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Abstract (150-200 words) 
33 

Next Generation Sequencing (NGS) has dramatically changed the way biological research is being 34 

conducted in the post-genomic era and they have only been utilized widely over the recent decade 35 

for studies of non-model decapod crustacean species, predominantly by sequencing the 36 

transcriptome of various tissues across different life stages. NGS can now provide a rapid, cost-37 

effective solution for discovery of genetic markers crucial in many applications that would previously 38 

have otherwise taken years to develop. Sequencing of the entire transcriptome (referred to as RNA 39 

sequencing; RNA-seq) is one of the most popular NGS tools. RNA-seq studies of non-model species in 40 

crustacean taxa however, have faced some problems, including a lack of “good” experimental study 41 

design, a relative paucity of gene annotations, combined with limited knowledge of genomic 42 

technologies and analyses. The aim of the current review is to assist crustacean biologists to develop 43 

a better appreciation of the applications and scope of RNA-seq analysis, understand the basic 44 

requirements for optimal RNA-seq studies and provide an overview of each step from RNA-seq 45 

experimental design to bioinformatics approaches to data analysis. Insights that have resulted from 46 

RNA-seq studies across a wide range of non-model decapod species are also summarized.  47 

48 
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IINNTTRROODDUUCCTTIIOONN 51 

Next generation sequencing (NGS) technologies have rapidly transitioned bioscience into the post-52 

genomic era, resulting in easier, cheaper, and faster DNA sequencing. Application of advanced NGS 53 

platforms has allowed multiple techniques to be developed that address biological challenges. These 54 

include; RNA-sequencing (RNA-seq), whole-exome sequencing, chromatin immunoprecipitation 55 

sequencing (ChIP-seq), microRNA sequencing (miRNA-seq), restriction assisted DNA sequencing (RAD-56 

seq), and small RNA sequencing. Among these, RNA-seq is a technique that has revolutionized gene 57 

expression studies and marker discovery (single sequence repeats [SSRs]/microsatellites and single 58 

nucleotide polymorphisms [SNPs]) (Das et al. 2016; Lister et al. 2009; Marguerat and Bähler 2010; 59 

Mykles et al. 2016; Ozsolak and Milos 2011; Wang et al. 2009; Wilhelm and Landry 2009). The RNA-60 

seq platform is based on the analysis of the transcriptome - a small portion of the whole genome that 61 

is transcribed from chromosomal DNA into RNA molecules - a dynamic set of elements that change 62 

depending on developmental stages or physiological conditions. Also, by analysing the sequenced 63 

transcriptome, genetic polymorphisms including SNPs and SSRs can be mined and analysed with ease 64 

(Jaramillo et al. 2016; Jin et al. 2013; Jung et al. 2011; Jung et al. 2016; Lv et al. 2014; Meng et al. 2015; 65 

Nguyen et al. 2016). 66 

While RNA-seq techniques have had a major impact on model species (which in this review is defined 67 

as a species with a well-characterized genome, e.g. Daphnia pulex), the application of RNA-seq 68 

approaches in non-model decapod crustacean taxa is still limited by the small size of the research 69 

community and the subsequent bottleneck of bioinformatics analysis capabilities. Many NGS 70 

analytical tools are available and by default, are developed for model species, making it difficult for 71 

researchers investigating non-model organisms to navigate through and identify appropriate tools. 72 

Designing and evaluating a pipeline for transcriptomics projects in non-model species therefore, can 73 

be considered a crucial step prior to project initiation. While the transcriptome can encompass many 74 

categories of different types of RNA (mi-RNA, small nuclear RNA, non-coding RNA etc.), this review will 75 



focus mainly on mRNA sequencing using Second Generation Sequencing (SGS) technology – we intend 76 

to use the same classification proposed by Schadt et al. (2010), that defined Sanger sequencing as First 77 

Generation, ”wash-and-scan” sequencing technology as Second Generation, and single molecule real 78 

time sequencing as Third Generation. Under this classification scheme, SGS includes a number of 79 

platforms, notably Illumina, Solid, Ion Torrent/Ion Proton, Roche 454; whereas PacBio and Oxford 80 

Nanopore are classified as Third Generation Sequencing (TGS) Technology. Here we will focus 81 

primarily on different strategies to initiate a transcriptome study, briefly addressing several platforms 82 

that currently are available, as well as recommending a number of experimental designs, 83 

bioinformatics software for de novo assembly and specific data analyses for decapod crustacean 84 

species. Finally, we review recent biological insights gained from application of SGS in crustacean 85 

transcriptomics and highlight opportunities as well as challenges for applied RNA-seq in the future. 86 

OVERVIEW OF RNA-SEQ TECHNOLOGY87 

PRE-SEQUENCING 88 

New sequencing technologies and new sequencing chemistries are being developed rapidly. The 89 

arrival of SGS, and more recently TGS, has completely changed the way researchers approach 90 

unanswered phenomena in basic, applied, and clinical research. Each sequencing platform is based on 91 

different proprietary chemistries and technologies and each has unique strengths and weaknesses. 92 

