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The recent discovery of fast transient events near critical curves of massive galaxy clusters, which are
interpreted as highly magnified individual stars in giant arcs due to caustic crossing, opens up the
possibility of using such microlensing events to constrain a range of dark matter models such as primordial
black holes and scalar field dark matter. Based on a simple analytic model, we study lensing properties of a
point mass lens embedded in a high magnification region, and we derive the dependence of the peak
brightness, microlensing time scales, and event rates on the mass of the point mass lens, as well as the
radius of a source star that is magnified. We find that the lens mass and source radius of the first event
MACS J1149 Lensed Star 1 (LS1) are constrained, with the lens mass range of 0.1 M⊙ ≲M ≲ 4 ×
103 M⊙ and the source radius range of 40R⊙ ≲ R≲ 260R⊙. In the most plausible case with M ≈ 0.3 M⊙
and R ≈ 180R⊙, the source star should have been magnified by a factor of ≈4300 at the peak. The derived
lens properties are fully consistent with the interpretation that MACS J1149 LS1 is a microlensing event
produced by a star that contributes to the intracluster light. We argue that compact dark matter models with
high fractional mass densities for the mass range 10−5 M⊙ ≲M ≲ 102 M⊙ are inconsistent with the
observation of MACS J1149 LS1 because such models predict too low magnifications. Our work
demonstrates a potential use of caustic crossing events in giant arcs to constrain compact dark matter.
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I. INTRODUCTION

Recently, Kelly et al. [1] reported the discovery of
MACS J1149 Lensed Star 1 (LS1, also known as
“Icarus”), a faint transient near the critical curve of the
massive cluster MACS J1149.6+2223. The transient is
interpreted as a luminous star in the host galaxy of
supernova Refsdal [2] at z ¼ 1.49, which is magnified
by a compact object very close to the critical curve of the
foreground lens. The light curve is consistent with caustic
crossing of the background star, and from the comparison
with ray-tracing simulations it was suggested that the star
was probably magnified by a factor of several thousands at
the peak brightness. There was also an additional transient
(“Iapyx”) detected at roughly the same distance from the
critical curve of the cluster but on the opposite side, which
can be the counterimage of LS1. Furthermore, Rodney
et al. [3] reported two peculiar fast transients (“Spock”)

behind the cluster MACS J0416.1-2403 in a strongly
lensed galaxy at z ¼ 1.0054. While the Spock events
can be explained by the outburst of a luminous blue
variable star or a recurrent nova, one possible interpretation
is that these two events are also caustic crossing events.
These caustic crossing events in giant arcs behindmassive

clusters remarkably differ from traditional microlensing
observations. Microlensing observations in our Galaxy or
in nearby galaxies (e.g., [4–11]) are usually produced by
isolated stars (or compact objects), whereas caustic crossing
events in giant arcs are produced by stars embedded in high
magnification regions due to the cluster potential. As shown
in previous works (e.g., [12–16]), microlensing properties
are significantly modified by the presence of such conver-
gence and shear field due to the cluster potential.
Perhaps quasar microlensing (e.g., [17–24]) more resem-

bles caustic crossing events in giant arcs in the sense that it
is also caused by stars embedded in high magnification
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regions due to the lensing galaxy. However there are several
notable differences between microlensing in giant arcs and
quasar microlensing. For example, in the former case the
source is a star, whereas in the latter case the source is a
quasar. While the internal structure of a quasar is compli-
cated with largely different sizes for different wavelengths,
the surface brightness distribution of a star is uniform
(neglecting limb darkening) and its radius can be predicted
from observations of nearby stars. Also, the radius of a star
is typically much smaller than the size of the light-emitting
region of a quasar. The smaller radius translates into a
higher maximum magnification that scales as the inverse of
the square root of the radius (see Sec. II). In addition, while
typical magnifications of the brightest images of lensed
quasars are ≈10–20, MACS J1149 LS1 is observed very
close to the critical curve of the macro lens model where the
magnification due to the macro lens model is estimated to
be ≳300. Such high magnification of the macro mass
model is possible because the giant arc directly crosses the
critical curve and many stars in the giant arcs are located
very near the critical curve.
Caustic crossing events in giant arcs are new phenomena

that may probe a different parameter space from previously
known microlensing events. This possibility of observing
highly magnified images of individual stars in giant arcs was
first discussed in [25], although only the smooth cluster
potential was considered in that work. Motivated by the
discovery of MACS J1149 LS1, the authors of [26,27]
revisited this problem. They argued that even a small fraction
of compact objects in the lens disrupts the critical curve into a
network of microcaustics and drastically modifies themicro-
lensing properties near the critical curve. Even if dark matter
consists entirely of a smooth component, such compact
objects are expected to exist, like for instance the stars that are
responsible for the so-called intracluster light (ICL). Given
the drastic change of lensing properties near the critical
curve, it has been argued that caustic crossing events in giant
arcs may serve as a powerful probe of a range of dark matter
scenarios such as primordial black holes (PBHs) [28–32] and
scalar field dark matter [33–35].
In this paper, we adopt a simple analytic model that

