESCRIPTIÒN

Procedimiento de análisis funcional de semiconductores alimentados inalámbricamente.

5 OBJETO DE LA INVENCIÓN

La presente invención se refiere al campo de dispositivos y sistemas electrónicos de estado sólido basados en tecnología semiconductora. A los dispositivos y sistemas electrónicos a los que se orienta esta invención se encuentran integrados en un chip y se les va a referir de ahora en adelante como componentes de un sistema más complejo.

El objeto principal de la invención se refiere a un método que permite analizar y diagnosticar de manera no invasiva el funcionamiento de estos componentes electrónicos inalámbricos o de tecnología de transferencia sin contacto en condiciones de trabajo real.

15 ANTECEDENTES DE LA INVENCIÓN

A día de hoy se han hecho populares los sistemas electrónicos que hacen uso de tecnologías inalámbricas para alimentarse, como son por ejemplo los sistemas de carga inalámbrica de móviles basados en inducción magnética. Dichos sistemas hacen uso de componentes electrónicos (tanto dispositivos como subsistemas integrados o no monolíticamente) basados en semiconductores que son alimentados mediante tecnología sin contacto.

Es muy importante identificar localmente en dichos componentes problemas en su funcionamiento, ya sea en su fase de depurado, análisis de fallo o estudio funcional. En la literatura, los métodos activos presentan claras ventajas frente a las técnicas pasivas, ya que éstas últimas no permiten poner el dispositivo en un régimen de funcionamiento representativo de la aplicación final. Existen diferentes aproximaciones para realizar estudios de defectos en dispositivos mediante estimulación activa, basados en la detección de:

- el campo magnético, como en la microscopía por barrido de sonda mediante SQUIDs,
- la emisión estimulada de luz, como en la microscopía por emisión o por barrido sonda, EMMI,
- la caída de tensión o medida eléctrica, basadas en técnicas de microscopía por barrido sonda: AFM conductivo, barrido de capacidades, barrido de superficie por fototensión,
- y finalmente el campo de temperatura, pudiendo acceder al chip por la superficie, la cara posterior o lateralmente mediante cualquier técnica no invasiva: termografías infrarroja, de cristal líquido, scanning Thermal Microscopy, microscopía por barrido sonda Kelvin, etc..

Otras técnicas muy utilizadas en este campo son la medida del cambio de resistencia local que permiten monitorizar las técnicas OBIRCH (Optical Beam Induced Resistance CHange), TIVA
(Thermal-Induced Voltage Alteration, u otras variaciones como Charge-Induced Voltage Alteration, CIVA), o aquéllas basadas en el uso de un microscopio electrónico de barrido (SEM, Scanning Electron microscope), como por ejemplo:

- EBAC (Electron Beam Absorbed Current),
- EBIC (Electron Beam Induced Current) o
del contraste de tensión.

Todas ellas son técnicas pasivas, y se practican mediante la realización de una estimulación local sin tener ninguna relación con la operación del componente electrónico, como ya se ha mencionado anteriormente.

De entre todas las técnicas mencionadas, las ópticas y las basadas en la determinación de temperatura (activas) ofrecen una serie de ventajas respecto a las que monitorizan variables eléctricas o magnéticas directamente: no existe acoplo de efectos eléctricos en la medida y se accede localmente a todos los nodos internos. Además, las técnicas de escaneo por sonda, como el barrido de sonda mediante SQUID, o las basadas en microscopio de fuerza atómica (AFM), solamente estimulan localmente la zona donde se encuentra la sonda, lo que no da información funcional del componente analizado. Por el contrario, en el caso de medidas térmicas, es posible observar el comportamiento eléctrico del componente, si su estimulación es la adecuada. En el caso de las técnicas basadas en determinación de temperatura, además, existe una correlación directa entre el mapa de temperaturas superficial y la distribución espacial de corriente en el componente, lo que hace que los resultados obtenidos mediante las mismas sean un buen indicador de no homogeneidades eléctricas que se pueden manifestar a nivel local. Esto se entiende gracias a fenómenos físicos que explican la disipación de calor, como por ejemplo el efecto Joule. Así pues, tener acceso al campo de temperatura superficial puede ser clave para poder analizar y entender los problemas expuestos anteriormente.

