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Abstract

The exploitation of high volume of geolocalized data from social sport tracking applications

of outdoor activities can be useful for natural resource planning and to understand the

human mobility patterns during leisure activities. This geolocalized data represents the

selection of hike activities according to subjective and objective factors such as personal

goals, personal abilities, trail conditions or weather conditions. In our approach, human

mobility patterns are analysed from trajectories which are generated by hikers. We propose

the generation of the trail network identifying special points in the overlap of trajectories.

Trail crossings and trailheads define our network and shape topological features. We ana-

lyse the trail network of Balearic Islands, as a case of study, using complex weighted net-

work theory. The analysis is divided into the four seasons of the year to observe the impact

of weather conditions on the network topology. The number of visited places does not

decrease despite the large difference in the number of samples of the two seasons with

larger and lower activity. It is in summer season where it is produced the most significant

variation in the frequency and localization of activities from inland regions to coastal areas.

Finally, we compare our model with other related studies where the network possesses a

different purpose. One finding of our approach is the detection of regions with relevant

importance where landscape interventions can be applied in function of the communities.

Introduction

The increment of outdoor activities in recent years has had an economical and an environ-

mental impact for a wide number of parties: landscape owners, environmental organizations,

public administrations, and tourism entities among others. The extended use of GPS devices

in outdoor activities together with the proliferation of social sport trackers sites enables people

to share and comment their tracks and training measurements. This type of data sources

provides large volume of information that can be analysed. For example, the occupation of

outdoor areas or the characterization of human mobility patterns can be inferred from the rec-

ords of social sport trackers [1, 2] In addiction, understanding the factors that influence the

practice of a certain sport has a wide range of applications: for example in preserving and plan-

ing natural areas [3–6], determining the most frequented attractions [3, 7–10], predicting
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agglomerations [11, 12], discovering travel patterns [8, 13–15], or measuring the overlapping

of activities [4].

The problem of modelling human behaviour in urban and natural environments has been

widely studied. In urban environments, human mobility data have been extracted from inter-

net and mobile phone connections [1, 16–18], geolocalized tweets [19–21], and GPS-tagged

photos [13, 22, 23] among other sources. In natural environments, generally natural parks, vis-

itors or hikers mobility data come from GPS devices instead of mobile phone connections due

to insufficient precision or the lack of coverage. To obtain trajectories from visitors, in several

cases, authors provide them preconfigured GPS devices to facilitate the applicability of statical

techniques within small confined areas [3, 4, 24]. In the analysis of the movement, several tech-

niques are used such as point density [5, 25, 26], counting the frequency of visits on a deter-

mined area [6, 27], identifying suspension patterns (areas with a reduction in the speed), and

flow distribution among areas [3]. In these studies, the goal is to obtain a rank of areas or trail

segments according to some characteristic (e.g. trail degradation, frequency, etc.).

We provide an approach for the use of geolocalized activity to build a network that allows

the identification of places of relevance and the relationship among them. Other studies

addresses the problem of finding points of interest by considering small specific and confined

regions without exploring interferences with other environments and external factors. The

environment choices can dictate the flow of the movement and the pressure on it forming a

network of paths. In hiking activities, the structure of paths can be associated to roads through

which hikers perform their activities reflecting the conditions of them: access, services, and

other factors such as personal goals or weather conditions. The transformation of the activity

into a network allows to the analysis and identification of places of relevance where interven-

tions can be conducted. We perform a complex network analysis of 15376 hiking routes per-

formed during 2009–2016 in the Balearic Islands. Our dataset, coming from a sport tracker

application, is highlighted by the variability of cases, by the topography of each island, and by

the fact that the uploaded data are not conditioned by the study. We conduct various topologi-

cal analysis taking into account external factors such as the seasonal weather, the difficulty of

the route, or trailhead facilities.

Complex network theory enables the extraction of non singular topological features [28]. In

the literature, there are several cases of applicability to transport system [29–35]. For example,

in [34] the transport network of Singapore subway has been analysed where the nodes are

transport stops and stations, the edges represent the transport lines connection between the

nodes, and the weights of the edges are the number of passengers between the nodes. Another

case of study is the human impact in natural environments [36], where different types of eco-

logical characteristics to describe the interaction between human activities and the ecosystem

are combined. In our approach, the nodes of the network are head and cross trails, and the

edges represent the hiking activity that join these elements. Thus, the modelling of the network

provides the location of points of relevance and the relationship between them, as well as the

flow of the movement and indicators about the pressure of certain regions.

