
Interacting Electrons in Graphene: Fermi Velocity Renormalization
and Optical Response

T. Stauber,1 P. Parida,2 M. Trushin,3 M. V. Ulybyshev,2 D. L. Boyda,4,5 and J. Schliemann2
1Departamento de Teoría y Simulación de Materiales, Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain

2Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
3Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
4Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia

5ITEP, B. Cheremushkinskaya 25, Moscow 117218, Russia
(Received 12 April 2017; published 27 June 2017)

We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-
standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting
parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function)
that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement
with the experimental data is obtained assuming static self-screening including local field effects. As an
application of the model, we derive an explicit expression for the optical conductivity and discuss the
renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum
Monte Carlo calculations which compares well to our mean-field approach.
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Introduction.—The role of Coulomb interactions in
graphene is still an open and important question [1], also
in view of the regime of hydrodynamic electron liquids in
which the electron-electron interaction represents the
dominant scattering process [2,3]. The influence becomes
especially crucial around the neutrality point, and it has
been manifested through the measurement of the effective
cyclotron mass [4], by scanning tunneling spectroscopy
[5,6], by direct ARPES of the Dirac cones [7], by quantum
capacitance measurements [8], and also by Landau level
spectroscopy [9], that there is a Fermi velocity renorm-
alization when lowering the electronic density close to
half-filling.
A one-loop renormalization group (RG) and analogous

Hartree-Fock (HF) analysis based on the continuous Dirac
model predicts the following scaling behavior [4,10]:

v�F
vF

¼ 1þ α

4
ln
Λ
k
; ð1Þ

where α ¼ ð1=4πϵ0ϵÞðe2=ℏvFÞ ≈ 2.2=ϵ is the fine-
structure constant of graphene with the bare Fermi velocity
vF, ϵ characterizes the static dielectric environment, and Λ
is the momentum cutoff. Moreover, vF denotes the bare
Fermi velocity and v�F the renormalized Fermi velocity at
wave number k.
Equation (1) has been extended by several authors

[11–15], but a recent multiloop expansion claims that
perturbation theory may be inadequate particularly for
suspended graphene [16]. Nonetheless, within a nonpertur-
bative functional renormalization group analysis, the per-
turbative series can be summed up to again yield Eq. (1) with
almost the same prefactor α=4 as obtained from the HF

approach [17,18]. This suggests that a self-consistent
mean-field theory will contain all the necessary ingredients
to address interaction effects even close to the neutrality
point.
The experimental data for the velocity renormali-

zation can be fitted to Eq. (1) by adjusting the band cutoff
Λ as well as the effective dielectric screening constant ϵ [4].
Nevertheless, some ambiguities inherent to the renormal-
ization group approach can only be resolved by resorting to
a realistic tight-binding Hamiltonian rather than working
with an effective low-energy theory [19]. This especially
holds for the optical conductivity that has been the subject
of persistent discussion regarding the constant C in the
expansion σ�=σ0 ¼ 1þ Cα� þOðα�2Þ, with σ0 ¼ e2=4ℏ
the universal conductivity and α�=α ¼ vF=v�F [14,20–27].
After 10 years of debate, one way to resolve this con-
troversy could be an alternative, but well-defined numerical
approach which still allows for analytical insight. We have
therefore performed detailed HF calculations on the honey-
comb lattice that hopefully will be able to shed some light
on this issue from a different angle. We complement this
with state-of-the-art quantum Monte Carlo calculations
which now precisely determine the optical conductivity
at energies of the order of the hopping parameter.
In contrast to earlier HF calculations preformed for a

graphene quantumdot [28], theDiracmodel [29],multilayer
graphene [30], and graphene on a lattice [31] we now take
into account self-screening and finite electronic densities
which are shown to be crucial to explain the experimental
datawithout the need for a fitting parameter. We further take
advantage of the fact that the HF wave function is indepen-
dent of the interaction strength even for a lattice model and
relate this to a topological invariant which protects the
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chirality of the Dirac fermions around the nodal points.
This reduces the numerical cost and further results in
HF equations that in some limits are identical to the ones
obtained fromRGequations [32] andHubbard-Stratonovich
transformation [33]. The knowledge of the HF wave
function further enables us to derive analytical expressions
for the optical conductivity in the unscreened case with
C ¼ 1=4, close to the value of Ref. [22]. Including self-
screening, we obtain C ≈ 0.05 for suspended samples in
agreement with our Monte Carlo calculations.
The Drude weight renormalization is another motivation