consists of a point mass lens and a constant convergence
and shear component, and we study basic microlensing
properties of this lens model. The result is used to derive
characteristic scales of caustic crossing events in giant arcs
and their dependences on the lens and source properties.
The result is used to interpret MACS J1149 LS1 and place
constraints on the lens mass as well as the property of the
source star. We also discuss the event rates of caustic
crossing. Such analytic studies of caustic crossing events
should complement the ray-tracing simulations presented
in [1,26] for which repeating simulations with many
different model parameters may be computationally expen-
sive. Our approach more resembles that in [27], which
appeared recently.

This paper is organized as follows. We present an
analytic lens model which sets the theoretical background
in Sec. II. We then discuss what kinds of constraints we can
place from observed caustic crossing events in Sec. III. We
apply our results to MACS J1149 LS1 to derive constraints
on lens and source properties of this particular microlensing
event in Sec. IV. We discuss event rates and derive expected
event rates for MACS J1149 LS1 as well as for general
cases in Sec. V. In Sec. VI, we discuss constraints on
compact dark matter in the presence of ICL. Finally we
summarize our results in Sec. VII. Throughout the paper
we adopt a cosmological model with the matter density
Ωm ¼ 0.3, cosmological constant ΩΛ ¼ 0.7, and the
Hubble constant H0 ¼ 70 km s−1Mpc−1.

II. GENERAL THEORY

Here we summarize basic properties of gravitational
lensing by a point mass lens embedded in a high magni-
fication region. The high magnification region concentrates
around the caustics that are produced by a macro lens
model of, e.g., a massive cluster of galaxies, and we
consider a perturbation by a compact object to a highly
magnified background object (star) near the caustics. The
lensing properties of such a compound system have been
studied in depth in the literature [12–16] and more recently
by [26,27] in the context of interpreting MACS J1149 LS1
[1]. We present some key results which are necessary for
the discussions in the following sections.

A. Lens equation

We consider a point mass lens in a constant convergence
(κ̄) and shear (γ̄) field which comes from a macro lens
model. Then we have

μ−1t ¼ 1 − κ̄ − γ̄; ð1Þ

μ−1r ¼ 1 − κ̄ þ γ̄: ð2Þ

The total magnification by the macro lens model is
μ̄ ¼ μtμr. We consider a region near the tangential critical
curve where μ−1t ≈ 0 gives rise to the high magnification.
A point mass lens with mass M, in the absence of the

macro mass model, has the Einstein radius of

θE ¼
�
4GM
c2

Dls

DosDol

�
1=2

: ð3Þ

The lens equation for the point mass lens embedded in the
macro lens model is

β1 ¼
θ1
μr

−
θ2Eθ1
θ2

; ð4Þ

β2 ¼
θ2
μt

−
θ2Eθ2
θ2

: ð5Þ
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Note that (β1, β2) is the position of the source and (θ1, θ2) is
the position of the image. The origin of the coordinates is
taken at the position of the point mass lens. For simplicity
we assume that the shear direction is aligned with the x
axis. The inverse magnification matrix is

∂β⃗
∂θ⃗ ¼

�
μ−1r þ θ2E cosð2ϕÞ=θ2 −θ2E sinð2ϕÞ=θ2

−θ2E sinð2ϕÞ=θ2 μ−1t − θ2E cosð2ϕÞ=θ2
�
;

ð6Þ

where ϕ is the polar angle of (θ1, θ2). The magnification is

μ−1 ¼ ðμtμrÞ−1 − ðμ−1r − μ−1t Þ cosð2ϕÞ θ
2
E

θ2
−
θ4E
θ4

: ð7Þ

B. Critical curve and caustic

The critical curve can be derived from μ−1 ¼ 0.
Specifically,�

θ

θE

�
2

¼ cosð2ϕÞ
2

ðμt − μrÞ

×

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μtμr

ðμt − μrÞ2cos2ð2ϕÞ

s #

≈
μt cosð2ϕÞ

2

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μrðsgnμtÞ

jμtjcos2ð2ϕÞ

s #
: ð8Þ

A similar equation is also given in [26]. The caustic is
obtained by converting the critical curve in the image plane
to the source plane via the lens equation. Figure 1 shows the
critical curves and caustics for positive and negative
parities, which have already been given in the literature
(e.g., [12]).
The solutions of Eq. (8) depend on the sign of μt (or

parity), which is different on each side of the critical curve.
μr maintains the same sign on both sides of the critical
curve, and without loss of generality, we assume that μr is
always positive (i.e., tangential critical curves).