From our approach, we derived the following research issues:

• How to design and develop a method to convert GPS traces into a complex network repre-

sentation without loss of geopositional data?

• Are the complex network outcomings useful to provide more contextual data in the location

of points of relevance?
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Therefore, the contribution of this paper is two-fold: on the one hand, to generate an informa-

tion retrieval method to obtain points of relevance and the relationship between them. On the

other hand, to apply complex networks theory to a real-world geospatial scenario.

Trail network model

A network is made up of vertices or nodes which are connected by edges. In the modelling

process, we need to provide semantics in each graph element since the topological features

must be associated with real indicators of the modelled environment. In our model, nodes are

trail crossing locations, forks or intersections, and trailhead places. Trail crossings locations

are critical points since they can involve accessibility to different areas, change of direction,

encounter with other users, or a link to other transportation system. Furthermore, the identifi-

cation of these points are crucial because they are places to perform interventions, influencing,

for example, the distribution of visitors [37]. Trailhead places require some effort in terms of

transport, time or supplementary services to reach them. The edges represent in our model the

hiking activity connecting the nodes.

Definition: trajectory

A trajectory (τ) is a finite, time-ordered sequence of coordinates hc1, c2, . . ., cni.
Definition: trajectory vector

A trajectory vector (t�) is the sequence of vectors between consecutive coordinates:

�t ¼ hv0; v1; . . . ; vn� 1i, where vi ¼ ciciþ1.

Definition: intersection

An intersection operation (?) between two trajectories gives a set of ordered coordinates:

t1?t2 ¼ t1?t2¼ C and 8ci 2 C: ci 2 {τ1 [ τ2}). C1: The union of consecutive points defines a

common segment. C2: A loop is an intersection operation in the same trajectory: τ1?τ1

We combine all the trajectories to generate the network. From the perspective of a trajec-

tory, we can extract start, end, and loop points. With the combination of several trajectories,

we can detect intersections among them. This process is represented in Fig 1 that contains

three GPS trajectories (hiker’s records where the sequence of coordinates goes from left to

right) with positions biased under unknown recording conditions and the generated graph

(G). The three trajectories should be overlapped but this will difficult the interpretation pro-

cess. Trajectory 1 (τ1) is a circular route, and possesses a loop, which represents a intersection

of two segments, a start and end points. Both points are considered as identical. The consider-

ations on whether two points are identical in space depend on the GPS accuracy and we

explain it later. Trajectory 2 (τ2) contains a loop at the same point that τ1-loop but the segment

is at another location. The start and end points do not match, so it is not a circular trajectory.

Trajectory 3 (τ3) is a non circular route, where the start and end points coincide with τ2 points.

The result is a directed graph: (G), where nodes n1 and n3 are produced by the start and end

points of all routes. The n2-node is determined by the origins of each loop (τ1 and τ2) and by

two intersections: τ1?τ3 and τ2?τ3. The weight of each node is the number of traces that

match in that place. Following the example, the weight of n1 is Wn1
= 3, Wn2

= 3 and Wn3
= 2.

Edges are defined by the sequence of nodes. The n2-node possesses two different loops,

each loop represents an alternative route. The weight of each edge is the number of routes

between the nodes.

The graph depends on the number of samples. For example: (I) if we only consider τ3, there

is no n2-node. (II) If we do not consider that the τ2 does not have a loop and there is no τ1, the

intersection between τ2 and τ3 will define n2-node.

Analysing hiking patterns through complex network theory
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Algorithm

The time complexity of a brute-force algorithm that computes the intersection between two

pairs of coordinates using the whole dataset is O(n!), where n is the sum of coordinates of all

trajectories. To reduce the number of cases due to GPS accuracy and several device configura-

tions, we decide to split the process of computing intersections in two parts. These intersection

are candidate nodes in the modelling of the network because it is necessary to consider all of

them to valid the final nodes. We present a pseudo-code of the algorithm in alg. 1. The algo-

rithm has two main loops. In the first part (lines 1–10), we individually analyse each trajectory

to obtain: trajectory bounds, start and end points and a new smoothed trajectory (τ0). If start

and end points are approximately equals (thresholdlength), both points are considered equals

