Influence of AVT and cortisol treatment on stress and thyroid pathways in the gilthead sea bream (Sparus aurata)

J.A. Martos-Sitcha1,2, I. Jerez2, G. Martínez-Rodríguez1, J.M. Mancera2

1Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain. E-mail: juanantonio.sitcha@icman.csic.es

2Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Campus de Excelencia Internacional del Mar (CEI-MAR), 11519 Puerto Real, Cádiz, Spain.

1. Introduction
Cortisol, the main corticosteroid in teleosts, is the final step on the hypothalamic-pituitary-interrenal axis, and its functions are related to intermediary metabolism, osmotic and ionic regulation, growth, stress and immunity. In turn, the vasotocinergic, homologous to the mammalian vasopressinergic pathways, and thyroid systems have also an important role in several physiological processes in which cortisol plays a role (e.g. osmoregulation, metabolism or stress). The aim of this study was to evaluate the possible interaction between different endocrine axes (vasotocinergic, stress and thyroid pathways) in the gilthead sea bream (Sparus aurata), through assessing the effects of exogenous arginine vasotocin (AVT) and cortisol administration.

2. Material and Methods
2.1. Experimental protocol and sampling

2.2. Gene expression

3. Results and Discussion
3.1. AVT administration

3.2. Cortisol injection

4. Conclusions
In summary, we have demonstrated, by using an in vivo approach in the gilthead sea bream as a biological model, that both stress and thyroid systems are centrally and independently regulated by two different hormones produced at hypothalamic (AVT) and interrenal (cortisol) levels.

5. Acknowledgments
Experiments have been carried out at the Campus de Excelencia Internacional del Mar (CEI-MAR) facilities from the University of Cádiz and ICMAN-CSIC. This study was funded by projects AGL2013-48835-C2-1-R from Ministerio de Ciencia e Innovación (Spain) to JMM.