1. Positive parity case: μt > 0

From Eq. (8) we can easily estimate the size of the
critical curve along the θ1 and θ2 axes. Along θ1 [or
horizontal axis, i.e., cosð2ϕÞ ¼ 1] we have

θcrit;1 ≈
ffiffiffiffi
μt

p
θE; ð9Þ

and along θ2 [or vertical axis, i.e., cosð2ϕÞ ¼ −1] we have

θcrit;2 ≈
ffiffiffiffi
μr

p
θE: ð10Þ

Using the lens equation, the corresponding size of the
caustic along the β1 and β2 axes is estimated as

βcaus;1 ≈
ffiffiffiffi
μt

p
μr

θE; ð11Þ

βcaus;2 ≈
1ffiffiffiffi
μr

p θE: ð12Þ

We also want to know the typical width of the caustic. As
shown in Fig. 1, it becomes very long and thin. Given that
the size of the critical curves at the region of interest is
θcrit ≈Oð ffiffiffiffi

μt
p

θEÞ, from Eq. (5) we can infer the typical
width of the caustic to be (assuming

ffiffiffiffi
μt

p ≫ 1)

βw ≈
θEffiffiffiffi
μt

p ; ð13Þ

which implies that the total area enclosed by the caustic is
not significantly enhanced compared with the case of an
isolated point mass lens. Figure 1 indicates that the area
enclosed by the caustic at around β1 ≈ 0 has the same order.

2. Negative parity case: μt < 0

In this case, the critical curves do not form along the θ1
axis because the right-hand side of Eq. (8) is always
negative. On the other hand, there are two solutions of
Eq. (8) along the θ2 axis, which we denote θcrit;þ and θcrit;−.
They are

FIG. 1. Critical curves (upper panels) and caustics (lower
panels) of a point mass lens in the high magnification region.
Left: Positive parity case with μ−1t ¼ 0.001 and μ−1r ¼ 0.401.
Right: Negative parity case with μ−1t ¼ −0.001 and μ−1r ¼ 0.399.
These are computed with GLAFIC [36]. Note the difference of
scales between the x and y axes in the lower panels.
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θcrit;þ ≈
ffiffiffiffiffiffiffi
jμtj

p
θE; ð14Þ

θcrit;− ≈
ffiffiffiffi
μr

p
θE: ð15Þ

The corresponding size of the caustic along the β2 axis is

βcrit;þ ≈
2ffiffiffiffiffiffiffijμtj

p θE ð16Þ

βcrit;− ≈
1ffiffiffiffi
μr

p θE: ð17Þ

We also want to estimate the size of the critical curve and
caustic along the θ1 direction. First, the maximum θ1 of the
critical curves is estimated as follows. In the region of
interest, we can approximate ðθ=θEÞ2 ≈ μt cosð2ϕÞ. At the
maximum along θ1, θcrit;max, θ21 ¼ θ2 cos2 ϕ must be sta-
tionary, leading to cosϕ ¼ 1=2 and cosð2ϕÞ ¼ −1=2.
Therefore,

θcrit;max ≈

ffiffiffiffiffiffiffi
jμtj
8

r
θE: ð18Þ

The corresponding size of the caustic along the β1
direction is

βcaus;max ≈
1

μr

ffiffiffiffiffiffiffi
jμtj
8

r
θE: ð19Þ

We can use the same argument as above to show that the
typical width of the caustics is given by Eq. (13). Thus, the
area enclosed by the caustics is again largely unchanged
compared with the case of an isolated point mass lens,
which can also be seen in Fig. 1. By comparing Eqs. (11)
and (19), it is found that the length of the caustic is longer in
the positive parity than in the negative parity by a factor of
2

ffiffiffi
2

p
. However, Fig. 1 indicates that in the negative parity

there are twice as many caustic crossings for each lens,
which compensates for the shorter length of the caustic
when we estimate the rate of caustic crossings (see Sec. V).
The source plane region surrounded by β ¼ �βcrit;þ

demagnifies the star. As an example, we consider multiple
images for a source placed at the origin ðβ1; β2Þ ¼ ð0; 0Þ.
From the lens equation, we find that there are two multiple
images located at ðθ1; θ2Þ ¼ ð� ffiffiffiffi

μr
p

θE; 0Þ. The magnifica-
tion of the individual images is computed as

μ ¼ −
μ2r
2
; ð20Þ

which is much smaller than the macro magnification
μ ¼ μtμr, indicating that any sources near the origin are
significantly less magnified compared with the case with-
out the point mass lens.

