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Abstract 11 

Species distribution models (SDMs) are basic tools in ecology, biogeography and 12 

biodiversity. The usefulness of SDMs has expanded beyond the realm of ecological 13 

sciences, and their application in other research areas is currently frequent, e.g., spatial 14 

epidemiology. In any research area, the principal interest in these models resides in their 15 

capacity to predict species response in new scenarios, i.e. the models’ transferability. 16 

Although the transferability of SDMs has been the subject of interest for many years, 17 

only in the 2000s did this topic gain particular attention. This article reviews the concept 18 

of the transferability of SDMs to new spatial scenarios, temporal periods and/or spatial 19 

resolutions, along with the potential constraints of the model’s transferability, and more 20 

specifically: (i) the type of predictors and multicollinearity, (ii) the model complexity, 21 

and (iii) the species’ intrinsic traits. Finally, we describe a practicable analytical 22 

protocol to be assessed before transferring a model to a new scenario. This protocol is 23 

based on three fundamental pillars: the environmental equilibrium of the species with 24 

the environment, the environmental similarity between the new scenario and the areas 25 

used to model parametrisation, and the correlation structure among predictors.  26 

Key words: species distribution model, spatially explicit model, spatial transferability, 27 

temporal transferability, downscaling, multicollinearity 28 
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Introduction 30 

The study of species distributions developed significantly during the last decades of the 31 

Twentieth Century. The first theoretical models and predictive approaches appeared in 32 

the late 1970s and during the 1980s (Kessel 1979; Busby 1986; Nix 1986; Austin 1987; 33 

see also Booth et al. 2014). The increasing use and development of geographic 34 

information systems and the growing ability and capacity to handle large databases 35 

provided fundamental tools with which to carry out large-scale studies on species 36 

ranges (e.g. Guisan and Zimmermann 2000; see also Elith and Leathwick 2009). 37 

Nowadays, species distribution models (SDMs) have become basic tools in ecology, 38 

biogeography, biodiversity and conservation (e.g. Franklin 2010).  39 

An SDM is basically a correlative or mechanistic model that relates the localities in 40 

which one species is present – or its abundance – with the ecological and geographical 41 

characteristics of the territory (Guisan and Zimmermann 2000). These kinds of spatially 42 

explicit models make it possible to determine the main environmental gradients to 43 

which species are able to respond, and to predict the potential of a territory for the 44 

species according to the local environmental characteristics. Scientific literature has 45 

denominated these models in accordance with the interpretation that is made of their 46 

outcomes, and the terms ‘niche models’, ‘predictive models of habitat’ or ‘suitability 47 

models’ have, for example, been used. Researchers are currently attempting to reach a 48 

consensus as to what name to apply to these approaches, and the term ‘species 49 

distribution models’ is now becoming generalised as a more theoretically neutral term 50 

(Mateo et al. 2011).  51 

The applications of SDMs in ecology are varied and numerous: from basic studies 52 

whose aim is to determine the ecogeographical determinants of species ranges, to 53 

multispecies interdisciplinary studies focused on relevant ecological questions, both for 54 

basic and applied ecology (e.g. Guisan et al. 2006; Acevedo et al. 2010; Franklin 2013). 55 

However, the principal driving force behind SDMs was their use to predict species 56 

response in unsampled spatio-temporal scenarios. Models can be used to forecast the 57 

distribution of a species in different scenarios,  such as past climatic scenarios in order 58 

to reconstruct the evolutionary history of the species (e.g. Nogues-Bravo 2009), future 59 

scenarios of climate and land-use changes to assess species sensitivity to environmental 60 

changes (e.g. Pearson and Dawson 2003; Acevedo et al. 2011), for an invasive species 61 
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in a new territory to assess potential invasion patterns (e.g. Peterson and Vieglais 2001; 62 

Peterson 2003), or similarly, for a species in unsampled territories (e.g. Randin et al. 63 

2006; Barbosa et al. 2009). This concept of the cross applicability of the models in both 64 

space and time has been defined as generality (Fielding and Haworth 1995) or 65 

transferability (e.g. Thomas and Bovee 1993; Glozier et al. 1997; hereafter 66 

transferability) and it is now widely used to expand the potential of SDMs. But the 67 

transference of a SDM is not a straightforward task (see below) and requires to handle 68 

both a conceptual background and analytical procedures in order to avoid the inclusion 69 

of bias in the results. However, most of the SDMs transferences in studies not directly 70 

focused in testing transferability are uncritically performed (but see e.g. Acevedo et al. 71 

