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Abstract— Robotic platforms communication and 
interoperability is of relevance for marine science and industrial 
monitoring. We present results of a particle filter study based on 
underwater Multi-Target Tracking (MTT) using Autonomous 
Underwater Vehicles (AUV). The main goal was to assess the 
viability of using a single surface vehicle as a mobile landmark to 
track and follow a fleet of underwater targets, each one equipped 
with an acoustic tag where the slant ranges between the surface 
vehicle and the underwater targets are the unique input for the 
filters.  
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collaboration; acoustic communication 

Multi-vehicle cooperation and Underwater Sensor Networks 
(USN) have become one of the main areas of study in marine 
technology. These new methods, where different sensors, nodes, 
and vehicles are working together in a collaborative way, open 
new possibilities to discover and monitor the high complexity of 
oceanographic phenomena, and to develop new industrial 
applications. The idea of collaboration among multiple vehicles 
or standalone sensors to achieve complex tasks, has been a hot 
topic in the past decade [1, 8]. Nowadays, this idea is becoming 
even more and more popular, due to the apparition of cheaper 
and flexible devices, such as new vehicles and acoustic modems. 
As an example, technical solutions proposed by the MORPH 
project [2], include different methods and tools to map the 
underwater environment using a fleet of autonomous vehicles. 
The range of opportunities and areas for this technology 
includes: 

- Mining, and oil and gas industries: to create more 
accurate maps, studies of the seafloor and underwater 
reservoirs, etc.  

- Fisheries: to track spatiotemporal changes in stocks 
demography and behaviour to preserve quotas, etc.  

- Oceanographic research: Eulerian approaches to the 
study of complex ocean phenomena and seascapes 
properties in relation to climate change or algal blooms, 
preserve species or habitats, etc.  

However, one of the main drawbacks in multi-target 
collaboration is the uncertainty in underwater positioning and 
tracking, which is expensive in terms of power, size, and 
complexity in both hardware and signal processing. The main 
reason is due to the underwater medium, which allows poor 
electromagnetic propagation, and therefore, no GPS or radio 
frequency systems can be successfully used. Consequently, the 

acoustic and dead-reckoning methods are primary solutions for 
underwater positioning and communication. Nevertheless, the 
traditional Long Base-Line (LBL) method is not valid under 
dynamic areas of study, as when the target travels thousands of 
metres. On the other hand, the Ultra Short Base-Line (USBL) 
devices are, in general, too big to be installed on AUVs or too 
much expensive. Researches have recently focused on Mobile 
Long Base-Line (MLBL) methods (also called Virtual Long 
Base-Line VLBL) to solve those kinds of problems, where 
different Autonomous Surface Vehicles (ASV) are used as a 
mobile landmark to estimate the position of underwater devices 
[3]. However, in general, the MLBL is used as a dead-reckoning 
aid. The surface vehicles give periodic georeferenced positions 
to the underwater devices, which have their own positioning 
system, such as a Doppler Velocity Log (DVL) with an Inertial 
Measurement Unit (IMU).  Nonetheless, this method is not valid 
in situations where the power consumption, the size and the 
economic cost of the underwater device are very restrictive. This 
should be the case of tracking small devices as drifters, small 
marine species, or to track tens or hundreds of devices, where in 
this case cost per unit is a key factor. 

In this scenario, we have developed an underwater MTT 
method using range-only and single-beacon strategy based on 
Particle Filters (PF) algorithm. This paper develops part of the 
studies presented in [4], but in a multi-target scenario and by 
introducing more operative aspects as random noise on range 
measurements, and PF parameters adjustment.  Moreover, to 
make simulation very realistic, the proposed method have been 
studied using Evologics’ modem emulator [6],  which allows a 
close insight on the projected final application with their 
acoustic modems. These acoustic modems have a physical layer 
dedicated to measure the transmission and reception times of a 
data packet with a synchronization pulse, giving these time 
instants to high level protocols, time synchronized events can be 
generated by them. Therefore, an accurate Time Of Flight 
(TOF), and the slant range associated between modems, can be 
computed [9, 10]. 

I. METHOD PROPOSED FOR MULTI-TARGET TRACKING 
The main purpose of the study is to follow a set of 

underwater targets, which can range from acoustic transponders, 
to AUV fleet or swarms of tagged marine animals. Therefore, 
we conceived a surface vehicle which is used as the main node 
in the network (master), and a set of underwater targets which 
are the secondary nodes (slaves). The master interrogates each 
slave node periodically to obtain the slant ranges that are used 



as input of the filters to compute the target’s localization 
estimations where each target has its own filter. This scenario is 
illustrated in Fig. 1.  

 

Fig. 1. Range based multi-target tracking scenario. 

II. UNDERWATER TARGET TRACKING 
In [4] we presented a Particle Filter (PF) algorithm for range-

only and single-beacon target tracking, where an ASV was used 
to follow a single underwater target. We observe the better 
performance of the PF in front of the Extended Kalman Filter 
(EKF). Although the EKF had the best target prediction at the 
end of the simulation, its setting time was greater than the PF, 
and therefore, had worst performance.   

A. Particle Filter basis 
The main algorithm’s steps were described in [4, 7]. 

However, one of the most important steps in PF is the 
resampling method, which is essential to obtain a good 
estimation and avoid the degeneracy problem, but it can increase 
the computational costs [5]. In this case, we have chosen a 
compound sampling method to preserve particle diversity. The 
main group of the particles are resampled using a systematic 
method (3), whereas some of them are randomly initialized 
inside a 50 m radius circumference (4, 5), which is centred on 
the previous target prediction. With this scheme, we want to 
reduce the degeneracy problem and obtain a better response in 
front of sudden changes on target forward direction. Finally, the 
PF algorithm has to incorporate random noise to increase the 
particle diversity. In this case, the velocity, orientation, and 
forward movement noise have been added in the prediction step, 
which propagate the particles according to motion model. And a 
sense noise in the measurement step, which updates the 
particles’ weights.  

B. Particle Filter applied to multi-target tracking 
The method applied for MTT is based on a bank of filters 

(Fig. 2), where each filter is used to track a particular target. PF 
solves, in a non-parametric way, the probability distribution 
problem of Hidden Markov Models (HMM), given by the 
recursion of 

 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1) = ∑ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1)�������
𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑧𝑧1:𝑡𝑡−1)���������
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, (1) 

and 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡) ∝ 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡)�����
𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚
𝑤𝑤𝑚𝑚𝑚𝑚𝑤𝑤ℎ𝑡𝑡𝑝𝑝

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1)�������
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝

, (2) 

where 𝑥𝑥𝑡𝑡 is the target state at time 𝑡𝑡 and 𝑧𝑧𝑡𝑡 is the observation at 
time 𝑡𝑡. Equation (1) is the motion update, which is composed by 
a prediction step, where each particle moves according to a 
motion model, and a measurement step, where then its 
importance weight is calculated through a measurement of the 
real world. The second phase (2) is the measurement update, 
where all particles are resampled according to their importance 
weights using a combination of systematic and random methods.  

 

Fig. 2. Block diagram where the bank of PF to compute MTT is represented. 

The systematic resampling method is well known, which 
offers a good performance in terms of computational complexity 
and resampling quality [5, 11]. This method uses a vector equal 
to the cumulative sum of the normalized particle weights, and 
then a random number  𝑢𝑢𝑡𝑡

(1)  is drawn from the uniform 
distribution on (0, 1 (𝑁𝑁 − 𝑘𝑘)⁄ ] interval, and the rest of the 𝑢𝑢𝑡𝑡 
numbers are obtained deterministically as 

𝑢𝑢𝑡𝑡
(1) ~𝑈𝑈 �0, 1

𝑁𝑁−𝑘𝑘
�,  

𝑢𝑢𝑡𝑡
(𝑚𝑚) =  𝑢𝑢𝑡𝑡

(1) + 𝑚𝑚−1
𝑁𝑁

,𝑛𝑛 = 2, … ,𝑁𝑁 − 𝑘𝑘, (3) 

where 𝑘𝑘 is a constant that define the number of particles which 
will be resampled using the second method. This vector is used 
to select a set of particles according to the multinomial 
distribution. 

On the other hand, the random method implemented consist 
into initialize 𝑘𝑘  particles around the previous target position 
estimated   𝑥𝑥�𝑡𝑡−1 on a circle shape, where the position of each 
new particle is defined by 

𝑢𝑢𝑡𝑡
(𝑘𝑘)(𝑥𝑥) = 𝑟𝑟 · 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) + 𝑥𝑥�𝑡𝑡−1(𝑥𝑥), (4) 

𝑢𝑢𝑡𝑡
(𝑘𝑘)(𝑦𝑦) = 𝑟𝑟 · 𝑐𝑐𝑠𝑠𝑛𝑛(𝛼𝛼) + 𝑥𝑥�𝑡𝑡−1(𝑦𝑦), (5) 

where 𝑟𝑟 ~𝑈𝑈(0, 𝑟𝑟𝑚𝑚𝑝𝑝𝑥𝑥], and 𝛼𝛼 ~𝑈𝑈(0,2𝜋𝜋], 𝑟𝑟𝑚𝑚𝑝𝑝𝑥𝑥  is the maximum 
radius defined previously by the user. This strategy is carried out 
to maintain always some particles nearby the target in all its 
directions, which improve the PF’s time response in front of 
unexpected target’s position variations.    



III. SIMULATIONS AND RESULTS 
We performed two kinds of simulations: standard 

simulations through Python, and simulations using the 
Evologics S2C Underwater Acoustic Modem Emulator [6]. The 
noise on range’s measurement and the target estimation 
accuracy have been studied using Python simulations, whereas 
the communication between modems and their medium access 
protocols have been studied using the Emulator. 

A. Python simulation 
On Table I we can observe the EKF and PF performances’ 

under different Gaussian noises added on the range’s 
measurements. We compare the mean and variance error after 
the filter’s stabilization. In this case, 9 targets spread on a grid 
of 200 m by 200 m were used.  

TABLE I.  FILTERS PERFORMANCE UNDER DIFFERENT NOISE RANGES  
aRMSE 

 EKF PF 
Noise STD [m] Mean STD Mean STD 

0 209.07 15.68 5.12 0.9 
2 187.1 15.02 5.31 1.29 
4 174.93 16.47 7.95 1.93 

a. Simulation using only 9 targets spread on a gird of 200 m by 200 m, the Root Mean Square Error 
(RMSE) is the mean of this 9 targets. 

 

These simulations shows that the PF is, much better than the 
EKF, where both mean and Standard Deviation (STD) of the 
Root Mean Square Error (RMSE) of all targets’ position and 
their estimations have smaller values. This is an important 
difference respect to [4], where the EKF was more accurate after 
the transient response than the PF. However, the initialization 
point of each filter are worse in this case due to the multi-target 
scenario, and PF overperforms the EKF in such cases.   

The filters’ performance are shown in Fig. 3, where the 
RMSE and its STD for each target is represented, which have 
been obtained after 10 iterations with a Gaussian noise equal to 
2 m. Moreover, Fig.4 shows one of these iterations on the x-y 
plane. On these colour maps, the isobars show the error between 
the real target position and its estimation. In general, for both PF 
and EKF methods, the error is lower on the middle, where the 
ASV performs its manoeuvres. However, the PF over performs 
the EKF method, where its maximum error is less than 5 m, in 
contrast with the more than 300 m of error obtained using the 
EKF. 

 

Fig. 3. RMSE and its STD for each target after 25′ of tracking. These values 
have been obtained after 10 iterations with 2 m of Gaussian noise added at each 
range measurement. 

 
(A) 

 
(B) 

Fig. 4. RMSE after 1.5 km of forward movement, with 1 ASV (blue dot) and 
9 targets (black triangles). A) using a PF algorithm to estimat each targtet 
position, and B) using a EKF estimator. The color degradation indicates a 
target’s estimation error that would be obtained if it was in such position. This 
representation has obtained throught the error of the 9 targets at their position 
and using a cubic interpolation over the whole grid map.  
 

In both graphs (Fig. 3 and Fig. 4) we can observe that the 
targets which are on the centre and left-centre are better 
estimated than the others. This is due the fact that the 
manoeuvres of the observer are closer to this area. Furthermore, 
the target number 5 (T5) has the best estimation. In this case, 
due twofold reasons:  all the observer manoeuvres are around 
this target, which increase its observability; and the filter 
initialization point was closer to the real target position, because 
of all initialization points estimate the target position on the 
centre of the graph, the same position where observer is placed 
at the beginning. 

On the other hand, a set of simulations have been conducted 
to observe the performance of different resampling algorithms 
used in the PF estimator. In this case 3 methods have been 
implemented: Multinomial Resampling (MR), Systematic 
Resampling (SR), and Compound Resampling (CR). A 
simulation with 9 targets which have a sudden change in their 
direction have carried out to appreciate the time response of each 
method. All the targets were following a south-north straight 
line, and after 100 iterations their direction changed 90 degrees. 
The average error of the 9 targets through the time, for each 
resampling method, is represented in Fig. 5. We can observe that 
the targets turned at 𝑇𝑇𝑇𝑇 = 16.7′. The fastest algorithm to reduce 



the error, and therefore to find the correct target location, was 
the CR method, which needed 1′ to reduce the error below 30 
m. Whereas the MR and SR needed 11.5′ and 9′ respectively. 

     

 

Fig. 5. Avarage of the 9 targes position estimations throuth the time using 3 
different PF’s resampling strategies. Multimodal, Systematic, and Compound 
mehtods. Where 𝑇𝑇𝑇𝑇  is the turn time instant where all targets changed its 
direction 90 degrees.  

B. Using Evologics modem emulator 
Finally, with the modem emulator tool by Evologics, one can 

simulate the performance of all the nodes (the master and slaves) 
working together. This tool allows the user to know the time 
response of each modem, and simulate a quasi-real scenario in 
the point of view of the acoustic modems and its communication 
protocol. We can study the maximum range measurement 
frequency for each target, and therefore, the scalability of the 
system. Here we present 2 methods to obtain the range from 
each target: a first method using simple Query/Answer (Q/A) 
strategy; and a second method using Time-Division Multiple 
Access (TDMA) as a channel access method. 

In the Q/A strategy, each slant range between the observer 
and the target is obtained sending an Instant Message (IM) to the 
target and waiting for its response, as it is represented on Fig. 6. 
The time delay 𝑇𝑇𝑚𝑚

𝑄𝑄/𝐴𝐴 required to read a range is computed by 

𝑇𝑇𝑚𝑚
𝑄𝑄/𝐴𝐴 = 𝑛𝑛𝑇𝑇𝑝𝑝

𝑄𝑄/𝐴𝐴 

𝑇𝑇𝑚𝑚
𝑄𝑄/𝐴𝐴 = 𝑛𝑛2( 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑃𝑃), (6) 

where 𝑛𝑛  is the targets’ number, 𝑇𝑇𝑇𝑇𝑇𝑇 is the messages’ Time Of 
Flight, 𝑇𝑇𝑇𝑇𝑇𝑇 is the transmission time, and 𝑇𝑇𝑃𝑃 is the time required 
to process the IM message. 

 

Fig. 6. Query/answer comunication protocol between observer and target 
modems to obtain their slant range. 

On the other hand, using the TDMA method (see Fig. 7) each 
target sends a response from a broadcast query inside its specific 
time slot using Synchronous Instant Messages (SIM). The time 
delay 𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴  of each target, which is required to allow the 
transmission inside its slot, is calculated by the linear equation: 

𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 = 𝑛𝑛𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 + 𝑇𝑇𝑏𝑏𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 

𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 = 𝑛𝑛(2 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐺𝐺) + 2𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑃𝑃, (7) 

where 𝑇𝑇𝐺𝐺  is the guard time between slots. Using these 
parameters, we make sure that no interferences between 
transmissions will occur. The TOF has been computed using the 
maximum distance available between modems. 

 

Fig. 7. TDMA comunication protocol between observer and target modems to 
obtain their slant range. 

The results obtained through the modem emulator are 
presented on Fig. 8, where we can observe the time required to 
obtain a slant range measurement by both Q/A and TDMA 
methods. Different simulations have been carried out using 
different number of targets and their maximum distance from 
the observer. 

 

Fig. 8. Time required to obtain a slant range for different number of modems 
and different ranges between modems and the observer (in this case, at 100 m, 
500 m, and 900 m). Solid lines represent the Q/A method, and discontinuous 
lines represent the TDMA method. 

The linear equation 𝑇𝑇𝑚𝑚
𝑄𝑄/𝐴𝐴  has a greater gradient than the 

𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴  equation. On the other hand, 𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴  have a non-zero 
offset. Therefore, we can observe that the Q/A method is better 
than TDMA for a scenario with small number of modems, 
whereas if the number of modes is bigger (more than 4), the 
TDMA method reduces the Q/A time. For example, the TDMA 
method can read the range of 9 modems at 500 m up to 28.6% 
faster than Q/A.  

IV. CONCLUSION 
This paper shows the performance of PF as an underwater 

multi-target tracking method, which is better in noisy and worse 
initialization scenarios than EKF, as it is shown on Table I and 
Fig. 3. These simulations demonstrate the good characteristics 
of the PF to track multiple targets, where an average error equal 
to 5 m can be obtained while tracking more than 9 targets at 200 
m of distance between each one. 

On the other hand, different simulations have been carried 
out through Evologics’ Modem Emulator, which provides a 
quasi-real scenario for modem communication. Using this tool, 

Td

Observer

Target 1

Target n Td

nTd 

Td

Observer

Target 1

Target n

Slot 1 Slot n



we could conduct comparisons between Q/A and TDMA 
methods to read the range from multiple targets, obtaining their 
performance. We demonstrated that the TDMA method be 
28.6% faster than the Q/A method in some scenarios. 

To conclude, all the work presented in this paper shows the 
ability of PF algorithm to track multiple underwater targets from 
a single observer (i.e. an autonomous surface vehicle).  
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