of this work, because studies of the electromagnetic
response of various classes of correlated electron materials
are often based on thef-sum rule [34]. Integrating the optical
conductivity over the spectral range is then related to the
DrudeweightD, which is independent of the interaction in a
Galilean invariant system. However, this is not the case for
Dirac systems anymore, and electron-electron interactions
modify the Drude weight in a nontrivial way that is larger
than the Drude weight of the noninteracting system [19,35].
Sum rule analysis in Dirac systems [36,37] have thus to be
takenwith care. Renormalization of theDrudeweight is also
of interest for plasmonics in Dirac systems as the plasmon
energy scales as

ffiffiffiffi
D

p
[38]. Within our approach, we can

analytically discuss theDrudeweight for electronic densities
close to half-filling.
The model.—We will model interacting Dirac fermions

in graphene within a nearest-neighbor tight-binding model
using HF theory. An important insight of this work is that
the crystallographic structure factor is a topological invari-
ant that does not depend on the ground state as long as it
obeys the threefold symmetry of the underlying honey-
comb lattice; see the Supplemental Material [39], which
also includes Refs. [40–48]. If we do not allow for chiral
[49] or time-reversal [50] symmetry breaking, the HF wave
function of the interacting system is then given by the
noninteracting wave function. This is reminiscent of the
absence of wave function renormalization in the RG
approach [10].
In order to consistently include electron-electron inter-

actions, the Coulomb potential needs to be periodic as
discussed by Jung and MacDonald [31]. This introduces
screening of the Coulomb interaction at small distances.
If one further incorporates screening at large distances
due to tight-binding electrons, the interaction potential is
not translationally invariant anymore and additional non-
diagonal local field effects need to be considered, see
Supplemental Material [39]. To calculate the atomic orbital
form factor fðqÞ ¼ R

dre−iq·rjζðrÞj2, with ζðrÞ being the
one-electron atomic wave function, we take the full angular
dependence of the wave function into account in contrary to
Refs. [31] or [26].
Hartree-Fock theory.—As mentioned above, the relative

phase between the spinor components is a topological
invariant and the single particle HF HamiltonianHk for any
interaction strength can be written as

Hk ¼ −Ek½cosðφkÞσx − sinðφkÞσy�; ð2Þ

where eiφk ¼ ϕk=jϕkj with the crystallographic structure
factor ϕk ¼ P

ie
ik·δi, and the three nearest-neighbor lattice

vectors δi, i ¼ 1, 2, 3. In the Supplemental Material [39],
we present the mean-field theory of a more general
Hamiltonian which also includes a momentum dependent
mass and energy shift for the sake of generality [39].
The above Hamiltonian is characterized by the renor-

malized energy dispersion Ek, which is determined self-
consistently by the following equation:

Ek ¼ E0
k þ 1

2A

X
k0∈1.BZ

Uðk − k0Þeiðφk0−φkÞFk0 ; ð3Þ

where we introduced E0
k ¼ tjϕkj as the noninteracting

dispersion relation, t is the tunnel-matrix element between
the nearest carbon atoms, and A denotes the sample
area. Further, we have Fk ¼ nFð−EkÞ − nFðEkÞ with
the Fermi distribution function nFðϵÞ ¼ ðeβðϵ−μÞ þ 1Þ−1
and the chemical potential μ at a finite temperature
β ¼ 1=ðkBTÞ. The Coulomb potential conserving the lattice
symmetry and including the local field effects reads

UðqÞ ¼
X
G;G0

e−iG
0af�ðqþGÞfðqþG0Þ

× ½δG;G0 − vGðqÞχG;G0 ðqÞ�−1vG0 ðqÞ; ð4Þ
where G, G0 are the reciprocal lattice vectors, fðqÞ is the
form factor, vGðqÞ ¼ ðe2=2ϵ0ϵÞð1=jqþGjÞ is the Fourier-
transformed screenedCoulombpotential, and χG;G0 ðqÞ is the
static polarizability matrix with local field effects; see the
SupplementalMaterial [39]. Neglecting the self-consistency
by replacing Ek → E0

k on the right-hand side of Eq. (3), we
arrive at the same equation that was obtained from a
Hubbard-Stratonovich transformation on the lattice [33].
In Fig. 1, the renormalized band structure of neutral

graphene is shown for t ¼ 3.1 eV (vF ¼ 106 m=s) between
the high symmetry points of the Brillouin zone for various
coupling constant α, i.e., for different dielectric environ-
ments ϵ. By this, we can discuss suspended graphene
(ϵ ¼ 1, α ¼ 2.2), graphene on top of silicon (ϵ ¼ 2.45,
α ¼ 0.9), or hBN-encapsulated graphene (ϵ ¼ 4.9,
α ¼ 0.45). The solid lines refer to self-screened interactions
which are compared to the dispersion due to bare inter-
action for α ¼ 2.2 (dashed line). The inset shows the region
close to the Dirac point where only slight deviations from
the linear behavior can be seen.
Fermi velocity renormalization.—At half-filling μ ¼ 0,