Existen múltiples técnicas de medida de temperatura superficial donde este tipo de estudio se podría llevar a cabo con la invención que se propone. Normalmente, las medidas mediante modulación permiten una serie de ventajas: incrementar la relación señal ruido, hacer el campo de temperatura en la superficie del dispositivo independiente de las condiciones externas o de contorno, y confinar el campo de temperatura alrededor del punto donde se ha producido el fallo. Como claro ejemplo, la termografía lock-in infrarrojo (IR-LIT) es una técnica comúnmente utilizada para el análisis de fallos en dispositivos semiconductores. En el estado del arte, para componentes electrónicos de estado sólido alimentados inalámbricamente, éstos siempre comprenden una etapa de potencia o alimentación, donde se ha de transferir, de manera inalámbrica, cierta potencia desde un sistema de alimentación externo, hasta un sistema de recepción interno dentro del chip. Para ello, poniendo como ejemplo la transferencia de energía mediante inducción electromagnética, se ha de variar de manera periódica (senoidal,
preferentemente), a una frecuencia concreta de “acoplo”, el campo electromagnético en las cercanías de la muestra, que genere una corriente de alimentación en el interior del componente. No obstante, esa frecuencia de acoplo electromagnético (en el orden de los MHz), genera un calentamiento armónico que no es observable mediante técnicas de termografía lock-in. La transferencia de calor actúa como un filtro paso-bajo, y a medida que se aumenta la frecuencia, se reducen las variaciones térmicas en la superficie del componente, siendo más bajas que la propia sensibilidad de estas técnicas, que de manera general pueden detectar fuentes de calor con una frecuencia máxima del orden del kHz. Por tanto, esta invención propone modular la alimentación de la muestra siguiendo una forma de onda AM cuadrada, en la que la frecuencia portadora se fija a la del acoplo electromagnético, y la frecuencia moduladora a un valor que genere armónicos térmicos detectables mediante termografía lock-in. Así, los armónicos térmicos generados a la frecuencia moduladora, dan información funcional sobre el comportamiento del componente al ser alimentado en su régimen nominal de operación, es decir, cuando es alimentado a la frecuencia de acoplo.

Dicho efecto no podría ser conseguido con las técnicas convencionales con las que se analizan otro tipo de componentes, es decir, alimentándolos mediante una señal cuadrada pura a una frecuencia detectable por termografía lock-in (máximo en el orden del kHz). Este hecho se basa en que, dado que el acoplo para transferencia de potencia se da en el orden de los MHz, dicha alimentación cuadrada con frecuencia máxima en el orden de los kHz, no sería capaz de transferir energía a la muestra, por tanto impidiendo este tipo de análisis.

En el documento “Wireless pad-free integrated circuit debugging by powering modulation and lock-in infrared sensing”, J. León, X. Peripiñá, M. Velivhei, A. Baldi, J. Sacristán, and X. Jordà, Applied Physics Letters 102 (8), 084106, 2013 se describe un procedimiento para análisis de un chip inalámbrico, pero solo cualitativamente, sin hacer un análisis de tipo funcional; de hecho este documento detalla un tipo de modulación senoidal con una profundidad de modulación = 1 que genera poco contenido armónico y no sería de utilidad en un análisis en el cual el chip se somete a condiciones de trabajo reales o cercanas a las reales y tampoco daria como resultado la posibilidad de que dicho análisis pudiera dar datos relacionados con el consumo ya que no se trata de un método dirigido a un estudio del chip en funcionamiento real (funcional).

DESCRIPCIÓN DE LA INVENCIÓN

Un objeto de la invención propone una solución para poder analizar el comportamiento y las características de un componente semiconductor alimentado inalámbricamente, o que comprenda partes de estado sólido estando alimentado inalámbricamente, de manera no
invasiva y que permita obtener datos del mismo en condiciones de trabajo. Datos funcionales como el consumo y corriente con resolución espacial, posibles puntos de interés, etc...

El procedimiento de análisis de la invención es no-invasivo y local y se basa en una obtención de datos relacionados directa o indirectamente con las temperaturas o magnitudes relacionadas (cambio de la reflectividad, emisión infrarroja u otros observables físicos relacionados con la temperatura) de los componentes; utilizando para obtener dichos datos estrategias de detección mediante termografía "lock-in".

El procedimiento de análisis de la invención posibilita detectar la disipación de potencia de cada uno de los bloques del componente inalámbrico de manera no invasiva y sin necesidad de conexión eléctrica con el mismo. Este hecho permite realizar un completo análisis funcional del que se puede extraer la siguiente información:

- Comportamiento en frecuencia (función de transferencia) de cada bloque.
- Análisis del consumo de cada bloque dependiendo del régimen de operación.
- Detección de acoplos capacitivos entre bloques a alta frecuencia.
- Determinación de las causas de posibles malfuncionamientos del componente.

