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ABSTRACT: The discovery of cycloosmathioborane com-

pounds is reported. These species, which are prepared by simulta-

neous dehydrogenation of a trihydride-hydrogensulfide-

osmium(IV) complex and a BH3NHR2 amine-borane, bear an Os, 

S, B three-membered ring, being a manifestation of 4n + 2 Hückel 

aromaticity in which n = 0 and where the two π-electrons of the 

ring are provided by the S atom. 

Aromaticity is a classical concept in chemistry which is contin-

ually evolving.1 It was initially introduced to account for the spe-

cial properties of some unsaturated hydrocarbons and conjugated 

heterocycles. In 1979, Thorn and Hoffmann proposed to extend it 

to organic aromatic compounds where a CH unit is replaced by an 

isolobal transition metal fragment2 and, three years later, Roper’s 

group reported the first metallabenzene.3 Since then, a significant 

number of aromatic derivatives based on both carbon and transi-

tion elements have been isolated and characterized,4 most of them, 

as Hückel aromatic species.4c 

Frogly and Wright have recently defined metallaaromatic com-

pounds as those bearing at least a transition metal in the ring4d 

whereas, in 1979, Bursten and Fenske used the term “metalloaro-

maticity” to describe the aromatic behavior appeared to have been 

induced into cyclobutadiene as a result of its coordination to the 

Fe(CO)3 metal fragment.5 Nevertheless, metalloaromaticity has 

been employed by some authors without distinction for both situa-

tions.6 In addition, the term all-metal aromaticity has been in-

voked to address different aspects of the behavior of clusters of 

both main-groups elements and transition metals.7 

Cyclo-gallene dianion [Ga3L3]2- (L = Mes2C6H3) was the first 

compound of this class.8 Today, homoleptic aromatic 3-10 mem-

bered rings with elements of group 2 as well as of groups 13-16 

are known,9 besides tripalladium10 and trigold cations.11 Three-

membered ring compounds are certainly the most challenging due 

to the strain imposed by the small size of the ring. Computational 

methods have revealed that the aromaticity of group 14 cyclopro-

penylium analogues (E3H3
+) decreases in the sequence C > Si > 

Ge > Sn > Pb.12 In addition to homoleptic species, a few hetero-

leptic ones with two different main-group elements are also 

known. Cummins and coworkers have reported EP2 triangles (E = 

Ge, Sn, Pb), which are stabilized within the coordination sphere of 

a sterically protected diniobium unit13 whereas the Guha’s group 

has computationally predicted that the substitution of a boron 

atom in the triangle [B3H3]2- by a group 15 element should afford 

neutral aromatic H2B2XH rings (X = N, P).14 Herein, we take one 

step forward in this fascinating field by reporting the preparation 

and full characterization of the first aromatic triangles having 

three different vertexes, namely two main-group elements, S and 

B, and a transition metal with its associated ligands. 

Scheme 1 summarizes the preparation of the new compounds, 

which starts from the 9,9-dimethyl-4,5-

bis(diisopropylphosphine)xanthene complex OsH3(OTf){κ3-

P,O,P-[xant(PiPr2)2]} (1) and takes place through the hydrogensul-

fide derivative OsH3(SH){κ3-P,O,P-[xant(PiPr2)2]} (2). The syn-

thesis of the latter was inspired by the recent preparation of its 

hydroxo counterpart OsH3(OH){κ3-P,O,P-[xant(PiPr2)2]},15 which 

is stable towards the reductive elimination of water in spite of that 

this process is generally favored from a thermodynamic point of 

view.16 Similarly to the OH- group, SH- replaces the trifuoro-

methanesulfonate anion ([OTf]-) from 1 to give 2, which was 

isolated as red crystals in 47 % yield. The coordination of the SH- 

group to the osmium atom is demonstrated by the X-ray diffrac-

tion analysis structure (Figure 1). The osmium(IV) center shows 

the expected pentagonal bipyramidal arrangement with axial PiPr2 

groups and the oxygen atom of the diphosphine and the SH-anion 

in the perpendicular plane, along with the cisoid inequivalent 

hydrides which display three resonances at -8.07, -13.01, and -

13.78 ppm in the 1H NMR spectrum, in toluene-d8, at 193 K. The 
31P{1H} NMR spectrum shows a singlet at 48.1 ppm for the 

equivalent PiPr2 groups. Complexes of platinum group metals 

bearing terminal hydrogensulfide ligands are rare due to the high 

tendency of this group to act as a bridging ligand.17 The five-

coordinate catecholboryl derivative Os(Bcat)(SH)(CO)(PiPr3)2 

was the first mononuclear SH-complex of these metals character-

ized by X-ray diffraction analysis. It was prepared by reaction of 

the monohydride OsH(SH)(CO)(PiPr3)2
18 with HBcat via the di-

hydrogen intermediate OsH(SBcat)(η2-H2)(CO)(PiPr3)2.19 Braun 

and co-workers have recently reported the rhodium(I) derivative 

Rh(SH){κ3-P,O,P-xant(tBu2)2]}, which has been also character-

ized by X-ray diffraction analysis.20 

Scheme 1. Synthetic Strategy for the Preparation of Cy-

cloosmathioborane Complexes 

 