T ¼ 0 and no self-screening, Eq. (3) is an explicit equation.
This yields the analytical expression of Eq. (1) when
assuming UðqÞ ¼ vG¼0ðqÞ and converting the summation
over the Brillouin zone by the Dirac cone approximation.
Solving Eq. (3) numerically, we obtain a fit for the cutoff
parameter with Λ ≈ 1.75 Å−1. This is in contrast to
Ref. [31], where Λ ≈ 20 Å−1 was obtained, but agrees well
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with the usual argument of fixing Λ by conserving the total
number of states in the Brillouin zonewhen compared to the
tight-binding model, yielding Λ ≈ 1.58 Å−1. The precise
value of Λ depends only weakly on the nonuniversal short-
ranged Coulomb interaction; see the Supplemental
Material [39].
For unscreened interaction, the correction to the Fermi

velocity v�F=vF − 1 is proportional to α and the result is
scale independent of the hopping parameter t. At zero
doping, self-screening can be incorporated by α → α=ϵRPA

because ϵRPA ¼ 1þ ðπ=2Þα is momentum independent
within the Dirac-cone approximation [51]. This yields
good agreement with the experimental data of Ref. [4]
for small densities n≲ 20 × 1010 cm−2 without the need
for any fitting parameter; see the magenta curve of Fig. 2.
For densities n≳ 20–60 × 1010 cm−2, there is a decrease

of the Fermi velocity that cannot be accounted for by the
results for neutral graphene. Since it might be due to
screening at finite densities, we incorporated the momen-
tum dependent polarization function as outlined above.
Even though the renormalized Fermi velocity now depends
on α as well as on t in a nontrivial way, in the asymptotic
limit it becomes independent of t for μ ¼ 0.
On the left-hand side of Fig. 2, we show the solution of

Eq. (3) using the bare (black squares) and the self-consistent
(blue stars) polarization function. The bare solution agrees
well with the experimental data for suspended graphene
up to n≲ 40 × 1010 cm−2, but at higher densities the
experimental data drop whereas the theoretical value
remains approximately constant (on a logarithmic scale).
This has to be contrasted with the experimental data
for hBN-encapsulated graphene [8], where good agree-
ment is obtained over the whole density range up to
n ∼ 5 × 1012 cm−2, see Fig. 2 (right). For the particular
choice of the bare hopping amplitude in the two cases,

i.e., t ¼ 3.1 and t ¼ 2.6 eV, respectively, wewere guided by
the original Refs. [4,8], where similar values were used; see
also Ref. [52].
Optical response.—Let us now turn to the interaction

effects on the optical response, first discussed for Dirac
electrons inRef. [53] in the case of electron-phonon coupling.
To do so, we will couple the gauge field via the Peierls
substitution by replacing k→kþðe=ℏÞA in the mean-field
Hamiltonian Hk. This procedure provides the correct vertex
correction such that the optical f-sum rule is satisfied.
Since the HF wave function is known, the optical

conductivity can be deduced from the noninteracting
tight-binding model [54] by replacing the bare dispersion
by the renormalized one. For momenta close to the
Dirac point, the dispersion is isotropic with v�F=vF ¼
1þ CðαÞα lnΛ=k. We then obtain for small radiation
frequencies ω ≪ ℏ the following result [39]:

