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Reservoir Computing Speeds Up
A brain-inspired computer made with optoelectronic parts runs faster thanks to a hardware
redesign, recognizing simple speech at the rate of 1 million words per second.

by Miguel C. Soriano†

L ight-based (photonic) technologies offer many ben-
efits when it comes to building a computer: they
are efficient, have high bandwidths, and deliver fast
processing speeds. But progress in photonics-based

computing has almost always been outpaced by advances
in semiconductor electronics, which make up the logical el-
ements in today’s computers. Where photonics does seem
to be making headway is with alternative computation
schemes, which solve problems differently than conven-
tional transistor-based (binary) computers. One example of
an alternative scheme is reservoir computing, which uses in-
terconnected devices to mimic the neuronal architecture of
the brain. Laurent Larger, of the French National Center for
Scientific Research (CNRS) and the University of Burgundy
Franche-Comté, and co-workers [1] have taken a photonics-
based reservoir computer design and refitted part of it with
optoelectronic components to achieve a threefold increase in
processing speed. Their computer, which is built with stan-
dard telecommunication devices, is capable of recognizing
one million spoken words per second and lends itself to be-
ing integrated into a chip.

Like several other brain-inspired approaches, reservoir
computing [2, 3] relies on an artificial neural network that
relays an input signal to different neuron-like units to pro-
duce a useful output. In a reservoir computer, the network
consists of an internal part, or reservoir, that’s made of many
interconnected units and a readout layer that both com-
municates with the reservoir and delivers an output. The
reservoir units are nonlinear (and analog) in their response
to a signal, and the connections between them—how much
one unit’s response affects another’s—can be of different
strengths. Importantly, the connected units form so-called
recurrent loops—closed loops in which a signal travels be-
tween the units in a certain order and with a slow decay
time, like an echo. This feature allows the reservoir to store
information about the past and to process a signal differently
depending on which signals came before it. Such contextual
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Figure 1: A reservoir computer is centered on an artificial neural
network (center) that consists of multiple nonlinear units. The
computer undergoes a training process that involves adjusting the
output connections (not shown) from the elements in the network
such that the computer’s output matches a desired target. The
network usually consists of many nonlinear units, which mimic
neurons in the brain. Following an earlier design, Larger et al. built
a reservoir computer with optoelectronic components that was
instead centered on one nonlinear unit, and they showed that the
machine could successfully identify speech signals at a rate of one
million words per second [1]. (APS/Alan Stonebraker)

information is what allows the computer to “learn,” for ex-
ample, that when hearing the sounds for the letters S, E, V,
E, and N, a V comes after E and S to spell SEVEN.

Reservoir computers must go through a “training” pro-
cess, in which the connection strengths are optimized to
produce a desired outcome (Fig. 1). How these strengths are
set distinguishes reservoir computing from traditional artifi-
cial neural networks used in machine learning. Specifically,
the connections between the reservoir units, and between
the input information and the reservoir, are initialized with
random strengths and left unchanged. The only things that
change during the training process are the strengths of the
connections between the reservoir and the readout layer.

A reservoir computer’s ability to solve complex tasks is
typically guaranteed by having a large number of nonlin-
ear units in the reservoir. But an alternative is to use just
one nonlinear unit that’s subject to what’s called a delay
feedback loop [4]. This entails delivering a signal in a
series of designated time slots (multiplexing) to create a “vir-
tual” multiunit reservoir. Fewer units in the reservoir mean
fewer connections, so time multiplexing greatly simplifies
the hardware requirements. This has allowed the develop-
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ment of several all-optical reservoir computers [5, 6] and
might contribute to the way other machine learning algo-
rithms are implemented.

Taking this multiplexing approach, Larger and co-workers
have built a reservoir computer with both optical and elec-
tronic elements and demonstrated that it can recognize
speech samples at a fast rate [1]. The machine takes a digi-
tized sound wave, converts it into an optical signal, and then
processes this input in the reservoir. The response from the
reservoir is then further processed to produce a word. The
team tested their system using voice recordings from two
standard databases: numerical digits spoken by 10 differ-
ent females (from the TI-46 database) and numerical digits
voiced by 326 different men, women, and children (from
the AURORA-2 database). The authors showed that their
machine output the incorrect digit just 0.04% of the time
for the TI-46 data and 8.9% of the time for the more com-
plex AURORA-2 data, respectably low error rates. They also
demonstrated that their optoelectronic system processes in-
formation 3 times faster than the fastest all-optical reservoir
computers. A key to achieving this speedup was that they
encoded the sound wave information in the phase of the
optical signal, while earlier approaches encoded this infor-
mation in the signal’s intensity [7, 8]. (See note in Ref. [9].)

In addition to this speedup, the reservoir computer
demonstrated by Larger et al. has a number of attractive
features. All of its components—lasers, electro-optic mod-
ulators, and photodiodes—can be packed into a photonic
integrated chip. In addition, the authors’ implementation
doesn’t require a strict timing between injecting the input
signal and reading the output (as do other reservoir com-
puters that use time multiplexing) and actually works most
efficiently when the input and readout are asynchronous. Fi-
nally, the time multiplexing approach allows the authors to
increase the number of connections between the input and
the reservoir from one (the usual number) to three, which
is beneficial for speech processing. Altogether, the work by
Larger et al. [1] represents a significant improvement in the
hardware for reservoir computing.

The field of reservoir computing is rapidly growing, with
physicists, engineers, computer scientists, neuroscientists,
and mathematicians working hand in hand to develop the
concept and explore applications. Finding the right hard-
ware to interface the digital and analog sides of the com-
puter, and to shield the system from noise, remains a chal-
lenge. And reservoir computing is still in the exploratory
stages. Besides speech recognition, the computing approach
has tested successfully for such applications as process-
ing radar signals and removing distortion from transmit-
ted signals (channel equalization). For these technologies,
photonics-based reservoir computers are at the forefront.
Current devices have processing speeds of 20 gigabytes per

second (GB/s), and should soon reach 100 GB/s, a stan-
dard speed for network connections. The next step would be
to achieve this high processing speed in a miniaturized de-
vice that can be integrated with other photonic elements and
that uses passive devices to reduce power consumption, as
demonstrated in Ref. [10]. In this context, the multimillion-
euro funding of the European Commission through projects
such as NARESCO, PHOCUS, and PHRESCO has provided
a huge push.

This research is published in Physical Review X.
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