 

 

Figure 1. Molecular drawing of complex 2. Hydrogen atoms (ex-

cept hydrides and H04) are omitted for clarity. Selected distances 

and angles: Os-S = 2.4483(6) Å, S-H04 = 1.16(3) Å, Os-S-H = 

105.8(13)º, O1-Os-S = 80.92(4)º, P1-Os-P2 = 162.26(2)º. 

Complex 2 reacts with BH3NHR2 amine-boranes to give the 

unprecedented cycloosmathioborane derivatives OsH2{κ2-S,B-

[SBNR2]{κ3-P,O,P-[xant(PiPr2)2]} (NR2 = NHtBu (3), NMe2 (4)), 

as a result of the releasing of H2 from both the metal center and 

the amine-boranes. The dehydrogenation is favored by the poly-

hydride character of 221 and by the presence of the hydrogensul-

fide ligand, which traps the resulting amino-borane monomer.22 

The capture facilitates the complete extraction of the hydrogen 

atoms attached to the boron atom. Complex 3 and 4 were isolated 

as yellow solids in about 60 % yield. The X-ray diffraction analy-

sis structure of 3 (Figure 2) proves the triangular shape of the ring 

determined by the Os, S, and B atoms. The most noticeable fea-

ture of the triangle is the B-S distance of 1.782(6) Å, which sug-

gests a significant double bond character. It is only about 0.03 Å 

longer than the B-S bond length reported in the manganese com-

plex Mn(η5-C5H5){S=B(tBu)IMe}(CO)2 (IMe = 1,3-

dimethylimidazolylidene; 1.747(3) Å)23 and in the thioxoboranes 

S=B{κ2-N,N-[N(2,6-Me2C6H3)C(Me)CHC(Me)N(2,6-

Me2C6H3)]} (1.741(2) Å)24 and S=B{κ2-N,N-[N(2,4,6-

Me3C6H2)P(Ph)2NP(Ph)2N(2,4,6-Me3C6H2)]} (1.752(5) Å),25 and 

about 0.07 Å longer than that found in the cation S=B{κ2-N,N-

[N(LMes)CH2CH2N(LMes)]}+ (LMes = 1,3-

dimesitylimidazolinylidene; 1.710(5) Å),26 species reported as the 

first ones featuring a B-S double bond. The three-membered rings 

of 3 and 4 resemble that of the intermediate recently proposed by 

Braunschweig and co-workers for the reaction of the alkyl-

borylene complex Mn(η5-C5H5)(=BtBu)(CO)2, with SPPh3, which 

yields the metathesis product Mn(η5-C5H5)(CO)2(PPh3). This 

intermediate has been suggested to be a κ2-S,B-[SBtBu] deriva-

tive.27 The Os-S distance of 2.5572(14) Å is scarcely 0.08 Å long-

er than that of 2, whereas the Os-B bond length of 2.073(6) Å is 

consistent with an Os(IV)-B single bond.28 In fact, the OsH2(POP) 

moiety can be described as a 16-electron valence cis-dihydride 

L5Os(IV) fragment, which gives rise to the typical pentagonal 

bipyramidal arrangement around the metal center, with a mer-

coordination of the POP-pincer. This arrangement generates two 

high field signals at about -9 and -18 ppm in the 1H NMR spectra 

and a singlet at about 47 ppm in the 31P{1H} NMR spectra. A 

broad resonance at 56.3 ppm for 3 and at 62.0 ppm for 4 in the 11B 

NMR spectra are also characteristic features of these compounds. 

 

Figure 2. Molecular drawing of complex 3. Hydrogen atoms (ex-

cept hydrides and H1) are omitted for clarity. Selected distances 

and angles: B-N = 1.391(7) Å, Os-S-B = 53.5(2)º, S-B-Os = 

82.8(2)º, B-Os-S = 43.7(2)º. 

Density Functional Theory (DFT) calculations at the dispersion 

corrected BP86-D3/def2-TZVPP level were carried out on 3 to 

gain more insight into the bonding situation in the three-

membered ring. Theoretical support for a significant double char-

acter of the B-S bond is given by the corresponding computed 

Wiberg Bond Index (WBI) of 1.40 and by the shape of HOMO-7 

and HOMO-8. They can be viewed as π-molecular orbitals delo-

calized within the ring, also involving the lone pair of the attached 

nitrogen atom (Figure 3). According of the Natural Bond Order 

(NBO) method, the multiple bond character of the B-S bond de-

rives from the delocalization of the lone pair of the sulfur atom 

into the vacant pz atomic orbital of the boron (associated second-

order perturbation energy of -55.7 kcal/mol). In addition, the 

NBO method also locates a significant delocalization of a doubly-

occupied dπ(Os) atomic orbital to this vacant pz(B) (associated 

energy of -21.3 kcal/mol), which is also fully consistent with the 

delocalized π-orbitals depicted in Figure 3. 