(line 5). We filter the trajectory using Ramer-Douglas-Peucker algorithm [38] obtaining a sim-

plified trajectory τ0 (line 6). After that, we compute the loop points (line 8). In this case, the

route contains an overlap with itself. For instance, a route that goes back the same way. First

and last point of each segment are estimated trail crossings, omitting nearby places (thresh-
oldsq). In Fig 2(left), we show an example of a route with a common segment. In this case, we

detect two nodes (in yellow colour) applying the first part of the algorithm. Left yellow point is

both the beginning and the end of the trajectory, and at the same time, it is the start point of

the common segment. Right yellow node is an intersection and is the other end of that seg-

ment. In the second part of the algorithm (lines 11–19), we only compute the intersections of

smoothed trajectories that have an overlap of bounds. As before, we proceed in the same way

with the sequences choosing start and end points. Fig 2(right) shows an example of this second

Fig 1. Sketch of the network generation from GPS traces. Upper panel shows the track points of three

GPS traces where coordinates are represented by geometric symbols (circles, triangles, and squares) and

the crossing points are in brown colour. Lower panel is the directed network generated with different edge

weights (w).

https://doi.org/10.1371/journal.pone.0177712.g001
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part of the algorithm. In the overlapping of both trajectories, there are some common points

which are in black colour. The union of these points defines various segments using a thresh-

old of separation (thresholdsq). In this case, selected nodes are the endpoints of the sequences

(in yellow colour).

Algorithm 1 Computing Candidate Nodes
Data:trajectorydatasetT, Thresholdlength, Thresholdsq
Result:intersectionpointsIS, IB; start/endpointssC, eC
1: for each τi 2 T do
2: Bi get Bounds(τi)
3: sC(τi.id, i) get FirstCoordinate(τi)
4: eC(τi.id, i) get Last Coordinate(τi)
5: If distance(sCi, eCi) <= Thresholdlength:sC(τi.id, i) eC(τi.id, i)
6: t0i do a SmoothFilter(τi)
7: T0  insert(fBi; t

0
ig)

8: ipointsi (t0i?t0i)
9: IS(τi.id, i) computeStart/Endpointsof each sequence(ipointsi,
Thresholdsq)
10: end for
11: reapeat
12: fBi; t

0
ig  popðT 0Þ

13: for fBj; t
0
jg 2 T 0 do

14: if Bi \ Bj 6¼ ; then
15: ipointsij (t0i?t0j)
16: end if
17: IBðt0i:id; i; jÞÞ  computeStart/Endpointsof each sequence(ipointsij,
Thresholdsq)
18: end for
19: until T0.size== 0

The intersection process (lines 8 & 15) uses a k-d tree algorithm to facilitate the nearest

point matches [39]. The idea is to detect the longest common subsequence between two trajec-

tories [40]. In this way, intersection points are obtained from real coordinates, they are not

obtained from an interpolation process or an average computation. The algorithm requires a

Fig 2. Example of the detection of candidate nodes. (Left) The first part of the algorithm detects the start, end, and intersection points

indicated by yellow circles of the trajectory. (Right) The second part of the algorithm, detects the intersection points between two trajectories.

Black points define the common segments and yellow points are the candidate nodes.

https://doi.org/10.1371/journal.pone.0177712.g002
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threshold to compute the closeness and returns a ordered sequence of coordinates. In the sec-

ond call (line 15), the algorithm avoid nearest points of the same route since they are obtained

in the first loop. We make publicly available this part of the algorithm [41].

Depending on the distribution of coordinates among trajectories and on the selection of

thresholds, there may be a random distribution of points around a real trail crossing. Thus, we

need to group nearby points when all intersection points of the whole set of trajectories is cal-

culated in previous algorithm. We compute centroid points applying a mean shift clustering

algorithm [42]. The centroids are the nodes of the network, and theirs weights are the number

of GPS traces that goes there. Returning to the example of Fig 1, if we assume that selected

thresholds are exceeded due to distance issues then the intersection process (τ2?τ3) provides

two intersection points: τ321 and τ322. At the same time, τ1 has a intersection point (τ111) for

its loop which is physically collocated between both. Thus, we have three possible points to

represent an unique trail crossing: τ321, τ111 and τ322. In Fig 3 we show an example of the dis-

persion of candidate nodes. After the application of mean shift algorithm, we obtain the cen-

troids of the cloud of candidate nodes. These centroids are the nodes of the generated

network.

The edges are the sequences of candidate nodes of each route. Before the clustering process,

we have a sorted sequence of nodes of each route: start point, n-intersections (loops and inter-

sections among trajectories) and end point. The range of nodes of each trajectory is (1‥n). We

transform this sorted sequence in edges by mapping the points in the correspondent final cen-

troids. We discard edges with the same source and target node since they represent nearby

intersections, and sequence length values equal to one. The weight of each edge is the length

between nodes considering the original trajectory.