Todo ello contribuye a mejorar la diagnóstico no invasiva de este tipo de componentes, especialmente en los principales campos de aplicación de la técnica presentada, que engloban:

- la localización de firmas físicas de fallo, defectos o no homogeneidades en la superficie del componente,
- la determinación de problemas en los procesos de diseño, fabricación y/o encapsulación del componente que puedan llegar a crear distribuciones no homogéneas de corriente,
- el análisis del comportamiento en frecuencia del componente, muy útil para la extracción de elementos parásitos o figuras de mérito (como la función de transferencia, el PSRR de reguladores, la calidad del acoplo del sistema de alimentación inalámbrico, capacidades parásitas causando problemas de latch-up o frecuencias de resonancia) con resolución espacial,
- el análisis de las prestaciones térmicas del encapsulado bajo unos niveles de disipación de potencia constantes.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

La invención puede ponerse en práctica de diversas maneras, una de las cuales se describirá ahora solamente a modo de ejemplo, y con referencia a los dibujos adjuntos, en los cuales:
La Figura 1.- Muestra un diagrama de flujo donde se aprecia la ejecución de manera genérica del procedimiento de la invención.
La Figura 2.- Muestra un diagrama de flujo de una realización del procedimiento de la invención, donde se aprecian detalladas las posibles modulaciones a aplicar.

REALIZACIÓN PREFERIDA DE LA INVENCIÓN

Una realización preferida de la invención contempla el procedimiento de análisis funcional de componentes semiconductores alimentados inalámbricamente. En el ámbito de este ejemplo de realización no limitativo se entiende por componente discreto a un único componente en un chip, mientras que por componente integrado nos referiremos a un circuito integrado en sí en un único chip o en una PCB, y formado por varios componentes (dispositivos y subsistemas) electrónicos. En ambos casos, ya sea componentes discretos o integrados, el procedimiento de análisis funcional aquí detallado mide la temperatura de toda la superficie del componente, para así determinar aquella parte (bloque, celda...) que puede ser conflictiva.

El análisis funcional de la invención que se describe en la figura 1, hace uso de técnicas de modulación basadas en poner en funcionamiento una muestra del componente alimentado inalámbricamente mediante aplicación en una parte de alimentación externa ciertas formas de onda reproduciendo una señal periódica modulada en AM. Éstas disponen de una señal portadora de frecuencia igual a la necesaria para alimentar inalámbricamente el componente, y una moduladora de una frecuencia más baja, que permite la detección de la información térmica mediante técnicas lock-in o de procesado de señal en frecuencia. Las formas de onda se propagan por el sistema de alimentación, hasta llegar a las distintas celdas (en el caso de componentes discretos) o a los distintos bloques funcionales (en el caso de componentes integrados) dentro de la muestra a analizar.

Por ende el procedimiento de análisis funcional de un componente electrónico alimentado inalámbricamente, aquí descrito se inicia mediante la puesta en funcionamiento de la muestra a su frecuencia de trabajo mediante una señal portadora de frecuencia igual a la frecuencia de trabajo para alimentar inalámbricamente la muestra, y una moduladora de una frecuencia más baja que la frecuencia de trabajo para la detección mediante termografía lock-in. Para posteriormente realizar al menos una toma de imagen térmica de la muestra, mientras ésta se encuentra alimentada, mediante un sistema de toma de imágenes térmicas para determinar una distribución de temperatura en la superficie de la muestra correspondiente a una componente espectral de la señal moduladora. En estas circunstancias se procede a realizar a la alimentación al menos una modulación consistente
en aplicar en la alimentación formas de onda reproduciendo una señal periódica modulada en AM, descrita por la siguiente expresión genérica:
\[
V_{1,M}(t, h) \approx |V_1(f_{\text{pow}})| \sin \left(2\pi f_{\text{pow}} t + \phi(f_{\text{pow}}) \right)
\times \left[1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)2\pi f_{AM} t] \right]
\]

5 donde \(|V_1(f_{\text{pow}})| \) es la amplitud en tensión generada a la entrada de la muestra o componente, \(f_{\text{pow}} \) es la frecuencia de la portadora (donde hay el acoplo inductivo entre espiras), \(f_{AM} \) es la frecuencia de la moduladora (en este caso onda cuadrada), y \(h \) es la profundidad de modulación. A partir de esta expresión genérica se utilizan los siguientes parámetros de la modulación:

- Profundidad de modulación \(h = 1 \) (\(V_{1,B}(t) = V_{1,M}(t, h=1) \)), de tal manera que se encienden y apagan todos los bloques o celdas del sistema o dispositivo (referida como modulación B), respectivamente, a la vez, y,

- Profundidad de modulación \(h = 0.25 \) (\(V_{1,C}(t) = V_{1,M}(t, h=1/4) \)), de tal manera que se genera en los bloques reguladores de tensión de la muestra una alimentación formada por una componente de tensión DC, con un rizado de tensión de onda cuadrada superpuesto (referida como modulación C).