C. Light curves

In order to predict light curves we need to assume
velocities of the lens and source with respect to the
observer. The transverse velocity in the lens plane vl is
converted to the angular unit as

ul ¼
vl

1þ zl

1

Dol
; ð21Þ

where Dol is the angular diameter distance from the
observer to the lens and the factor 1þ zl accounts for
the dilution of the unit time; i.e., the angular velocity above
indicates the change of the position on the sky per unit
observed-frame time. We divide the lens velocity into two
components: one is a bulk velocity of the whole lens system
(e.g., a peculiar velocity of a galaxy cluster for the case of
MACS J1149 LS1), and the other is a relative motion of a
point mass lens within the whole lens system. We denote
these velocity components as vm and vp, respectively. We
consider these two components separately as they have
different dependences on the macro lens model when they
are converted to velocities in the source plane (see below).
We also consider the transverse velocity in the source

plane vs. Again, it can be converted to the angular unit as

us ¼
vs

1þ zs

1

Dos
: ð22Þ

We derive the relative velocity of the source and lens in the
source plane by converting the transverse velocity in the
lens plane to the source plane as (see [14])

u ¼ um þ
�
μ−1r 0

0 μ−1t

�
up þ us: ð23Þ

This indicates that the relative velocity can be anisotropic.
The magnification tensor comes in because distances
between the point mass lenses in the image plane translate
into smaller distances in the source plane due to the cluster
potential. The bulk velocity of a cluster is typically jvmj ∼
500 km s−1 (e.g., [37]). Although the relative motion of
the point mass lens, which is of the order of velocity
dispersions of massive clusters, jvpj ∼ 1000 km s−1, is
larger than the bulk velocity, it is suppressed by the
magnification factors as shown in Eq. (23). The contri-
bution from the source motion is expected to be smaller
given the larger redshift and distance to the source.
Therefore, a simple approximation which we adopt in
the following discussions is

u ≈ um: ð24Þ

On the other hand, Fig. 1 indicates that the caustics
are elongated along the x axis by a factor of

ffiffiffiffi
μt

p ≫ 1.
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Thus, caustic crossing typically occurs by a source
moving along the y axis with the velocity ∼jumj.
When a source crosses the caustics vertically along the y

axis, crossing occurs two times in total for the positive
parity case, and four times for the negative parity case. As
discussed above, for the negative parity case, a source is
demagnified near the center.
The behavior of the total magnification near the caustic is

important for estimating the possible maximum magnifi-
cation. The total magnification near the caustics is known
to behave as μ ∝ Δβ−1=2, where Δβ is the distance between
the source and the caustic in the source plane. From the
analytic examination and numerical calculations with
GLAFIC, we find that the magnifications near the caustics
are crudely approximated as

μðΔβÞ ≈ μtμr

�
θEffiffiffiffi
μt

p Δβ

�
1=2

; ð25Þ

which agrees with numerical results within a factor of ≲2.
This approximation is reasonable given that the width of the
caustic is “shrunk” by a factor of

ffiffiffiffi
μt

p
[Eq. (13)].

Equation (25) suggests that the magnification becomes
larger as the source approaches the caustic, which is a
universal property of lensing near the caustic (see, e.g.,
[38,39]). However, the magnification saturates when the
distance to the caustic becomes comparable to the size of
the source in the source plane, βR (e.g., [25]). From this
condition, we can estimate the maximum magnification as

μmax ≈ μtμr

�
θEffiffiffiffi
μt

p
βR

�
1=2

: ð26Þ

III. EXPECTED PROPERTIES OF THE LENS
AND SOURCE

A. Dependence on the source star

We discuss how the peak magnification scales with the
radius R and luminosity L of a background star. Assuming
a blackbody with temperature T, they are related as

L
L⊙

¼
�

R
R⊙

�
2
�

T
T⊙

�
4

: ð27Þ

In practice the spectral energy distribution (SED) of a star
does not strictly follow the blackbody, but this relation still
holds approximately. Using this relation, we find that the
observed maximum flux of the star scales as

fmax ∝ μmaxL ∝ R−1=2L ∝ R3=2T4: ð28Þ

Therefore, for a given temperature (which can be inferred
from the observation of the SED of the star), the maximum
magnified flux of a larger star is larger than that of a
smaller star.

If the source size is too big compared with the Einstein
radius, we do not observe any microlensing magnifications.
From Eq. (26), we can argue that the source size needs to
satisfy the following condition to have sensitivity to
microlensing:

ffiffiffiffi
μt

p
βR ≲ θE: ð29Þ

Suppose that we observe a specific microlensing event in
which we can estimate the lower limit of the relative
magnification factor during the caustic crossing event, μobs,
which is derived from the difference of the magnitudes
measured at the beginning of the event and when the lensed
source is brightest. This gives the lower limit because the
true magnification factor during the caustic crossing event
is larger given the limited sampling and detection limit of
monitoring observations. Thus μobs must be smaller than
the relative maximum magnification due to caustic cross-
ing, i.e., μobs < μmax=ðμtμrÞ. Using this condition, we can
replace the condition in Eq. (29) with

ffiffiffiffi
μt

p
βR ≲ θE

μ2obs
: ð30Þ

This means that, while the peak brightness is higher for the
larger star simply because of its large intrinsic brightness,
the microlensing magnification is more prominent for the
smaller star.