Details on sequencing chemistry have been summarized elsewhere (Goodwin et al. 2016; Koboldt et 93 

al. 2013; Metzker 2010; Reuter et al. 2015). Currently, Illumina is the most widely utilized SGS for RNA-94 

seq, since the platform enables deep coverage of the transcriptome and provides long, low-error reads 95 

that are suitable for mapping to reference genomes and transcriptome assemblies (Goodwin et al. 96 

2016; Metzker 2010; Niedringhaus et al. 2011). Performance benchmarking of many SGS platforms 97 

has been conducted for several years (Finseth and Harrison 2014; Glenn 2011; Goodwin et al. 2016; 98 

Lahens et al. 2017; Lam et al. 2012; Liu et al. 2012) and an online archive of sequencing platforms is 99 



available on the market and can be found at https://allseq.com/knowledgebank/. Given the popularity 100 

of Illumina Sequencers in general, it tends to be the technology most widely applied in crustacean 101 

transcriptome projects (Havird and Santos 2016).  102 

In brief, RNA-seq includes the use of an SGS platform to generate a huge amount of sequence data. 103 

Due to technical constraints of the approach (most SGS platforms can only generate short to medium 104 

length reads, approximately 50-300 bp), RNA transcripts must be fragmented into shorter sequences. 105 

In the absence of a reference genome, short reads are then reconstructed to make a reference 106 

transcriptome, referred to as a de novo assembly. Following this, raw reads can be realigned (or 107 

mapped) to the previously generated reference sequence and counted, thus providing a digital 108 

measurement of specific transcript abundances that can facilitate biological interpretation. Where key 109 

genes are targeted (based on either high differential expression or previously identified in the 110 

literature), they can be validated by replicating samples across a range of experimental conditions (eg. 111 

in different tissue types, at different life history stages, between sexes, etc.). A popular approach for 112 

validation includes quantitative real-time PCR (qRT-PCR) where relative transcript abundance can be 113 

assessed under more strictly controlled conditions. Most RNA-seq strategies that utilize SGS can be 114 

summarized by a basic workflow (Figure 1). 115 

https://allseq.com/knowledgebank


Experimental design 116 

Designing an RNA-seq experiment requires a solid biological understanding of the taxa under 117 

investigation and the question(s) to be addressed. Poor or inappropriate decisions at this stage can 118 

result in a large amount of unusable data. A good experimental design for every NGS–based 119 

experiment therefore, is a basic requirement that cannot be over-emphasized.  120 

In general, several factors must be considered prior to the initiation of any well-designed sequencing 121 

project. Essentially, an appropriate experimental design is a balance between the level of biological 122 

versus technical replication (Figure 2) and the resulting depth of coverage for each tissue type, life 123 

stage, sex etc., within a framework of time and financial constraints. It is advisable that researchers 124 

without much prior experience should seek suggestions from professional service providers including 125 

bioinformaticians and biostatisticians, as well as the sequencing provider. This review highlights some 126 

of the pitfalls to be aware of and sets the scene for appropriate study design. Several studies provide 127 

direction on how to design a statistically valid RNA-seq experiment (Auer and Doerge 2010; Conesa et 128 

al. 2016; Fang and Cui 2011; Yang and Wei 2015). In general, a comprehensive transcriptome requires 129 

multiple tissues from multiple developmental stages while gene expression studies require samples 130 

that represent contrasting treatments (e.g. male vs female, control vs hormone treated, salinity vs 131 

freshwater acclimation, or different developmental/life history stages).  132 

Biological and technical replicates 133 

In the NGS context, technical replication refers to multiple libraries from the same biological sample 134 

(i.e. the technical steps are performed separately) (Figure 2). While potentially increasing the depth 135 

of reads, any variation recorded among technical replicates will also help identify inconsistencies 136 

associated with sampling techniques, PCR biases or sequencing errors. In some rare cases, sample 137 

collection, storage or processing can be a source of technical variance owing to the relative instability 138 

of RNA. It is advisable to employ several randomization techniques during sequencing, for example, 139 

multiplexing (mixing of different libraries, each tagged using a different barcode), splitting technical 140 



repeats between multiple lanes, or randomization of different libraries in the same lane (an excellent 141 

review on statistical randomization for RNA-seq can be found elsewhere (Auer and Doerge 2010)). 142 

Ultimately, this type of replication provides some measure of the quality and/or reliability of the 143 

analysis.  144 

Biological replication alternatively, relates to different biological samples (e.g. same tissue type but 145 

from different individuals) that are processed separately (Figure 2). Biological replication is desirable 146 

since it quantifies natural variation among individuals within the experimental cohort. Furthermore, 147 

increasing the sample size (number of biological replicates) not only increases sequencing depth, but 148 

also provides greater statistical power to detect differences among treatments where they may exist. 149 

Nevertheless, with a very large sample size, accommodating both technical and biological variation 150 

can become very costly and may also result in a complex assay to analyse. When sequencing 151 

individuals from a population with large levels of genetic variation, for example when dealing with 152 

wild-caught individuals, the more biological replicates, the more likely it is to capture genuine 153 

differential expression among groups. In general, most SGS experiments conducted on crustaceans 154 

tend to be under-replicated and while there is no gold standard for this matter, it is currently 155 

acceptable for RNA-seq experiments to consist of a minimum of three biological samples to provide 156 

adequate statistical power; a number of published studies have shown that the power to detect 157 

differential expressed genes improves from two samples to five samples per treatment (Dillies et al. 158 

