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ABSTRACT 

The preparation of the hydroxo-osmium(IV) complex OsH3(OH){xant(PiPr2)2} (xant(PiPr2)2 = 

9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) and its catalytic efficiency for the 

dehydrogenation of formic acid to H2 and CO2 are reported. The mechanism of the 

dehydrogenation has been unambiguously stablished by combining the kinetic analysis of the 

catalysis, the isolation of the intermediates and the kinetic analysis of their decomposition, and 

DFT calculations on the rate-determining step. Under catalytic conditions the trihydride-hydroxo 

complex reacts with formic acid to afford OsH3{κ1-O-(HCO2)}{xant(PiPr2)2}, which isomerizes 

into OsH3{κ1-H-(HCO2)}{xant(PiPr2)2} by means of the slippage of the metal center through a 

formate O-C-H path. The κ1-H-formate intermediate releases CO2 to give the previously reported 
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tetrahydride OsH4{xant(PiPr2)2}, which undergoes protonation with formic acid. The resulting 

OsH5-cation exists as an equilibrium mixture of the tautomers trihydride-compressed dihydride 

[OsH3(H···H){xant(PiPr2)2}]+ and hydride-compressed dihydride-dihydrogen [OsH(H···H)(η2-

H2){xant(PiPr2)2}]+. The dissociation of H2 from the latter leads to [OsH3{xant(PiPr2)2}]+, which 

coordinates HCO2
- to regenerate the trihydride-(κ1-O-formate) complex and to close the cycle. 

The release of CO2 from the κ1-H-formate intermediate is the rate-determining step of the 

catalysis. 

INTRODUCTION 

Hydrogen gas is a promising energy carrier as clean alternative to conventional fossil fuels. It 

can be produced from any primary energy source, has an energy content per mass that is about 

three times that of the carbon-based fuels, can be used by direct introduction into either an 

internal combustion engine or to a fuel cell, and its oxidation with O2 gives water.1 However, its 

energy content per volume is very low at standard temperature and pressure. To overcome this 

difficulty, several methods are being investigated.2 

The concept of chemical storage is an attractive strategy; in particular the use of organic 

liquids since they can be transported through the liquid-fuel infrastructures. In these compounds, 

hydrogen does not exist in its molecular form but is covalently bound. At the time and place of 

energy demand, H2 is released via dehydrogenation. The hydrogen carrying liquid itself is not 

consumed but is reloaded and used in further cycles.3 Formic acid is a reputed family member of 

liquid organic hydrogen carriers. It is stable under ambient conditions, produced in large-scale, 

and biodegradable. Furthermore, it has low flammability and toxicity, its gravimetric and 

volumetric H2 capacity of 4.4 wt. % and 53.4 g/L are reasonable,4 and its recyclability by means 
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CO2 hydrogenation undergoes a constant improvement,5 reaching complex RuHCl(CO)(PNP) 

(PNP = 2,6-bis(di-ter-buthylphosphinomethyl)pyridine) a TOF of 1100000 h-1 for the reduction 

to formates in 2014.5a 

Both homogeneous and heterogeneous transition metal systems have proven to have the ability 

of promoting the formic acid (FA) dehydrogenation to H2 and CO2.
6 The majority of the 

homogeneous catalysts are complexes of Fe,7 Ru,8 and Ir.9 In addition, a few precursors of Mo,10 

Rh,11 Ni,12 Cu,13 and Al14 have been also reported. Further research needs to be focused on the 

mechanism of the whole catalytic process. Most of them are only postulated and experimental 

support is necessary. The catalysis has two stages, CO2 formation and H2 formation. The rate-

limiting step can be any of them. The main divergences are found in the former, which may 

happen by hydride abstraction, β-hydride elimination, or by an outer-sphere mechanism.15 