σ�

σ0
¼ 1þ CðαÞα vF

v�F
; ð5Þ

where σ0 ¼ ðe2=4ℏÞ denotes the universal conductivity.
For unscreened interaction, we obtain explicitely C ¼ 1=4
(see Supplemental Material [39]) as mentioned in the
introduction. This compares well with C ≈ 0.26 obtained
in Refs. [22,24].
For the self-screened interaction, C → CðαÞ becomes

a function with Cðα → 0Þ → 0.25 (unscreened limit) and
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FIG. 2. The renormalized Fermi velocity v�F for suspended
(ϵ ¼ 1 and t ¼ 3.1 eV) and hBN-encapsulated (ϵ ¼ 4.9 and
t ¼ 2.6 eV) graphene. Left-hand side for suspended graphene:
The experimental data of Ref. [4] compared to v�F at the Fermi
surface based on the bare and self-consistent self-screened
Coulomb interaction. Right-hand side for hBN-encapsulated
graphene: The experimental data of Ref. [8] compared to v�F
at the Fermi surface in KΓ (black squares) and KM (blue stars)
directions based on the bare self-screened Coulomb interaction.
In both cases, the result for v�F at the neutrality point as function
of the electronic density n is also shown based on the unscreened
interaction with α ¼ α=ϵRPA.
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FIG. 1. Band structure (undoped) along high symmetry direc-
tions for various fine-structure constants α and self-screening
(solid lines). For suspended graphene (α ¼ 2.2, t ¼ 3.1 eV), also
the unscreened dispersion is shown (dashed line). Inset: Enlarge-
ment of the dispersion around the Dirac cone.

PRL 118, 266801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
30 JUNE 2017

266801-3



Cðα ¼ 2.5Þ ≈ 0.05 for suspended graphenewith t ¼ 2.7 eV.
It is interesting to note that the universal factor of the scaling
law CðαÞ is independent of all considered hopping matrix
elements from t ¼ 2.6 to t ¼ 3.1 eV, and it compares well if
self-screening is incorporated via RPAwithin the Dirac cone
approximation, i.e., CðαÞ ¼ f4½1þ ðπ=2Þα�g−1. This is
shown on the left of Fig. 3; assuming a small, but finite
electronic density would further decrease the constant CðαÞ.
On the right-hand side, we plot the same for the

conductivity of Eq. (5) with v�F=vF ¼ 1. This is compared
to the conductivity at ℏω ¼ 0.7t as obtained from HF and
quantum Monte Carlo calculations; see the Supplemental
Material [39]. We obtain good agreement between the two
approaches for suspended graphene which justifies our
mean-field approach.
Drude weight.—In a Galilean invariant system, the

Drude weight D is independent of the interaction.
However, this is not the case for Dirac systems and
electron-electron interactions modify the Drude weight
in a nontrivial way that is larger than the Drude weight
of the noninteracting system [19,35]. Making use of the fact
that the HF wave function is given by the noninteracting
wave function, one can obtain an analytical expression for
the Drude weight from the optical f-sum rule (see
Supplemental Material [39]):

Dii ¼
�
e
ℏ

�
2 gs
A

X
k∈1.BZ;s¼�

s½∂2
ki
Ek�nFðsEkÞ; ð6Þ

with gs ¼ 2 the spin degeneracy, and i ¼ x, y. This
expression for the Drude weight in the presence of
Coulomb interactions generalizes the known result for
noninteracting systems: D ¼ e2n=m for Schrödinger par-
ticles with the density n and mass m and D ¼ gsðe=hÞ2πμ

for for Dirac particles in graphene [38]. As might have been
expected, within our mean-field theory the interacting
electrons behave as independent quasiparticles with renor-
malized dispersion λEk and we obtain [39]

D�

D
¼ v�F

vF
: ð7Þ

A similar relation was obtained in Ref. [19] in the case of
unscreened interactions. Changes due to trigonal warping
and finite temperature can also be discussed by our
approach.
Summary.—We presented a realistic tight-binding

approach to the electron band structure of graphene
renormalized by the Coulomb interaction. We identified
a topological invariant which leaves the HF wave function
unchanged even in the presence of the Coulomb interaction
and found analytical expressions for the optical conduc-
tivity as well as for the Drude weight. By this, we were able
to link our findings to the measured optical conductivity
which shows only little renormalization due to self-
screened interactions. Precise Monte Carlo calculations
yield good agreement for suspended samples and support
our mean-field approach. We also show that the Fermi
velocity and Drude weight renormalization are the same
according to the expectations of a mean-field theory.
Our results compare well with experiments for

suspended as well as for hBN-encapsulated graphene
without invoking fitting parameters. But in the case of
suspended graphene, we were not able to account for the
velocity renormalization in the case of larger densities
n≳ 40 × 1010 cm−2. This effect cannot be explained by
our tight-binding model and we expect the influence of
ripples and corrugations, partially due to the applied gate,
to be responsible for this effective screening of the long-
ranged Coulomb interaction. This would also imply the
absence of interaction renormalization of (high-density)
plasmons in suspended graphene.
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