B. Macro model magnification

The analysis presented in Sec. II assumed a uniform
macro model magnification for simplicity. In practice,
however, the macro model magnification μt and μr depend
on the image position with respect to the critical curve of
the macro model. It has been known that μt quickly
increases as the image approaches the critical curve (see,
e.g., [38,39]). More specifically, given that we denote the
distance between the image and the critical curve as θh, we
generally expect μt ∝ θ−1h . We parametrize the dependence
on θh as

μtðθhÞ ¼ μh

�
θh

arcsec

�
−1
; ð31Þ

where μh is a constant factor that depends on the macro lens
model, as well as the location on the critical curve. On the
other hand, μr is approximately constant near the critical
curve.
There is also a well-known asymptotic behavior between

βh (the angular distance to the caustic in the source plane)
and θh (the angular distance to the critical curve in the
image plane), βh ∝ θ2h. In particular, we parametrize it as
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βh ¼ β0

�
θh

arcsec

�
2

: ð32Þ

From these equations we have μt ¼ μhðβh=β0Þ−1=2 for the
macro model magnification of one of the merging pairs of
images.
The maximum magnification [Eq. (26)] of caustic cross-

ing is larger for larger μt, which suggests that stars that are
closer to the critical curve can have higher magnifications.
However, the authors of [26] (see also [27]) argued that
even a small fraction of point mass lenses significantly
changes the asymptotic behavior of the macro model
magnification toward the critical curve. This is because
the Einstein radius of the point mass lens depends on μt as
∝ ffiffiffiffi

μt
p

, and hence for very large
ffiffiffiffi
μt

p
the Einstein radii for

different point mass lenses overlap, even when the number
density of point mass lenses is small. As shown by the ray-
tracing simulations in [26], beyond this “saturation” point
the source breaks into many microimages, and as a result it
loses its sensitivity to the source position with respect to the
macro model caustic. Therefore, the macro model magni-
fication in fact does not diverge as predicted by Eq. (31),
but saturates at a finite value.
To estimate where the saturation happens, the authors of

[26] considered the optical depth τ defined by

τ ¼ Σ
M

πð ffiffiffiffi
μt

p
θEDolÞ2; ð33Þ

where Σ is the surface mass density of the point mass
component. Here we implicitly assumed that the point
masses have the same mass M, although we note that this
approximation is reasonably good when compared with the
realistic ray-tracing simulations. The authors of [26] argued
that the saturation happens when τ ≈ 1. From the definition
of the Einstein radius [Eq. (3)], it is found that

τ ∝ μtΣ; ð34Þ

which indicates that the maximum macro model magnifi-
cation where the saturation happens is inversely propor-
tional to the surface mass density of the point mass
component Σ, and it does not depend on the mass M.
This means that, in order to achieve high peak magnifica-
tions [Eq. (26)], lower Σ is preferred. Specifically, we can
compute the maximum macro model magnification by
setting τ ¼ 1 in Eq. (33) as

μt;max ≈
M

πΣðθEDolÞ2
: ð35Þ

Again, for a fixed surface density Σ, μt;max does not depend
on mass M.
We can consider another condition for the saturation

from the Einstein radius (see [27]). Even for τ ≪ 1, when

the distance to the macro model critical line, θh, becomes
comparable to the Einstein radius of the point mass lens, the
critical curves by the point mass lens merge with those from
the macro lens model, and our basic assumption breaks
down. Therefore, to have enough magnifications by the
point mass lens, we need the following condition:

ffiffiffiffi
μt

p
θE ≲ θh: ð36Þ

Using Eq. (31), this condition is rewritten as

θE ≲ μh

μ3=2t

: ð37Þ

The similar condition in the source plane is

θEffiffiffiffi
μt

p ≲ βh; ð38Þ

which results in

θE ≲ β0μ
2
h

μ3=2t

: ð39Þ

In practice, Eqs. (37) and (39) give quite similar conditions,
so in what follows we consider only Eq. (37). From this
condition, we have another condition for the maximum
magnification of the macro mass model as

μt;max ≈
�
μh
θE

�
2=3

; ð40Þ

which indicates μt;max ∝ M−1=3. The true maximum macro
magnification is given by the smaller of μt;max given in
Eqs. (35) and (40).

C. Light curve time scales

There are important time scales that characterize caustic
crossing events. One is the so-called source crossing time
defined by

tsrc ¼
2βR
u

; ð41Þ

where βR is the angular size of the source in the source
plane, and u is the source plane velocity as defined in
Eq. (23). This source crossing time determines the time
scale of the light curve near the peak. Another important
time scale is given by the time to cross between caustics.
Using the width of the caustics, βw [Eq. (13)], the time to
cross between caustics is expressed as

tEin ¼
βw
u
; ð42Þ
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which gives the typical time scale between multiple caustic
crossing events. The former time scale tsrc does not depend
on the lens property, whereas the latter time scale tEin scales
with the lens mass as ∝ M1=2.