Bajo al menos una de las modulaciones anteriores, la muestra o componente se sigue alimentando a su frecuencia de trabajo \(f_{\text{pow}} \), mientras que con un sistema de termografía lock-in, se detecta una distribución de temperatura en la superficie de la muestra o componente correspondiente a la componente espectral de la señal moduladora. Dada esta disipación de potencia, cada bloque puede ser visto como una fuente de calor en la superficie del semiconductor que se puede detectar mediante técnicas lock-in utilizando cualquier sistema termográfico, como se ha indicado anteriormente. En función de los parámetros de modulación utilizados, entre los que destacan la profundidad de modulación "h", la forma de onda de la señal moduladora, y el uso o no de la opción "doble banda lateral con supresión de portadora" (DSSC), es posible generar una variedad considerable de formas de onda.

De las posibles modulaciones que se pueden realizar en la alimentación y se aprecian en la figura 2, se puede aplicar una primera modulación con \(h = 1 \), moduladora senoidal, opción DSSC. Esta modulación fuerza transiciones suaves entre estados ON y OFF de cada bloque, generando poco contenido armónico y por ende incrementando la relación señal-ruido (SNR) en el mapa térmico, lo que proporciona medidas más fiables que con otras técnicas de modulación basadas en formas de onda cuadradas.
También se puede realizar una segunda modulación con \(h = 1 \), moduladora cuadrada, sin opción DSSC. Esta modulación enciende y apaga todos los bloques del semiconductor a la vez (en contraste con la modulación tipo A). De esta manera, el tiempo en el que cada bloque se mantiene encendido durante cada ciclo de inspección se puede fijar externamente. Esto posibilita determinar la cantidad de energía disipada por cada bloque en cada periodo de inspección, para analizar el comportamiento del sistema de una manera más fiel a la realidad.

Finalmente tenemos la opción de realizar una tercera modulación: \(h = 0.25 \), moduladora cuadrada, sin opción DSSC. Esta modulación genera en los bloques reguladores de tensión del sistema una alimentación formada por una componente de tensión DC, con un rizado de tensión de onda cuadrada superpuesto. Dependiendo de los valores que tomen dichas tensiones, se pueden desacoplar varios efectos. En primer lugar, si la tensión DC es mayor a la tensión de activación de dichos bloques reguladores, es posible observar su "relación de rechazo de fuente de alimentación" o PSRR (Power Supply Rejection Ratio). En segundo lugar, si esta tensión es similar a la de activación, se obtienen resultados que deberían ser similares a los del tipo B. Finalmente, si esta tensión es inferior a la de activación, es posible observar cómo se comportan todos los bloques del sistema cuando se alimentan con una tensión menor a la nominal.

Así pues, las modulaciones B y C citadas con señal cuadrada, producen unas tensiones \(V_{1,B}(t) \) and \(V_{1,C}(t) \), respectivamente, a la entrada del dispositivo o sistema a analizar, que se pueden describir por la forma de onda genérica: \(V_{1,M}(t,h) \). Por tanto:

\[
V_{1,B}(t) \approx |V_1(f_{\text{pow}})| \sin \left(2\pi f_{\text{pow}} t + \phi(f_{\text{pow}})\right) \times \left[1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)2\pi f_{\text{AM}} t]\right]
\]

\[
V_{1,C}(t) \approx |V_1(f_{\text{pow}})| \sin \left(2\pi f_{\text{pow}} t + \phi(f_{\text{pow}})\right) \times \left[1 + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)2\pi f_{\text{AM}} t]\right]
\]

Cabe destacar que se puede aplicar cualquiera de las modulaciones presentadas anteriormente sin que éstas sean excluyentes ni requieran de una secuencia de aplicación determinada, cada modulación produce un efecto resultante en la obtención de cierta información de la muestra, si bien se puede aplicar una o dos o todas las modulaciones para obtener más o menos información según se requiera.
REIVINDICACIONES