2014a; Ray et al. 2016). In this context, we provide a practical overview of SDMs 72 

transferability aimed to i) define the concept of the transferability of SDMs to new 73 

spatial scenarios, temporal periods and/or spatial resolutions, and identify the potential 74 

constraints of the model’s transferability, and ii) describe a practicable analytical 75 

protocol to be assessed before transferring a model to a new scenario.  76 

 77 

The transferability of SDMs 78 

Modellers employ SDMs when seeking the environmental conditions of the species and 79 

when interested in registering general responses to environmental gradients and not only 80 

to local conditions. The fit among predictions and observed data – when available – is 81 

an empirical validation of the ecological significance of the model; a general and 82 

validated model can therefore be transferred to other scenarios so as to predict the 83 

pattern of the species in a scenario in which very little sampling has taken place. The 84 

validation of the model is a key step for getting success in its transference. In the last 85 

years further advances were produced on validation step in SDM and nowadays there 86 

are both conceptual framework and analytical protocols to consistently perform it (e.g. 87 

Roberts and Hamann 2012; Muscarella et al. 2014; Radosavljevic and Anderson 2014). 88 

Finally, the transference of an SDM to outside the context used for model calibration 89 

helps drive return on investment for the development of the model, which often requires 90 

intensive fieldwork and/or laboratory analyses. At times of low investment in science in 91 

general and in the management of natural resources in particular, the use of published 92 
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models to predict species patterns in areas for which little information is of the species 93 

available is an extremely interesting line of research (Acevedo et al. 2014b). 94 

Models can be transferred to different spatial scenarios, temporal periods and/or spatial 95 

resolution. Spatial transferability is a means to assess the degree to which a 96 

parameterised model can be generalised to other territories (Randin et al. 2006; Barbosa 97 

et al. 2009). It is possible to differentiate two types of spatial transferability as regards 98 

whether predictions are made within (interpolation) or outside (extrapolation) the 99 

geographical domain of the model (Elith and Leathwick 2009). Spatial transferability 100 

has been used widely to improve sampling design (e.g. Rebelo and Jones 2010), to 101 

determine the environmental potential for invasive/introduced species (e.g. Jimenez-102 

Valverde et al. 2011; Torres et al. 2016), or to assess the niche similarities between 103 

related taxa (e.g. Acevedo et al. 2014a), among others. For instance, SDM extrapolation 104 

was recently used to evaluate niche relationships between two allopatric species, Lepus 105 

castroviejoi and Lepus corsicanus, which inhabit the northern Iberian Peninsula and 106 

mainland Italy and Sicily, respectively (Acevedo et al. 2014a), in order to reinforce the 107 

molecular evidence on their status as sister species (Alves et al. 2008). In the study in 108 

question, individual models were transferred to the territory of the sister species in order 109 

to evidence their ecological similarities. 110 

The transferability of the model to other periods of time is known as temporal 111 

transferability. It permits the evaluation of the effects that environmental changes have 112 

had and will have on species ranges (e.g. Dobrowski et al. 2011; Tuanmu et al. 2011) – 113 

i.e. to determine the species’ sensitivity to environmental changes – in order to 114 

anticipate the effects of global change on species distributions (e.g. Brook et al. 2008), 115 

and to design conservation plans in the context of environmental change (Araújo et al. 116 

2011; Thuiller et al. 2011). The transference of SDMs to future climate change 117 

scenarios was the area that stimulated further progress in both conceptual and analytical 118 

strategies of SDMs. It is not, however, possible to adequately assess predictions for 119 

future scenarios owing to the obvious lack of data (but see Araújo et al. 2005a). 120 

Therefore, predictions should be considered with relative caution since several sources 121 

of uncertainty emerge at each step (e.g. Real et al. 2010) and propagate throughout the 122 

modelling procedure (e.g. Rocchini et al. 2011). A huge amount of studies are based on 123 

the temporal transferability of SDM. For instance, Maiorano et al. (2011) assessed the 124 
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future of terrestrial mammals in the Mediterranean basin in climate change scenarios. 125 

These authors concluded that a substantial number of species, and mainly endemic 126 

species, will have been severely affected by the ongoing climate change by 2100.  127 