2013; Kvam et al. 2012). Similarly, other studies have proposed that sequencing fewer reads and 159 

including more biological replicates is an effective strategy to increase statistical power and accuracy 160 

in large-scale differential expression RNA-seq studies (Liu et al. 2014). More recently, results suggest 161 

that at least six biological replicates may be needed in more sophisticated RNA-seq experiments and 162 

up to 12 replicates per experimental group (Schurch et al. 2016). However, for samples that are very 163 

different from each other in terms of transcription level (for example, differential expression profiles 164 

between brain versus ovary), less replication may also be acceptable. It is also important to highlight 165 



the fact that replicates in an RNA-seq-based study are required for publication in some journals (e.g., 166 

refer to section 2.6.7 at https://www.frontiersin.org/about/author-guidelines). To conclude, we 167 

would recommend maximizing biological replicates to include at least three samples for each 168 

experimental condition in every non-model decapod crustacean RNA-seq study.  169 

Choice of sequencing platforms  170 

There are several sequencing methods that researchers can choose from, including single-end (SE) 171 

/paired-end (PE) reads, strand-specific, or non-strand-specific library preparation. The decision on 172 

which is selected will be based on the desired outcome of the study but will also depend on budget 173 

constraints. For experiments on crustacean species in general, PE sequencing is recommended to 174 

obtain a reliable de novo assembly where no reference genome is readily available. Long read 175 

sequencing (e.g. PacBio, Nanopore sequencing),  proven to be suitable for enhancing continuity of de 176 

novo transcriptome assembly, is currently relatively expensive and its application has been described 177 

elsewhere (Cartolano et al. 2016; Chen et al. 2017; Kuo et al. 2017). Illumina short read sequencing 178 

however, is by far the most widely used platform for transcriptome sequencing in crustaceans due to 179 

its cost-effectiveness (unit price per nucleotide), fast sequencing times and higher raw read accuracy. 180 

Another consideration is to choose whether stranded sequencing will be needed. In brief, a stranded-181 

specific RNA-seq can retain the gene orientation (sense or antisense transcript). A number of studies 182 

have attempted to compare between stranded vs non-stranded approaches and most have shown 183 

that a stranded RNA-seq approach is more advantageous due to better assembly of unannotated 184 

genes, ability to detect genes on the antisense strand as well as improved continuity of transcripts. 185 

New de novo assembly programs like Trinity (Grabherr et al. 2011) have a special mode for strand-186 

specific data analysis that has proven to be more effective than non-stranded data (Levin et al. 2010; 187 

Parkhomchuk et al. 2009; Sultan et al. 2012; Zhao et al. 2015; Zhong et al. 2011). We therefore 188 

recommend strand-specific RNA-seq if possible for non-model decapod crustacean studies (Havird 189 

and Santos 2016). 190 

https://www.frontiersin.org/about/author-guidelines


Depth of sequence (number of reads) 191 

The amount of sequencing needed for a given sample is determined by the aims of the experiment, 192 

the number of transcribed transcripts and the nature of the species’ RNA samples (this is due to the 193 

fact that crustacean genomes can be quite complex compared to other invertebrates). To our 194 

knowledge, there has been no attempt to investigate the depth required for effective RNA-seq studies 195 

in crustaceans. A study of chicken RNA-seq data revealed that approximately 30 million reads 196 

(Illumina-75 bp PE) covered all annotated genes, while 10 million reads detected only ~80% (Wang et 197 

al. 2011). Whereas RNA-seq samples from six different phyla (Annelida, Arthropoda, Chordata, 198 

Cnidaria, Ctenophora and Mollusca) has suggested that approximately 20 million reads for tissue 199 

samples and 30 million for whole-animal samples were required to provide a good balance between 200 

total coverage and noise (Francis et al. 2013). Based on these data, it is acceptable that 20 million PE 201 

reads per sample for a diploid crustacean organism is a reasonable target to aim for, although there 202 

is no specific benchmark for all sequencing experiments.  203 

It is also important to note that in order to detect transcripts with low expression, a deeper sequencing 204 

strategy may be needed. In the guidelines for the ENCODE project (https://www.encodeproject.org/), 205 

an experiment to evaluate similarity between two transcriptional profiles, requires 30 million PE reads 206 

that must be mapped to the genome or known transcriptome. Guidelines to detect novel elements or 207 

quantification of known transcript isoforms requires deeper sequencing (Refer to the whole guideline 208 

at https://www.encodeproject.org/about/experiment-guidelines/#guideline). Another tool, Scotty, 209 

can be used to assist in the design phase of RNA-Seq experiments (Busby et al. 2013). This program 210 

can confirm if the design applied has sufficient statistical power to detect differentially expressed 211 

genes (DEGs) at the predetermined level required. The program is freely available online at 212 

http://bioinformatics.bc.edu/marthlab/scotty/scotty.php/.213 

An interim conclusion to be drawn from the above sections is that there exists a trade-off between 214 

depth of reads per sample and the number of samples (which include technical and biological repeats). 215 

http://bioinformatics.bc.edu/marthlab/scotty/scotty.php/
https://www.encodeproject.org/about/experiment-guidelines/#guideline
https://www.encodeproject.org/