Although the latter is currently questioned.16 

The use of Os in homogeneous catalysis has received significantly less attention than the use 

of its group congeners Fe and Ru. With the exception of Sharpless dihydroxylation and processes 

akin,17 it has been centered in some particular reactions of organic synthesis.18 However, in the 

last years, it is being revealed as a promising alternative for processes related to the hydrogen 

economy.19 Of special relevance are its polyhydride derivatives,20 which have shown to have the 

ability of carrying out the dehydrogenation of amineboranes21 and liquid organic hydrogen 

carriers such as alcohols and cyclic amines.22 Other ligand with good performance is the hydroxo 

group. For instance, complex [Os(OH)(η6-p-cymene)IPr]OTf (IPr = 1,3-bis(2,6-

diisopropylphenyl)imidazolylidene; OTf = CF3SO3) has shown great efficiency in the hydrogen 

transfer from 2-propanol to aldehydes,23 the α-alkylation of arylacetonitriles and methyl 

ketones,24 and the hydration of nitriles to amides.25 
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Hydroxo complexes of the platinum group metals are very scarce and their chemistry is 

underdeveloped.26 Hydride-hydroxo derivatives are particularly challenging since formally result 

from the oxidative addition of water, which is generally disfavored from a thermodynamic point 

of view and thus the limited known examples display reversibility.27 Compounds of Os of this 

class are Os(II)-species28 and, although the oxidation state +4 is usual for this element when 

bears small size ligands, the hydride-hydroxo-Os(IV) complexes are unknown until now. 

Pincer ligands show a marked ability to stabilize uncommon complexes due to the disposition 

of their donor atoms.29 Ether-diphosphines have particular interest due to their flexibility, which 

grant the ability of changing between κ3-mer-, κ3-fac, and κ2 coordination modes. This allows 

them to adapt to the requirements of the participating intermediates of the catalytic cycles.30 In 

the search for efficient catalysts for processes related to hydrogen economy and also for reactions 

of interest in organic synthesis, some years ago we initiated a research program on POP 

complexes of groups 819c,30c,30i,31 and 9,30h,32 which has yielded us to discover notable catalysts 

for dehydrogenation of ammonia borane,30h monoalcoholysis of disilanes,32b synthesis of imines 

from alcohols and amines with liberation of H2,
19c hydrogen transfer from 2-propanol to ketones, 

α-alkylation of phenylacetonitrile and acetophenone with alcohols,31b regio- and stereoseletive 

head-to-head (Z)-dimerization of terminal alkynes,30c,31b borylation of arenes,32c and decyanative 

borylation of arylnitriles.32d Now, we have discovered that the ether-diphosphine 9,9-dimethyl-

4,5-bis(diisopropylphosphino)xanthene (xant(PiPr2)2) stabilizes a hydride-hydroxo-Os(IV) 

complex, which efficiently promotes the FA dehydrogenation. This paper reports the preparation 

and characterization of this novel catalyst precursor, its activity in the dehydrogenation process, 

and the kinetics and mechanism of the same one. 

RESULTS AND DISCUSSION 
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Preparation and Characterization of the Catalyst Precursor. The known hydroxo 

compounds of osmium include the nitrido complexes Os(N)Tp(OH)2 (Tp = hydridotris(1-

pyrazolyl)borate),33 [Os(N)(CH2SiMe3)(OH)]-, and [Os(N)(CH2SiMe3)(OH)2]
-,34 the previously 

mentioned cation [Os(OH)(η6-p-cymene)IPr]+,23 the hydride-hydroxo derivatives 

OsH(OH)(PMe3)4,
28a OsH(OH)(CO)(PR3)2 (PR3 = PiPr3,

28b PtBu2Me28c), OsH(OH)(NH2CMe2 

CMe2NH2)(PPh3)2,
28d and [OsH(OH)(C≡CPh)(IPr)(PiPr3)]OTf,28e and a few dimers.35 They were 

prepared by one of these methods: hydrolysis of Os-C28a,28c or Os-N28d bonds and replacement of 

chloride by hydroxo.23,28a,28c,34 The first method is not suitable in our case by the lack of an 

appropriate starting compound. So, we tried the substitution of chloride by hydroxo employing 

the previously reported30c trihydride OsH3Cl{xant(PiPr2)2} (1) as a precursor. However, all 

attempts were unsuccessful, reaching a partial substitution in the best of cases. Then, we decided 

to replace the chloride ligand of 1 by a better leaving group as trifluoromethanesulfonate 

(Scheme 1). 

Scheme 1. Preparation of complex 3 

 

Treatment of a toluene solution of 1 with 2.0 equiv of Me3SiOTf, at room temperature, for 10 

min affords the synthetic intermediate OsH3(OTf){xant(PiPr2)2} (2), which was isolated as a 

yellow solid in 90 % yield. The substitution reaction is supported by the 19F NMR spectrum, in 

toluene-d8, which shows a singlet at -77.7 ppm due to the coordinated OTf¯ anion. Like observed 

for its chloride precursor, the 1H NMR spectrum of 2 in toluende-d8 shows a resonance at -13.82 

ppm for the inequivalent hydride ligands, which indicates the operation of two thermally 
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activated site exchange processes within the OsH3 unit. Between 233 and 223 K, decoalescence 

occurs and two signals at -12.12 and -17.02 ppm in a 2:1 intensity ratio are observed. Although 

at lower temperatures than 223 K the resonance at -12.12 ppm displays broad, the expected 

second decoalescence is not reached even at 183 K. According to the trihydride character of the 

compound, 400 MHz T1(min) values of 89 ± 4 and 69 ± 3 ms were found at 223 K for the 

hydride resonances. The 31P{1H} NMR spectrum shows a singlet at 54.6 ppm between 298 and 

183 K. 

Trifluromethanesulfonate is easily displaced by a hydroxo group, in contrast to the chloride 

ligand of 1. Dropwise addition of a water KOH solution to an acetone solution of 2 at room 

temperature leads to the hydroxo OsH3(OH){xant(PiPr2)2} (3), which was isolated as a yellow 

solid in 92 % yield. The presence of the hydroxo ligand in this novel osmium(IV) species is 

supported by the IR and 1H NMR spectrum. The IR contains the characteristic ν(OH) band at 

3672 cm-1, whereas the 1H NMR spectrum in toluene-d8 shows a broad resonance at 2.87 ppm 

corresponding to the OH-hydrogen atom. Like the 1H NMR spectrum of 2, the spectrum contains 

a signal (δ1H, -12.25) for the hydrides, indicating that are also involved in two thermally activated 

site exchange processes. At about 273 K, a first decoalescence occurs to give two resonances at -

12.46 and -13.08 ppm in a 2:1 intensity ratio. Between 203 and 193 K, the lower field signal 

splits into an AB system. The JAB coupling constant decreases from 151.9 to 146.8 Hz as the 

temperature does from 193 to 173 K. These unusually high value for two hydrides disposed cis 

and their dependence with the temperature can be rationalized in terms of quantum-mechanical 

exchange coupling between the involved hydrides.20 The 31P{1H} NMR spectrum shows a 

singlet at 49.9 ppm. 
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FA Dehydrogenation Promoted by 3: Kinetic Study. Trihydride-hydroxo complex 3 promotes 

the FA dehydrogenation to H2 and CO2.
36 It works well with diluted solutions and also 

dehydrogenates neat formic acid, but rapidly decomposes under the latter conditions. The 

reactions were performed in toluene, under atmospheric pressure, between 298 to 318 K. The 

partial volume of hydrogen formed (VH2
) was determined from the total volume (VT) of gas 

generated according to eq 1, where Vm(H2) and Vm(CO2) are the partial molar volumes of H2 and 

CO2, respectively. The total volume was measured by displacing vaseline oil from a gas burette. 

VH2
= [VT/(Vm(H2) + Vm(CO2))]Vm(H2) (1) 

The kinetics of the catalysis was studied to gain insight into the process. Initial rates (Table 1) 

were determined from the gas evolution experiments (Figure 1) by using eq 2, where P is the 

atmospheric pressure (atm), R is the molar gas constant, T is the temperature (K) and Vsol is the 

total volume of the reaction solution. 

d[H2]/dt = (dVH2
/dt)P/𝑅TVsol (2) 

 

Figure 1. VH2
 Generated from the catalytic dehydrogenation of H2CO2 (0.53 M) promoted by 3 

in toluene at 298 K. 102[3]: 0.61 M (blue circle), 1.23 (orange square), 1.86 (grey triangle), 2.48 

(yellow diamond), 3.06 (green cross). 
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Table 1. Kinetic data for the dehydrogenation of formic acid promoted by 3a 

T (K) 102[3] (M) [H2CO2]0 (M) 102d[H2]/dt b 

(M·min-1) 

k (min-1) 

298 0.61 0.53 0.057 0.094 

298 1.23 0.53 0.123 0.100 

298 1.86 0.53 0.155 0.083 

298 2.48 0.53 0.228 0.092 

298 3.06 0.53 0.278 0.091 

298 1.23 0.42 0.118 0.096 

298 1.23 0.64 0.124 0.101 

298 1.23 0.74 0.128 0.104 

298 1.23 0.95 0.128 0.104 

303 1.24 0.53 0.216 0.174 

308 1.24 0.53 0.370 0.298 

313 1.23 0.53 0.503 0.409 

318 1.23 0.53 0.914 0.743 

a Reactions were quantitative yielding TON between 17 and 87. b Calculated at 20% conversion. 

A rate law for the dehydrogenation of formic acid promoted by 3 is 

d[H2]/dt = 𝑘[H2CO2]0
a[𝟑]b (3) 

The rate dependence on formic acid concentration was determined at 298 K, for a constant 

concentration of 3 of 1.23·10-2 M, by measuring initial rates with variable initial concentrations 

of formic acid ([H2CO2]0 in Table 1) from 0.42 to 0.95 M. Under these conditions, the rate is 

independent of [H2CO2]0 within the experimental error (Figure 2), in agreement with a = 0 in eq 

3. The rate dependence on the catalyst precursor 3 was also determined at 298 K, for a fixed 
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initial concentration of formic acid of 0.53 M, by varying the concentration of 3 from 0.61·10-2 

to 3.06·10-2 M. Now, the plot of ln(d[H2]/dt) versus ln[3] affords a straight line of slope 0.96 ± 

0.17 (Figure 3), according to a first order in osmium concentration (b = 1 in eq 3). Therefore, the 

rate law is: 

d[H2]/dt = k[𝟑] (4) 

 

Figure 2. Plot of ln(d[H2]/dt) vs ln[H2CO2]0 in toluene at 298 K, for a constant [3] of 1.23·10-2 

M. 

 

Figure 3. Plot of ln(d[H2]/dt) vs ln[3] in toluene at 298 K, for a constant [H2CO2]0 of 0.53 M. 

A plot of d[H2]/dt versus [3] (Figure 4) provides a value of 9.0 ± 1.0·10-2 min-1 for k at 298 K. 

The activation parameters obtained from the Eyring analysis (Figure 5) are ΔH‡ = 18 ± 3 

kcal·mol-1 and ΔS‡ = -3 ± 8 cal·mol-1K-1, which yield a ΔG‡ value of 18 ± 5 kcal·mol-1 at 298 K 
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in agreement with the values reported for the dehydrogenation of formic acid catalyzed by other 

homogeneous systems (17 – 26 kcal·mol-1).5a, 7d, 9f, 37 

 

Figure 4. Plot of d[H2]/dt vs [3] using 0.53 M of H2CO2 in toluene at 298 K. 

 

Figure 5. Eyring plot for the dehydrogenation of formic acid (0.53 M) promoted by 3 (1.23·10-2 

M) in toluene. 

Stoichometric Reactions. In order to have access to the key intermediates of the catalysis, we 

studied the stoichiometric reaction of 3 with formic acid in addition to the stages of CO2 and H2 

formation. 

The addition of 1.0 equiv of formic acid to a toluene-d8 solution of 3 contained in a NMR tube 

quantitatively and instantly leads to the formate derivative OsH3{κ1-O-(HCO2)}{xant(PiPr2)2} 
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(4), as a consequence of the protonation of the hydroxo ligand of 3 and the subsequent 

displacement of the generated H2O by a formate anion (Scheme 2). 

Scheme 2. Reaction of 3 with H2CO2 

 

The presence of a formate group in the osmium coordination sphere is supported by 13C{1H} and 

1H NMR spectra of the new species at 253 K. The 13C{1H} NMR spectrum shows at 167.8 ppm 

a singlet due to the HCO2-carbon atom, whereas the 1H NMR spectrum contains a singlet at 8.91 

ppm corresponding to the HCO2-hydrogen atom. Like in 2 and 3, the hydrides of 4 experience 

position exchange thermally activated. Thus, they display a broad signal at -12.55 ppm. At about 

213 K, a first decoalescence occurs to afford two signals at -12.00 and -13.32 ppm. At 193 K, the 

expected second decoalescence can be intuited from the very broad form of the resonance at -

11.93 ppm. In the 31P{1H} NMR spectrum, the diphosphine gives rise to a singlet at 51.2 ppm. 

These spectroscopic features are consistent with the stereochemistry proposed for 4 in Scheme 2, 

which was confirmed by the X-ray diffraction analysis of a single crystal obtained from the 

toluene-d8 solution (Figure 6). The Os{xant(PiPr2)2} skeleton is T-shaped with the metal center 

situated in the common vertex and P1-Os-P2, P1-Os-O3, and P2-Os-O3 angles of 159.84(7)º, 

83.08(12)º, and 82.63(12)º, respectively. The geometry around the osmium atom can be 

described as a distorted pentagonal bipyramid with axial PiPr2 groups and the oxygen atoms of 

the diphosphine and formate in the perpendicular plane, mutually cisoid disposed, along with the 

hydrides. 



 12 

 

Figure 6. Molecular drawing of 4 with 50% probability ellipsoids. Hydrogen atoms (except 

hydrides and H1) are omitted. Selected distances (Å) and angles (deg): Os-O3 = 2.231(4), Os-O1 

= 2.137(6), Os-P1 = 2.2915(19), Os-P2 = 2.2848 (18); P1-Os-P2 = 159.84(7), P1-Os-O3 = 

83.08(12), P2-Os-O3 = 82.63(12), O1-Os-O3 = 76.1(3) 

Complex 4 is unstable and releases CO2 to afford OsH4{xant(PiPr2)2} (5), according to Scheme 

3. The transformation was monitored by 31P{1H} NMR spectroscopy as a function of time 

between 303 and 323 K. Figure 7 shows the transformation at 323 K. The decrease of 4 is an 

exponential function of time, in agreement with a first-order process, which fits to the expression 

ln([𝟒]/[𝟒]0) = 𝑘stt  (5) 

where [4]0 is the initial concentration of 4 and [4] is the concentration at time t. The values for 

the stoichiometric rate constant kst are collected in Table 2. The activation parameters calculated 

by means of the Eyring analysis (Figure 8) are ΔH‡ = 20 ± 3 kcal·mol-1 and ΔS‡ = 0 ± 8 cal·mol-

1K-1. They affords a ΔG‡ value of 20 ± 5 kcal·mol-1 at 298 K, which compares well with that 

obtained for the catalytic process. 

Scheme 3. Decarboxylation of complex 4 
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Figure 7. 31P{1H} spectra (161.98 MHz, in toluene-d8) for the transformation of 4 into 5 at 323 

K. 
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Figure 8. Eyring plot for the decarboxylation of 4 (6.4·10-2 M) in toluene-d8. 

Table 2. Rate Constants kst for the Decarboxylation of 4 

T (K) kst (min-1) 

303 0.048 

308 0.072 

313 0.138 

318 0.192 

323 0.396 

 

Tetrahydride complex 5 reacts with FA to form molecular hydrogen and to regenerate the 

formate derivative 4 (Scheme 4). At 243 K, the addition of 1.0 equiv of formic acid to a toluene-

d8 solution of 5 rapidly gives 4 and H2 in quantitative yield. According to previous studies, the 

reaction initially implies the protonation of 4 to afford an OsH5-cation A. DFT-Calculations 

revealed that this cation has two tautomers with similar energies: the trihydride compressed 

dihydride Aa and the hydride-compressed dihydride-dihydrogen Ab.30c The dissociation of the 

coordinated H2 ligand from the latter and the coordination of the formate anion to the resulting 

unsaturated species B should lead to 4. 

Scheme 4. Reaction of 5 with H2CO2 
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The reactions summarized in Schemes 2-4, fully characterize the catalysis. The trihydride-

hydroxo complex 3 is the precursor of the catalyst and, under catalytic conditions, is 

quantitatively transformed into the true catalyst, the formate derivative 4 (Scheme 2), which 

releases CO2 to form the tetrahydride 5 (Scheme 3). The latter reacts with FA to produce 

molecular hydrogen and regenerate 4 in a three step process: protonation, H2 dissociation, and 

formate coordination (Scheme 4). Because the catalytic FA dehydrogenation promoted by 3 has 

the same activation parameters as the stoichiometric release of CO2 from 4, the CO2 formation is 

the rate determining step of the catalysis, while the molecular hydrogen formation is fast. 