The integration of macroecology and phylogeny is currently a cutting-edge research 128 

area in biogeography. In this respect, SDMs are hindcasted to past environmental 129 

scenarios as a means to provide ecological scenarios in which to test evolutionary 130 

hypotheses (e.g. Wielstra and Arntzen 2012). However, SDMs can perform poorly 131 

when projected to distant time periods and climatic dissimilar scenarios (Maguire et al. 132 

2016). Thus, predictions for past scenarios should be validated by using fossil records 133 

and/or phylogenies (e.g. Collevatti et al. 2013; Diniz-Filho et al. 2013; Maguire et al. 134 

2015). For instance, the application of SDMs in evolutionary studies allows researchers 135 

to propose and validate hypotheses regarding the existence and location of glacial 136 

refugia (e.g. Carnaval and Moritz 2008; Acevedo et al. 2012), to explore ecological 137 

relationships within and between phylogenetically related taxa (Peterson et al. 1999; 138 

Wiens and Graham 2005), or to reconstruct the conditions that allowed, among other 139 

things, historical hybridisation and genetic introgression to occur (Acevedo et al. 2015).  140 

The resolution at which distribution data are available does not always coincide with the 141 

interests of conservation and management. The changes in the spatial resolution of a 142 

model’s predictions – i.e. the projection of models built at one resolution to a larger 143 

(upscaling) or a finer (downscaling) spatial resolution – are potentially highly beneficial 144 

for ecology and conservation (Araújo et al. 2005b). The large-scale data available are 145 

usually too coarse to enable spatial resolutions to be applied in local conservation 146 

planning, while the collection of data at a finer resolution requires high sampling 147 

efforts, which are only feasible for a few species and over small areas. For instance, 148 

Barbosa et al. (2010) successfully downscaled SDMs for a restricted endemic 149 

insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread 150 

carnivore, the Eurasian otter (Lutra lutra), in the Iberian Peninsula. This and other 151 

studies suggest the potential usefulness of downscaled projections of environmental 152 

quality as a proxy for expensive and time-consuming field studies when field studies are 153 

not feasible.  154 

The opposite process, upscaling, is not as frequent as downscaling in studies on species 155 

distribution (but see Harvey 2000). Data on species distribution at fine spatial resolution 156 
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is able to contain more reliable and precise information on species ecology than data 157 

obtained for coarser resolutions, but the former are patchy within the species range. 158 

However, factors that are associated with the occurrence of individuals on a local scale 159 

may not be associated with factors explaining a large-scale species distribution range 160 

(Jimenez-Valverde et al. 2008), and SDMs derived from fine resolution data are, 161 

therefore, sometimes not able to provide a good explanation of data represented at 162 

coarser resolutions. This indicates that SDMs at both fine and coarse resolution do not 163 

explain the same species distribution pattern, as was discovered by Marcer et al. (2012) 164 

when studying vascular plants in Spain; the models at a fine resolution probably explain 165 

the habitat selection within the area favourable for species distribution, but they fail to 166 

discriminate between the areas that are favourable and unfavourable for the species. 167 

Despite the relevance of this topic in order to both fit the spatial resolution of SDM 168 

adequate to data and goals, and determine the limits for changing spatial resolution, the 169 

studies are scarce and, therefore, further research would be valuable in this area. 170 

 171 

Potential constraints as regards the model’s transferability 172 

Researchers have, for many years, found the transferability of statistical models to be a 173 

subject of interest, but it was not until the 2000s that this topic gained particular 174 

attention (Randin et al. 2006; Vanreusel et al. 2007; Barbosa et al. 2009). Many studies 175 

have indicated factors that may affect and hinder the model’s transferability, such as the 176 

type of predictor variables and their multicollinearity, the model complexity 177 

(dimensionality and algorithm), and the species’ intrinsic traits (see Figure 1).  178 

Type of predictors and multicollinearity 179 

The choice of predictor variables for modelling affects the model’s predictive 180 

performance (e.g. Synes & Osborne 2011) and, therefore, the SDM’s transferability. 181 

Most of the abiotic predictors used for modelling explain animal distribution indirectly, 182 

through their correlation with ecological functional resources (Austin 2002; Guisan and 183 

Thuiller 2005; Austin et al. 2006). Extrapolations will be particularly error-prone if only 184 

indirect predictors are used, because the correlations between them and the functional 185 

resources vary in both space and time (Austin 2002). When these correlations depend 186 
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on area-specific conditions, models could be overfitted to the local conditions, which 187 

may compromise the model’s transferability (Luoto et al. 2002) – in SDMs overfitting 188 

occurs when a model closely fits the calibration data and, thus, fails when predicting on 189 

independent data. The use of more ecologically relevant predictors is now increasingly 190 

possible as remotely sensed data are more readily available (e.g. Pettorelli et al. 2016). 191 