D. Apparent size of microlensed image

If the Einstein radius is sufficiently large, multiple
images can be resolved. In this case, from the separations
of the multiple images we can directly infer the mass scale
of the lens. In usual cases, however, the Einstein radius of
the point mass lens is sufficiently small compared with the
angular resolution of observations. As a result, the observed
microlensed image is pointlike, from which we can set the
constraint on the lens mass as

ffiffiffiffi
μt

p
θE ≲ σθ;obs; ð43Þ

where σθ;obs is the angular resolution of observations. For
the case of Hubble Space Telescope imaging observations,
we typically have σθ;obs ≈ 0.05 arcsec.

IV. CONSTRAINING THE SOURCE AND LENS
PROPERTIES OF MACS J1149 LS1

We now tune the parameters to the observations of
MACS J1149 LS1 [1] and see what kind of constraints we
can place on properties of both the lens object and the
source star.

A. Parameters

The lens redshift of MACS J1149 LS1 is zl ¼ 0.544 and
the source redshift is zs ¼ 1.49. Both the redshifts are
spectroscopic redshifts and therefore are sufficiently accu-
rate. For a cosmology with matter density ΩM ¼ 0.3,
cosmological constant ΩΛ ¼ 0.7, and the dimensionless
Hubble constant h ¼ 0.7, we have 6.4 kpc arcsec−1 at the
lens and 8.5 kpc arcsec−1 at the source. The distance
modulus to the source is 45.2. With these distances, the
Einstein radius of the (isolated) point mass lens is

θE ≈ 1.8 × 10−6
�

M
M⊙

�
1=2

arcsec: ð44Þ

The angular size of a star as a function of solar radius in the
source plane is

βR ≈ 2.7 × 10−12
�

R
R⊙

�
arcsec: ð45Þ

We note that uncertainties of our analysis originating from
cosmological parameter uncertainties are much smaller
compared with other uncertainties that we will discuss
below.
As discussed in Sec. II C, we can assume that the

velocity is dominated by that of the bulk motion of the

lensing cluster, jvj ≈ jvmj ∼ 500 km s−1. We can convert it
to the angular velocity on the sky as

u ≈ 5.2 × 10−8
�

v
500 km s−1

�
arcsec yr−1: ð46Þ

While we fix the v ¼ 500 km s−1 in our main analysis, we
also check how the uncertainty on the velocity propagates
into various constraints that we obtain in this paper.
For the macro mass model using the best-fitting model of

the GLAFIC mass model [36,40], we have μh ≈ 13 in
Eq. (31) and β0 ≈ 0.045 in Eq. (32). MACS J1149 LS1
was discovered at θh ≈ 0.13 arcsec, at which the model
predicts the magnification of μt ≈ 100. On the other hand,
μr ≈ 3 near MACS J1149 LS1. Therefore, the total macro
mass model magnification at the position of MACS J1149
LS1 is μtμr ≈ 300.
We note that there is uncertainty associated with the

macro mass model. For example, the authors of [26] noted
that the GLAFIC and WSLAP+ [41] mass models of MACS
J1149.6+2223 predict roughly a factor of 2 different macro
model magnifications near MACS J1149 LS1 (see also [42]
for a test of the accuracy of strong lens mass modeling).
This difference in the macro mass model affects our
quantitative results. Again, while we fix mass model
parameter values to those mentioned above in our analysis,
we also examine the dependence of our results on macro
mass model uncertainties by checking the dependence of
our results on μh that differs considerably between GLAFIC

and WSLAP+ mass models.
The ICL plays a crucial role in the interpretation of the

caustic crossing event. At the position of MACS J1149
LS1, the surface density of ICL is estimated as ΣICL ≈
11–19 M⊙pc−2 depending on assumed stellar initial mass
functions [1,43]. Given the critical surface density
Σcrit ≈ 2.4 × 103 M⊙pc−2, the convergence from the ICL
reads κICL ≈ 0.0046–0.0079. This should be compared with
the total surface density κ ≈ 0.83 predicted by the best-
fitting GLAFIC mass model [36,40]. In what follows, we
may use the mass fraction of the point mass lens component
defined by

fp ¼
Σ

2000 M⊙pc−2
; ð47Þ

instead of the surface mass density Σ.