Fig 3. Illustration of the obtained centroids. The start, end, and fork points in Bunyola (Majorca) are represented in purple. After the

mean shift algorithm, two centroids are obtained (green points). Black lines correspond to roads.

https://doi.org/10.1371/journal.pone.0177712.g003
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Case study: Hikes in Balearic Islands

Our dataset consists on GPS traces from a sport social tracker application that is used as a col-

lection of routes [43]. The application only stores the same route once per user. The recorded

data represents the real human movement in any localization (urban, interurban and natural

areas), and reflects external and personal factors in every individual and collective records.

Outdoor activities are conditioned by external factors such as weather conditions, daylight

hours, holidays, specific planning trails, social events, etc. These meaningful data are registered

by different devices and configurations which affect the distribution of points and their accu-

racy. For each GPS trace, we have the following metadata: start and end timestamps, the degree

of difficulty of the route assign by the user, and a GPX file with the coordinates of the track

points. We make publicly available the anonymized set of GPS traces [44]. In total there are

15376 records (21.2 millions of coordinates) performed by 2965 users over 8 years (from 2009

to 2016) on the Balearic Islands (Spain). This archipelago is interesting for the study by the fol-

lowing reasons: (I) they are relatively small confined pieces of land where the spatial dimen-

sions are closed to the human movement scales, (II) the three main islands possess very

different geographical characteristics, (III) the weather conditions allow for the practice of

sport activity during all the year, and (IV) a future applicability of findings in well-known tour-

ist region in Europe. A more detailed description of the GPS traces can be found in the Data

Description section in S1 File.

Basic statistics

We introduce the following statistical measures about weather conditions and topography of

our scenario in order to clarify the results of the network analysis.

Weather conditions. Outdoor activities are influenced by weather conditions. Balearic

Islands have a Mediterranean climate: warm winters, and hot and humid summers. The aver-

age temperature in August is 25.9˚C with an average maximum temperature of 29.5˚C. In con-

trast, in January the average temperature is 11.7˚C with an average minimum of 8.3˚C. We

obtained the temperature log from [45]. This range of temperature has a direct consequence in

the number of activities as Fig 4(left) shows. In summer, the number of activities is signifi-

cantly lower than in other seasons, due to high temperatures. This is clearly seen in Fig 4

(right) in which the number of activities decreases when temperatures increase.

Fig 4. Analysis of hiking activities. Seasonal frequency of hikings for the four seasons (left). The number of hiking activities as a function

of the average temperature of the day (right). Vertical dotted lines represent the averaged seasonal temperature.

https://doi.org/10.1371/journal.pone.0177712.g004
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The number of daylight hours also influences in the behaviour of the hikers. In summer the

number of daylight hours is approximately 14 hours, however, in winter it is around 10 hours.

Fig 5 (left) shows the distribution of the duration of activities for each season. We can observe

that the temperature has a greater influence than daylight hours in order to determine the

duration of activities. Furthermore, there are many routes with a mean duration below 5

hours; and in spring, there are a small group of striking routes lasting more than a day, which

correspond to long-distance footpaths. The length of the hikes is represented in Fig 5 (right).

Topography. The topography of each island influences also in the hiker activity. We con-

sider the four main islands: Majorca, Minorca, and Ibiza & Formentera. Majorca has a lower-

intermediate mountain range called Serra de Tramuntana with several peaks over 1000 meters

where Puig Major is the highest peak (1445 m), the most important trail is GR221 (Grande
Randonnée) with a length of 135 km. Minorca has a well-known trail called Camí de Cavalls or

GR223 which is a circular trail with a length of 185 km around the perimeter of the island.

Finally, Ibiza trails are scattered among the small villages. We include Formentera island in the

same analysis than Ibiza. From now on, we only mention the three groups, or the three islands.