Remote sensing therefore provides data that can play a role in improving the 192 

performance of SDMs and, therefore, their transferability (e.g. He et al. 2015), 193 

especially spatial transferability and changes in spatial resolution, since remote sensing 194 

data are not available for different past, e.g. in an evolutionary context, or future 195 

temporal scenarios. Despite these advances, many studies appear to use only data that 196 

are readily available, while failing to explain the relevance of the predictors selected, 197 

and probably missing important ecological drivers. 198 

When an SDM is extrapolated, the proper quantification of the effect of each predictor 199 

on current geographic ranges is a must for an accurate estimation of the potential for the 200 

species (Braunisch et al. 2013). But the effect of a factor can only be adequately 201 

estimated in the context of the other influential factors (e.g. Márquez et al. 2011). This 202 

signifies that the real effect of a factor on species distributions could be masked (under 203 

or overrated) by confounding correlated factors, becoming evident only when the effects 204 

of the other factors are subtracted from the weights of the predictors and subsequently 205 

from the predictions of the models (e.g. Lavergne et al. 2005; Real et al. 2013; Record 206 

et al. 2013). One of the main challenges in this respect is to filter out (control for) the 207 

variation caused by spatial structures (Griffith and Peres-Neto 2006; Dormann et al. 208 

2007; Hawkins et al. 2007), since the spatial structure in species distribution and 209 

environmental processes can increases type I errors and can potentially affect model 210 

estimations (e.g. Legendre et al. 2002). Briefly, the solution is again to produce 211 

combined models in which both environmental and spatial gradients should be 212 

considered (for details, see Peres-Neto and Legendre 2010). For instance, Real et al. 213 

(2013) estimated the pure climatic effect (i.e. not affected by covariation with non-214 

climatic factors) and the apparent climatic effect (i.e. including shared effects between 215 

climate and non-climatic factors) on species distribution, and suggested that both the 216 

pure and apparent fractions could be interpreted as the lower and upper bounds of a 217 

range of possible scenarios for the future climatic potential for the species. 218 
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Model complexity 219 

Model complexity can be characterized with the number of predictors (dimensionality), 220 

the algorithm and the parameters within the same algorithm (e.g. Merow et al. 2014; 221 

Duque-Lazo et al. 2016). A simpler model typically has relatively fewer parameters and 222 

fewer relationships among predictors compared to a more complex model. Simple 223 

models, with insufficient flexibility to describe occurrence-environment relationships, 224 

can be misunderstanding the factors driving species distributions. Complex models, 225 

with excessive flexibility and number of parameters, can be inadvertently ascribing 226 

pattern to noise. Therefore, in the framework of the transferability, complex models 227 

should be avoided. 228 

The dimensionality – i.e. number of predictors – of the models determines the 229 

transferability of SDMs (e.g. Peterson 2011) and must be declared and weighed 230 

carefully from the beginning of the analysis (see also Warren et al. 2014). 231 

Transferability decreases as the number of predictors in the model increases; models 232 

developed through too many dimensions may run the risk of overfitting to local 233 

conditions that restrict the predictive power of the model.  234 

The complexity associated to the algorithm is, in this case, characterised as the shape of 235 

the inferred occurrence–environment relationships that are closely related to the number 236 

of parameters. Briefly, environmental envelopes (e.g. BIOCLIM or DOMAIN) and 237 

distance-based approaches in multivariate environmental spaces (e.g. ENFA, 238 

Malahanobis) are considered to be the simplest SDMs. Their response curves are simple 239 

functions with a reduced number of parameters (e.g. linear, hinge or step; Hirzel et al. 240 

2002; Elith et al. 2005). Generalised linear models (GLM), which are typically fitted 241 

with linear or polynomial features up to second order terms (rarely third or fourth order) 242 

for SDMs, are considered to be simple even when they admit more complexity. 243 

However, this relative simplicity applies to the relationship between probability, which 244 

is the output of the model, and the logit function, whereas the relationship between 245 

probability and individual variables tends to be more complex owing to the collinearity 246 

between predictors (Acevedo and Real 2012). GARP and MAXENT are considered to 247 

be complex algorithms since they allow high flexibility (Stockwell and Peters 1999; 248 