B. Constraints on MACS J1149 LS1

Based on discussions given in Sec. III, we constrain the
properties of the lens that is responsible for the observed
caustic crossing event, as well as the properties of the
source star.
First, from Eqs. (26), (44), and (45), at the position of

MACS J1149 LS1 with μt ≈ 100 and μr ≈ 3, the maximum
magnification becomes
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μmax ≈ 7.8 × 104
�

M
M⊙

�
1=4

�
R
R⊙

�
−1=2

: ð48Þ

Assuming the temperature to be T ¼ 12 000 K (see [1]),
the absolute V-band magnitude of the star before the
magnification is computed using Eq. (27) as

Mstar ≈ 2.2 − 5 log

�
R
R⊙

�
; ð49Þ

where we used ML⊙ ≈ 4.8 in the V-band, T⊙ ¼ 5777K,
and included the bolometric correction. Therefore, taking
into account the cross-filter K-correction derived in [1], the
minimum apparent magnitude of the star magnified by
microlensing at the peak is

mpeak ≈ 46.4 − 5 log

�
R
R⊙

�
− 2.5 log μmax;

≈ 34.1 − 3.75 log

�
R
R⊙

�
− 0.625 log

�
M
M⊙

�
: ð50Þ

The observation indicates that the peak magnitude is
brighter than m ¼ 26 [1], i.e.,

3.75 log

�
R
R⊙

�
þ 0.625 log

�
M
M⊙

�
≳ 8.1: ð51Þ

During the caustic crossing event, the source star is
magnified by at least a factor of 3 or so. Setting μobs ≈ 3
in Eq. (30), we obtain a constraint on the source size as

�
R
R⊙

��
M
M⊙

�
−1=2 ≲ 7600: ð52Þ

We now consider the condition that the saturation does
not happen, because the quantitative constraints derived
above assumed no saturation at the position of MACS
J1149 LS1. By setting μt ¼ 100 in Eq. (35), we obtain

Σ≲ 24 M⊙pc−2. ð53Þ

Again, we caution that this is the result assuming that
point mass lenses have the same massM. As shown above,
the ICL component has the surface density of ΣICL ≈
11–19 M⊙pc−2 (which corresponds to the mass fraction
of fICL ¼ ΣICL=Σtot ≈ 0.0055–0.0095) and therefore satis-
fies this condition. On the other hand, from the other
condition for nonsaturation [Eq. (40)], we have

M ≲ 5.1 × 107 M⊙: ð54Þ

For MACS J1149 LS1, the source crossing time
[Eq. (41)] is

tsrc ≈ 0.038

�
R
R⊙

��
v

500 km s−1

�
−1
days: ð55Þ

Similarly, the time scale between caustic crossings is

tEin ≈ 3.5

�
M
M⊙

�
1=2

�
v

500 km s−1

�
−1

yr: ð56Þ

In the case of MACS J1149 LS1, the source crossing time,
which is the time scale where the light curve is affected by
the finiteness of the source star radius very near the peak,
appears to be smaller than ∼10 days [1]. The condition
tsrc ≲ 10 days becomes

�
R
R⊙

��
v

500 km s−1

�
−1 ≲ 260: ð57Þ

For this source size, the apparent magnitude of the star
without microlensing by the point mass lens is ≲28, which
appears to be consistent with the observation [1]. Also tEin
seems to be at least larger than ∼1 yr, so tEin ≳ 1 yr gives
rise to

�
M
M⊙

��
v

500 km s−1

�
−2 ≳ 0.082: ð58Þ

Since MACS J1149 LS1 was unresolved during the
caustic crossing event, we use Eq. (43) to set the constraint
on the mass of the lens as

M ≲ 7.6 × 106 M⊙: ð59Þ

By using this argument we may also exclude the possibility
that the caustic crossing event was produced by massive
dark matter substructures.
We now put together all these constraints and derive

allowed ranges of the lens mass M and the source size R.
The result is shown in Fig. 2, where we fixed the bulk
velocity of the lens to v ¼ 500 km s−1. We find that there
are large ranges of the lens mass and the source size that can
explain MACS J1149 LS1.
However, it is expected that the lens and source pop-

ulations are not distributed uniformly in this parameter
space. As discussed in the next section, the size distribution
of the source star is expected to be significantly bottom
heavy; i.e., stars with smaller radii are more abundant than
those with larger radii. The same argument also holds for
the lens mass, if we assume standard stars and stellar
remnants as the lens population, but with the minimum
mass of ≈0.3 M⊙ below which the stellar initial mass
function is truncated. Therefore, in the allowed parameter
space, the most likely set of parameters is R ≈ 180R⊙ and
M ≈ 0.3 M⊙. In this case, the star is magnified by a factor
of ≈4300 at the peak. The result is fully consistent with the
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scenario that a blue supergiant is magnified by a foreground
ICL star.
On the other hand, our result does not exclude the

possibility that the microlensing is caused by an exotic
population such as PBHs with masses between ∼1 M⊙ and
∼106 M⊙, as long as they have low surface density so that
they satisfy the saturation condition. For more massive
lenses, Fig. 2 indicates that the peak magnification is even
higher and can reach up to ∼104 − 106.