Mechanism of the CO2 Formation Stage. As previously mentioned the CO2 formation stage 

can occur through three different pathways: outer-sphere, β-hydride elimination, and hydride 

abstraction. An outer-sphere pathway must be excluded in this case because the system does not 

bear any function which could allow such catalysis class. β-Hydride elimination reactions have 

been proposed in cycles initiated by half-sandwich iridium(III) derivatives;9f, 9i, ruthenium 

complexes bearing pincer PNP ligands;8e iron species stabilized by PPP groups;7c and catalysts 

generated in situ from Fe3(CO)12, 2,2’:6’2’’-terpyridine or 1,10-phenanthroline, and 

triphenylphosphine working under visible light irradiation,7b among others. A distinctive fact of 

this mechanism is that the β-hydride elimination step occurs on unsaturated species. Hydride 

abstraction has been mainly proposed in reactions catalyzed by aluminum bis(imino)pyridine 

compounds,14 ruthenium tetraphosphine derivatives,8f and iron complexes bearing PNP pincer 

ligands.7d, 7f In contrast to β-hydride elimination, the hydride migration takes place in two-steps, 

on a saturated intermediate, which involve the slippage of the metal center from the coordinated 

oxygen into the free hydrogen and the subsequent CO2 release. In order to discern between β-

hydride elimination and hydride abstraction, DFT calculations (B3LYP(GD3)//6-31G**/SDD(f)) 
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were carried out. The changes in ΔG‡ were calculated in toluene at 298 K and 1 atmosphere. 

Although the reaction is slightly endergonic, the equilibrium is driven by removal of the gas. 

Figure 9 summarizes the energy profile for the β-hydride elimination pathway. Because the 

formate complex 4 is saturated, the dissociation of the oxygen atom of the pincer is necessary in 

order to generate a coordination vacancy at the metal center, which allows the migration of the 

hydrogen atom of the formate group. The dissociation has an activation energy of 16.3 

kcal·mol-1, which is lower than the experimental values obtained for the activation energies of 

the catalysis and for the stoichiometric decarboxylation of 4, and leads to a 16 e- trihydride-

hydroxo-osmium (IV) intermediate C. The latter is 13.9 kcal·mol-1 less stable than 4. The 

migration leads to the Os (η2-O=CO)-derivative D. Its barrier of 24.1 kcal·mol-1 with regard to 4 

lies at the experimental upper limit. Intermediate D is 4.4 kcal·mol-1 less stable than C. The 

dissociation of the coordinated CO2 molecule occurs in two steps, involving the sequential 

cleavage of the Os-C and Os-O bonds. Initially, intermediate D frees the carbon atom to afford 

E, which subsequently undergoes the Os-O rupture. The barrier for the first step of 26.8 

kcal·mol-1, with regard to 4, is out of the experimental range and suggests that the β-hydride 

elimination is also a non-operating pathway. The release of the CO2 molecule leads to F, which 

is a structural isomer of 5. 
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Figure 9. Energy profile (ΔG in kcal·mol-1) for the CO2 formation via β-hydride elimination. 

The hydride abstraction takes place via intermediate G (Figure 10), which can be described as an 

Os{κ1-H-(HCO2)}-species and lies 12.1 kcal·mol-1 above 4. Intermediate G is generated by 

means of the slippage of the metal center from the coordinated oxygen into the free hydrogen, 

following a formate O-C-H path. The process has an activation energy of 22.5 kcal·mol-1, which 

compares well with the experimental values obtained for the catalysis and for the stoichiometric 

release of the CO2 molecule from 4. The agreement between the three values strongly supports a 

hydride abstraction mechanism for the CO2 formation stage and reveals that the slippage of the 

metal center from the oxygen to the hydrogen through the formate O-C-H path is the rate 

determining step of the CO2 formation stage and therefore of the catalysis. According to this, the 

release of CO2 from G is a barrierless process. 
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Figure 10. Energy profile (ΔG in kcal·mol-1) for the CO2 formation via hydride abstraction. 

CONCLUDING REMARKS 

Replacement of the chloride ligand of the trihydride OsH3Cl{xant(PiPr2)2} by a hydroxo group 

affords the trihydride-hydroxo-osmium(IV) derivative OsH3(OH){xant(PiPr2)2} which efficiently 

promotes the FA dehydrogenation to CO2 and H2. 

The dehydrogenation takes place through the catalytic cycle shown in Scheme 5. Under catalytic 

conditions the trihydride-hydroxo complex reacts with FA to form the compound OsH3{κ1-O-

(HCO2)}{xant(PiPr2)2}, which has been isolated and fully characterized. DFT calculations 

suggest that the slippage of the metal center from the oxygen to the hydrogen through the 

formate O-C-H path affords an OsH3{κ1-H-(HCO2)}{xant(PiPr2)2} intermediate, which releases 

CO2 to give the previously described tetrahydride OsH4{xant(PiPr2)2}. The latter undergoes 

protonation with formic acid. According to previous DFT calculations, the resulting OsH5-cation 

exists as an equilibrium mixture of two tautomers: the trihydride-compressed dihydride 

[OsH3(H···H){xant(PiPr2)2}]+ and the hydride-compressed dihydride-dihydrogen 
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[OsH(H···H)(η2-H2){xant(PiPr2)2}]+. The dissociation of the coordinated H2 molecule from the 

latter affords the unsaturated cation [OsH3{xant(PiPr2)2}]+, which coordinates the formate anion 

to regenerate the trihydride-formate and to close the cycle. The slippage of the metal center from 

the oxygen to the hydrogen through the formate O-C-H path is the rate-determining step of the 

catalysis. 

Scheme 5. Catalytic Cycle for the Formic Acid Dehydrogenation Promoted by 3 

 

In conclusion, the first osmium catalyst for the FA dehydrogenation to CO2 and H2 has been 

discovered and the mechanism of the catalysis has been established, including the full 

characterization of the key intermediates and the elucidation of the rate-determining step. 
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EXPERIMENTAL SECTION 

Preparation and characterization of complexes 2, 3 and 4, instrumental methods, NMR spectra, 

X-ray diffraction analysis information and DFT computational details are included in the 

Supporting Information. 

General Methods for Formic Acid Dehydrogenation Studies. A solution of 

OsH3(OH){xant(PiPr2)2} (3) in 2.5 mL of toluene was syringed through a septum into a 25 mL 

flask immersed into a thermostatted bath, which was connected to a gas burette provided with a 

vaseline oil reservoir. Once the system had equilibrated to atmospheric pressure, formic acid was 

syringed and the solution was shaken (500 rpm). The reaction was followed by measuring the 

volume of the formed gas (H2 + CO2) with the time. 

NMR Spectroscopic Studies of the Decarboxylation of OsH3{κ1-O-(HCO2)}{xant(PiPr2)2} 

(4). The decarboxylation of complex 4 was followed by 31P{1H} NMR spectroscopy, in the 

temperature range T = 303 to 323 K. To a screw-top NMR tube containing a solution of 

OsH3(OH){xant(PiPr2)2} (3) (20.8 mg, 0.032 mmol) in toluene-d8 (0.5 mL), and a capillary tube 

with a solution of PPh3 in toluene-d8 as internal standard, was added H2CO2 (1.2 µL, 0.032 

mmol) via syringe. After 5 min, NMR spectra were recorded at the desired temperature, to show 

the formation of OsH4{xant(PiPr2)2} (5) as a function of the time. The parameters of the 31P{1H} 

NMR experiment were modified to allow the integration of the signals: pulse program (zgig), d1 

≥ 5T1 (d1 = 20 s). The kst value was obtained for each temperature from a plot Ln[4] / Ln[4]0 vs 

time (eq 5). 

ASSOCIATED CONTENT 

Supporting Information 
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Preparation and characterization of complexes 2, 3 and 4, instrumental methods, NMR spectra, 

X-ray diffraction analysis information and DFT computational details (PDF) 

Cartesian coordinates of the calculated structures (XYZ) 

AUTHOR INFORMATION 

Corresponding Author 

*E-mail for M.A.E.: maester@unizar.es. 

ORCID  

Miguel A. Esteruelas: 0000-0002-4829-7590 

Cristina García-Yebra: 0000-0002-5545-5112  

Jaime Martín: 0000-0003-0909-3509 
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