Phillips et al. 2006). Generalised additive models (GAM) are also complex techniques 249 

because they allow non-parametric smooth functions of variable flexibility (Hastie and 250 
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Tibshirani 1990). Decision trees (Breimann et al. 1984) can also become quite complex 251 

because they may use a large number of step functions (each requiring a parameter) and 252 

can implicitly include high order interaction terms with which to depict response curves 253 

of arbitrary complexity. In addition to the analytical protocols involving the use of a 254 

single modelling technique, "ensemble models" in which predictions from several 255 

techniques are considered, such as BIOMOD (Thuiller et al. 2009), are also frequently 256 

used. Different modelling techniques can achieve variable performance in the data-257 

training set, even when they are calibrated with the same data (e.g. Segurado and Araújo 258 

2004; Benito de Pando and Peñas de Giles 2007; Mateo et al. 2011). The capability of 259 

the different techniques to be transferred is consequently also widely variable (e.g. 260 

Peterson et al. 2007). In addition, only models that produce commensurate outcomes, 261 

such as probability or favourability (see Acevedo & Real 2012), can be adequately 262 

combined in ensemble models, whereas models yielding suitability values that are 263 

idiosyncratic for each modelling technique lack the commensurability required for 264 

combination (Romero et al. 2016). However, the ensemble models does not necessarily 265 

control or fix biases and/or improve transferability (see e.g. Rodríguez-Rey et al. 2013). 266 

Several studies were performed to assess the relationship between model complexity 267 

and predictive performance, both on the training and transference area. For instance, 268 

Tsoar et al. (2007) compared the performance of six algorithms and concluded that 269 

flexible algorithms attain a higher predictive performance in the training data set than 270 

do non-flexible ones. This result resembles the insight provided by Elith et al. (2006), 271 

who also concluded that those which are able to fit complex responses are preferable to 272 

simple algorithms. However, complex algorithms are not preferred when the models 273 

should be transferred to new scenarios, because flexible algorithms tend to overfit to 274 

local conditions, thus losing generality (Jimenez-Valverde et al. 2008). A good 275 

transferability has been suggested for algorithms such as GLM and GAM (e.g. Austin et 276 

al. 2006; Meynard and Quinn 2007; Wenger and Olden 2012). Randin et al. (2006) 277 

reported that GLM was more robust than GAM, suggesting that overfitting can reduce 278 

the transferability of GAM models. With regard to GARP and MAXENT, two 279 

techniques based on data of presence, Peterson et al. (2007) compared these techniques 280 

and found the latter to be overfitted. However, if the sample size is small, it can 281 

extrapolate better than GARP (Papes and Gaubert 2007). Other techniques have proved 282 

to have worse predictive power and accuracy, such as GARP, Random Forest and 283 
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MARS (e.g. Prasad et al. 2006). Determining the most appropriate amount of 284 

complexity to be included in SDMs is therefore crucial for biological applications 285 

(Merrow et al. 2014). Researchers must constrain model complexity on the basis of data 286 

attributes and study objectives, and an understanding of how they interact with the 287 

underlying biological processes.  288 

 289 

Species intrinsic traits 290 

Lack of transferability can be also caused by species specific traits not included in the 291 

model, for instance dispersal capacity, changes in the role of biotic interactions and/or 292 

changes in the realized niche (e.g. Urban et al. 2013; Williams et al. 2013). Despite this, 293 

the relationship between specific traits and model transferability has rarely been studied. 294 

Vanreusel et al. (2007) related model spatial transferability to the range of habitat use of 295 

two butterfly species. These authors observed that the model for the species with the 296 

smallest range of space use (Callophrys rubi) was more transferable than the model for 297 

a more mobile species (Hipparchia semele). Kharouba et al. (2009), also with 298 

butterflies, found that transferability declined for widely distributed species over time 299 

and showed inconclusive results for dispersal capability. After working with 133 300 

vascular plant species, Dobrowski et al. (2011) found that models for non-endemic 301 

species with a greater dispersal capacity, intermediate levels of prevalence, and a low 302 

capacity to adapt to fire had a higher transferability over time than did endemic species 303 

with a limited dispersal capacity that rely on fire for reproduction (disturbance 304 

response). Heikkinen et al. (2012) found differences in models’ spatial transferability 305 

between taxonomic groups; the best transferability was specifically found for birds, 306 

followed closely by butterflies, whereas plant species were found to have a weak 307 

transferability capability. There is thus a need for further research that will relate 308 