 

Figure 3. Computed π-molecular orbitals delocalized into the Os-

B-S metallacycle of 3 (isosurface value of 0.04 a.u.). 

The previous mentioned findings are consistent with a formally 

4n + 2 Hückel aromatic system in which n = 0 and where the two 

π-electrons of the ring are provided by the sulfur atom. To con-

firm the aromaticity of the novel Os, S, B three-membered ring, 

we first computed the Nuclear Independent Chemical Shift 

(NICS) values at the center of the ring. A highly negative value of 

NICS (0) = -32.1 ppm was found, which would at first glance 

support the aromatic nature of the metallacycle. Nevertheless, it is 

well-known that isotropic NICS values, particularly in small 

rings, are usually contaminated by local shielding effects of the 

nearby bonds and therefore are not always reliable.12a The situa-

tion is even more dramatic if a transition metal is present in the 

ring.4c For this reason, we also computed the out-of-plane tensor 
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contribution to the NICS value at 1 Å above and below the ring 

center, which has been recommended as a reliable measure of the 

magnetic aromaticity.29 The highly negative computed values, 

NICS(1)zz = -17.9 and -18.4 ppm are overwhelming evidence of 

the aromatic nature of the Os-S-B metallacycle. In addition, the 

Anisotropy of the Induced Current Density (ACID)30 method was 

applied to visualize the aromatic ring current in the metallacycle. 

As depicted in Figure 4, the ACID method, computed for a model 

system where the bulky isopropyl and tert-butyl groups were re-

placed by hydrogen atoms (NICS(1)zz = -15.9 ppm), clearly shows 

the occurrence of a diatropic (clockwise vectors) ring current 

within the three-membered ring, therefore confirming the aro-

matic nature of this novel metallacycle. 

 

Figure 4. ACID plot for the model compound OsH2{κ2-S,B-

[SBNH2]{κ3-P,O,P-[xant(PH2)2]} with a 0.04 a.u. isosurface val-

ue. 

We have obtained additional support for the aromatic character 

of complexes 3 and 4 by means of energetic descriptors. Howev-

er, the application of the energetic methods (ASE or ISE meth-

ods)4c typically used in other aromatic compounds, including 

those having transition-metals in their structures, is not possible 

for these particular species. We have carried out two alternative 

isodesmic reactions, namely the hydrogenation and the reductive 

elimination depicted in Scheme 2. For both reactions, the cleavage 

of the three-membered ring is computed to be endothermic, which 

is fully consistent with the thermodynamic stability (due to aro-

maticity) of the metallacycle. 

Scheme 2. Computed Isodesmic Reactions Involving Com-

plex 3. Energies (in kcal/mol) Were Computed at the 

BP86-D3/def2-TZVPP Level 

 

In conclusion, the assembly of a 16-electron valence L5Os(IV) 

metal fragment, a sulfur atom, and a B-NR2 moiety gives rise to 

three-membered π-aromatic rings, which are formed by different 

vertexes, representing a novel manifestation of 4n + 2 Hückel 

aromaticity in which n = 0. These cycloosmathioborane com-

pounds are prepared by simultaneous dehydrogenation of a trihy-

dride-hydrogensulfide-osmium(IV) complex and a BH3NHR2 

amine-borane. 

 

ASSOCIATED CONTENT  

Supporting Information 

The Supporting Information is available free of charge on the 

ACS Publications website. 

General information, instrumental methods, preparation and char-

acterization of 2, 3 and 4, NMR spectra, structural analysis of 2 

and 3, and computational details (PDF) 

Crystallographic information for 2 (CCDC 1878692) (CIF) 

Crystallographic information for 3 (CCDC 1878693) (CIF) 

Cartesian coordinates (xyz) 

 

AUTHOR INFORMATION 

Corresponding Author 

*E-mail: maester@unizar.es. 

ORCID 

Miguel A. Esteruelas: 0000-0002-4829-7590 

Israel Fernández: 0000-0002-0186-9774 

Cristina García-Yebra: 0000-0002-5545-5112 

Jaime Martín: 0000-0003-0909-3509 
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Cycloosmathioboranes bearing an Os, S, B three-membered ring are a manifestation of 4n + 2 Hückel 

aromaticity in which n = 0 and where the two π-electrons of the ring are provided by the S atom. 