Fig 6 shows the cumulative distributions of the duration and length of the hiking activity in

each island. The distributions of the length are very alike indicating similar hiking length in

the three islands. However, the distributions of durations exhibit substantial differences,

Fig 5. Seasonal analysis of hiking duration and length. Box plot figures: duration (left) and length (right).

https://doi.org/10.1371/journal.pone.0177712.g005

Fig 6. Hiking duration and lenght. Cumulative distribution function of the hiking duration (left) and hiking length (right) in each island. In

both panels, solid line represents a fit to a cumulative Gaussian distribution: fðxÞ ¼ 1=2½1þ erfððx � mÞ=s
ffiffiffi
2
p
Þ� with mean μ = 4.6 (10.87) and

standard deviation σ = 2.3 (4.57) for the duration (length) distribution in Majorca.

https://doi.org/10.1371/journal.pone.0177712.g006
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significantly in Majorca showing a wider distribution. Although the hiking length is similar in

the three islands, in Majorca the hikes tend to have a longer duration. The distribution of dura-

tion (length) follows a Gaussian distribution with mean μ = 4.6 (10.87) and standard deviation

σ = 2.3 (4.56) for Majorca.

Analysis of the hike network

Trail network

To analyse the Balearic Islands trail network, we configure the previous algorithm with the fol-

lowing parameters: thresholdsq = 3, thresholdlength = 10 meters, k-d tree query distance = 55

meters and a mean shift bandwidth of 0.0043 (approx. 480 m). These values are defined

through empirical analyses on different regions of the islands. The value with more sensitivity

in the features of the network is the bandwidth of the mean shift algorithm. Setting this value

is a trade off among the size of the region, the physical characteristics of the area and the level

of resolution of trail crossings. We set to have a resolution of a half a kilometre. In any case,

the topological features remain proportional up to a value above two kilometres. The k-d tree

query distance allows the differentiation of nearby paths. Paths less than 55 meters are consid-

ered similar. Finally, we choose a sequence of three sampling thresholdsq in the overlapping of

the paths. This value is close to 60 meters, enough to differentiate nearby paths.

We observe that the number of candidate nodes is high with a huge volume of traces. There

is an effect of sequencing intersection points due to the dispersion of coordinates. The problem

of finding the intersection of trajectories has become a problem of finding the real trail cross-

ing. The number of intersections of a route is so high that this number exceeds the number of

coordinates of a route. The average ratio of intersection points is approximately twice the

number of coordinates on the route. For instance, the trajectory shown in Fig 2 (left) has 1054

coordinates for a length of 12.3 km, the number of intersections points with the rest of routes

(approx. 1.4k in this area) is 3428 points. In order to reduce the number of possible candidates,

we introduce an extra step to the previous algorithm, by applying the mean shift algorithm to

the node candidate of each traces. Then, the same algorithm is applied on all candidate nodes

of all traces. Now, the position of the nodes gives us an approximation for the real intersection.

Overview

We characterize the network resulting from the algorithm previously described by computing

the standard properties summarized in Table 1. These values are obtained using NetworkX

library [46]. Furthermore, with the aim to study the seasonal variation, we consider three dif-

ferent segmentation of the data analysing the following seasonal networks: spring (SP), sum-

mer (SU), and the aggregation of the four seasons (4S). These networks have different number

of isolated subgraphs, which value varies seasonaly on each island. The number of subgraphs is

an indicator of the distribution and use of places. The main subgraph of Majorca is localized in

the Serra de Tramuntana area, where there are sections of the GR221. In Majorca and Ibiza,

we observe greater variability of subgraphs in each season.

The number of activities decreases in summer in all areas, but this trend is lower in coastal

areas. In any case, Minorca is the only example that maintains approximately the same locali-

zations of nodes in each season. In addition, Minorca presents special circumstances: some of

the coast lines and beaches are only accessible by going bordering private lands.

The extracted networks for Majorca, Minorca, and Ibiza & Formentera aggregated for the

four seasons are shown in Fig 7, respectively. In Majorca island, the nodes are concentrated in

the mountain area. In Minorca, the nodes are around the perimeter. In Ibiza & Formentera,

the localization is more uniform. The locations of nodes change according to the season,
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except the nodes with more weight which remain relatively in the same area. We experience

that the high temperatures in summer make coastal areas more attractive. We include the

spring and summer figures of the networks of each island in the section of Hiking activity net-

works in S1 File. In addition, networks can be found in the Supporting Information (S2 File).

Basic network properties: Nodes and edges

As we mentioned, nodes represent relevant areas where intervention tasks could be executed.

The node weights are the number of activities that have been performed in that area. From

Table 1, we observe that the number of nodes is slightly similar during spring and summer

within each island. The difference of nodes between seasons does not depend on the number

of samples. Thus, we can infer that the number of visited areas does not change many among

seasons despite of the reduction in the activity frequency and the change of the localizations.