species’ taxonomical and functional traits to model’s transferability, taking into account 309 

potential discrepancies in their effects as regards the type of transferability: spatial vs. 310 

temporal. 311 

 312 

Checking the model’s transferability: analytical protocol 313 
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Before transferring an SDM beyond the data-training set, three fundamental 314 

requirements should be checked (see Figure 1): 315 

i) Transferability requires the target species to have environmental equilibrium 316 

throughout its entire distribution area (Nogues-Bravo 2009). Species are said to be at 317 

equilibrium with the environment if they occur in all climatically suitable areas whilst 318 

being absent from all unsuitable ones (Araújo and Pearson 2005). However, even when 319 

the results obtained from a model suggest a climatic equilibrium, the model’s 320 

transferability does not necessarily provide realistic results. This was the case of a study 321 

on Crocuta crocuta in which predictions for the last interglacial period were incoherent 322 

because the current geographical range does not allow estimations of all of the 323 

environmental requirements of the species to be made (Varela et al. 2009). 324 

Paradoxically, the opposite – e.g., a model in disequilibrium that produce good 325 

predictions – can also occur when working, for instance, with an introduced invasive 326 

species (Muñoz and Real 2006; but see Jimenez-Valverde et al. 2011). A proxy metric 327 

of equilibrium between species distribution and the environment is the realised/potential 328 

range size ratio (Svenning and Skov 2004). 329 

ii) The environmental similarity of the new scenario with regard to the training area 330 

should be evaluated. As a general rule, SDMs may only be transferred to scenarios 331 

which are similar in environmental terms to that in which the model was calibrated. 332 

Similarity can be assessed using Mahalonobis distances and/or multivariate 333 

environmental similarity surfaces (e.g. Elith et al. 2010). This kind of analyses also 334 

allow to identify the predictor that is driving to a given locality to be environmentally 335 

dissimilar (the most dissimilar predictor can thus be recognized). To remove of the 336 

modelling procedure these dissimilar predictors is a way to improve the transferability 337 

of the model. 338 

iii) High levels of multicollinearity between the predictors included in a model can bias 339 

predictions when the model is transferred to a situation in which the correlation matrix 340 

between predictors is different. Collinearity can be quantified using the variance 341 

inflation factor (VIF), which should be calculated for each of the predictors in the model 342 

(see Zuur et al. 2010). There are more ways in which to detect collinearity, such as by 343 

examining the matrix of correlation coefficients between predictors in order to avoid  344 

including those that are highly correlated (r>|0.8|) in the model. However, 345 
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multicollinearity is a real phenomenon in nature, and it cannot therefore be avoided in 346 

all cases, although it should be managed. When possible, the best ways in which to 347 

manage multicollinearity are by increasing the sample size by including external 348 

information and by removing highly correlated variables (e.g. Doran 1989). The 349 

maintenance of the correlation structure among predictors between training and 350 

transference areas should be assessed. As the coefficient for a predictor in a model 351 

depends on the coefficients for the other predictors (Fox 1997), changes in the 352 

correlation structure may include severe bias in models’ predictions in the transference 353 

area. A Mantel test (Mantel 1967), or another similar means to determine the 354 

association between matrices (see Guillot and Rousset 2013), should therefore be 355 

carried out in order to avoid biased results.  356 

In summary, various methodological requirements should be taken into account before 357 

transferring a model to another spatial/temporal scenario. This means that if the 358 

objective is to transfer a model, special attention should be paid to the species-359 

environment equilibrium and to the selection of predictors. What is more, a calibrated 360 

model cannot be transferred just anywhere, but only to those scenarios that are 361 

environmentally similar to the scenario in which the model was calibrated. Despite the 362 

importance of transferring distribution models, studies designed to explore this feature 363 

and to assess the methodological and ecological factors which determine it are still 364 

scarce (e.g. Dobrowski et al. 2011). This is a line of interesting and timely research, 365 

given the high number of models that have been published in recent years (Lobo et al. 366 

2010). 367 
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Figure 1. Overview of the model building process when the dataset is split into two 738 

parts, one with which to fit and another with which to evaluate the model. The 739 

transferability of the model to a new scenario is also schematised. In each step, the main 740 

factors that can compromise the model’s transferability are highlighted in red, along 741 

with the three (1-3) fundamental requirements that should be checked before the 742 

transference of the model to the new scenario (see text for details). 743 
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schematised. In each step, the main factors that can compromise the model’s transferability are highlighted 
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