The technology employed and financial limitations usually dictate a fine balance between these 216 

factors. 217 

Tissues RNA extraction and cDNA library preparation 218 

Library preparation is a crucial step prior to sequencing. It consists of a number of stages including 219 

RNA extraction, proper storage of RNA, quality checking of RNA, mRNA isolation and finally cDNA 220 

library generation.  221 

In brief, extraction of total RNA from target tissue can be undertaken immediately on-site or samples 222 

can be stored in RNA-later® solution for later extraction. It is important to note that RNA is extremely 223 

fragile and degrades readily if stored under inappropriate conditions. Additionally, ribonucleases 224 

(RNases) which enzymatically degrade RNA pose a constant threat of contamination and degradation 225 

of purified RNA. Traditionally, RNA can be stored at −20°C, −80°C (most desirable) or in liquid nitrogen 226 

(-196°C) to provide protection. RNA storage solutions that include chelating agents which inhibit 227 

RNase activity, can be used, although these might interfere with reverse transcription and should thus 228 

be removed prior to these steps. To our knowledge, there is no crustacean specific RNA extraction kit 229 

available on the market, however several commercial kits for RNA extraction are still usable for 230 

crustaceans, in addition to in-house (modified) versions of RNA extraction methods that use Beta-231 

mercaptoethanol or phenol-based compounds, with the latter being more popular in recent 232 

publications. A detailed review on the effect of RNA extraction methods on RNA-seq can be found 233 

elsewhere (Sultan et al. 2014). RNA can then be assessed for quality and quantity using a Nanodrop® 234 

spectrophotometer or BioAnalyzer®. It is important to note that RNA integrity number (RIN) that has 235 

been used as a standardized metric of RNA quality for vertebrate species, is not usually valid for 236 

crustacean samples with non-typical RNA profiles. RIN is calculated based on the ratio between 18S 237 

ribosomal RNA (rRNA) and 28S rRNA band intensities, which are usually very conserved across 238 

eukaryotes. However, the 28S rRNA of arthropods tends to break down into two subunits, preventing 239 

a reliable RIN value calculation (Macharia et al. 2015; McCarthy et al. 2015; Winnebeck et al. 2010).   240 



RNA can be stored and shipped in ambient conditions after desiccation with RNA-stable solution 241 

(Seelenfreund et al. 2014). An important consideration when it comes to RNA extraction in crustacean 242 

species is tissues with high pigment content (i.e. eyestalk). For these tissue, extra caution is suggested 243 

to avoid extracting pigment contamination that will affect the quality of library preparation. Currently, 244 

there is no threshold for deciding if a sample is too degraded for whole-transcriptome analysis. In 245 

most cases however, sequencing facilities provide users with specific guidelines and technical notes 246 

recommended for producing the best results. Moreover, depending on each sequencing platform, 247 

different cDNA library preparation protocols may be required.  248 

POST-SEQUENCING 249 

Post-sequencing analyses include quality checking of raw sequences, trimming, de novo assembly of 250 

trimmed reads, read mapping and quantification, DEG assessment and finally biological interpretation 251 

(Figure 1).  252 

Quality control for SGS data 253 

Current SGS runs generate millions, or even hundreds of millions of read sequences. Technologies 254 

advancement reduces the error rate; however, every platform still produces read errors that require 255 

the application of a quality control program post-sequencing. Read errors, while relatively negligible 256 

in number compared with the massive dataset generated, still pose a hurdle for downstream analysis. 257 

For instance, errors in base-calling cause improper connection of nodes in de novo assembly (thus 258 

expanding running time and increase memory needed to store the nodes). In addition, incorrect SNP 259 

detection can result from an inability to differentiate between a true polymorphism and a sequencing 260 

error (Kelley et al. 2010). Several quality control tools have been developed for NGS data (most 261 

popular tools are summarized in Table 1).  262 

In general, quality control of raw reads from NGS sequencers can be completed in a few simple steps. 263 

Raw read statistics can then be checked with FASTQC software 264 



(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). A variety of parameters can be used 265 

to trim the data. The most important is the PHRED quality score (a base-calling score ranking system 266 

that allows users to judge the confidence of a nucleotide presumed to be correctly called (Ewing et al. 267 

1998)). Some other considerations include reads average length, total number of base pairs and 268 

adapters contamination. In addition, reads generated on the Illumina platform are considered to have 269 

a relatively higher error rate towards the 3′-end of the read (Schirmer et al. 2015), so if a drop in 270 

quality is detected, it is acceptable to trim off a portion of the read from that end. Some commonly 271 

used criteria for trimming reads include; minimum read length, minimum quality score, and 272 

homopolymer trimming. Read duplication is also a factor to consider during the quality control step 273 

in NGS projects. In brief, read duplications are identical reads that map to the same genomic location 274 

(effects of PCR amplification bias, excess computational resources, and errors). Raw reads may also 275 

need to be cleaned from artificially introduced sequences - PCR primers or sequencing adapters; these 276 

are usually addressed in most quality control packages. In a benchmarking study, it was shown that 277 

trimming applied in every sequencing project will improve not only quality of the results, but also 278 

reduce analysis duration (Del Fabbro et al. 2013). In general, normal quality trimming with a PHRED 279 

score ranging from 20 to 30 is normal for most RNA-seq experiments, while a PHRED score threshold 280 

of 30 or above is usually required for variant calling experiments (Ledergerber and Dessimoz 2011). 281 

However, in one particular study, the authors highlighted that although strict trimming is usually 282 

applied, in some cases a more gentle trimming (PHRED score <2 or <5) might be more optimal 283 

(MacManes 2014). This is due to the fact that short and low expressed transcripts suffer from heavy 284 

negative bias when using harsh trimming (MacManes 2014). Therefore, lowering the PHRED score 285 

threshold in the quality control step can result in a greater transcript discovery rate. As a conclusion, 286 

we suggest gentle trimming initially as suggested in the above study. A list of some popular software 287 

packages for NGS quality control can be found in Table 1. 288 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


289 

De novo assembly for non-model species and transcript clustering 290 

For non-model decapod species, it is often difficult to align RNA-seq data to a reference genome from 291 

relatively recently diverged organisms (currently there are very few crustacean reference genomes 292 

available – see section 3.2). An alternative strategy therefore, is to construct a de novo assembly (new 293 

assembly) from high-quality reads. The primary aim is to extend the short reads from the sequencer 294 

into longer continuous sequences (contigs) that reflect the mRNAs transcribed in the cell without any 295 

chimeric/fusion events. A number of de novo transcriptome assemblers have been developed (initially 296 

they were simply modified genome assemblers), including the Velvet/Oases pipeline (Schulz et al. 297 

2012; Zerbino and Birney 2008), SOAPdenovo (https://soap.genomics.org.cn/soapdenovo.html) and 298 

Trans-Abyss (Robertson et al. 2010). More recently, the Trinity software (Grabherr et al. 2011) has 299 

become available, developed specifically for de novo transcriptome assembly from short-read RNA-300 

seq data. Since reads from SGS are short in length compared with pyrosequencing output (Liu et al. 301 

2012), transcriptome de novo assemblers often employ a De Bruijn graph algorithm instead of the 302 

traditional Overlap Layout Consensus (OLC). This minimizes the amount of memory required to handle 303 

numerous parallel calculations. Further information on graph algorithms can be found elsewhere (Li 304 

et al. 2012; Miller et al. 2010). 305 

Most de novo assemblers are freely distributed but usually required operating using command line, 306 

which deters many biologists without programming skills. To overcome this issue, bioinformatics 307 

platforms such as Galaxy (https://www.usegalaxy.org/) and CyVerse (https://www.cyverse.org/) 308 

embed command line packages into user-friendly interfaces. Yet, there is a limited flexibility in utilizing 309 

these tools. Learning how to use command line programming can be time consuming and potentially 310 

is out of reach for many non-model biology researchers and this can slow the pace at which NGS 311 

studies are performed on these species. To address this, users can use commercial products (usually 312 

with a “point-and click” user-friendly interface) that are available on the market. A summary of some 313 

https://www.cyverse.org/
https://www.usegalaxy.org/
https://soap.genomics.org.cn/soapdenovo.html


notable de novo assemblers can be found in Table 2. A performance comparison of commonly used 314 

de novo transcriptome assemblers can be found elsewhere (Amin et al. 2014; Finseth and Harrison 315 

2014; Ghangal et al. 2013; Surget-Groba and Montoya-Burgos 2010; Zhao et al. 2011).  316 

One significant challenge associated with de novo assembly is the lack of software to identify the 317 

assembly that is most accurate. To address this challenge, Sequence Comparative Analysis using 318 

Networks (SCAN) was created (Misner et al. 2013). SCAN uses a reference dataset (from a related 319 

genome) to identify the most accurate de novo assembly and to classify “good” transcripts in these 320 

assemblies (Misner et al. 2013). A similar program was generated for this purpose, named DETONATE 321 

(an abbreviation of DE novo TranscriptOme rNa-seq Assembly with or without the Truth Evaluation) 322 

(Xie et al. 2014). This program combines multiple factors into a single evaluation score that then can 323 

be used to select the best assembler. The software is distributed freely at 324 

https://deweylab.biostat.wisc.edu/detonate. Another approach is to employ the CEGMA pipeline 325 

(Core Eukaryotic Genes Mapping Approach) (Parra et al. 2007) or BUSCO (Benchmarking Universal 326 

Single-Copy Orthologs) (Simão et al. 2015). These programs scan the de novo assembly against a 327 

dataset of core eukaryotic genes that are well conserved across several eukaryotic taxa, to calculate 328 

the coverage of protein-coding genes, thus estimating the degree of completeness of the 329 

reconstruction and the full-length complement of transcript sequences comprising the de novo 330 

transcriptome assembly. As a concluding remark, benchmarking assemblies are an option that can be 331 

trialled, but the practice is still in development. 332 

Transcriptome mapping 333 

Following de novo assembly, reads can be aligned against the de novo assembly (mapping). The 334 

mapping step can serve two purposes: i) a remapping step can be used to assess the assembly quality 335 

and ii) the alignment can then be quantified; gene expression levels can be inferred from the total 336 

counts of reads aligned to each contig. Furthermore, mapping also enables variant calling for 337 

transcripts of interest.  338 

https://deweylab.biostat.wisc.edu/detonate


Stringent parameters may result in a small subset of reads mapped, while less stringent settings 339 

reduce mapped read specificity. To gain a balance between sensitivity and specificity, trials with 340 

different parameters can be performed. Popular aligners for RNA-seq include: Bowtie 1 (Langmead et 341 

al. 2009) and Bowtie 2 (Langmead and Salzberg 2012), BWA (Li and Durbin 2009), GSnap (Wu and Nacu 342 

2010), and commercial programs including CLC Genomics Workbench®, DNA-STAR® or Partek 343 

Genomics®. A detailed list of available aligners can be found at 344 

https://www.ebi.ac.uk/~nf/hts_mappers/ (Fonseca et al. 2012). Comparisons of different aligners 345 

usually takes into consideration running time, accuracy, as well as the sensitivity of mapped reads 346 

(Baruzzo et al. 2017; Grant et al. 2011; Hatem et al. 2013; Li and Homer 2010). Critically, for non-model 347 

organisms where no genome sequence is available, it is hard to define which are the best mapping 348 

parameters to apply. This is due to the occurrence of isoforms and splice variants that cannot be 349 

accurately determined without access to a reference genome. Reads can be mapped randomly to 350 

shared exons between splice variants, biasing the resulting count and confounding the biological 351 

interpretation. 352 

Quantifying transcript level and analysis of differential gene expression  353 

To quantify gene expression, RNA-seq reads need to be aligned to a reference genome from model 354 

organisms or to the transcriptome sequences reconstructed using de novo assembly strategies for 355 

organisms without reference genome sequences. The number of mapped reads is calculated based on 356 

the outcome of the alignment and can be used to estimate the relative expression level of individual 357 

genes. Following this, statistical methods are applied to test for significant differences among 358 

experimental groups. The data however, first needs to be normalized since there are inherent 359 

differences in total reads per sample, resulting in over-represented long transcripts. With rapid 360 

development of RNA-seq technology, there are now numerous tools available to estimate gene 361 

expression levels, which vary in their efficiency. Popular RNA-seq quantification (reads counting) tools 362 

include: RSEM (Li and Dewey 2011), eXpress (Roberts and Pachter 2012), HTSeq (Anders et al. 2015), 363 

Salmon (Patro et al. 2017) and kallisto (Bray et al. 2016). Several studies have also been conducted to 364 

https://www.ebi.ac.uk/%7Enf/hts_mappers/


compare the pros and cons of each tool (Chandramohan et al. 2013; Li and Homer 2010; Teng et al. 365 

2016).  366 

DEG analysis programs perform statistical tests to determine if fold change results under different 367 

experimental conditions are significant (e.g. among tissues types, life stages etc.). Many programs 368 

have been developed for DEG analysis (a brief summary of popular DEG tools can be found in Table 3) 369 

and several comparative assessments are available (Khang and Lau 2015; Kvam et al. 2012; Rajkumar 370 

et al. 2015; Robles et al. 2012; Soneson and Delorenzi 2013; Zhang et al. 2014). Much like assembly 371 

and mapping, there is no guarantee as to which tool is the best, or which parameters will result in the 372 

highest accuracy or robustness of the results generated (Zhang et al. 2014). Most DEG call methods 373 

are designed to address analysis of RNA-seq experiments that have biological replicates. There are a 374 

few tools however, that can handle non-replicated experiments (e.g. GFOLD (Feng et al. 2012), EdgeR 375 

(Robinson et al. 2010), NOISeq (Tarazona et al. 2011). A recent study recommended using EdgeR 376 

(Robinson et al. 2010) or DESeq2 (Love et al. 2014) for experiments with less than 12 replicates per 377 

group, while they suggest studies with more than 12 replicates should use DESeq2 for the statistical 378 

analysis (Schurch et al. 2016). An alternative strategy is to employ several software packages and then 379 

compare the outcome of each approach, highlighting not only the similarity, but also differences 380 

among these analyses. Fold change is an important parameter to consider, but will depend on the 381 

number of reads that are assigned to a specific transcript. If the depth is low, yet with high fold change 382 

between groups, it should be considered as noise. For example, 10 X 100 base reads mapped onto a 383 

1 Kb transcript per sample in one group (giving an average depth of 1) compared to 1 read on average 384 

per sample in the other group is a 10-fold change, yet the coverage is very low and should be validated 385 

using additional samples via qPCR.  386 

Annotation of transcripts 387 

After all reads have been assembled de novo into contigs, the next step is to annotate all the contigs 388 

based on the most up-to-date database (i.e. identify homology to previously characterized genes). The 389 



most common way to annotate a large number of transcripts is the Basic Local Alignment Search Tool 390 

(BLAST). As the number of contigs in every de novo assembly can be thousands to a few hundred 391 

thousand sequences, usage of an automated search tool, in particular BLAST+ (Camacho et al. 2009), 392 

is essential. For non-model species, many candidate protein databases are available including the non-393 

redundant protein database (nr), UniProtKB/Swiss-Prot database, and the Reference Sequence 394 

database (RefSeq). RefSeq (nucleotide and protein) and UniProt/Swiss-Prot (protein) consist of 395 

curated, well annotated sequences, whereas the nr database includes both curated and non-curated 396 

databases. For most crustacean RNA-seq experiments, the nr database is considered to be the best 397 

choice due to the fact that very few crustacean genes have been properly annotated to date, a 398 

problem that has been highlighted (Clark and Greenwood 2016; Das and Mykles 2016).  399 

After transcripts have been scanned against the protein database and assigned annotations, there is 400 

a variety of downstream packages that can further analyse a contig, including Gene Ontology (GO) 401 

term analysis, functional enrichment analysis, protein domain analysis (PFAM domain search - 402 

pfam.xfam.org), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps (Kanehisa and 403 

Goto 2000). Each entry in the sequence database can be classified into a number of biologically 404 

relevant terms. In GO analysis, most genes can be assigned to one out of three basic ontologies: 405 

cellular component, biological process or molecular function. When comparing samples from two 406 

groups, differentially represented GO terms can help define the mechanism via which the groups differ 407 

from one another. Similarly, when using KEGG, contigs can be assigned with components of specific 408 

pathways. Differential expression can allow a detailed assessment of the changes in pathways 409 

between studied groups. PFAM shows domains within the open reading frames of contigs that enables 410 

characterization of the protein function, based on the architecture of domains in a polypeptide chain. 411 

A number of software packages are capable of extracting vast numbers of GO terms from public 412 

databases including Blast2GO (Conesa et al. 2005), DAVID - https://david.abcc.ncifcrf.gov/ (Huang da 413 

et al. 2009) or ermineJ (Lee et al. 2005). Among these programs, Blast2GO stands out as an easy to 414 

use, point-and-click program that has become very popular in the last few years.  415 

https://david.abcc.ncifcrf.gov/


In addition to Blast2GO, databases like PFAM (Finn et al. 2016), eggNOG (Huerta-Cepas et al. 2015) 416 

and InterProScan (Jones et al. 2014) can be employed to predict the function of unknown proteins. 417 

The Trinity RNA-seq package, Trinotate (https://trinotate.github.io/), uses UniProt, eggNOG and GO 418 

Pathway databases for annotating novel sequences and these have been widely used in recent years 419 

(Das and Mykles 2016; Das et al. 2016). 420 

Validation of RNA-seq results 421 

Validation is a very important step in every RNA-seq study. There is generally a very high correlation 422 

between RNA-seq and qPCR results with respect to relative gene expression. A significant point is that 423 

testing the same RNA samples used in the NGS platform for validation with techniques like qPCR or 424 

digital PCR only validates the sequencing accuracy result. Therefore, additional, independent 425 

biological replicates should be included to properly validate the biological interpretation from the 426 

RNA-seq experiment. Essentially, validation post sequencing is now mandatory for publication. An  427 

approach has been proposed to set the minimum acceptable standard for qPCR validation (Fang and 428 

Cui 2011) that takes a number of factors into consideration, including the number of genes tested and 429 

the number of isoform transcripts detected in the transcriptome. Nevertheless, up-to-date, qPCR 430 

techniques offer the easiest way to validate data in a transcriptomics study. One important note for 431 

researchers who are unfamiliar with the technology is that some RNA-seq pipelines allow RNA-seq 432 

analysis at the gene level (Trinity/RSEM for instance (Haas et al. 2013)). However, there is a deeper 433 

level of transcripts component (in which transcripts can be isoforms resulting from alternative splicing 434 

events or a single nucleotide variation). Therefore, researchers should design primers that are not 435 

included in these regions to avoid unreliable qPCR results between biological replicates. As a 436 

concluding remark for this section, several studies have compared RNA-seq results to qPCR data, and 437 

have found excellent correlations between the approaches (Everaert et al. 2017; Rajkumar et al. 2015; 438 

Wu et al. 2014).  439 

 440 
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PPRROOMMIISSEESS AANNDD CCHHAALLLLEENNGGEESS OOFF RNA--SSEEQQ BBAASSEEDD SSTTUUDDIIEESS IINN CCRRUUSSTTAACCEEAANNSS  441 

Studied topics 442 

SGS has revolutionized biological science, shifting it toward the post-genomics era. Transcriptomics 443 

studies in crustaceans include either: 444 

1. Sequencing and annotation of the transcriptome of one (or several) tissue/s, or a whole 445 

individual of a particular taxa in a specific developmental stage or under specific experimental 446 

conditions. 447 

2. Applying RNA-seq to identify DEGs among different physiological conditions, treatments, 448 

developmental stages and/or tissues. 449 

3. Identification of novel transcripts – enzymes, receptors, hormones, neuropeptides. 450 

4. Screening for variant mutations - SNPs, SSRs and/or microsatellites. 451 

5. A combination of the above. 452 

To date, several RNA-seq projects have been initiated on a variety of crustacean species. In Table 5, 453 

we have summarized several RNA-seq based studies on crustacean taxa that have been conducted 454 

over the last few years based on the following categories: Aquatic toxicology, Reproduction & sexual 455 

differentiation, Disease resistance & immunology, Developmental biology, and Physiology. This is 456 

however, by no means an exhaustive list as hundreds of applied RNA-seq studies have been 457 

undertaken in recent years, rather the list here illustrates several model comparative RNA-seq 458 

approaches. 459 

 460 



Ongoing challenges for applied RNA-seq studies of crustaceans 461 

– Experimental limitation: A good experimental design will have a major impact on data 462 

outcomes; it can prevent wasted resources and help avoid the generation of unpublishable results. 463 

The balance between sequencing cost and experimental design constraints is a major issue that has 464 

been highlighted in many review articles. Due to budgetary limitations, there will always be an 465 

incentive to cut costs by sequencing with higher depth but with little or no biological replication. 466 

Furthermore, where depth is added, a large number of reads will be also mapped to the already well-467 

covered regions, while if additional replication was available, greater statistical power can be achieved 468 

resulting in better biological inference. To resolve this problem, optimal guidelines for the design of 469 

RNA-seq experiments are needed and should be applied accordingly. In parallel, biological replicates 470 

(at least 3 or greater) are required for an RNA-seq study to reach a basic publishable level.  As another 471 

recommendation for best practice, is undertaking a pilot-sequencing project where a high number of 472 

libraries are run on one lane initially. This can be valuable in assessing the feasibility of the larger 473 

experiment, as well as providing a good indicator for how to address trade-offs between obtaining 474 

high quality output vs cost. Finally, although RNA-seq methods are becoming more robust and reliable 475 

and sometimes qPCR validations are proven to be unnecessary, a section for qPCR validation of 476 

selected genes/transcripts of interest may be beneficial to reveal the biological insights if the study 477 

has limited replications. Therefore, we recommend that for reliable biological interpretation and 478 

validation of RNA-seq analysis, the candidate genes themselves are tested for expression, rather than 479 

choosing random genes or genes showing high expression levels. 480 

–  In silico annotation and functional annotation: Annotation of RNA-seq data is based loosely 481 

on BLAST searches. In fact, many BLAST results produce “hypothetical”, “predicted”, 482 

“uncharacterized”, or “low-quality” assignments. This highlights the fact that gene databases for non-483 

model species currently, are very limited. To add another layer of complexity, Daphnia pulex, the 484 

model species currently available for crustaceans, has a large number of genes that currently remain 485 



unannotated. Furthermore, when compared with Decapoda, it is very remotely related and in many 486 

cases, shares higher similarity with insects than with other crustacean taxa. Further downstream 487 

annotation is also a constraint for crustacean RNA-seq studies, as specific GO classification and KEGG 488 

pathways are still not available for these taxa. As a result, drawing biological interpretations from 489 

predicted results can be problematic. Moreover, similarities in structure do not necessarily correlate 490 

with equivalent functionalities. It is crucial therefore, to highlight that in silico prediction is only 491 

speculative and functional annotation is very important to validate any biological interpretations (in 492 

particular for novel genes). RNAi technology (gene silencing) is now the go-to method for gene 493 

functional studies in decapod crustaceans and it has been already applied in some cases (Sagi et al. 494 

2013). Gene editing technologies, for example CRISPR/Cas9 technology, have emerged recently and 495 

hold great potential for functional annotation in decapod crustacean species (Mykles and Hui 2015). 496 

Employing RNAi and/or CRISPR-Cas9 in RNA-seq studies would be extremely helpful to highlight key 497 

genes and resolve functional roles of novel genes for crustacean species.  498 

– Combining transcriptomics/RNA-seq with other OMICS techniques: In parallel with advances in 499 

RNA-seq technologies, other OMICS technologies including genomics, proteomics, metagenomics 500 

phylogenomics and phenomics have also developed rapidly. This highlights a challenge for RNA-seq 501 

studies, to make use of other OMICS approaches and to utilize them to create a multilayer outcome. 502 

One key reason why decapod crustacean genomes are not yet available is that they are often very 503 

large and complex which makes them hard to resolve. Nevertheless, draft genomes of a few 504 

crustacean species have been made publicly available recently including draft genomes for some 505 

decapods including: N. denticulata (Kenny et al. 2014), P. vannamei (Yu et al. 2015), E. sinensis (Song 506 

et al. 2016), P. hawaiensis (Kao et al. 2016), P. monodon and M. japonicus (Yuan et al. 2017), and  P. 507 

virginalis (Gutekunst et al. 2018). Utilizing these new genomic resources will allow better gene 508 

annotation and functional annotation of crustacean gene pathways. There is no doubt that in the near 509 

future, when the cost barrier for sequencing is essentially overcome, coupled with improved 510 



sequencing technologies, combining RNA-seq approaches with integrated OMICS will enable 511 

researchers to answer the most complex of biological questions.  512 

CCOONNCCLLUUSSIIOONNSS  513 

To conclude, RNA-seq offers great promise for crustacean studies. It is a very powerful tool that can 514 

lead to developing a better understanding of underlying pathways and mechanisms that form the 515 

basis of many scientific questions. The guidelines offered here for future RNA-seq studies of 516 

crustaceans are an attempt to assist biologists who are not familiar with the complex and diverse array 517 

of bioinformatics software that are currently available. It is also important however, to highlight the 518 

gap between in silico prediction from RNA-seq analysis and in vivo results. This may be explained in 519 

general, by limitations on experimental designs in the past, the lack of annotation databases for 520 

crustacean species, as well as the need for question-driven research. In the future, we also suggest 521 

that RNA-seq should be integrated with other OMICs technologies to increase data output as well as 522 

improving biological insights. 523 

 524 
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H. rubra: Halocaridina rubra 557 

558 
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