The locations of nodes with bigger weights remain the same among seasons while the loca-

tions of nodes with lower weight change from inland to coastal areas in summer. It is remark-

able the absence of nodes in the inland area of Majorca during the summer. Moreover, we

highlight the importance of GR trails since most weighted nodes are localized there. In Ibiza,

the non-existence of guided hikes may lead to greater dispersion of trailheads and forks.

The edges are an indicator of the connectivity of segments of multiple trails that a node pos-

sesses although the number of edges depends on the intersections of a route. If a trajectory

does not intersect with another or does not have loops, the resulting graph will only have the

start and end nodes. Thus, a set of connected nodes represents the utilization and existence of

a network of paths linking all these locations. In Table 1, the number of edges (em) represents

the edges in the whole network and the number of unique edges (e) is the value using a directed

graph. We know that the average number of loop hikes is around 59.9%, then, we can estimate

the average number of intersections of one trajectory with another. This indicator is the ratio

Table 1. Summary of topological features of the three networks.

Property

Island Majorca Minorca Ibiza & Formentera

Area 3640 km2 702 km2 654 km2

Season 4S SP SU 4S SP SU 4S SP SU

Number of traces 11984 3964 1209 1492 427 390 2243 702 277

Number of nodes (n) 884 784 767 203 161 218 293 246 210

Number of edges (em) 10864 3119 1225 1616 314 475 1944 454 146

Degree (k) 14.943 7.3083 4.4067 11.3899 4.9507 6.0041 8.0469 4.2651 3.2426

Degree range (1,22) (1,22) (1,22) (1,24) (1,7) (1,24) (1,28) (1,24) (1,7)

Avg. shortest path 5 5 8 3 6 4 4 4 4

Diameter 16 18 25 9 11 11 10 18 11

Avg. clustering (C) 0.342443 0.313013 0.199265 0.321705 0.137489 0.207485 0.3152 0.189795 0.198618

Avg. weighted clustering ðCWi Þ 0.011435 0.008306 0.005601 0.030659 0.011814 0.015959 0.0221 0.011479 0.016277

Assortativity (r) 0.138867 0.121049 0.022 0.027258 -0.051515 -0.0127 0.0044 -0.142534 0.273333

Avg. edge weight (km) 5.47 4.023 6.43 7.03 6.44 5.12 4.02 4.16 6.44

Edge weight range (km) (0.39,86.6) (0.39,65.3) (0.39,65.2) (0.3,42.2) (0.37,18.9) (0.4,37.3) (0.6,34.38) (0.4,37.2) (0.37,18.4)

N. of subgraphs (n > 3) 5 5 3 1 1 1 1 1 4

N. of isolated nodes 73 156 223 15 26 30 15 41 127

N. of unique edges (e) 2567 1314 764 595 202 307 706 291 96

Results of the three islands considering all seasons (4S), and both most extreme seasons in terms of frequency of activities: spring (SP) and summer (SU).

https://doi.org/10.1371/journal.pone.0177712.t001
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Fig 7. Hiking activity networks in the Balearic Islands obtained from algorithm 1. Majorca (A), Ibiza & Formentera (B), and

Minorca (C) networks correspond to the aggregation of the four seasons. Black nodes represents small subgraphs (number of

nodes < 4). In addition, the size of the nodes is proportional to the number of different hikes in that area.

https://doi.org/10.1371/journal.pone.0177712.g007
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between the number of unique edges e and nodes (n): e/(n � 59.9% + n � 40.1% � 2). This value

is 2.073 in Majorca, 2.09 in Minorca, and 0.71 in Ibiza & Formentera.

The existence of disconnected nodes generates isolated subgraphs. The number of isolated

subgraphs increases in summer season due to the lower number of activities and a reduction

in long distance routes. Long routes lead to a greater probability of intersection with others.

This indicates that the temperature influences the attractiveness of the location and the utiliza-

tion of places.

Degree and connections

The degree of a node is an indicator of the connectivity among different areas. The average

degree is different in each island and it decreases from sprint to summer in Majorca and Ibiza.

In contrast, in Minorca, the average degree increases during the same period. In general, the

connectivity decreases in summer except in Minorca where the presence of nodes is still inten-

sified in the coastal areas.

Fig 8 shows the degree distribution for each of the three islands for the 4 season aggregated

network. Majorca shows a larger degree values while Minorca and Ibiza present similar values.

Fig 8. Node degree distribution. The degree distribution for the three islands for the aggregated 4S. Dashed lines represent fits to

f(x) * exp(−bx) with b = (0.005, 0.026, 0.012) for Majorca, Minorca, and Ibiza & Formentera respectively.

https://doi.org/10.1371/journal.pone.0177712.g008
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This indicator shows the same evolution in other seasons among the three islands. The degree

distribution of the three islands follows an exponential distribution. Similar behaviour has

been observed in different transport networks, for example, in the Singapore’s bus network

[34].

The weight of an edge represents the straight distance between two nodes. Thus, the real

segment of a trail that joins two nodes can possess bigger length than the weight of the edge.

The weight value grows in the summer season in Majorca and Ibiza. The lower the density of

trajectories, the smaller number of intersections, and consequently, the shorter the lengths

between them. The range of weights is an indicator of the minimum and maximum lengths of

the trails in each island. In the case of Majorca, the maximum distance corresponds to the GR
trail length.

On the other hand, we compare the possible relationship between two indicators conceptu-

ally close: the weight and degree of a node. We use Pearson correlation coefficient to compare

both. In spring, the correlation values are the following: 0.9374 in Majorca, 0.4157 in Ibiza,

and 0.9612 in Minorca. In summer, the values are: 0.8281 in Majorca, 0.1221 in Ibiza, and

0.9612 in Minorca. This implies that both features are an indicator of the number of alternative

hikes of a given place: the larger the degree of choices, the greater the number of alternative

recorded trails. We are able to detect places with a high number of alternatives using topologi-

cal features. We observe that the position of the main nodes in terms of degree, weight, and

their locations matches with well-known places e.g: water reservoirs (Cuber and Gorg Blau),

mountains towns (Escorca, Esporles), to mention some of them.

The average shortest path is also affected by the attractiveness of coastal areas in summer.

In Majorca, the average shortest path is 5 in spring, and it increases to 8 in summer. In Ibiza is

identical in both seasons. However, in Minorca the value decreases in summer since there are

more activities around the coastal areas and then, the nodes are better linked. The diameter is

defined by the maximum shortest paths between two nodes. In terms of hiking, it is represen-

tative of the longest route that hikers can make and it depends on the localization of the nodes.

Majorca has a larger diameter than the rest of the islands. In Minorca, the diameter remains

equal between both seasons since the locations of nodes remain around the perimeter of the

island. In Ibiza the diameter decreases from spring to summer due to the increase in the num-

ber of isolated subgraphs.

Community analysis

We perform a community analysis to the 4S network of Majorca island using the Louvain

method [47] implemented in Gephi [48]. Fig 9 shows colored the largest communities found.

The communities segment the island by in areas revealing the distribution of hiking activities.

The community analysis also reveals the area of influence of the main points of relevance. For

Minorca and Ibiza & Formentera a big dominant community is found in each island.

Clustering and correlations

Clustering coefficient (C) is a measure of cohesiveness around a node. It takes values from

[0,1] where 0 and 1 indicate that none or all neighbouring nodes are linked [49]. The highest

clustering values correspond to nodes with the highest number of hikers. In Table 1, the aver-

age clustering coefficient has a range from 0.13 to 0.31. We contextualize this value compar-

ing it with other network models. For example, Singapore rail system possesses a value of

CSing. = 0.934 [34]. Poland transport systems has a range of 0.68 < CPoland < 0.85 [50]. Our

case of study is slightly above to the Portland network CPL) = 0.0584 [51]. It is desirable that a

transport network is designed to minimize the number of exchanges and maximize the use.
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The network of trails were built to connect areas or to achieve natural resources (i.e. culti-

vated fields, hunting trails, etc.). In our study, we observe that the clustering cohesiveness is

formed by edges with low weights.

Another topological property of the network is the type of correlation among nodes. A net-

work is assortative whether high-degree nodes have a trend to connect to other high-degree

nodes [52]. Otherwise, a network is disassortative whether the low-degree nodes tend to con-

nect to high-degree nodes. Assortativity takes values in the interval [-1,1] where −1 indicates a

dissortative network and 1 indicates an assortative one. The assortativity of the studied net-

works depends on the season especially in the two small islands. In Majorca, the assortativity

tends to 0 in summer.