1. Procedimiento de análisis funcional de semiconductores alimentados inalámbricamente, procedimiento que comprende:

 • poner en funcionamiento la muestra a su frecuencia de trabajo mediante una señal portadora de frecuencia igual a la frecuencia de trabajo para alimentar inalámbricamente la muestra o componente, y una moduladora de una frecuencia más baja que la frecuencia de trabajo para la detección mediante termografía lock-in,

 • realizar al menos una toma de imagen térmica de la muestra, mientras ésta se encuentra alimentada, mediante un sistema de toma de imágenes térmicas para determinar una distribución de temperatura en la superficie de la muestra correspondiente a una componente espectral de la señal moduladora,

 estando el procedimiento caracterizado por que comprende realizar a la alimentación al menos una modulación consistente en aplicar en la alimentación formas de onda reproduciendo una señal periódica modulada en AM, donde dicha modulación se selecciona de entre:

 - modulación de tipo cuadrada, sin doble banda lateral con supresión de portadora y con profundidad de modulación $h = 1$ según:

 $$ V_{1,B}(t) \approx |V_{1}(f_{\text{pow}})| \sin \left(2\pi f_{\text{pow}} t + \phi(f_{\text{pow}}) \right) \times \left[1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)2\pi f_{\text{AM}} t] \right] $$

donde $|V_{1}(f_{\text{pow}})|$ es la amplitud en tensión generada a la entrada del dispositivo, f_{pow} es la frecuencia de la portadora, f_{AM} es la frecuencia de la moduladora, y h es la profundidad de modulación; de tal manera que se encienden y apagan todos los bloques o celdas del sistema o dispositivo, respectivamente, a la vez, y,

 - modulación de tipo cuadrada y con profundidad de modulación $h = 0.25$ según:

 $$ V_{1,C}(t) \approx |V_{1}(f_{\text{pow}})| \sin \left(2\pi f_{\text{pow}} t + \phi(f_{\text{pow}}) \right) \times \left[1 + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)2\pi f_{\text{AM}} t] \right] $$

donde $|V_{1}(f_{\text{pow}})|$ es la amplitud en tensión generada a la entrada del dispositivo, f_{pow} es la frecuencia de la portadora, f_{AM} es la frecuencia de la moduladora, y h es la profundidad de modulación; de tal manera que se genera en los bloques reguladores de tensión de la muestra una alimentación formada por una componente de tensión DC, con un rizado de tensión de onda cuadrada superpuesto.
2. Uso del procedimiento descrito en la reivindicación 1 para localización de firmas físicas de fallo, defectos o no homogeneidades en superficie de componentes electrónicos.

3. Uso del procedimiento descrito en la reivindicación 1 para determinación de problemas en los procesos de diseño, fabricación y/o encapsulación de los componentes que puedan llegar a crear distribuciones no homogéneas de corriente.

4. Uso del procedimiento descrito en la reivindicación 1 para análisis de comportamiento en frecuencia de componentes semiconductores, donde dicho análisis comprende la extracción de elementos parásitos, parámetros eléctricos, consumo de corriente y/o figuras de mérito con resolución espacial.

5. Uso del procedimiento descrito en la reivindicación 1 para análisis de prestaciones térmicas de encapsulado bajo niveles de disipación de potencia constantes.
Elección del conjunto de parámetros de modulación AM para análisis de componentes semiconductores alimentados inalámbricamente

Hipótesis inicial

Caso 1

Conjunto de parámetros de modulación 1

Conjunto de parámetros de modulación 2

...

Conjunto de parámetros de modulación n

¿Análisis cualitativo o cuantitativo?

Cualitativo

Toma de imagen mediante termografía lock-in representativa del problema

Determinación del bloque o célula responsable del mal funcionamiento del componente

Verifica hipótesis inicial

Si

Fin

No

Cuantitativo

Toma de imágenes mediante termografía lock-in y su análisis variando el resto de parámetros

FIG. 1
Elección del conjunto de parámetros de modulación AM para analizar componentes semiconductor integrados alimentados inalámbricamente.

Hipótesis inicial

Problema en bloques de alimentación

Problema en bloques digitales

Problema relacionado con PSRR elevado

Moduladora senoidal

$h=1$

Opción DSSC

Moduladora cuadrada

$h=1$

Sin opción DSSC

Moduladora cuadrada

$h=0.25$

Sin opción DSSC

¿Análisis cualitativo o cuantitativo?

Cualitativo

Toma de imagen mediante termografía lock-in representativa del problema

Determinación del bloque o salida responsable del mal funcionamiento del componente

¿Verifica hipótesis inicial?

Fin