V. EVENT RATES

A. Star population in the arc

It is estimated that the surface brightness of the arc is
≈25 mag arcsec−2 in the F125W band [1], which corre-
sponds to ≈6.5 × 109L⊙ arcsec−2. We need to convert the
observed arc surface brightness to the number density of
stars that can be magnified by caustic crossing events. We
do so by simply assuming a power-law luminosity function
of stars, dn=dL ∝ L−2, as considered in [1]. The normali-
zation of the luminosity function is determined so that the
total luminosity density

R Lmax
Lmin

Lðdn=dLÞdL matches the
observed surface brightness. Assuming the luminosity
range of Lmin ¼ 0.1L⊙ and Lmax ¼ 107L⊙, the surface
number density can be converted to the number density of
stars in the image plane

nstarðL1 < L < L2Þ ¼
6.5 × 109 arcsec−2
μtμr lnðLmax=LminÞ

�
L⊙
L1

−
L⊙
L2

�

≈
3.5 × 108 arcsec−2

μtμr

�
L⊙
L1

−
L⊙
L2

�
;

ð60Þ

where μtμr in the denominator accounts for the lensing
magnification of luminosities of individual stars. Using
Eq. (27) and fixing T ¼ 12 000 K, we can convert this to
the number density in the star radius range

nstarðR1 < R < R2Þ ¼
n0
μtμr

��
R⊙
R1

�
2

−
�
R⊙
R2

�
2
�
; ð61Þ

where n0 ¼ 1.9 × 107arcsec−2. For a given lens mass M,
the lower limit of the radius comes from the constraint on
the peak magnitude. Here we consider caustic crossing
events with mpeak < 26. From Eq. (50)

R1 ≈ 140

�
μt
100

�
−0.5

�
M
M⊙

�
−0.167

R⊙; ð62Þ

where we recover the dependence on μt which originates
from Eq. (26). We set R2 ≈ 730R⊙, the radius correspond-
ing to Lmax ¼ 107L⊙.

B. Expected rate

From the analysis in Sec. II, we know that the typical
length scale of the caustic along the β1 direction is
≈2ð ffiffiffiffi

μt
p

=μrÞθE. Therefore the expected event rate is

dN
dt

¼ 2

Z
θh;max

θh;min

dθhnstarwarcμtμr
Σ
M

2

ffiffiffiffi
μt

p
μr

D2
olθEu;

þ 2

Z
θh;min

0

dθhnstarwarcμtμr
Σ
M

2

ffiffiffiffi
μt

p
μr

D2
olθEu

����
μt;max

¼ 2

Z
μt;max

μt;min

μhdμt
μ2t

n0

��
R⊙
R1

�
2

−
�
R⊙
R2

�
2
�

× warc
Σ
M

2

ffiffiffiffi
μt

p
μr

D2
olθE

þ 2θh;minnstarwarcμtμr
Σ
M

2

ffiffiffiffi
μt

p
μr

D2
olθEu

����
μt;max

; ð63Þ

where warc (assumed to be 0.2 arcsec in the following
calculations) is the width of the giant arc along the critical
curve, and the saturation conditions give the upper limit
μt;max. The factor μtμr converts the number density of the
point mass lens in the image plane, Σ=M, to the corre-
sponding number density in the source plane. The prefactor
2 is introduced due to the fact that caustic crossing events
can happen on both sides of the critical curve. As shown
in Sec. II, while the length of the caustic is shorter in the
negative parity region, there are twice as many caustic

FIG. 2. Constraints on the source radius (R) and lens mass (M)
for MACS J1149 LS1. Shaded regions show excluded regions
from various constraints. Specifically, we consider constraints
from the peak magnitude [mpeak, Eq. (51)]; the magnification
during the caustic crossing [μobs, Eq. (52)]; the source crossing
time [tsrc, Eq. (57)]; the time scale between caustic crossings [tEin,
Eq. (58)], and the unresolved shape during caustic crossing
[unresolved, Eq. (59)]. The saturation condition given by Eq. (54)
is always satisfied in the allowed region of this plot. Contours
show the constant peak magnification [Eq. (48)] in this parameter
space. From top to bottom, we show contours of μmax ¼ 106, 105,
104, and 103.
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crossings for each lens, which would compensate for the
shorter length of the caustic. The second term represents the
contribution from the saturated region in which caustic
crossing events are observed (see [26,27]). We make a
simple assumption that the rate calculation of the saturated
region is the same as that for the unsaturated region but with
replacing μt to the saturation value μt;max. Among the
saturation conditions given in Eqs. (35) and (40), parameter
values of Σ [or equivalently fp, defined in Eq. (47)] and M
determine which condition determines the maximum μt.
These two conditions reduce to

μt;max ¼ 1.2f−1p ; ð64Þ

μt;max ