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Abstract

In the context of supply function competition with private information, we test in the
laboratory whether—as predicted in Bayesian equilibrium—costs that are positively correl-
ated lead to steeper supply functions and less competitive outcomes than do uncorrelated
costs. We find that the majority of subjects bid in accordance with the equilibrium pre-
diction when the environment is simple (uncorrelated costs treatment) but fail to do so
in a more complex environment (positively correlated costs treatment). Although we find
no statistically significant differences between treatments in average behaviour and out-
comes, there are significant differences in the distribution of supply functions. Our results
are consistent with the presence of sophisticated agents that on average best respond to a
large proportion of subjects who ignore the correlation among costs. Experimental welfare
losses in both treatments are higher than the equilibrium prediction owing to a substantial
degree of productive inefficiency.
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1 Introduction

We design a laboratory experiment which captures the complexity of the bidding and inform-
ation environments which are representative of the real-world markets characterised by com-
petition in schedules such as wholesale electricity markets, markets for pollution permits, as
well as liquidity and Treasury auctions.1 We provide experimental evidence of behaviour and
outcomes in a market where each seller has incomplete information about her costs, receives a
private signal, and competes in supply functions. The aim of our experiment is to study the
relationship between information frictions and market power, and to examine the implications
of the complexity of the environment: uncorrelated costs versus positively correlated costs.

We consider a market where firms compete in terms of supply functions (see Klemperer and
Meyer 1989) and with incomplete cost information (Vives 2011). The latter paper finds that, in
a unique linear Bayesian equilibrium, private information with cost correlation generates market
power that exceeds the full-information benchmark.2 When costs are positively correlated, the
model predicts that the supply function’s slope is steeper and the intercept is lower leading to
higher expected market prices and profits than when costs are uncorrelated. The mechanism
that explains these results can be stated as follows. A seller receives a private signal that is
informative about her random costs. A fully rational seller who is strategic must also realise
that, when costs are positively correlated, a high price conveys the information that costs are
high; therefore, to protect herself from adverse selection, she should compete less aggressively
than if costs were uncorrelated. So if all sellers are fully rational then the combination of private
information and strategic behaviour leads to greater market power when costs are correlated
than when they are uncorrelated. The mechanism that relates higher cost correlation to increased
market power is connected to a generalised version of the winner’s curse (Ausubel et al. 2014)
that extends this concept to multi-unit demand auctions.3

The experimental design is as follows. We employ a between-subjects experimental design
with two treatments that only differ in the correlation among costs.4 In each treatment, subjects
were randomly assigned to independent groups of twelve subjects, each comprising four markets
of three sellers. Within each group, we applied random matching between rounds in order to
retain the theoretical model’s one-shot nature. The buyer was simulated, and subjects were
assigned the role of sellers. Subjects received a private signal about the uncertain cost and

1The following papers argue for the importance of demand or cost uncertainty among bidders that compete
in schedules: wholesale electricity markets (Holmberg and Wolak 2015); liquidity auctions (Cassola et al. 2013);
Treasury auctions (Keloharju et al. 2005); carbon dioxide emission permits (Lopomo et al. 2011).

2The supply function equilibrium with uncorrelated costs coincides with the full-information equilibrium since
sellers do not learn about cost uncertainty from prices.

3The connection is established in the Related Literature section.
4In a between-subjects design participants are either part of the control group or the treatment group but

cannot participate in both.
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were then asked to submit a (linear) supply function. As in the theoretical model, and in
contrast to most of the experimental literature, we used a normally distributed information
structure that well approximates the distribution of values in naturally occurring environments.
After all decisions had been made, the uniform market price was calculated and each subject
received detailed feedback about her own performance, the market price, and the behaviour and
performance of rivals in the same market. At the end of the experiment, we administered a
post-experiment questionnaire that asked about participant’s demographic information, bidding
behaviour, and understanding of the game. Subjects were given incentives that incorporated
both fixed and variable components, where the variable component reflected the individual
participant’s performance during the game.

Our experimental data are in line with some of the theoretical predictions. First, we con-
firm that average behaviour in the uncorrelated costs treatment closely matches the theoretical
prediction in the experiment’s early stages and that, over time, the average supply function
tends even further toward the equilibrium supply function. This finding is important because
the uncorrelated costs treatment yields a benchmark against which to compare behaviour in the
positively correlated costs treatment. Second, we find that the features of the equilibrium that
are common to both treatments are observed in the data. In particular, we observe that the
supply function’s intercept is increasing in a bidder’s signal realisation. This result is consist-
ent with subjects understanding that a higher signal implies a higher average intercept of the
marginal cost, which means they should set a higher ask price for the first unit offered and this
leads, in turn, to a higher supply function intercept. We observe also that the supply function’s
slope is unrelated to the signal received.

Analysing the distribution of individual choices, we find that the cumulative distribution
of supply function slopes in the positively correlated costs treatment first order stochastically
dominates the cumulative distribution of slopes in the uncorrelated costs treatment, both in the
first and last five rounds (in a stronger way in the latter). This result shows that differences
in behaviour between treatments are consistent with the direction predicted by the theoretical
model. However, we cannot reject the hypothesis that average supply functions are the same
in both treatments. In the positively correlated costs treatment we observe that the average
supply function is substantially flatter and has a higher intercept than predicted by the equilib-
rium, which is consistent with subjects being too strongly guided by the signal received. This
divergence persists even as subjects gain bidding experience.

In terms of experimental outcomes, we also find differences (albeit insignificant ones) between
treatments with regard to market prices, profits, and efficiency of the allocations. However, we
do not find the predicted differences in market power between the two treatments. In the
positively correlated costs treatment, bidders forgo a large percentage of profits—an outcome
typical of auctions where bidders ignore the adverse effects of correlation among costs. Moreover,
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experimental welfare losses in both treatments are larger than predicted by the equilibrium
owing to the considerable extent of productive inefficiency. These results suggest that subjects
in the positively correlated costs treatment fall prey to the generalised winner’s curse and, as
a result, compete too aggressively in comparison with the equilibrium prediction. The greater
heterogeneity in behaviour in the positively correlated (than in the uncorrelated) costs treatment
merits further exploration.

We offer a detailed analysis of behaviour that proceeds in three parts. First, in each treat-
ment we analyse theoretically subjects’ strategic incentives. We remark that the environment
that we study is complex both in terms of the information setting (the combined uncertainty
regarding cost and private signal) and the market structure (competition in supply functions
and transaction costs which vary with quantity sold). The positively correlated cost treatment
adds a further layer of complexity since the market price is informative about a seller’s cost;
hence the equilibrium logic requires subjects to form not only correct beliefs about the eco-
nomic environment but also correct higher-order beliefs. In other words, the equilibrium of the
positively correlated costs treatment requires that sellers believe that other sellers are taking ad-
vantage of the correlation structure, that they believe that everyone believes this, that everyone
believes that everyone believes this... We find that a (sophisticated) subject in our positively
correlated costs treatment who best responds to the rivals’ average choices has an incentive
to bid a supply function between the equilibrium of the uncorrelated costs treatment and the
equilibrium of the positively correlated costs treatment. It follows that behaviour and outcomes
between treatments (and for different subject types—namely, sophisticated types capable of best
responding and naïve who fall prey to the generalised winner’s curse—) are less differentiated
than predicted by the equilibrium (which assumes that all bidders are fully rational).

The second part of our analysis takes a descriptive approach to organising, via cluster ana-
lysis, the observed heterogeneity in individual-level behaviour; we then compare the clusters
so derived to the various theoretical benchmarks. We use average behaviour in blocks of five
rounds. In the uncorrelated costs treatment, we identify two clusters. One cluster assembles
choices that are close to the equilibrium and theoretical best response to the average choice; this
cluster includes 58% of the subjects in the first five rounds of bidding, a proportion that increases
to 72% in the last five rounds. The other cluster groups subjects whose supply functions are
steeper and have a lower intercept than the equilibrium of the uncorrelated costs treatment; this
cluster includes 42% and 28% of the subjects in (respectively) the first and last five rounds. In
the positively correlated costs treatment we identify three clusters. One cluster groups subjects
whose supply functions are close to the benchmark for subjects who fall prey to the generalised
winner’s curse, which includes 58% of the subjects in the first five rounds of bidding and 50%
in the last five rounds. Another cluster gathers subjects whose bidding behaviour is not incon-
sistent with sophisticated behaviour in the sense that their supply functions are close to the
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theoretical best response to the average supply function; this cluster includes 36% (respectively
42%) of subjects in the first (respectively last) five rounds of bidding. Given the complexity of
the bidding environment, it is interesting to find a substantial number of subjects whose beha-
viour approximates the average best response. The third derived cluster groups the remaining
subjects, who bid a steep supply function with a low intercept (6% and 8% of subjects in the
first and last five rounds, respectively). Although there are few treatment differences in average
behaviour there are substantial differences in the distributions of individual behaviour. These
are driven by the two treatments’ different levels of strategic complexity, which lead to the
identification of distinct types of subjects (naïve and sophisticated) in each treatment. Notice,
however, that even with a substantial percentage of subjects whose behaviour approximates the
average best response only moves the aggregate behaviour slightly away from the uncorrelated
costs treatment.

Finally, we analyse how behaviour changes across rounds and find treatment-based dif-
ferences in the determinants of the evolution of behaviour. In particular, the best-response
dynamics factor figures more prominently in the uncorrelated than in the positively correlated
costs treatment, whereas imitation of the best plays a smaller role in the uncorrelated than in
the positively correlated costs treatment. In each treatment, both imitation of the average and
reinforcement learning are important factors in explaining the evolution of behaviour across
rounds. The combination of these determinants, the initial conditions and strategic complexity
explains why behaviour evolves toward the equilibrium in the uncorrelated costs treatment but
not in the positively correlated costs treatment.

The rest of our paper is organised as follows. We review the related literature in Section 2
and explain the theoretical model in Section 3. Section 4 describes the experimental design,
after which Section 5 presents our main results. In Section 6 we analyse in detail the behaviour
observed during our experiment. We conclude in Section 7. (The experiment’s instructions may
be found in Appendix C.)

2 Related Literature

Our experimental paper studies competition in supply schedules within an information envir-
onment that includes both positively correlated costs and uncorrelated costs. This environment
is reminiscent of the one described in Goeree and Offerman (2003), who also use normally dis-
tributed values and error terms. However, their paper compares behaviour in cases of common
versus uncorrelated private values in a single-unit, second-price auction whereas ours compares
behaviour in cases of correlated versus uncorrelated costs in a supply function, uniform price
auction.

With respect to the competition environment, some early experiments used bid functions in
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auctions with incomplete information (e.g., Selten and Buchta 1999), but few laboratory exper-
iments have sought to analyse, as we do, competition in supply functions. Exceptions include
the work of Bolle et al. (2013), who focus on testing predictions of Supply Function Equi-
librium concept, as well as Brandts et al. (2014), whose paper compares testable predictions
made by various models of how pivotal suppliers affect supply function bidding. In contrast,
our experiment focuses on a framework in which market power is driven by a small number of
firms, increasing marginal costs, and private information about costs. Outside the laboratory,
Hortaçsu and Puller (2008) empirically evaluate strategic bidding behaviour in multi-unit auc-
tions using data from the Texas electricity market. These authors find evidence that large firms
bid according to the theoretical benchmark while smaller firms deviate significantly from that
benchmark.

To the best of our knowledge, ours is the first laboratory experiment to test the relationship
between informational frictions and market power in the context of supply function competition.
Because of similarities in the information environment, our results are related to findings in the
literature on the winner’s curse in single unit auctions where a savvy bidder avoids bidding
aggressively because “winning” conveys the news that her signal was the highest in the mar-
ket. A prevalent, consistent, and robust phenomenon in single-unit auctions featuring common
(or correlated) values (Kagel and Levin 1986; Goeree and Offerman 2003; Kagel and Levin
(forthcoming)) and where bidders ignore the adverse selection problem. However, the analogy
between the winner’s curse with competition in supply functions and with single-unit auctions
applies with respect to adverse selection but not necessarily with respect to market power. In
essence, our results are more closely related to the generalised winner’s curse (Ausubel et al.
2014) which reflects that “winning” a larger quantity is worse news than “winning” a smaller
quantity because the former implies a higher expected cost for the bidder (where bidders are
sellers). In our environment a seller that faces a high price should think that it is likely that
costs of her rivals are high and this is news that her own costs are also high because of the
positive correlation. The result is that the seller should moderate her offer and this induces the
supply function to be steeper. Therefore, rational bidders refrain from competing too aggress-
ively. We find evidence of the generalised winner’s curse in a multi-unit, divisible-good auction
with interdependent values.

The market structure in our setup is reminiscent of multi-unit uniform price auctions, for
which there is evidence of demand reduction—in demand auctions characterised by independent
private values and an indivisible good—both experimentally (Kagel and Levin 2001) and in the
field (List and Lucking-Reiley 2000; Levin 2005; Engelbrecht-Wiggans et al. 2005; Engelbrecht-
Wiggans et al. 2006). Unlike this literature, our paper addresses a uniform-price auction with
interdependent values and a divisible good. The experiment we conduct is also related to that
of Sade et al. (2006), who test the theoretical predictions of a divisible-good, multi-unit auction
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model under different auction designs; they report some inconsistencies between the theoretical
equilibrium strategies and actual experimental behaviour.

There is also an experimental literature on “correlation neglect” in various strategic con-
texts. Those contexts include bilateral negotiations (Samuelson and Bazerman 1985), trade
with adverse selection (Holt and Sherman 1994), social learning (Weizsacker 2010), auctions
with toeholds (Georganas and Nagel 2011), voting (Esponda and Vespa 2014; Levy and Razin
2015), and belief formation (Enke and Zimmermann 2013; Koch and Penczynski 2015). Our
results are consistent also with these experimental findings in that a substantial proportion of
our subjects ignore correlation among costs and hence its adverse effects.

The detailed analysis of our results echoes the analysis of other strategic games with private
information; examples include Carrillo and Palfrey (2011) as well as Brocas et al. (2014), who
conduct a similar cluster analysis. Both of those papers report that (a) a large proportion
of subjects behave just as in the equilibrium where subjects play simple but strategic private-
information games yet (b) this proportion declines markedly with increasing strategic complexity
of the game. Charness and Levin (2009) attribute the origin of the winner’s curse to bounded
rationality since individuals have difficulties thinking contingently about future events. This
behavioural bias is also likely to apply to the subjects of our experiment since the equilibrium
of the positively correlated costs treatment requires that a bidder thinks contingently about
the relationship between the market price and unit costs. Furthermore, the evolution of choices
across rounds that we observe is related to the work of Huck et al. (1999) and Bigoni and
Fort (2013), who analyse learning in a Cournot setting. Much as in those papers, our own
results indicate that learning is a composite process that involves elements of both adaptive
and reinforcement learning—despite the greater complexity of our environment (in which sub-
jects set supply functions with incomplete information rather than choosing quantities with full
information).

The complexity of the our baseline model makes the comparison of our results to extant
behavioural models somewhat difficult. Eyster and Rabin (2005) propose the cursed equilib-
rium concept, whereby players incorrectly assess the relationship between rivals’ strategies and
their own private information. In our setting, then, a player in the positively correlated costs
treatment would be “fully cursed” if she ignored the information that price conveys about costs.
Except for the two extreme cases in which all players are fully cursed or all players are fully ra-
tional, there are several analytical difficulties associated with computing the cursed equilibrium
in our complex setting; we therefore refrain from further relating our results to that notion. An
alternative equilibrium concept that could explain our choices would be the quantal response
equilibrium (QRE), which assumes that the probability of any strategy is increasing in the
strategy’s expected payoff and rationalises the idea that players make mistakes. However, the
calculation of the QRE for our baseline model is beyond the scope of this paper. Finally, a

7



nonequilibrium potential explanation of our results could be given by the level-k model of stra-
tegic thinking (Nagel 1995; Crawford and Iriberri 2007). We do not formally apply the level-k
model to describe our experimental choices for the following reasons. First, if we define level-0 as
the equilibrium behaviour of the uncorrelated costs treatment then we cannot explain the het-
erogeneity that we observe in the uncorrelated costs treatment. For other plausible definitions of
level-0, the theoretical level-k predictions do not correspond to observed peaks that we observe
in the distribution of choices. Second, the various levels are not sufficiently differentiated to
enable clear identification of a subjects’ degree of strategic thinking. Given these limitations, we
focus on analysing the theoretical and empirical distribution of best replies, an approach that
yields a categorisation of subjects into clusters: those who are naïve (subjects that fall prey to
the generalised winner’s curse) and sophisticated (responding best to the average strategy of
rivals).

3 Theoretical Background

We use the framework of Vives (2011) to guide our experimental design. There are a finite
number n of sellers who compete simultaneously in a uniform price auction, and each seller
submits a supply function. Seller i’s profits can be written as

πi = (p− θi)xi −
λ

2
x2
i , (1)

where xi are the units sold, θi denotes a random cost parameter, p is a uniform market price,
and λ > 0 represents a parameter that measures the level of transaction costs. The market-
clearing condition allows us to find the uniform market price p. The (random) cost parameter θi
is normally distributed as θi ∼ N(θ̄, σ2

θ). The demand is inelastic and equal to q.
The information structure is as follows. A seller does not know the value of the cost shock θi

before setting her supply schedule, and she receives a signal si = θi + εi for which the error
term is distributed as εi ∼ N(0, σ2

ε ). Sellers’ random cost parameters may be correlated, with
corr(θi, θj) = ρ for i 6= j. When ρ = 1 the model is equivalent to a common costs model,
when ρ = 0 to an uncorrelated costs model, and when 0 < ρ < 1 to a correlated costs model.
Error terms are uncorrelated either among themselves or with the random cost shocks. In our
experiment, the treatment variable is the correlation ρ among costs.

Since the payoff function is quadratic and since the information structure is normally dis-
tributed, we focus on linear supply schedules. Linear supply functions are a reasonable approx-
imation of the types of supply functions submitted by bidders in real markets.5 Given the signal

5See, for example, Baldick et al. (2004).
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received, a strategy for seller i is to submit a price-contingent schedule, X(si, p), of the form

X(si, p) = b− asi + cp. (2)

Thus the seller’s supply function is determined by the three coefficients (a, b, c). We interpret
these coefficients is as follows: a is a bidder’s response to the private signal; b is the fixed part
of the supply function’s intercept f = b− asi; and c is the supply function’s slope.

Vives (2011) finds a unique supply function equilibrium and describes how the equilibrium
parameters (a, b, c) depend on the information structure (θ̄, σ2

θ , σ
2
ε , ρ) and on the market structure

(n, q, λ); see Appendix A for the formulae that characterise the equilibrium supply function and
outcomes. Figure 1 illustrates the comparative statics of the unique, symmetric, and linear
Bayesian Nash supply function equilibrium.

Figure 1: Bayesian Nash equilibrium supply function predictions for the uncorrelated and posit-
ively correlated costs treatments when all agents are fully rational.

Note. The theoretical predictions for each treatment are computed for three different signal realisations: a high
signal with value 1,200, a signal equal to the ex ante value of θi with value 1,000, and a low signal with value 800.

The equilibrium prediction for a fully rational bidder’s behaviour is described as follows.
When costs are positively correlated, a high price conveys that the bidder’s costs are high; in
equilibrium, then, bidders submit steeper schedules (than when costs are uncorrelated) to pro-
tect themselves from adverse selection. Also, for the same signal realisation, the equilibrium
supply function’s intercept is lower when costs are positively correlated than when they are un-
correlated; hence the model also predicts that equilibrium market outcomes are less competitive
when costs are positively correlated than when they are uncorrelated because both the expected
market price and profits are higher in the former case than in the latter. Note that outcomes
in both treatments lie between the Cournot and competitive benchmarks, since each treatment
features supply functions with positive and finite slopes. In terms of welfare, we observe that
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the equilibrium allocation is inefficient due to distributive inefficiency. Because demand is in-
elastic, there is no aggregate inefficiency at the equilibrium allocation. At this allocation, sellers
supply quantities that exhibit too little dispersion vis-à-vis the efficient benchmark, which is
reflected in the ex-ante expected deadweight loss at the equilibrium allocation (it is defined as
the difference between expected total surplus at the efficient and equilibrium allocations).

The comparative statics of the unique Bayesian Nash equilibrium—which assumes that all
sellers are fully rational and ex ante symmetric—allow us to derive the testable predictions
encapsulated by the six hypotheses listed here as (A)–(F). These hypotheses focus on the model’s
general predictions and on the comparative statics with respect to the correlation among costs,
since ρ is our treatment variable.

(A) In each treatment, the supply function slope is positive and unrelated to a bidder’s signal
realisation.

(B) In each treatment, the supply function intercept is nonzero and increasing in a bidder’s
signal realisation.

(C) The supply function is steeper in the positively correlated costs treatment than in the
uncorrelated costs treatment.

(D) For a given signal realisation, the supply function’s intercept is lower in the positive cor-
related costs treatment than in the uncorrelated costs treatment; therefore, the expected
supply function intercept is lower in the positive correlated costs treatment than in the
uncorrelated costs treatment.

(E) The expected market price and profits are larger in the positively correlated costs treatment
than in the uncorrelated costs treatment.

(F) The expected deadweight loss is larger in the uncorrelated costs treatment than in the
positively correlated costs treatment.6

If subjects ignore the correlation among costs and thus do not understand that winning
a larger quantity is worse news (when costs are positively correlated) than winning a smaller
quantity, then those subjects fall prey to the winner’s curse in the context of a multi-unit auction
with interdependent values. (This phenomenon was termed the generalised winner’s curse by
Ausubel et al. 2014.) Therefore, the benchmark for subjects who fall prey to the generalised
winner’s curse is the equilibrium of the uncorrelated costs treatment. If all subjects were to
fall prey to that curse then we should expect behaviour and market outcomes in both of our

6This claim follows from the chosen constellation of experimental parameters (see Table 2 in Section 4),
although the theoretical prediction asserts that the expected deadweight loss can either increase or decrease
with the correlation among costs.
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experimental treatments to be indistinguishable, in which case hypotheses (C)–(F) might not
be hold.7 The hypotheses just listed pertain to point estimates and expected behaviour, yet
experimental variation in behaviour and outcomes may also be of interest. We explore these
issues in Section 5.

4 Experimental Design

Sessions were conducted in the LINEEX laboratory of the University of Valencia. The parti-
cipants were undergraduate students in the fields of economics, finance, business, engineering,
and natural sciences. All sessions were computerised.8 Instructions were read aloud, ques-
tions were answered in private, and—throughout the sessions—no communication was allowed
between subjects. Instructions explained all details of the market rules, distributional assump-
tions on the random costs, the nature of signals, and the correlation among costs (the meaning
of correlation was explained both with a definition and graphically). Before starting the exper-
iment, we tested participants’ understanding. See Appendix C for the instructions and the first
part of Appendix D for the comprehension test.

We ran the experiment with 144 participants, half of whom participated in the uncorrelated
costs treatment and half in the positively correlated costs treatment.9 Each treatment had 6
independent groups of 12 members each, which consisted of 4 markets with 3 sellers in each
market. We chose a market size of 3 because this is the minimum market size that does not lead
to collusion in other, similar environments—for example, a Bertrand game (Dufwenberg and
Gneezy 2000) and a Cournot market (Huck et al. 2004). Subjects competed for 2 trial rounds
followed by 25 live rounds (since it is an established fact that equilibrium does not appear
instantaneously in experimental games). In all of these rounds, in order to keep the spirit
of the theoretical model’s one-shot nature, we employed random matching between rounds.10

Thus, the composition of each of the four markets varied each round within a group. Table 1
summarises the structure of our experimental design.

7Because costs and signals follow a normal distribution, a subject could fall prey to the so-called news curse
whereby she ignores prior information and takes a signal at face value (Goeree and Offerman 2003). We can
show that, in our model, a bidder who falls prey to the news curse sets the same supply function slope as one
who falls prey to the generalised winner’s curse. As a result, these two curses are not easily distinguished.

8For this purpose we used the z-tree software (Fischbacher 1999).
9Before running the experiment, we conducted two pilot versions (one for each treatment).

10Although this random matching within a group results in fewer independent observations than if we had
chosen fixed markets, we considered it more important that our treatments accord with the theoretical model.
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Table 1: Experimental design.

In the second part of Appendix D we reproduce the screenshots used for running the ex-
periment. In each round, all subjects received a private signal and were subsequently asked to
choose two ask prices : one for the first unit offered and one for the second. We then used these
two ask prices to construct a linear supply schedule, which was shown in the form of a graph on
each subject’s screen. The participant could then revise the ask prices several times until she
was satisfied with her decision. The buyer was simulated.

Once all supply schedules had been submitted, each bidder received feedback on the uniform
market price, her own performance (with regard to revenues, production costs, transaction costs,
units sold, and profits), the performance of the other two market participants (units sold, profits,
and supply functions), and the values of the random variables drawn (her own cost and the
costs of the other two participants in the same market).11 Participants were allowed to consult
the history of their own performance. Other experiments have shown that feedback affects
behaviour in the laboratory. In a Cournot game, for example, Offerman et al. (2002) report
that different feedback rules can result in outcomes that range from competitive to collusive.
Given the complexity of our experiment, we maximised the feedback given after each round in
order to maximise the potential learning of participants. After each participant had checked
her feedback, a new round of the game would start. Note that, in each market and for each
round, we generated three random unit costs from a multivariate normal distribution. Also, in
each round and for each participant, the unit costs and signals were independent draws from
previous and future rounds.

Conducting the experiment required us to specify numerical values for the theoretical model’s
parameters; see Table 2. For this purpose we used three criteria: (i) the existence of a unique
equilibrium; (ii) sufficiently differentiated behaviour and outcomes between the two treatments;
and (iii) reduction of computational demands placed on participants. It is important to bear in
mind that ρ = 0 for the uncorrelated costs (control) treatment whereas ρ = 0.6 for the positively
correlated costs treatment.12 Refer to Appendix B for the equilibrium supply function and

11Subjects did not receive feedback on the signal received because that would not be expected to occur in
reality. That is: after trading, firms may observe the actual costs of competitors but are unlikely to observe the
private signals competitors had received at the time of their decisions.

12We would have preferred to set a higher correlation among unit costs so that our predictions would be
maximally differentiated. Yet inelastic demand reduces the range for which a unique equilibrium exists, and
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outcomes (based on Table 2’s experimental parameters) and for a statistical description of the
distribution of random costs and errors used in the experiment.

Table 2: Experimental parameters.

We imposed certain market rules, which were inspired by the theoretical model and facil-
itated implementation of the experiment. First, we asked each seller to offer all 100 units for
sale. Second, we asked sellers to construct a nondecreasing and linear supply function. Third,
ask prices had to be nonnegative. Fourth, we told bidders that the simulated buyer would not
purchase any unit at a price higher than 3,600; this price cap was imposed in order to limit
the potential gains of sellers in the experimental sessions. Although the price cap was not part
of the theoretical model, we chose a value high enough to preclude distortion of equilibrium
behaviour. The only difference between treatments was the correlation among costs and hence
the distribution of random costs and signals.

At the end of the experiment, participants completed a questionnaire (see Appendix E) that
requested personal information and asked questions about the subject’s reflections after playing
the game. Once the questionnaire was completed, each participant was paid in private.

As for incentives, each participant started with 50,000 experimental points.13 During the
experiment, subjects won or lost points. At the end of the experiment, points were exchanged
for euros at the rate of 10,000 experimental points per euro. In addition, each subject received
a 10 euros show-up fee. The payments ultimately made to subjects ranged from 10 to 27.8 euros
and averaged 20.8 euros. Each session lasted between two and three hours.

5 Experimental Results

We present our results in three sections. In Section 5.1 we provide an analysis of experimental
behaviour (supply functions) and in Section 5.2 we analyse experimental outcomes (market
price and profits) and efficiency of allocations. Section 5.3 addresses trends of behaviour and

ρ = 0.6 was the highest correlation that satisfied our implementation criteria. Inelastic demand was stipulated
in order to simplify the participants’ computations.

13These points were equivalent to 5 euros.
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outcomes across rounds. Throughout the section, we evaluate Hypotheses (A)–(F) formulated
in Section 3. Appendix G conducts a robustness test of our main experimental results using a
panel data approach.

We shall discuss the experimental results in terms of the inverse supply function, since it
corresponds to how participants made their decisions. From any participant’s two-dimensional
decision, (AskPrice1 ,AskPrice2 ), we can infer the slope and intercept of each participant’s
inverse supply function, p = f̂ + ĉX(si, p). The inverse supply function slope is ĉ, where ĉ =

AskPrice2 − AskPrice1 and the intercept is f̂ , defined as f̂ = AskPrice1 − ĉ. The coefficients
of the inverse supply function are related to the coefficients of equation (2)’s supply function as
follows: b̂ = −b

c
; â = a

c
; ĉ = 1

c
for c 6= 0; the inverse supply function’s intercept is f̂ = b̂ + âsi.

We will omit the modifier “inverse” and refer simply to “the supply function”. We shall use
InterceptPQ as the empirical counterpart of f̂ and SlopePQ as the empirical counterpart of ĉ.
Our graphs plot the supply function in the usual (Quantity ,AskPrice) space.14

5.1 Analysis of experimental behaviour: supply functions

We first present evidence of the most general testable predictions of the theoretical model that
are common in both treatments. In Section 3 we saw the theoretical framework predicting
that, in both treatments, the supply function slope should be independent of the signal received
whereas the supply function intercept should increase with the signal realisation. The latter
prediction reflects that a higher signal implies a higher average intercept of the marginal cost
and so the bidder should set a higher ask price for the first unit offered, leading to a higher
supply function intercept.

In each treatment, we find that the average supply function intercept increases with the
signal in each decile. In contrast, the supply function slope remains approximately constant in
each signal decile in either treatment. Furthermore, a regression of the supply function intercept
on signal yields a coefficient of 0.856 with p = 0.000 in the uncorrelated costs treatment and a
coefficient of 0.926 with p = 0.000 in the positively correlated costs treatment; while a regression
of the supply function slope on signal yields an insignificant coefficient (with p = 0.703 in the
uncorrelated costs treatment and with p = 0.655 in the positively correlated costs treatment).15

Figure 2 illustrates the average supply function slope and intercept for each signal decile using
all the choices from both treatments.

14Note that a steep supply function in the (Quantity ,AskPrice) space has a high ĉ and a low c.
15The unit of observation for the regressions reported is the group across rounds. In each treatment there are

150 observations: 6 groups over the course of 25 rounds.
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Figure 2: Experimental supply function intercept and slope in each signal decile and the corres-
ponding theoretical prediction in each treatment.

Note. SF refers to supply function. The categories in the horizontal axis represent signal deciles.

This evidence suggests that bidding behaviour is consistent, qualitatively, with the most
general testable predictions of the theoretical model that are common to both treatments. Our
first result pertains to Hypotheses (A) and (B).

Result 1 (Predictions common to both treatments). As posited by the theoretical
model, in each treatment: (i) the average supply function’s intercept is increasing in
a bidder’s signal realisation; and (ii) the average supply function’s slope is positive
and unrelated to a bidder’s signal realisation.

We interpret this result to mean that our data supports Hypothesis (A) and also Hypothesis (B).
We next present bidders’ behaviour in each treatment, when decisions are aggregated across

all rounds. For each treatment, Figure 3 plots the observed average supply function as well as
the corresponding equilibrium prediction; Table 3 gives the slope and intercept of the average
experimental supply function. We employ both parametric and nonparametric tests. Here our
unit of analysis is the group average, which aggregates individual choices or outcomes within
the group and across rounds.
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Figure 3: Average experimental and equilibrium supply functions in each treatment.

Note. SF refers to supply function; T0 to uncorrelated costs treatment; T1 to the positively correlated costs
treatment.

Table 3: Average behaviour, and their corresponding theoretical predictions, by treatment.

Note. Theoretical predictions refer to the equilibrium prediction for the supply function slope and expected
intercept. The standard deviation (s.d.) is given in parentheses below the reported average. For all variables,
reported standard deviations are at the individual level.

Figure 3 and Table 3 show that, in the uncorrelated costs treatment, the average supply
function is close to the theoretical prediction. In fact, we cannot reject the hypothesis that the
supply function slope is the same as the theoretical prediction (two-sided Wilcoxon signed-rank
test: n1 = 6, n2 = 6, p = 0.600; two-sided t-test: n1 = 6, n2 = 6, p = 0.914). The average
intercept is lower than expected (950.11 vs. 1,000). The evaluation test of the hypothesis that
the average intercept is equal to its expected value yields mixed results at the 5% significance
level (two-sided Wilcoxon signed-rank test: n1 = 6, n2 = 6, p = 0.046; two-sided t-test: n1 = 6,
n2 = 6, p = 0.054). Finding that behaviour in the uncorrelated costs treatment is, on average,
close to the theoretical prediction is important because it allows us to use the control treatment
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as the benchmark for our analysis.
Comparing the average supply function of the two treatments reveals that, as predicted by

the Bayesian Nash equilibrium, the average supply function in the positively correlated costs
treatment has a higher slope (7.79 vs. 6.05) and lower intercept (899.25 vs. 950.11) than in
the uncorrelated costs treatment. This difference between the average supply functions in the
two treatments accords with the theoretical model qualitatively but not quantitatively, as the
differences between treatments are substantially smaller than predicted.16 In fact, this difference
is not statistically significant in terms of either the supply function intercept (one-sided Mann–
Whitney U-test: n1 = 6, n2 = 6, p = 0.556; one-sided t-test with unequal variance: n1 = 6,
n2 = 6, p = 0.198) or the slope (one-sided Mann–Whitney U-test: n1 = 6, n2 = 6, p = 0.667;
one-sided t-test with unequal variance: n1 = 6, n2 = 6, p = 0.120).

Next, we want to explore whether the behavioural response to the private signal is quantitat-
ively consistent with the theoretical model (the analysis reported in Figure 2 has only explored
the direction and not the magnitude of the response to the signal). We further disaggregate
choices conditional on the private signal and analyse individual ask prices for the first unit
offered—which is equivalent, in essence to the supply function intercept—in each treatment.
Figure 4 displays both the equilibrium and experimental ratio AskPrice1/Signal in each treat-
ment using disaggregated individual choices during all rounds of the experiment.

Figure 4: Histogram of the theoretical and experimental ratio of AskPrice1 to Signal received for
individual choices in all rounds of the experiment.

Note. This histogram omits two observations for which the experimental AskPrice1/Signal ratio was greater
than 2.

16The tests reported are as follows. The null hypothesis for all of them is H0 : µ0−µ1 = 0, where µ1 (resp. µ0)
is the mean for the positively correlated (resp. uncorrelated) costs treatment. The alternative hypothesis for
the supply function slope (SlopePQ) is H1 : µ0 − µ1 < 0. For the supply function intercept (InterceptPQ) the
alternative hypothesis is H1 : µ0 − µ1 > 0. The reported p-values are for the corresponding one-sided tests.
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In the uncorrelated costs treatment, the Bayesian Nash equilibrium predicts that the ratio
of AskPrice1 to Signal is between 0.92 and 1.2, with both the mean and the median equal
to 1.01. In other words, in this treatment the Bayesian Nash equilibrium predicts that AskPrice1
will be (on average) equal to the signal received.17 Experimental choices in the uncorrelated
costs treatment, as illustrated in the lower left graph of Figure 4, reveal that the mean of the
AskPrice1/Signal ratio is similar to the mean (0.96) of its theoretical counterpart—but with a
larger standard deviation owing to the heterogeneity in individual choices.

In the positively correlated costs treatment, the theoretically predicted AskPrice1/Signal

ratio is between 0.58 and 0.73, with both the mean and the median equal to 0.68; thus the
equilibrium predicts that AskPrice1 will be lower than the signal received. The experimental
distribution has a mean of 0.91 and median of 0.99, which means that: (i) for a given signal,
AskPrice1 is (on average) larger than predicted by the Bayesian Nash equilibrium in this treat-
ment; and (ii) subjects in the positively correlated costs treatment are strongly guided, when
choosing AskPrice1, by the signal received (lower right graph of Figure 4) and so may choose a
number close to the signal received (since it acts as a focal point).

The foregoing analysis illustrates systematic divergences between behaviour—that is, how
subjects respond (through the supply function intercept) to the private signal—and Bayesian
Nash equilibrium prediction in the positively correlated costs treatment. We interpret this result
as offering additional evidence that subjects, when setting the supply function intercept, do not
account for the effects of correlation among costs and consequently respond too strongly to the
signal received.

The next result concerns the evaluation of Hypotheses (C) and (D).

Result 2 (Differences between experimental behaviour and theoretical predictions;
differences in the average supply function between treatments). (i) The average
supply function in the uncorrelated costs treatment is close to the corresponding
equilibrium prediction; however, we reject the hypothesis that the average supply
function in the positively correlated costs treatment is the same as the correspond-
ing equilibrium prediction. (ii) Differences in the average supply function between
treatments are not statistically significant.

Thus we do not find empirical support for Hypothesis (C) or Hypothesis (D). In addition,
Result 2 suggests that the generalised winner’s curse is a prevalent phenomenon in the positively
correlated costs treatment. The explanation is that: (a) behaviour in the uncorrelated costs
treatment is consistent with the theoretical prediction and so can serve as a benchmark for
subjects that fall prey to the generalised winner’s curse; and (b) average behaviour in the

17The variables AskPrice1 and InterceptPQ are related as follows: AskPrice1 = InterceptPQ + SlopePQ .
In each round, each subject was asked to specify (AskPrice1 ,AskPrice2 ); therefore, Ask Price1 more clearly
reflects how participants made their decisions.
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positively correlated costs treatment is not different than average behaviour in the uncorrelated
costs treatment.

We now address the question posed at the end of Section 3 about the variation and distri-
bution of behaviour. In Table 4 we present an analysis of variance for the different levels of
aggregation (subject level; group level; treatment level).

Table 4: Analysis of variance of the experimental supply function slope and intercept.

Note. s.d. refers to standard deviation. The explanation of the variables reported in the table is as follows: s.d.
Overall subject level: the variation of individual choice across all rounds; s.d. Between subjects: the variation of
the individual choice averaged across all rounds; s.d. Within Subjects: the variation within subject over time;
s.d. Overall group level: the variation the average choice of the group across all rounds; s.d. Between groups:
the variation of the average choice of the group averaged across all rounds; s.d. Within groups: the variation
within groups over time; and s.d. Overall Treatment level: the variation of the average choice of the treatment
across all rounds.

First, the table shows that, at the different levels of aggregation, there is a substantial amount
of heterogeneity in behaviour in both treatments. Second, we can observe that the variances
of both the supply function slope and intercept are relatively larger in the positively correlated
than in the uncorrelated costs treatment, a difference that is driven mainly by the heterogeneity
across subjects and groups and not by heterogeneity across rounds. So even though there are
no differences in average behaviour between treatments, there are differences in the variance of
behaviour between treatments. We provide a detailed explanation in Section 6.2. We can show
that the variance of the supply function slope is larger in the positively correlated than in the
uncorrelated treatment at the different levels of aggregation: between groups (variance ratio
test, one-sided, n1 = 6, n2 = 6, p = 0.027) and between subjects (variance ratio test, one-sided,
n1 = 72, n2 = 72, p = 0.0012). The same finding is also true for the supply function intercept:
between groups (variance ratio test, one-sided n1 = 6, n2 = 6, p = 0.027) and between subjects
(variance ratio test, one-sided, n1 = 72, n2 = 72, p = 0.000). The differences across periods at
different levels of aggregation are not substantial.

The analysis just presented has established that—even when differences in the average supply
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function of each treatment are insignificant—the variance in the supply function slope and
intercept is greater in the positively correlated than in the uncorrelated costs treatment.

Figure 5 plots the empirical cumulative distribution function (ECDF) for the supply function
slope and intercept in each treatment, where the source data for these graphs are the disaggreg-
ated individual choices made by subjects during the first and last five rounds of bidding. These
two time periods are important because they allow us to summarise behaviour at the beginning
of the experiment, when subjects have no experience, and at the end of the experiment, when
they have bid for 20 rounds.

Figure 5: Empirical cumulative distribution function (ECDF) for the supply function slope and
intercept in the first five and last five rounds of bidding.

There is a significant difference between treatments as regards the ECDFs of supply function
slopes in both the first and last five rounds of bidding. The ECDF of supply function slopes in
the positively correlated costs treatment first order stochastically dominates the ECDF of slopes
in the uncorrelated costs treatment both in the first and last five rounds (in a stronger way in
the latter). In fact, we can reject the hypothesis that the distribution of slopes is the same
in the two treatments during the first five rounds of bidding (Kolmogorov–Smirnov equality
of distributions test: n1 = 360, n2 = 360, p = 0.023) and also during the last five rounds
(Kolmogorov–Smirnov equality of distributions test: n1 = 360, n2 = 360, p = 0.000).18

18Repeating the same Kolmogorov–Smirnov equality of distributions test for the intermediate periods, in
groups of five rounds, we find that the distribution of slopes in the two treatments is significantly different in all
intermediate time periods considered; this result is significant at the 5% level.
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With regard to the supply function intercepts, we can see that the differences in ECDFs
between treatments are quite small in the first five rounds of bidding, for which they are not
statistically significant (Kolmogorov–Smirnov equality of distributions test: n1 = 360, n2 = 360,
p = 0.689). In the last five rounds of bidding, however, differences in the distribution of
supply function intercepts are more substantial—albeit mainly driven by a few subjects, in
the positively correlated costs treatment, who bid a supply function with a very low intercept.
Even so, we can reject the hypothesis that the ECDFs of supply function intercepts between
treatments are the same in the last five rounds of bidding (Kolmogorov–Smirnov equality of
distributions test: n1 = 360, n2 = 360, p = 0.009).19

We now address the question posed at the end of Section 3 about the variation and distri-
bution of behaviour.

Result 3 (Difference in the distributions of the supply function slope and intercept
between treatments). (i) There is a substantial amount of heterogeneity in beha-
viour in both treatments. Variances in the supply function slope and intercept are
relatively greater in the positively correlated than in the uncorrelated costs treat-
ment because of the heterogeneity in subjects’ and groups’ behaviour, not because
of heterogeneity across rounds. (ii) Using individual choices, we reject the hypo-
thesis that the distribution of supply function slopes is the same in both treatments
for the first five and last five rounds of bidding. The cumulative distribution func-
tion of supply function slopes in the positively correlated costs treatment first order
stochastically dominates the cumulative distribution function of slopes in the uncor-
related costs treatment both in the first and last five rounds. We cannot reject the
hypothesis that the distribution of supply function intercepts is the same in both
treatments for the first five rounds of bidding, but we do reject the hypothesis that
the distribution of supply function intercepts is the same in both treatments for the
last five rounds of bidding.

Result 3 indicates that there are differences in the distribution of supply functions between
treatments. The differences in behaviour between treatments are consistent with the direction
predicted by the theoretical model. We shall examine this issue more closely in Section 6.2.

In sum, the results reported in this section have shown that average differences in behaviour
between treatments are not statistically significant. However, there are significant differences in
the distribution of supply functions between treatments, suggesting that that some subjects in
the positively correlated costs treatment—because they ignore the correlation among costs and

19Repeating the same Kolmogorov–Smirnov equality of distributions test for the intermediate periods, in
groups of five rounds, we find that the distribution of intercepts in the two treatments is not significantly different
in the second and third groups of five rounds (Rounds [6, 10] and Rounds [11, 15]) but that the distribution
becomes significantly different after the 15th round.
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its adverse effects—fall prey to the generalised winner’s curse while others do not.20 The more
detailed examination in Section 6 seeks to determine whether these results are driven by a small
proportion of subjects or whether the generalised winner’s curse is prevalent in the positively
correlated costs treatment.

5.2 Analysis of experimental outcomes (market price and profits) and

efficiency of allocations

Table 5 reports experimental outcomes and the corresponding predictions in terms of the market
price, profits, and efficiency levels of the allocations (as captured by deadweight losses) together
with the corresponding theoretical predictions.21 Our unit of analysis is the group average,
which aggregates outcomes within the group and across rounds.22

Table 5: Average outcomes, and their corresponding theoretical predictions, by treatment.

Note. The theoretical predictions for outcomes and efficiency refer to ex ante expected market prices, ex ante
expected profits, and ex ante expected deadweight loss at the equilibrium allocation.
The standard deviation (s.d.) is given in parentheses below the reported average. For profits reported standard
deviations are at the individual level; for market price and deadweight loss, standard deviations are at the market
level.

Turning now to average market prices, we see that the difference in these prices between
treatments is not statistically significant (one-sided Mann–Whitney U-test: n1 = 6, n2 = 6,
p = 0.556; one-sided t-test with unequal variance: n1 = 6, n2 = 6, p = 0.210). In both
treatments, average market prices are lower than theoretically predicted: 92.7% and 72.6% of
the theoretically predicted values in the uncorrelated and positively correlated costs treatment,
respectively.

20Refer to Section 3 for an explanation of the generalised winner’s curse.
21See Appendix A for the formulae which have been used to calculate the outcome and efficiency variables.
22The tests reported for the rest of the section are as follows. The null hypothesis for all of them is H0 :

µ0 − µ1 = 0, where µ1 (resp. µ0) is the mean for the positively correlated (resp. uncorrelated) costs treatment.
The alternative hypothesis for market price and profits is H1 : µ0−µ1 < 0. For deadweight loss, the alternative
hypothesis is H1 : µ0 − µ1 > 0. The reported p-values are for the corresponding one-sided tests.
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Average profits in each treatment are substantially lower than their corresponding ex ante
equilibrium predictions. In particular, average profits are 40.2% (resp., 11.7%) of the theoret-
ically predicted values in the uncorrelated (resp., positively correlated) costs treatment.23 We
also observe that, in the correlated costs treatment, bidders forgo a large percentage of ex ante
expected profits—as typically occurs in auctions where bidders ignore the correlation among
costs (Kagel and Levin 1986). The average difference in profits between the two treatments
is not statistically significant (one-sided Mann–Whitney U-test: n1 = 6, n2 = 6, p = 0.389;
one-sided t-test with unequal variance: n1 = 6, n2 = 6, p = 0.716).

In order to further understand the very large divergence between theoretical and experi-
mental profits, we decompose this difference into the various components of profits (revenues,
production costs and transaction costs) and we illustrate it by a waterfall chart in Figure 6.

Figure 6: Decomposition of the differences between theoretical and experimental profits into the
various components in each treatment.

Note. In each graph, the first bar of each graph corresponds to ex-ante expected profits at the equilibrium
allocation. The second bar to the difference between theoretical and experimental revenues; the third bar to
the difference between theoretical and experimental production costs; The fourth bar to the difference between
theoretical and experimental transaction costs. The last bar corresponds to average experimental profits. A
waterfall chart shows how an initial value (whole column) increases or decreases by a sequence of intermediate
positive or negative values (floating columns) to reach a final value (whole column). A colour-code is used for
distinguishing positive (grey) from negative (black) intermediate values.

The figure shows that, in both treatments, the largest difference between theoretical and ex-
perimental profits is driven by the revenues component.24 Therefore, differences in experimental

23The theoretical predictions assume that all subjects play the Bayesian Nash equilibrium in the corresponding
treatment. Note that if one subject realises that her opponents are not playing the Bayesian Nash equilibrium
then it is not optimal for her to play the Bayesian Nash equilibrium, either; therefore, ex ante expected profits
are different. See Section 6 for further discussion.

24Recall that profits of seller i at time t are πit = ptxit− θitxit− λ
2x

2
it. The first term corresponds to revenues;

the second to production costs and the third to transaction costs.
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and theoretical profits are primarily driven by market prices being lower than theoretically pre-
dicted, since the supply functions submitted by subjects are flatter than the equilibrium supply
function and exhibit a large heterogeneity in both treatments; the difference and heterogeneity
here are more pronounced in the positively correlated costs treatment, as seen in Table 3. These
differences in market prices are amplified when translated to revenues since the market price is
multiplied by units sold, the average of which is 33.33.25

With regard to the efficiency of experimental allocations, there is a difference between
treatments—in the direction predicted by Hypothesis (F)—but it is not statistically signific-
ant (one-sided Mann–Whitney U-test: n1 = 6, n2 = 6, p = 0.583; one-sided t-test with unequal
variance: n1 = 6, n2 = 6, p = 0.242). So that we can better understand why the more het-
erogeneous behaviour in the positively correlated (than in the uncorrelated) costs treatment
does not lead to differences in the efficiency of allocations, we decompose the experimental
deadweight loss (dwl) into three components as follows:

dwl = (
λ

2
)(

n∑
i=1

(xei −
q

n
)2 + (xoi −

q

n
)2 − 2(xei −

q

n
)(xoi −

q

n
)), (3)

The first term of (3) captures the variance of the experimental allocation, the second term
captures the variance of the efficient allocation, and the third term captures the covariance of
the experimental and efficient allocations.

After comparing these three components of deadweight loss across treatments, we can make
several observations. First, variances in the experimental allocations do not differ between
treatments. Second, the variance in efficient allocations is greater in the uncorrelated than in
the positively correlated costs treatment; this finding corresponds to the theoretical prediction
that follows from the experiment’s configuration of parameters. Third, the covariance of the
experimental and efficient allocations is substantially larger in the uncorrelated than in the
positively correlated costs treatment. When we consider both the three dwl components and
their corresponding coefficients, we find that the difference between treatments with regard to
variance in the efficient allocations is offset by the difference in the covariance term. For a graph
displaying of these components, see Figure 10 (and Table 14) in Appendix F.

We also compare the deadweight losses of the experimental and equilibrium allocations. The
values reported in Table 5 show that, in both treatments, the average experimental deadweight
losses are considerably larger than those of the equilibrium allocations. This result is explained
as follows. In both treatments, the deadweight losses at the equilibrium allocations are due to
insufficient dispersion and covariation with respect to the corresponding efficient allocations. In

25Our analysis of the variance in experimental outcomes (see Appendix F) establishes that variances in market
price, profits, and deadweight loss are driven by neither subject nor group heterogeneity but rather, for the most
part, by heterogeneity across rounds.
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the uncorrelated costs treatment, the deadweight loss at the experimental allocation is larger
than at the equilibrium because the covariation between the experimental and efficient alloca-
tions is not enough to compensate for the sum of the variances in the experimental and efficient
allocations (these two variances are very similar). In the positively correlated costs treatment,
however, the difference between the deadweight losses of the experimental and equilibrium al-
locations is driven mainly by the former’s comparatively greater variance.

We now evaluate Hypotheses (E) and (F), which address differences in experimental out-
comes between treatments.

Result 4 (Differences in average market prices, profits, and deadweight losses
between treatments). There is no average difference between treatments with respect
to market prices, profits, or deadweight losses.

Result 4 implies that market power is not greater in the positively correlated than in the
uncorrelated costs treatment. Hence we find no supporting evidence for Hypothesis (E) or
Hypothesis (F).

5.3 Time trends in behaviour and outcomes

Figure 7 plots, for each treatment, the evolution across rounds of the supply function intercept
and slope as well as the corresponding theoretical predictions.

Figure 7: Evolution across rounds of the supply function slope and intercept in each treatment.

Note. The theoretical supply function intercept is calculated using the average signal received in each round
for each treatment; the theoretical predictions are calculated using the actual draws of the signal received. See
Appendix B for a comparison between actual draws and the theoretical distribution. SF = supply function;
T0 = uncorrelated costs treatment; T1 = positively correlated costs treatment.
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The left-hand side of this figure shows that the supply function intercept increases across
rounds in the uncorrelated costs treatment (a regression of the supply function intercept on
round yields a coefficient of 2.28, with p = 0.002); in the positively correlated costs treatment,
the intercept increases during the first ten rounds of play and then decreases across rounds
(a regression of the supply function intercept on round yields an insignificant coefficient with
p = 0.927). The right-hand side of Figure 7 shows that the average supply function slope
becomes smaller across rounds in the uncorrelated costs treatment (a linear regression of the
supply slope on round yields a coefficient of −0.096 with p = 0.000), but there is no significant
time trend in the positively correlated costs treatment (a linear regression of supply function
slope on round yields an insignificant coefficient with p = 0.212).26 Thus we find that the
evolution of behaviour across rounds is different in each treatment.

Furthermore, we observe that the change in behaviour (with regard to both the intercept and
slope of the supply function) is more pronounced in the first ten rounds of play and especially in
the first five rounds. In the last five rounds of play, the average supply function slope is stable;
however, during these rounds the supply function intercept increases sharply (resp., decreases)
in the uncorrelated (resp., positively correlated) costs treatment.

In the uncorrelated costs treatment, we find that both the intercept and slope of the sup-
ply function tend toward the theoretical prediction as the number of rounds increases. Yet in
the positively correlated costs treatment we observe no decline across rounds in the difference
between the average supply function and the theoretical prediction, which indicates that naïve
behaviour persists.

Next we investigate the evolution of market outcomes across rounds. Table 6 shows the
evolution of the average market price and profits in blocks of five rounds.

Table 6: Evolution across rounds of average market price and profits in each treatment.

The table reveals that, irrespective of treatment, there is no time trend in the average mar-
ket price (a regression of market price on round yields an insignificant coefficient in both cases,
with p = 0.561 in the uncorrelated costs treatment and p = 0.817 in the positively correlated

26Our unit of observation for the regressions reported in Section 5.3 is again the group across rounds; as before,
there are 150 observations in each treatment.
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costs treatment). In addition, we find that profits increase after the tenth round in the uncor-
related costs treatment but not in the positively correlated costs treatment (regressing profits
on round yields an insignificant coefficient, with p = 0.103 in the uncorrelated costs treat-
ment and p = 0.577 in the positively correlated costs treatment).27 Deadweight losses decrease
over time in both treatments (a regression of deadweight loss on round gives a coefficient of
−56.40 with p = 0.003 in the uncorrelated costs treatment and of −56.29 with p = 0.000 in the
positively correlated costs treatment). In the uncorrelated costs treatment, deadweight losses
are decreasing in the number of rounds because the covariance between the experimental and
efficient allocations increases substantially. In the positively correlated costs treatment, dead-
weight losses decrease for a different reason: variance in the experimental allocations decreases
significantly with the number of rounds, thus reducing the difference between the variance of
the experimental and efficient allocations.

Finally, we report an additional finding about the evolution of behaviour across rounds. This
result emerged from our analysis of the experimental data.

Result 5 (Evolution of supply functions and outcomes across rounds). (i) The
evolution of supply functions across rounds is different in the two treatments: in
the uncorrelated costs treatment, average behaviour starts close to the equilibrium
prediction and, across rounds, moves even closer to that prediction; in the positively
correlated costs treatment, average behaviour starts far from from the equilibrium
prediction and, across rounds, does not move much closer to that prediction. (ii) In
both treatments, deadweight losses decrease as subjects gain bidding experience;
however, we find no evidence that market prices evolve across rounds. In the uncor-
related costs treatment, there is some evidence that profits increase as subjects gain
bidding experience. In the positively correlated costs treatment, we do not find that
profits evolve across rounds.

Result 5 suggests that the learning process may be different in the two treatments, a possibility
that we explore further in Section 6.3. The finding that, as the number of rounds increases, beha-
viour in the positively correlated costs treatment does not move much closer to the equilibrium
prediction suggests that naïve behaviour persists in this treatment.

27Although we observe a time trend in profits (after the tenth round) in the uncorrelated costs treatment,
that trend is not statistically significant when data are aggregated at the group level. However, in Section 5.4
we establish that this time trend is statistically significant when choices are considered at the individual level
across rounds.
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6 Examining the Data More Closely

In this section, we first study a subjects’ strategic incentives; we then perform cluster analysis
to descriptively study how close subjects’ choices are to the various theoretical benchmarks.
Third, we provide a description of the determinants of the evolution of behaviour across rounds,
and finally we analyse subjects’ responses to our post-experiment questionnaire. Overall, all
the parts provide an explanation of the results we observe.

6.1 Best-response analysis

Bidding in the positively correlated costs treatment involves a higher degree of strategic com-
plexity than bidding in the uncorrelated costs treatment. This is because the market price is
not informative about costs in the uncorrelated costs treatment whereas, in the positively cor-
related costs treatment, equilibrium reasoning requires that a subject correctly understand how
the market price is informative about the average cost, which also involves having the correct
higher-order beliefs. To increase our understanding of a bidder’s strategic incentives, we derive
theoretically the best-response strategy of seller i while assuming that she knows the average
strategy of rivals, which determines her residual demand. We then compute the comparative
statics of the best-response with respect to the average strategy of those rivals.

In each treatment, we first analyse the best-response supply function to the rivals’ average
strategy during the first five rounds of bidding.28 In the uncorrelated costs treatment, the
average supply function for the first five rounds is steeper and has a lower intercept than the
equilibrium. If we assume that rivals bid as the “representative seller” during the first five
rounds, then seller i’s best-response is to bid a supply function that is flatter and has a higher
intercept than that of her rivals but that is still steeper (and with a higher intercept) than the
equilibrium supply function. In the positively correlated costs treatment, however, the average
supply function for the first five rounds deviates substantially from the equilibrium supply
function: the former is much flatter and has a higher intercept than predicted. In this case,
seller i’s best-response supply function is steeper than that of her rivals’ yet flatter than the
equilibrium supply function. The intercept of seller i’s best-reply supply function is also between
these two benchmarks. We illustrate these features of the best-response supply function in each
treatment and compare them with the corresponding equilibrium supply functions in Figure 8.

28Since behaviour does not evolve much across rounds, it follows that the features of the best-response supply
function would be similar had we considered alternative definitions of the rivals’ average strategy.
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Figure 8: Equilibrium supply function versus average supply function for the first five rounds of
bidding, by treatment, and best-response supply function to the average.

We shall identify the drivers of these features, focusing on the supply function slope because it
is the most relevant variable from a strategic standpoint.29 There are two effects that characterise
the best-response slope of seller i. First is the strategic effect, which occurs regardless of the
correlation among costs. If rivals bid a steep supply function, then the slope of the inverse
residual demand increases and so seller i also has an incentive to bid a steep supply function.
Yet if rivals bid a flat supply function, then the slope of the inverse residual demand decreases
and so seller i likewise has an incentive to bid a flat supply function. Because of this strategic
effect, the best-response slope of seller i is increasing in the rivals’ average supply function slope.

In addition to the strategic effect, when costs are positively correlated there is also an
inference effect that is related to information conveyed by the price. Seller i correctly thinks
that a high price that the average signal of her rivals is high; therefore, if costs are positively
correlated then seller i deduces that her own costs must be high. Hence seller i has an incentive
to bid a steeper supply function than if costs were uncorrelated. When costs are positively
correlated, the inference effect causes seller i’s best-response slope to be decreasing in her rivals’
average supply function slope. The reason is that, when costs are positively correlated, the
inference effect moderates the reaction to the price, the more so, the more rivals react to the
price. This is because a higher reaction to the price by rivals induces a trader to also give a
higher weight to the price in the estimation of her cost and hence it increases the magnitude of
the inference effect.

29The mathematical derivations are given in Appendix H.
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Suppose seller i bids in the positively correlated costs treatment and that seller i’s rivals fall
prey to the generalised winner’s curse, thus bidding as in the equilibrium of the uncorrelated
costs treatment. Then the slope of seller i’s best-response supply function is increasing in the
supply function slope of rivals, which means that the strategic effect dominates the inference
effect. However, the inference effect does moderate the magnitude of the increase in the best-
response supply function’s slope as a result of an increase in the slope of her rivals’ supply
function—when costs are uncorrelated. It follows that the optimal response for seller i is to bid
a supply function whose slope is between the slope of naïve sellers’ (average) supply function
and the slope of the equilibrium supply function. In other words: a sophisticated seller who
is best responding to naïve rivals has an incentive to bid a flatter supply function than the
equilibrium would predict, which leads to the behaviour of naïve and sophisticated sellers being
less distinct. An equivalent result was first noted by Camerer and Fehr (2006) in the context
of games characterised by strategic complementarities and by sophisticated and boundedly
rational subjects.30 Figure 11 (in Appendix H) plots, for each treatment, the best-response
supply function slope as a function of rivals’ average supply function slope.

In sum, the positively correlated costs treatment presents a higher degree of strategic com-
plexity than the uncorrelated costs treatment. This explains why average choices in the posit-
ively correlated costs treatment are farther from the equilibrium than in the uncorrelated costs
treatment. In the former, the best-response strategy of a sophisticated seller who best responds
to her rivals’ actual choices is one that falls between the equilibrium of the positively correlated
costs treatment and the benchmark of the generalised winner’s curse (i.e., the equilibrium of
the uncorrelated costs treatment). Therefore, we see less difference in behaviour—between treat-
ments and types of subjects (naïve and sophisticated)—than is predicted by the equilibrium.

6.2 Cluster analysis

We can use cluster analysis to conduct a descriptive study of experimental choices; this approach
enables us to “organise” the heterogeneity in behaviour and relate it to the various theoretical
benchmarks. We shall present the results of analysing subjects’ choices in the first five rounds of
bidding, when strategic thinking is most relevant, and also in the last five rounds, when subjects
are most experienced.

We use a model-based clustering technique, which is based on mixture models, for endo-
genously and simultaneously determining (a) the number of clusters and (b) the type of model
characterised by properties of the underlying probability distributions (orientation, volume, and

30We can also relate best-response and equilibrium strategies to models of strategic thinking. In the termino-
logy of a level-k model (Nagel 1995), a level-1 subject would best respond to the strategies of rivals believing that
rivals are level-0 subjects (e.g., subjects who fall prey to the generalised winner’s curse). So for k ≥ 1, a level-k
subject would best respond to rivals believing they are all of level k − 1. The Bayesian Nash equilibrium would
then be obtained as the limiting behaviour when all subjects perform an infinite number of level-k iterations.
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shape). The Bayesian information criterion (BIC) allows us to select the most appropriate clus-
tering model. We implement this procedure using the Mclust package in R (developed by Fraley
and Raftery 2002), which uses the expectation-maximisation (EM) algorithm.

The data used for the cluster analysis are as follows. We first compute the average subject
choice for each group of five rounds. Each choice is two-dimensional in that they each consist
of the supply function slope and intercept. We then compute the deviation of each individual’s
average choice with respect to the corresponding equilibrium benchmark, and the resulting
deviations form the basis of our cluster analysis. We conduct the cluster analysis separately
for each treatment and each group of five rounds. To facilitate comparisons within a given
treatment—and our interpretation thereof—we choose the same number of clusters and type of
model in each group of five rounds.31

Table 7 summarises the results of our cluster analysis by reporting the type of model, the
number of components, the frequency of subjects in each cluster, and the average supply slope
and intercept of subjects belonging to a particular cluster (in Appendix I we provide results
from cluster analysis based on the intermediate time periods in five-round blocks). The findings
reported in Table 7 are plotted in Figure 9.

In the uncorrelated costs treatment, the BIC yields two clusters with a model of VEV
(varying volume, equal shape, and varying orientation with ellipsoidal distribution) type. In
both time periods, cluster 1 groups subjects whose choices are close to both the Bayesian Nash
equilibrium choice and the best-response to the average choice. Cluster 1 contains 58% of the
subjects in the first five rounds, and this percentage rises to 72% in the last five rounds. Subjects
in cluster 2 bid a steeper supply function with a lower intercept than the equilibrium prediction.
These results suggest that most subjects’ behaviour in the uncorrelated costs treatment accords
fairly well with the theoretical predictions (as already indicated by the average results reported
in Section 5). Furthermore, we observe that 14% of the subjects move from cluster 2 to cluster
1 from the beginning to the end of the experiment.

31In the uncorrelated costs treatment, the five clustering models presented in the text (and in Appendix I) have
the highest possible BIC or there is a BIC difference of less than 2 with respect to the optimal model. (Fraley
and Raftery 2002 argue that, if the difference in BIC between two models is less than 2, then this constitutes
at least weak evidence that one model is better than the other.) In the positively correlated costs treatment,
no single model has the highest BIC for all five sets of data. Hence we consider the second-best model for all
five time periods, which is a three-component model of VEI (varying volume, equal shape, and coordinate axes
orientation with diagonal distribution) type.
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Table 7: Descriptive statistics characterising each cluster.

Note. The intercept of the equilibrium supply function is calculated using the average signal realisation. Standard
deviations (s.d.) are reported in parentheses.

In the positively correlated costs treatment, the BIC yields three clusters and a model of
VEI type (see note 30). In the first five rounds, no subject bids as in the equilibrium. In these
rounds, we see that: 58% of the subjects are in cluster 3, which approximately corresponds to the
benchmark of the generalised winner’s curse (equilibrium of the uncorrelated costs treatment);
36% of the subjects are in cluster 2, which means their behaviour is not inconsistent with that
of a sophisticated bidder (i.e., they bid a supply function close to the average theoretical best
reply); and 6% of the subjects are in cluster 1, meaning that they choose a supply function with
an extremely steep slope and a very low intercept (close to zero). The subjects in cluster 1 are
attracted to the zero-intercept focal point.32

32These cluster results can be loosely related to the level-k model of strategic thinking. Subjects in cluster 3
can be thought to be level-0; subjects in cluster 2 to be level-1; and subjects in cluster 1 cannot be easily related
to a level of strategic thinking since one dimension (the supply function slope) is close to the equilibrium but
the other dimension (the supply function intercept) is far from all benchmarks.
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Figure 9: Results of cluster analysis.

Note. Each data point corresponds to a subject’s two-dimensional (slope and intercept) average choice over the
first five or last five rounds of bidding. The x-axes (resp.,y-axes) represent the difference between theoretical
and experimental supply function slopes (resp., intercepts). The black dashed lines plot the equilibrium supply
function slope and intercept in each treatment, where (0, 0) corresponds to the equilibrium. In the two graphs
corresponding to the positively correlated treatment, there are green dashed lines that plot the generalised
winner’s curse benchmark (i.e., the equilibrium of the uncorrelated costs treatment).



To explore further the relationship between clusters and optimal behaviour, in Table 18 of
Appendix I we summarise—for each cluster—the average difference between the experimental
supply function and the theoretical best-response supply function. In the uncorrelated costs
treatment, cluster 1 groups subjects whose supply functions are close to the theoretical best-
response in both time periods; in the positively correlated costs treatment, cluster 2 groups
subjects whose choices are close to the theoretical best-response slope and intercept in both
time periods. In the positively correlated costs treatment, subjects in cluster 1 bid supply
functions that are too steep and have too low an intercept vis-à-vis the theoretical best reply
while subjects in cluster 3 bid supply functions that are too flat and have too high an intercept.

In the positively correlated costs treatment, there is an exodus of subjects from cluster 3
to cluster 2 as the experiment progresses from the first five to the last five rounds of bidding;
that movement might lead us to infer that most subjects bid a supply function with a steeper
slope. However, Table 7 shows that the average supply function slope of subjects in clusters
2 and 3 actually decreases from the first five to the last five rounds of bidding, which means
that—during those last five rounds—the benchmark of the generalised winner’s curse is located
between clusters 2 and 3. In light of this evidence, we conclude that there are no important
changes in the evolution of clusters between the beginning and the end of the experiment. We
can summarise these findings as follows.

Result 6 (Cluster analysis). (i) In the uncorrelated costs treatment, 58% of the
subjects are in the same cluster as the equilibrium in the first five rounds—a percent-
age that increases to 72% in the last five rounds. This cluster groups subjects whose
supply function is closest to the theoretical best-response. (ii) In the positively
correlated costs treatment, no subject bids as predicted by the equilibrium in either
the first five rounds or the last five rounds of bidding. The proportion of subjects
who are in the same cluster as the “generalised winner’s curse” benchmark is 58%
in the first five rounds of bidding and 50% in the last five rounds; the proportion of
subjects whose bidding behaviour is not inconsistent with sophisticated behaviour
(i.e., best responding to the average supply function) is 36% in the first five rounds
and 42% in the last five rounds of bidding; and the proportion of subjects who bid
a steep supply function with a low intercept is 6% (resp. 8%) in the first (resp. last)
five rounds of bidding.

Observe that, for a subject who is best responding to actual choices in the positively correlated
costs treatment, it is individually optimal to bid a supply function with a flatter slope and with
a higher intercept than the equilibrium would predict. This fact explains why average behaviour
and outcomes are not sufficiently differentiated between treatments and hence why it is difficult
empirically to distinguish the behaviour of naïve and sophisticated subjects. Furthermore, if
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some subjects never learn (or learn very slowly) and remain in cluster 3, then a subject who
is best responding to actual choices may have no incentive to bid increasingly steeper supply
functions during the course of the experiment. This may explain why slopes do not evolve toward
the equilibrium prediction in the positively correlated costs treatment. The rest of Section 6
is dedicated to uncovering what determines the evolution of choices across rounds in the two
treatments. Section 6.3 conducts a more detailed analysis of behaviour since it considers the
each individual choice across all rounds of the experiment (rather than in blocks of 5 periods as
has been done in this section).

6.3 Evolution of choices across rounds

Our goal is to provide a description of the evolution behaviour observed experimentally and
thereby to understand what drives differences in the changes of behaviour (across rounds) in
the two treatments. The experimental design provided subjects with complete feedback after
each round, feedback that included each subjects’ own choice and profits as well as the choices
and profits of the other two market participants. Subjects might be therefore be influenced by
the average choices of rivals in the same group. We designed this high-information environment,
and stipulated 25 rounds per session, so as to foster participants’ learning about the equilibrium.
A subject’s use of a particular learning model depends on both the available information and
her cognitive abilities. Given the experiment’s complexity, we considered only those learning
models in which subjects had the necessary information to learn.

We therefore consider that the evolution of behaviour across rounds can be explained in
terms of three main categories of learning models (for an excellent review, see Camerer 2003):
experiential learning, in which subjects learn from their own experience; imitation-based learn-
ing, in which subjects choose—after the first round—a strategy chosen by other players in
the previous round; and belief learning, an adaptive style whereby subjects update their be-
liefs based on the history of play. Unlike the case of Cournot competition, there are very few
theoretical results on the convergence properties of learning models in the context of supply
function competition with private information.33 In this section, then, we aim only to provide
an informative description of actual behaviour across rounds.

Our empirical strategy follows the approach of Huck et al. (1999) and Bigoni and Fort
(2013); more specifically, we consider a representative model (or models) from each of the three
categories just described. Moreover, we presume that the supply function slope is the strategic
variable best able to summarise how a subject adjusts her behaviour across rounds. We forgo
analysing the dynamics of the supply function intercept because, in our view, the subjects do
not have enough information to learn from it; that is, we provided no feedback on the signals

33For some general considerations, see Vives (2008, Chapter 7).
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received by rivals. As a result, the supply function intercept could be affected by confounding
factors, such as how subjects respond to the private signal. Note also that supply function
intercepts are nearly identical in the two treatments.

The type of experiential learning on which we focus is reinforcement learning (RL), whereby
a player increases her probability of playing a strategy (i.e., the strategy is reinforced) as a
function of the profits previously earned via that strategy. A strategy’s “propensity” is the
cumulative sum of the previous profits that it generated with such strategy, and a strategy’s
“relative propensity” is its propensity divided by the aggregate propensities of all strategies
employed in a given round (cf. Erev and Roth 1998). Our implementation of reinforcement
learning assumes that a player bids the supply function slope exhibiting the highest relative
propensity.

We then consider two models based on learning by imitation. Of these, the first is a payoff-
independent model—imitation of the average (IA)—under which subjects imitate their rivals’
average strategy in the previous round. The second is a payoff-dependent model, imitation of
the best (IB), whereby subjects imitate the strategy of the subject who garnered the highest
profits in the previous round (and where that most successful player imitates herself).34

As a representative of belief learning models we consider best-response dynamics (BR),
whereby subjects best respond to their rivals’ previous-round strategies.35 Recall that the
features of a best-response strategy were described, for each treatment, in Section 6.1.36

We estimate a dynamic panel regression to identify the determinants of each subject’s supply
function slope across rounds with respect to the various learning models described previously.37

Thus, we estimate the following equation:

SlopePQ it = γSlopePQ it−1 + βRLRLit−1 + βIAIAit−1

+ βIBIBit−1 + βBRBRit−1 + νi + ωit. (4)

Here SlopePQ it issubject i’s supply function slope in round t; SlopePQ it−1 is the supply function

34We have not considered learning models such as imitate the exemplary firm (Offerman et al. 2002), since
this would require subjects to calculate the joint maximisation of profits for three “firms” producing a given
level of output. That task is far from trivial in our experimental environment of supply functions and private
information.

35The difference between the best-response analysis in this section and the version analysed elsewhere (in
Section 6.1, Section 6.2, Appendix H, and Appendix I) is that here we consider the best-response to rivals’
strategy of the previous rather than the current round.

36We do not consider the fictitious play model because it is cognitively more demanding than best-response
dynamics. In particular, it requires subjects to remember the average strategies of all previous rounds of play;
best-response dynamics, in contrast, requires subjects to remember the strategies only of the other two players
in the previous round.

37As compared with Huck et al. (1999) we have added the reinforcement learning term. As compared with
Bigoni and Fort (2013), we have replaced the “trial and error” experiential learning model with the reinforcement
learning model, which has gained wider acceptance in the literature.
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slope of subject i in the previous round (i.e., round t−1), which gives an indication of behavioural
persistence; RLit−1 is the supply function slope corresponding to the highest relative propensity
based on player i’s profits in round t− 1 (reinforcement learning); IAit−1 is the average supply
function slope of i’s rivals in the previous round (imitation of the average); IBit−1 is the supply
function slope that corresponds to the highest profits of i’s rivals in round t−1 and if i’s profits
were the highest in period t − 1 then subject i imitates herself (imitation of the best); BRit−1

is subject i’stheoretical best reply to her rivals’ supply function slope in the previous round
(best-response dynamics); ωit is the error term; and vi represents panel-level random effects.38

If a given learning model fully explained how a subject adjusts her supply function slope
across rounds, then its regression coefficient would be 1 and the other coefficients would be
insignificant. In the more likely event that the model’s explanation is only partial, we expect
its coefficient to be positive and significantly different from 0.

Table 8 presents the results from estimating equation (4)—for individual choices across
rounds in each treatment—using the approach proposed by Arellano and Bover (1995) and
Blundell and Bond (1998).39

Table 8: Dynamic panel estimation: Evolution of behaviour across rounds.

Note. Robust standard errors are given in parentheses.
*, **, and *** denote significance at (respectively) the 10%, 5%, and 1% levels.

Columns [1] and [2] of Table 8 present the results of estimating equation (4) for the un-
38Details of how these learning variables have been created are available from the authors upon request.
39The estimation was conducted via Stata’s xtdpdsys command using the two-step estimator. The regressors

corresponding to each of the learning models were considered to be predetermined because, although possibly
correlated to past errors, they are not correlated with future errors. The two restrictions on these instruments
are that (i) we use at most one lag of the dependent variable as an instrument and (ii) each regressor appears
as contemporaneous and at most one lag is used as an instrument.
In all the equations presented, the post-estimation specification test for autocorrelation of the error terms gives

no evidence of autocorrelation of order higher than 1 at the 10% significance level. In addition, we cannot reject
the null hypothesis that the overidentifying restrictions are valid (Sargan test) for all the regressions displayed.
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correlated costs treatment. We cannot estimate the full learning model of equation (4) because
the best-response dynamics variable (BRit−1) is perfectly collinear with the imitation of the
average variable (IAit−1) owing to the functional relationship between them.40 Hence we cannot
disentangle the effects of these two learning models in the uncorrelated costs treatment.

The results of estimating equation (4) for the uncorrelated costs treatment are presented in
Table 8[1], where IA is excluded, and in Table 8[2], where BR is excluded. In both equations,
all significant coefficients have the expected signs. We find that RL is an important component
of the adjustment dynamics whereas IB is not significant. In column [1], BR is significant and
has the largest coefficient; in column [2], IA has a positive and significant coefficient. In sum-
mary: we find that reinforcement learning, imitation of the average, and best-response dynamics
jointly contribute to explain the evolution of behaviour across rounds in the uncorrelated costs
treatment. Behaviour is fairly persistent.

Column [3] of Table 8 reports regression results for the positively correlated costs treat-
ment; here the estimation excludes 64 observations—namely, those for which a theoretical best-
response was unfeasible given our experimental design.41 In this treatment, too, behaviour
exhibits some persistence over time. Also, the terms for RL, IB, and IA jointly provide a partial
description of how subjects adjust their supply function slope across rounds; in contrast, the
BR term does not contribute to explaining how subjects’ behaviour evolves.

These findings may be summarised as follows.

Result 7 (Determinants of evolution of behaviour over rounds). There are signi-
ficant differences between how subjects learn in the two treatments. Best-response
dynamics is a more prominent determinant of the evolution of behaviour across
rounds in the uncorrelated than in the positively correlated costs treatment. Imita-
tion of the best is a significant factor in the positively correlated costs treatment but
not in the uncorrelated costs treatment. In both treatments, reinforcement learn-
ing and imitation of the average help to explain the evolution of behaviour across
rounds.

Result 7 shows that the evolution of behaviour across rounds is a composite process whose
elements include the various learning models considered but with different weights in each
treatment. That best-response dynamics has a significant effect on learning when costs are
uncorrelated but not when they are positively correlated is consistent with the notion that the
former treatment environment is cognitively simpler for experimental subjects.

40For details, see Appendix H and equation (17) therein.
41More specifically, the theoretical best-response would have required a negative supply function slope, which

was not allowed. The average supply function slope of these 64 excluded observations does not differ signific-
antly from the average of those that were included. If we instead include the 64 observations when estimating
equation (4), the coefficients are strongly similar to those reported in Table 8[3].
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Notice that this result may appear to contrast with Result 6 which shows that, in the
positively correlated costs treatment, the proportion of subjects whose bidding behaviour is not
inconsistent with sophisticated behaviour (i.e., best responding to the average supply function)
is 36% in the first five rounds and 42% in the last five rounds of bidding. However, the analysis
of Section 6.2 used the average subject choice for each group of five rounds while the dynamic
analysis of this section considers the individual choice for each round. Therefore, we conclude
that on a round-to-round basis, subjects in the positively correlated costs treatment do not
appear to be best responding to the choices of rivals in the previous round. However, there
is evidence that when aggregating rounds in groups of five, some subjects in the positively
correlated costs treatment (36% in the first five rounds and 42% in the last five rounds of
bidding) are close to the average best-response.

6.4 Post-experiment questionnaire: Analysis

Our experiment’s main result is that most subjects in the positively correlated treatment behave
as if they did not understand that the market price is informative about costs. Analysing the
responses given by subjects in our post-experiment questionnaire offers further evidence of this
interpretation. We asked two questions: “Do you think that a high market price generally means
good, mixed, or bad news about the level of your costs?” and then “Explain your answer.” The
aim of these questions was to see whether, after making decisions in 25 rounds, the subjects
understood that price is informative in the positively correlated costs treatment; we also wanted
to see if there were differences between the two treatments. We analyse the explanations given
(responses to the second question) because they reveal more about the reasoning processes used
by participants. Table 9 groups the questionnaire responses into types and reports a typical
answer given in each category.

Table 9: Classification of responses to post-experiment questionnaire.

The answers classified as “market price is informative about costs” reflect the logic of the
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equilibrium reasoning applicable to the positively correlated costs treatment, while answers
classified as “market price is not informative about costs” reflect the equilibrium reasoning of
the uncorrelated costs treatment. The answers classified as “high costs imply a high market
price” are ambiguous, since they might reflect either (i) an understanding of the equilibrium
reasoning of the positively correlated costs treatment or (ii) an understanding of the prediction,
common to both treatments, that a high signal implies high costs and so subjects should bid a
supply function with a higher intercept.42 Hence we shall not focus on interpreting either this
third category of answers or on responses classified as “other factors”. Table 10 reports, for each
treatment, the percentage of answers that correspond to each of the categories analysed.

Table 10: Responses to post-experiment questionnaire by group and treatment.

This table reveals that nearly twice the percentage of subjects fall in the “market price is
informative about costs” category under the positively correlated treatment than under the un-
correlated treatment (17% vs. 8%), a result indicating that only a few subjects in the positively
correlated costs treatment understood that the market price is informative about the level of
costs. We observe also that “market price is not informative about costs” is the most prevalent
answer in both treatments, with no major differences—as a function of treatment—in subjects
making this response. Thus the responses to our post-experiment questionnaire are consistent
with the interpretation that, in the positively correlated costs treatment, a large percentage of
participants that fall prey to the generalised winner’s curse and a much smaller percentage of
subjects are sophisticated bidders whose best-response is more similar to those that that fall
prey to the generalised winner’s curse than the equilibrium would predict.

Furthermore, we conducted two robustness sessions to disentangle whether the fact that
subjects in the positively correlated costs treatment do not understand that the market price
is informative about costs can be attributed to a failure to engage in Bayesian updating. We
report the results of these additional sessions in Appendix H. We find that our results in this
treatment are not due to a bias related to simple Bayesian updating.

42We remark, however, that the latter is the first step toward understanding that the market price is inform-
ative about costs.
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7 Concluding Remarks

We have analysed bidding behaviour in an experiment which reflects the complexity of real-world
markets where bidders compete in supply functions, have incomplete information about their
costs, and receive a private signal. We used the unique Bayesian Nash equilibrium prediction and
its comparative statics as benchmarks when evaluating the experimental results. Our experiment
employed a between-subjects design with two treatments: uncorrelated costs and positively
correlated costs; the former served as our control treatment. In conducting the experiment, we
chose numerical values for the model’s parameters that allowed theoretical predictions about
behaviour and outcomes to be sufficiently differentiated between the two treatments.

We find that most subjects bid in accordance with the equilibrium predictions in a simple
strategic environment (uncorrelated costs treatment), yet most subjects fail to do so in a more
complex strategic environment (positively correlated costs treatment) in which they are required
to use the market price to extract information about the level of costs. On average, subjects
in the positively correlated costs treatment bid flatter supply functions than predicted by the
equilibrium. Our findings are consistent with the experimental literature on correlation neglect
(see Section 2), a phenomenon that in our setting is intertwined with the generalised winner’s
curse. To the best of our knowledge, this paper is the first to document that phenomenon in an
environment characterised by interdependent values and the auctioning of multiple units of a
divisible good.

In electricity markets, mitigating the market power is a primary concern of regulators.43

If costs are positively correlated then our experiment shows that, when a large proportion
of subjects who are competing in supply functions neglect the correlation among costs, market
outcomes are more competitive than in the equilibrium. Yet despite being more competitive, the
resulting allocations present a higher productive inefficiency than the corresponding equilibrium
allocations.

Our experiment suggests a few open questions for future research, both experimental and
theoretical. Future work could explore mechanisms by which subjects learn to overcome the
generalised winner’s curse (e.g., asking subjects to come back to the laboratory a few days
later (experienced bidders); replicating the experiment with professional traders; extending the
number of rounds). The experimental findings reported here also call for the development of
theoretical models that analyse market competition among participants who exhibit various
degrees of strategic sophistication—as well as for examination of the convergence properties of
different types of learning models in markets characterised by supply function competition and
private information.

43See, for example, Hortaçsu and Puller (2008) and Holmberg and Wolak (2015).
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Appendices

Appendix A: Theoretical considerations

This section uses results from Vives (2011). When demand is inelastic and equal q and if
−1
n−1

< ρ < 1, σ2
ε

σ2
θ
< ∞ and λ > 0, the model described in Section 3 has a unique linear Supply

Function Equilibrium (SFE) given as

X(si, p) = b− asi + cp, (5)

where

a =
(1− ρ)σ2

θ

(1− ρ)σ2
θ + σ2

ε

(d+ λ)−1, (6)

b =
1

1 +M

(
qM

n
− σ2

ε θ̄(d+ λ)−1

(1 + (n− 1)ρ)σ2
θ + σ2

ε

)
, (7)

and

c =
n− 2−M

λ(n− 1)(1 +M)
, (8)

where M = ρnσ2
ε

(1−ρ)((1+(n−1)ρ)σ2
θ+σ2

ε)
represents an index of adverse selection and d = 1

(n−1)c
is the

slope of the inverse residual demand. The expected intercept is equal to E[f ] = b− aθ̄.
The expected market price is equal to

E[p] = θ̄ +
(d+ λ)q

n
. (9)

Ex-ante expected profits of seller i at the SFE given the predicted values with full information
are equal to:44

E[π̃(t; d)] = (d+
λ

2
)

(
q2

n2
+

(1− ρ)2(n− 1)σ4
θ

n(σ2
ε + σ2

θ(1− ρ))

1

(d+ λ)2

)
, (10)

where t=(E [θ1 | s] , E [θ2 | s] , ..., E [θn | s]), s = (s1, s2, ..., sn) and π̃(t; d) = 1
n

∑
i πi(t; d). We

note that xi(t; d) = x̃(t; d) + t̃−ti
(d+λ)

. Therefore, the first term of expected profits corresponds to

expected profits at the average quantity since they are equal to (p̄− θ̄) q
n
− λ

2
( q
n
)2 = (d + λ

2
) q

2

n2 .
The second term is related to the dispersion of the predicted values. For each subject and round,
we compute profits conditional on the private signal. We then calculate the average profits in

44At the SFE the market price and the signal provide sufficient information on the joint information of the
market.
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each treatment, which give us an estimate for ex-ante expected profits.
In terms of the efficiency at the equilibrium allocation, we note the following. First, there is no
aggregate inefficiency since the demand is inelastic. Second, the ex-ante expected deadweight
loss, E[DWL], at the equilibrium allocation is the difference between expected total surplus at
the efficient allocation and at the equilibrium allocation. We can write it as

E[DWL] =
nλ

2
E[(xi − xoi )2]. (11)

Vives (2011) shows that the efficient allocation is equal to

xoi =
q

n
+

(1− ρ)σ2
θ

λ((1− ρ)σ2
θ + σ2

ε )
(s̃− si), (12)

and that expected deadweight loss at the equilibrium allocation can be then written as

E[DWL] =
λ

2
(
1

λ
− 1

λ+ d
)2 (1− ρ)2(n− 1)σ4

θ

(σ2
ε + σ2

θ(1− ρ))
. (13)

For each market we compute the empirical counterpart of the (interim) deadweight loss at the
experimental allocation as follows

dwl = (
nλ

2
)(

1

n

n∑
i=1

(xei − xoi )2), (14)

where xei is the experimental allocation (superscript e is to differentiate it from the equilibrium
allocation, xi) and xoi is the efficient allocation as defined above. In order to calculate the
average deadweight loss in each treatment, we average the interim deadweight losses for the
600 markets in each treatment, which gives us an estimate for the ex-ante expected deadweight
loss.45

Appendix B: Equilibrium predictions, ex-ante expected out-

comes, and statistical distribution of random costs and er-

rors used in the experiment

In our experiment, given the experimental parameters of Table 2, the numerical equilibrium
supply function and ex-ante expected outcomes in the two treatments can be summarised in
the table below.

45There are 600 markets in each treatment since we have 6 groups, which consist of 4 markets each for 25
rounds.
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Table 11: Equilibrium supply function & ex-ante expected outcomes given the experimental para-
meters.

Notes. The numerical value for the intercept corresponds to the expected intercept in each treatment. Supply
function (PQ) refers to the supply function viewed in the usual (Quantity, Ask Price) space. SFE refers to
supply function equilibrium.

The next table reports the summary statistics of the draws of the random variables used in
the experiment. The theoretical model assumes that in each market we draw an n-dimensional
multivariate normal distribution with θ ∼ N(µ,Σθ), where the covariance matrix Σθ is such
that the variance of each component, θi, is equal to σ2

θ and the covariance between any i 6= j is
equal to ρσ2

θ , where ρ is the correlation coefficient. In Table 2 we have specified the following
parameter configuration: n = 3, θ̄ = 1, 000, σ2

θ = 10, 000; ρ = 0 for the uncorrelated costs
treatment and ρ = 0.6 in the positively correlated costs treatment. The first part of the table
below reports the statistics of the actual draws for random costs for each of the three sellers,
where subscripts 1, 2 and 3 correspond to seller 1, seller 2 and seller 3, respectively. Because
of our random matching protocol, in each round we have a different subject to take the role
of sellers 1, 2 and 3. The model also assumes that in each market we draw an n-dimensional
multivariate normal distribution of signals such that s = θ + ε, where the signals’ errors are
distributed ε ∼ N(0,Σs). The variance of each component, εi, is equal to σ2

ε and the covariance
between any i 6= j is equal to zero. In Table 2, we have specified that σ2

ε = 3, 600. The second
part of the table below reports the statistics of the actual draws for the signals’ errors for
each of the three sellers. The theoretical model also specifies that error terms in the signals
are uncorrelated with the θi’s. We check this in the third part of the table below. There
are no statistically significant differences between the draws used in the experiment and the
theoretically specified distributions.
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Table 12: Statistical Distribution of Random Costs and Errors used in the Experiment.

Appendix C: Instructions for the experiment

These instructions are for the treatment with positively correlated costs and have been translated
from Spanish (except from figures, which are exactly as presented to participants).

INSTRUCTIONS

You are about to participate in an economic experiment. Your profits depend on your decisions
and on the decisions of other participants. Read the instructions carefully. You can click on the
links at the bottom of each page to move forward or backward. Before starting the experiment,
we will give a summary of the instructions and there will be two trial rounds.

THE EXPERIMENT

You will earn 10 Euros for participating in the experiment regardless of your performance in the
game. You will gain (lose) points during the experiment. At the end of the experiment, points
are exchanged for euros. 10,000 points are equivalent to 1 Euro. Each player will start with an
initial capital of 50,000 points. Gains (losses) that you accumulate during the experiment will
be added (subtracted) to the initial capital. Players who have accumulated losses at the end
of the experiment will receive 10 Euros for participating. Players with gains will receive their
gains converted to Euros plus the 10 Euro participation fee.

The experiment will last 25 rounds. In the experiment you will participate in a market. You
will be a seller of a fictitious good. Each market will have 3 sellers. Market participants will
change randomly from round to round. At any given time, no one knows who she is matched
with. We guarantee anonymity. The buying decisions will be made by the computer and not

4



a participant of the experiment. In each round and market, the computer will buy exactly 100
units of the good.

YOUR PROFITS

In each round, your profits are calculated as shown in the figure below:46

Your profits are equal to the income you receive from selling units minus total costs (con-
sisting of production and transaction costs).

Some details to keep in mind: you only pay the total costs of the units that you sell. If you
sell zero units in a round, your profits will also be zero in this round. You can make losses when
your income is less than the total costs (production and transaction). The cumulative profits
are the sum of the profits (losses) on each round. Losses will be deducted from the accumulated
profits. Throughout the experiment, a window in the upper left corner of your screen will show
the current round and accumulated profits.

YOUR DECISION

In each round, you have to decide the minimum price that you are willing to sell each unit for.
We call these Ask Prices.

THE MARKET PRICE

Once the three sellers in a given market have entered and confirmed their decisions, the computer
calculates the market price as follows.

1. In each market, the computer observes the 300 Ask Prices introduced by the sellers of
your market.

2. The computer ranks the 300 Ask Prices from the lowest to the highest.
46English explanation: the top part of the figure explains the formula for profits given in equation (1). The

bottom part of the figure expresses Profits=Revenues-Production Costs-Transaction Costs.
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3. The computer starts buying the cheapest unit, then it buys the next unit, etc. until it
has purchased exactly 100 units. At this time the computer stops.

4. The Ask Price of the 100th unit purchased by the computer is the market price (the price
of the last unit purchased by the computer).

The market price is the same for all units sold in a market. In other words, a seller receives
a payment, which is equal to the market price for each unit she sells. If more than one unit is
offered at the market price, the computer calculates the difference:

Units Remaining= 100- Units that are offered at prices below the market price.
The Units Remaining are then split proportionally among the sellers that have offered them

at an Ask Price equal to the market price.

UNITS SOLD

In each round and market, the three sellers offer a total of 300 units. The computer purchases
the 100 cheapest units. Each seller sells those units that are offered at lower Ask Prices than
the market price. Note that those units that are offered at higher Ask Prices than the market
price are not sold. Those units offered at an Ask Price which is equal to the market price will
be divided proportionally among the sellers that have offered them.

MARKET RULES

In each round and market, the computer buys exactly 100 units of the good at a price not
exceeding 3.600. In order to simplify the task of entering all Ask Prices in each round, we
request that you to enter:

• Ask Price for Unit 1

• Ask Price for Unit 2

Ask Prices can be different for different units. To find Ask Prices for the other units, we will
join the Ask Price for Unit 1 and the Ask Price for Unit 2 by a straight line. In this way, we find
the Ask Prices for all the 100 units. In the experiment, you will be able to see this graphically
and try different values until you are satisfied with your decision.

We apply the following five market rules.
1. You must offer all the 100 units for sale.
2. Your Ask Price for one unit must always be greater than or equal to the Ask Price of the

previous unit. Therefore, the Ask Price for the second unit cannot be less than the Ask Price
for the first unit. You can only enter integers for your decisions.

3. Both Ask Prices must be zero or positive.
4. The buyer will not purchase any unit at a price above the price cap of 3,600.
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5. The Ask Price for some units may be lower your unit cost, since unit costs are unknown
at the time when you decide the Ask Prices. You may have losses.

EXAMPLE

This example is illustrative and irrelevant to the experiment itself. We give the example on
paper. Here you can see how the computer determines the market price and units sold by each
seller in a market.

UNIT COST

In each round the unit cost is random and unknown to you at the time of the decision. The unit
cost is independent of previous and future round. Your unit cost is different from the unit cost
of other participants. However, your unit cost is related to the unit costs of the other market
participants. Below we explain how unit costs are related and we give a figure and explanation
of the possible values of unit costs and their associated frequencies. This figure is the same for
all sellers and all round.47

The horizontal displays the unit cost while the vertical axis shows the frequency with which
each unit cost occurs (probability). This frequency is indicated by the length of the correspond-
ing bar.

In the figure you can see that the most frequent unit cost is 1,000. We obtain 1,000 as unit
cost with a frequency of 0.35%. In general terms, we would obtain a unit cost of 1,000 in 35 of
1,000 cases.

In 50% of the cases (50 of 100 cases), the unit cost will be between 933 and 1,067.
In 75% of the cases (75 of 100 cases), the unit cost will be between 885 and 1,115 .

47English explanation: the figure shows the possible values of costs θi (horizontal axis) and their corresponding
probabilities (vertical axis).
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In 95% of the cases (95 of 100 cases), the unit cost will be between 804 and 1,196 .
There is a very small chance that the unit cost is less than 700. This can occur in 1 of 1,000

cases approximately. Similarly, there is a very small chance that the unit cost is greater than
1,300. This occurs can occur in 1 of 1,000 cases, approximately.

For participants with knowledge of statistics: the unit cost is normally distributed with
mean 1,000 and standard deviation 100.

INFORMATION ABOUT YOUR UNIT COST (YOUR SIGNAL)

In each round, each participant receives information on her unit costs. This information is not
fully precise. The signal that you receive is equal to:

Signal = UnitCost+ Error

The error is independent of your unit cost, it is also independent from the unit costs of other
participants and it is independent from past and future errors. The following figure describes
the possible values of the error term and an indication of how likely each error is likely to occur.
This graph is the same for all sellers and rounds.48

On the horizontal axis you can observe the possible values of the error terms. On the vertical
axis, you can observe the frequency with which each error occurs (probability). This frequency
is indicated by the length of the corresponding bar.

In the figure you can see that the most common error is 0. The frequency of error 0 is 0.66
%. In general terms, this means that in approximately 66 of 10.000 cases you would get an error
equal to 0.

In 50% of the cases (50 of 100 cases), the error term is between -40 and 40.
In 75% of the cases (75 of 100 cases), the error is between -69 and 69.

48English explanation: the figure shows the possible values of the signal’s error (horizontal axis) and their
corresponding probabilities (vertical axis).
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In 95% of the cases (95 of 100 cases), the error is between -118 and 118.
There is a very small chance that the error is less than -200. This occurs in 4 out of 10,000

cases. Similarly, there is a very small probability that the error is greater than 200. This occurs
in 4 out of 10,000 cases.

For participants with knowledge of statistics: the error has a normal distribution with mean
0 and standard deviation 60.

HOW YOUR COST IS RELATED TO THE COSTS OF THE OTHER SELLERS

The unit cost is different for each seller and your unit cost is related to the unit cost of the
other sellers in your market. The association between your unit cost and unit cost of another
seller in your market follows the trend:

• The higher your unit cost, the higher will be the unit cost of the other sellers.

• The lower your unit cost, the lower the unit cost of the other sellers.

The strength of the association between your unit cost and unit cost of another seller is measured
on a 0 to 1 scale. The strength of the association between your unit cost and unit cost of the
other seller is +0.6 .49

Graphically we can see the relationship between your unit cost (horizontal axis) and the
unit cost of another seller (vertical axis) for some strengths of association. The figure that has
a red frame corresponds to an intensity of association of +0.6.

For participants with knowledge of statistics: the correlation between your unit cost and
unit cost of any other player is +0.6 .

49English explanation: the figure explains the meaning of correlation equal to 0, 0.6 and 1.
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END OF ROUND FEEDBACK

At the end of each round, we will give you information about:

• Your profits (losses) and its components (Revenue-Cost of Production - Cost of transac-
tion)

• Market price

• Your units sold

• Other market participants feedback: decisions; profits and unit costs.

You can also check your historical performance in a window in the upper right corner of your
screen. During the experiment the computer performs mathematical operations to calculate the
market price, units sold, Ask Prices for intermediate units, etc. For these calculation we use all
available decimals. However, we show all the variables rounded to whole numbers, except from
the market price.

THE END

This brings us to the end of the instructions. You can take your time to re-read the instructions
by pressing the BACK button. When you understand the instructions you can indicate it to us
by pressing the OK button at the bottom of the screen. Next you have to answer a questionnaire
about the instructions, unit cost distributions and signals. When all participants have taken
the questionnaire and indicated OK, we will start the practice rounds. Your profits or losses of
the practice rounds will not be added or subtracted to your earnings during the experiment.

Appendix D: Comprehension test and experimental screen-

shots

The first part of this appendix reports the comprehension questionnaire which was administered
before the trial rounds.

Comprehension Test

Questions. Answer True or False.

1. The unit cost has the same value for each of the participants in your market.

2. The unit cost has the same value for each of the participants in your market.
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3. If my unit cost is high, it is rather likely that the unit cost of another seller is high.

4. Unit costs between 1000 and 1200 occur with the same frequency than unit costs between
1000 and 700.

5. Unit costs larger than 1000 occur with the same frequency as unit costs smaller than 1000.

6. Errors larger than 0 occur more frequently than errors smaller than 0.

7. An error of 5 is the most frequent error.

8. The seller who sells most units will always have the highest profit.

9. If my unit cost is low, it is rather likely that the unit cost of another seller is high.

10. The market price is the same for all units and sellers.

Answers (True (T) and False (F)): Q1. F Q2. T Q3. T (treatment 0.6); F (treatment 0)
Q4. F Q5. T Q6. F Q7. F Q8. F Q9. F Q10. T

Notes: These notes appeared on the screen if a participant answered wrongly any of the
previous questions.

Q1. Treatment 0.6: Your unit cost is different from the unit cost of other participants but
it is related. Treatment 0: Your unit cost is different from the unit cost of other participants.
There is no relation between your unit cost and that of other participants.

Q2. In each round, the unit cost is random and independent from the unit cost of past and
future rounds.

Q3. Treatment 0.6: The higher your unit cost, the higher the unit cost of the other sellers
will tend to be. Treatment 0: There is no relation between your unit cost and that of other
participants. Therefore, if my unit cost is high, I can not deduce anything from the unit cost
of the other participants.

Q4. Unit costs between 1000 and 1200 occur with higher frequency than unit costs between
1000 and 700.

Q5. The unit cost of 1000 is the most frequent one. Unit costs larger than 1000 occur with
the same frequency as unit costs smaller than 1000.

Q6. Errors larger than 0 occur with the same frequency as errors smaller than 0.
Q7. An error of 0 is the most frequent error.
Q8. Profit does not only depend on the number of units sold. Remember that: Profit =

(MarketPrice− UnitCost)UnitsSold− 1.5UnitsSold2.
Q9. Treatment 0.6: The lower your unit cost, the lower the unit cost of the other sellers

will tend to be. Treatment 0: There is no relation between your unit cost and that of other
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participants. Therefore, if my unit cost is high, I can not deduce anything about the unit cost
of the other participants.

Q10. The market price is the same for all units and sellers in a market.

The second part of this appendix reports the screenshots used during the experiment.

Screen 1: signal screen50

50English explanation: the first part of the screen reminds participants of the definition of the signal. The
second part gives the participant the realisation of her signal for the current round.
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Screen 2: decision screen51

Screen 3: feedback about a seller’s own performance52

51English explanation: First, the screen reminds the participant of the realisation of her signal for the current
round. Second, it asks the participant to enter the ask price for the first unit and the ask price for the second
unit. The participant has access to a calculator and can see a graphical representation of the supply schedule.
The participant can try a few decisions before it presses the “Confirm” button.

52English explanation: this screen reports the participants’ profits/losses in the current round and splits them
into revenues (price multiplied by units sold), production costs (cost multiplied by units sold) and transaction
costs (1.5 multiplied by the square of units sold). The screen displays them both graphically and numerically.

13



Screen 4: feedback about market performance and other sellers’ in the

same market53

Appendix E: Post-experiment questionnaire

After the rounds were completed, we asked for 3 demographic questions: age, gender and degree
studying.
We then asked the following additional questions regarding understanding of the game.
1. Do you think that a high market price generally means GOOD/MIXED/BAD news about
the level of your costs?
2. Explain your answer.
3. Do you think that the other sellers have answered the same as you to the previous question?
4. Explain your answer.

53English explanation: this screen gives the participant feedback about: own supply function and supply
functions of the rivals (graphically); units sold by each of the players; the own value of θi and that of the two
rivals; profits/losses for each of the players in the market.
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Appendix F: Analysis of variance of experimental outcomes

and decomposition of deadweight loss

The following table shows the analysis of variance for experimental outcomes and deadweight
losses in each treatment.

Table 13: Analysis of variance of experimental outcomes and deadweight losses.

Note. s.d. refers to standard deviation. The explanation of the variables reported in the table is as follows: s.d.
Overall subject level: the variation of individual choice across all rounds; s.d. Between subjects: the variation of
the individual choice averaged across all rounds; s.d. Within Subjects: the variation within subject over time;
s.d. Overall group level: the variation the average choice of the group across all rounds; s.d. Between groups:
the variation of the average choice of the group averaged across all rounds; s.d. Within groups: the variation
within groups over time; and s.d. Overall Treatment level: the variation of the average choice of the treatment
across all rounds.

The following graph illustrates how the components of deadweight loss combine in each
treatment.

15



Figure 10: Components of deadweight loss at the experimental allocation in each treatment.

Notes. This graph corresponds to the decomposition of deadweight loss, dwl = (λ2 )(
∑n
i=1(x

e
i −

q
n )

2+(xoi −
q
n )

2−
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n )(x
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i −

q
n )). The first term is variance of units sold, the second is the variance of the efficient allocation,

and the third is -2 multiplied by the covariance of units sold and the efficient allocation. The bars associated
with “Sum of components” refer to the sum (
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i −
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n )

2 + (xoi −
q
n )

2 − 2(xei −
q
n )(x

o
i −

q
n )). dwl refers to

deadweight loss.

The next table displays the components of deadweight loss at both the equilibrium and experi-
mental allocations in each treatment.
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Table 14: Components of Deadweight Loss at the equilibrium and experimental allocations in
each treatment.

Notes. Alloc. refers to allocation. In order to calculate dwl in rows (5) and (9), we have used the actual
distribution of draws of the random variables used in the experiment.

Appendix G: Panel data analysis

In this section we present the results of panel data analysis, which is based on the individual
choice or outcome across rounds. For that purpose, we use a random effects panel data ap-
proach.54

First, we evaluate whether there is a difference—between the positively correlated costs
treatment and the (control) uncorrelated costs treatment—with regard to either market be-
haviour or outcomes. Table 15 reports random effects regression results of jointly estimating,
for our panel data, the equation for the supply function slope and the intercept. The so-called
seemingly unrelated regression (SUR) method we use, which assumes that disturbances across
equations may be correlated, yields efficient estimates.55 In Table 15[1], we jointly estimate the

54For market price and deadweight loss, the unit of analysis is the market across rounds.
55See Baltagi (2008) for the theoretical background on this estimation.
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following set of equations:

SlopePQ it = β0S + β1SD_Treatment i +
∑
j

βjD_Groupij + νi + uit;

InterceptPQ it = β0I + β1ID_Treatment i +
∑
j

βiD_Groupj + wi + vit.

Here the subscripts S and I signify (respectively) slope and intercept, the subscript it denotes
the choice of subject i at round t, and j is an index for the group to which a subject belongs. The
term D_Treatment is an indicator variable that takes the value 0 (resp., 1) for the uncorrelated
(resp., positively correlated) costs treatment, and the D_Groupij are a set of dummies that
take the value 1 if subject i belongs to group j (and value 0 otherwise). The terms uit and vit
are observation-specific errors; νi and wi are unobserved individual effects.

In Table 15[2] we report results from the following set of augmented regressions:

SlopePQ it = β0S + β1SD_Treatment i +
∑
j

D_Groupij + β2St

+ β3S(D_Treatment i × t) + β4SSignal it + νi + uit;

InterceptPQ it = β0I + β1ID_Treatment i +
∑
j

D_Groupij + β2It

+ β3I(D_Treatment i × t) + β4ISignal it + wi + vit.

In these expressions, t isa variable for the round number, D_Treatment × t is the interaction
term between the round number and treatment, and Signal is the signal received by subject i
at round t. The errors uit and vit are correlated across equations.
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Table 15: Panel data: SUR of random effects.

Note. Each equation was estimated with group dummies; standard errors are given in parenthesises. This
estimation was performed via the xtsur command in Stata (cf. Nguyen 2010), which is used for one-way random
effects estimation of seemingly unrelated regressions (SURs) in a panel data set. Note that the xtsur command
does not allow for clustered standard errors.
*, **, and *** denote significance at (respectively) the 10%, 5%, and 1% levels.

In both Table 15[1] and Table 15[2] we see that D_Treatment is not statistically significant
regardless of whether it is the only regressor or whether we also control for additional variables.
With regard to the regression for the supply function slope, from Table 15[2] we can draw
the following conclusions: round has a significant and negative coefficient, which means that
supply functions become flatter as the number of rounds increases; and D_Treatment × t has
a significant and positive coefficient, which means that the decrease in the slope of the supply
function is less pronounced in the positively correlated costs treatment. We also find that
Signal is not statistically significant in determining the supply function slope. With regard
to the regression for the supply function intercept, we may conclude as follows: round has a
significant and positive coefficient, which means that the supply function intercept increases as
the number of rounds increases; D_Treatment× t has a significant and negative coefficient that
is nearly identical to the coefficient for round, which means that the supply function intercept
does not vary as a function of round in the positively correlated costs treatment; and Signal, as
predicted by the theoretical model, has a significant and positive coefficient.

Second, we estimate a panel with random effects and where standard errors are clustered at
the group level for the dependent variables (market prices, profits, and deadweight losses). In
Table 16[1] we estimate the following equation for market price:

MarketPricemt = β0 + β1D_Treatmentm + νm + ωmt.

Here the subscript mt denotes market m at round t; εmt is the error term; νm is the random
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effect, which is uncorrelated with the regressor; and D_Treatment is the treatment dummy
defined previously. In Table 16[2], we augment the regression with additional controls and
estimate the following equation:

MarketPricemt = β0 + β1D_Treatmentm + β2t

+ β3(D_Treatmentm × t) + β4Signalmt + νm + ωmt,

where the unit of observation is the market across time and where all the variables are as defined
before.

The results reported in Table 16[1] show that D_Treatment is not statistically significant—
either when the treatment dummy is used as the only regressor or when we include the additional
controls. In Table 16[2] we observe that, with respect to determining market price, the signal
received is the only variable with a positive and significant coefficient.

Table 16: Panel data: Regression of random effects for market outcomes and deadweight loss.

Note. This estimation was performed using the xtreg, re command in Stata. Standard errors (s.e.), reported in
parentheses, are clustered at the group level.
*, **, and *** denote significance at (respectively) the 10%, 5%, and 1% levels.

Third, for profits we use the same panel data approach as for market price—but now the unit
of observation is the subject across rounds.56 We find that D_Treatment is not significant in
the results of either Table 16[3] or Table 16[4]. The signal received has a negative and significant
coefficient, reflecting the negative correlation between signal (and also unit costs) and profits. In
addition, we find that profits increase slightly across rounds in the uncorrelated costs treatment;
in the positively correlated costs treatment, however, there is no evolution of profits (in either
direction) across rounds.

56In Table 16[3], we estimate the equation Profit it = β0 + β1D_Treatment i + νi + ωit, where the subscript it
signifies subject i at round t and where εit is the error term. In Table 16[4], we augment that regression as
follows: Profit it = β0 + β1D_Treatment i + β2t + β3(D_Treatment i × t) + β4Signal it + νi + ωit.

20



Fourth, for deadweight loss we use the same same panel data approach as for market price.57

The results presented in Table 16[5] and Table 16[6] show that D_Treatment is not statistically
significant. Yet we do find that, in both treatments, deadweight losses decline across rounds; this
result indicates that allocations become more efficient as the subjects gain bidding experience.

In short: all panel data results are consistent with the stylised facts and with the tests
presented in the Section 5.

Appendix H: Best-response analysis

This section uses the notation of the theoretical background presented in Section 3 and com-
putes a seller’s best-response strategy given arbitrary strategies of rivals. We assume that an
agent knows the strategies of the rivals, and that she forms correct beliefs about events in the
competitive and information environments. The best-response strategy of seller i can be written
as Xi(si, p) = bi−aisi + cip, and the actual strategies of the rivals as Xj(sj, p) = bj−ajsj + cjp,
where j 6= i. The rivals’ average supply function slope is c−i = 1

n−1

∑
i 6=j cj, and the rivals’

average fixed part of the intercept is b−i = 1
n−1

∑
j 6=i bj. Furthermore, for simplicity, we assume

that all rivals set the same response to private information, i.e. aj = a−i for all j 6= i.
Lemma 1 determines agent i ’s best-response strategy given arbitrary strategies of the rivals.

The assumptions required for Lemma 1 to hold are consistent with the features of our experi-
mental design.

Lemma 1: Best-response strategy

Assume that ρ ∈ [0, 1) and that the rivals’ average supply function is characterised
by (a−i, b−i,, c−i). Suppose that rivals set a supply function such that c−i > 0 and
that all rivals set the same response to private information such that aj = a−i > 0

for all j 6= i. The best-response strategy for seller i is then given as:

ai =
R

di + λ+ Ti
, (15)

bi =
(θ̄(R + Ti(n− 1)a−i − 1) + Ti(q − (n− 1)b−i))

di + λ+ Ti
, (16)

57In Table 16[5] we estimate the following equation for deadweight loss: dwlmt = β0 + β1D_Treatmentm +
νm + ωmt, where again the subscript mt denotes market m at round t and εmt is the error term. In Table 16[6],
we augment the regression with additional and estimate the following equation: dwlmt = β0+β1DT reatmentm+
β2t + β3(D_Treatmentm × t) + β4Signalmt + νm + ωmt.
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ci =
1− Ti(n− 1)c−i
di + λ+ Ti

, (17)

where di = 1
(n−1)c−i

, R =
σ2
θ(σ2

θ(1−ρ)(1+(n−1)ρ)+σ2
ε )

(σ2
θ(1−ρ)+σ2

ε )(σ2
θ(1+(n−1)ρ)+σ2

ε )
, and

Ti =
ρσ2
θσ

2
ε

(σ2
θ(1−ρ)+σ2

ε )(σ2
θ(1+(n−1)ρ)+σ2

ε )a−i
.

Proof: Given the strategies of the rivals, seller i maximises her profits and the first order
condition is given as: Xi(si, p) = p−E[θ|si,p]

(di+λ)
. Market clearing implies that q =

∑n
j=1 X(sj, p), and

given the definitions of b−i, c−i and the assumption that aj = a−i for all j 6= i, we can re-write
the market clearing expression as: p(n− 1)c−i = q − (n− 1)b−i + a−i

∑
i 6=j sj − xi. Then define

di = 1
(n−1)c−i

and Ii = q − (n − 1)b−i + a−i
∑

i 6=j sj so that we can write p = Ii − dixi. All the
information contained in p is also contained in hi, where hi = a−i

∑
j 6=i sj and can be shown to

be equal to hi = (n − 1)b−i − q + (n − 1)c−ip + xi. The second order condition is satisfied if
2di + λ > 0, which is always satisfied if c−i > 0.

We can now find an expression for E[θi | si, p] = E[θi | si, hi]. The mean of the vector

 θi

si

hi


is equal to

 θ̄

θ̄

a−i(n− 1)θ̄

 and the variance-covariance matrix is:

 σ2
θ σ2

θ ρσ2
θa−i(n− 1)

σ2
θ σ2

θ + σ2
ε ρσ2

θa−i(n− 1)

ρσ2
θa−i(n− 1) ρσ2

θa−i(n− 1) a2
−i(n− 1)((σ2

ε + σ2
θ) + (n− 2)ρσ2

θ)


Using the expressions for conditional expectations of normally distributed random variables, we
obtain:

E[θi | si, hi] = θ̄ +R(si − θ̄) + Ti(hi − (n− 1)a−iθ̄), (18)

where

R =
σ2
θ(σ

2
θ(1− ρ)(1 + (n− 1)ρ) + σ2

ε )

(σ2
θ(1− ρ) + σ2

ε )(σ
2
θ(1 + (n− 1)ρ) + σ2

ε )
, (19)

and

Ti =
ρσ2

θσ
2
ε

(σ2
θ(1− ρ) + σ2

ε )(σ
2
θ(1 + (n− 1)ρ) + σ2

ε )a−i
. (20)

In order to obtain the best-response strategy for seller i, we first equate the coefficient on
the signal, si and obtain: ai = R−Tiai

(di+λ)
, or equivalently: ai = R

di+λ+Ti
. Second, we equate
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the coefficient on the price and obtain: ci = 1−Ti(n−1)c−i−Tici
(di+λ)

. Grouping terms with ci, we
obtain: ci = 1−Ti(n−1)c−i

(di+λ+Ti)
. Third, we equate the coefficient on the constant and obtain: bi =

θ̄(R+Ti(n−1)a−i−1)+Ti(q−(n−1)b−i)
(di+λ+Ti)

. �
The next Lemma describes the comparative statics of agent i’s best-response function.

Lemma 2: Strategic incentives

Assume that ρ ∈ [0, 1) and that the rivals’ average supply function is characterised
by (a−i, b−i,, c−i). Suppose that rivals bid a supply function such that c−i > 0 and
that all rivals set the same response to private information such that aj = a−i > 0

for all j 6= i.

If ρ = 0 then: ∂ai
∂a−i
|c−i=const= 0, ∂bi

∂b−i
|a−i=const,c−i=const= 0 and ∂ci

∂c−i
|a−i=const> 0.

If ρ > 0 then: ∂ai
∂a−i
|c−i=const> 0, ∂bi

∂b−i
|a−i=const,c−i=const< 0,

∂ci
∂c−i
|a−i=const> 0 for 0 < c−i < c∗−i, where c∗−i is a positive number

and ∂ci
∂c−i
|a−i=const< 0 for c−i > c∗−i.

Proof: We first evaluate:

∂ci
∂c−i

|a−i=const=
−Ti(n− 1)2(λ+ Ti)(c−i)

2 − 2Ti(n− 1)c−i + 1

(n− 1)(c−i)2(di + λ+ Ti)2
. (21)

since ∂di
∂c−i

= −1
(n−1)(c−i)2

. When ρ = 0 then Ti = 0 and ∂ci
∂c−i
|a−i=const> 0. When ρ > 0 then Ti > 0

and the numerator is a polynomial of degree two in c−i, which can be written as:

f(c−i) = −Ti(n− 1)2(λ+ Ti)(c−i)
2 − 2Ti(n− 1)c−i + 1 (22)

The maximum of this polynomial occurs at cmax−i = −1
(n−1)(λ+Ti)

< 0 and the parabola opens
downwards since the coefficient on (c−i)

2 is negative. The polynomial has a positive (c∗−i) and
a negative root. Since we have assumed that c−i > 0, we note that ∂ci

∂c−i
|a−i=const> 0 for

0 < c−i < c∗−i and
∂ci
∂c−i
|a−i=const< 0 for c−i > c∗−i.

Second, we take the derivative of ai with respect to a−i. When ρ = 0 then ∂ai
∂a−i
|
b−i=const,c−i=const

=

0. When ρ > 0 then

∂ai
∂a−i

|c−i=const=
−R

(di + λ+ Ti)2

∂Ti
∂a−i

> 0 (23)

since ∂Ti
∂a−i

< 0.
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Third, we take the derivate of bi with respect to b−i. When ρ = 0 then ∂bi
∂b−i
|a−i=const,c−i=const= 0.

When ρ > 0 then

∂bi
∂b−i

|a−i=const,c−i=const=
−Ti(n− 1)

di + λ+ Ti
< 0 (24)

�

In the experiment, for each two dimensional choice, we observe a subject’s supply function
slope and intercept. Concerning the intercept, we cannot separately observe the two components
of the supply function’s intercept: response to the private signal and fixed part. This issue has
consequences for the computation of the best-response to the rivals’ supply function in the
positively correlated costs treatment, where we need to have an estimate of the rivals’ response
to the private signal, a−i. We make the assumption that all sellers equally and optimally
respond to the private signal, i.e. aj = a−i for all j 6= i. Introducing this assumption into the
best-response strategy, we obtain: aj = a−i =

(1−ρ)σ2
θ

(1−ρ)σ2
θ+σ2

ε
(di + λ)−1.

The figure below illustrates the best-response slope, ci, as a function of the rivals’ average
slope, c−i, in each treatment (with the supply function viewed in (Ask Price, Quantity) space).

Figure 11: Best-response supply function slope as a function of the rivals’ average supply func-
tion slope in each treatment and the corresponding equilibrium predictions in the (Ask Price,
Quantity) space.

Note. The supply function is viewed in the (Ask Price, Quantity) space, which inverts the axes in relation to
most of the figures shown throughout the text. Note that a steep supply function has a low c when represented
in the (Ask Price, Quantity).
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Appendix I: Cluster analysis

The next table presents the results of cluster analysis in the intermediate time periods in groups
of five rounds.

Table 17: Cluster analysis for the intermediate time periods.

Note. The numbers in parenthesis below the average correspond to standard deviations (s.d.). The equilibrium
SF has been calculated using the average signal realisation.
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The following table summarises the average difference between the experimental supply
function and the theoretical best-response supply function in each cluster.

Table 18: Difference between the average experimental and best-response supply function in each
cluster.

Note. The numbers in parenthesis correspond to the standard deviations. The theoretical best-response has
been calculated for each individual supply function choice and then averaged for subjects in a particular cluster
and time period (blocks of 5 rounds). In order to calculate these averages, we have excluded the choices which
had a best-response which was unfeasible for subjects in the experiment (73 observations).

Appendix H: Robustness check. Bayesian updating

One could argue that subjects fail to engage in Bayesian updating and that this is why, in the
positively correlated costs treatment, they fail to understand that the market price is informative
about costs. To explore this possibility further and to assist subjects in the decision-making
process, we conducted an additional session with two groups in the positively correlated costs
treatment. These sessions had the same experimental design features as in the baseline treatment
but with three exceptions as follows. First, in addition to the signal received, each subject
received the expected value of her own costs—and of her rivals’ costs—conditional on the signal
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received (thus subject i received a signal si and was also given E[θi | si] and E[θj | si] for
i 6= j).58 Second, we explicitly asked each subject to think about what her rivals would do
and provided a simulation tool that subjects could use to make a provisional decision, based
on those beliefs, and then visualise the resulting market price; the participant could then revise
her decision. Third, the experiment lasted for 15 (rather than 25) rounds.59 The following table
presents the summary statistics of outcomes and choices of these two groups in the positively
correlated costs treatment.

Table 19: Robustness session: behaviour and outcomes (positively correlated costs treatment).

We find that the average supply function and outcomes in the robustness session are similar
to the averages of the baseline treatments, presented in Tables 3 and 5, that correspond to the
positively correlated costs treatment. In other words: assisting subjects in their decision-making
process seemed not to have a significant effect, in the positively correlated costs treatment, on
either their behaviour or the experimental outcomes.

Our interpretation—namely, subjects in the positively correlated costs treatment fail to
understand that the market price is related to the level of their costs and hence that they
should bid less aggressively—is robust.

58The participant instructions for these additional treatments are available upon request. We explained con-
ditional expectations by telling subjects that, in each round, an expert would give them the expected value of
both their and their rivals’ unit cost.

59We reduced the number of rounds because our three modifications increased the experiment’s duration and
because (as described in Section 5.3) subjects do not adjust much their behaviour in the last few rounds of
bidding.
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