Discussion

The novelty of this study is the applicability of complex network theory to trail networks. The

exploration of trail networks through hiker activities offers a real vision in the understanding

the use of natural resources. In our case, the agglomeration of intersections of trajectories and

Fig 9. Community analysis of Majorca island. Different colors indicates the largest communities. Communities with size smaller than 20

nodes are colored with light gray.

https://doi.org/10.1371/journal.pone.0177712.g009
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trailheads define the network. This theory is already applied in transportation systems such as

Singapore RTS and BUS [34], Boston subway [31], Chinese railway [53], world-wide airports

network [54] and Beijing traffic road network [35]. In most of the cases, the interpretation of

the network is defined by the two basic matching rules: the “transport stop places” are nodes

and the connections or movements of passengers among the nodes are edges. The weight of

each edge can have different values: the number of passengers, the distance, the duration of the

trip, etc.

A typical trajectory obtained from GPS devices is a sequence of longitude, latitude, and

timestamps. Modern devices include more information: velocity, heart rate, elevation, slope,

etc. Unfortunately, the quality relies on the precision of the coordinate acquisition from satel-

lite signals. The error and the size of the sequence are relevant to match them to physical areas

and, for instance, to decision making regarding a change of direction between other analysis.

In the case of mobile phone connections, the sequence of the trajectory is set by the carrier’s

antennas. A GPS trajectory can possesses more intermediate points but they are subject to

external constraints (e.g. natural or urban canyons, atmospheric conditions, time to acquire

fix, etc.) or to user forgetfulness (e.g. battery charge, keeping in bag, auto travel before acquir-

ing fix, etc.) [55]. Filtering and other statistical methods can be applied to mitigate the error.

Each trajectory can be processed to reduce noise avoiding outlier coordinates or interpolating

points. However, the position and velocity are typically biased and have unknown distribu-

tions. If the goal of the study is to discover specific areas, the homogenization of points may

not be effective. Other group of techniques called map-matching establishes relationships

among the coordinates with real information coming from maps. In this way, it is determined

which road segments have been used in each trajectory. It is not an easy task since it depends

on the velocity of the vehicle, the frequency of samples, the precision of the position and the

density of roads [56, 57]. We address our approach to the identification of trail crossings with-

out map information. Collaborative resources such as Open Street Map provides trail networks

but our goal is only to depend on the network that is traced by hikers. For a future work, we

want to compare our model with the network generated from this spatial sources.

Conclusions and future work

In this article, we present a novel approach to exploit records of sports activities through the

generation of a hiking activity network and the application of complex network theory for

identifying points of relevance. The obtained points of relevance, together with the extracted

topological features, reflect the utilization of trail segments and trailheads where environmen-

tal management plans can be carried out. In addition, our method relates places among them

in contrast with other approaches where the regions or points of interest are obtained as iso-

lated elements. In the modelling of a network, it is important to consider the semantics of its

elements, therefore we decided to model nodes as trail crossings. The use of trail crossings is a

powerful concept to describe passageways and redirect the exploitation of natural spaces. In

the first part of this article, we propose an algorithm to detect trail crossings from GPS trajecto-

ries which generates the network. As the generated network depends on the activity of the

users, this study is also the first step of a global analysis of human outdoor activities consider-

ing geographical and topological aspects.

We detect that weather conditions affect outdoor activities and we reflect this fact in the

construction of different networks according to the season of the year. Thus, we generate three

networks considering the aggregation of trajectories in the four seasons, summer and spring

seasons, which are the most extreme in terms of frequency of activities, analysing for each net-

work the main topological features. From the localizations of nodes, we observe for the three
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islands that the number of visited areas remains similar during the year but there is a reduction

in the number of frequencies and a relocation from inland regions to coastal areas in summer

season. Regardless the season, the segments of the long trails (Grande Randonnée) have a high

density of nodes and do not lose importance in topological terms. For summer in the case of

Minorca island, the nodes tend to cluster together along the perimeter of the island where the

GR is located. The community analysis performed in Majorca island allows the identification

of the area of influence of each point of relevance. From the degree feature, we detect that the

attractiveness of a place depends on the number of connections, that is, the number of alterna-

tive routes. To sum up, the interpretation of each feature provides indicators on the utilization

of regions and can be used in forecasting models.

One limitation of this study is to ascertain with high precision the discovery of trail cross-

ings among all the samples. Our resolution is a local approach considering sequence of pairs of

coordinates with the same route and pair of routes. As future work, a global approach should

be considered the whole dataset; from this perspective it can rule out slight variations of the

course and inaccurate samples of GPS devices. This study can be extended in two directions.

The first one is to analyse the flow of outdoor activities and their distribution throughout the

year. The second one, given that this study provides measures on a precise area, is to analyse

conflicts among other type of activities, the discovering of new paths, or identification of the

access to restricted areas.
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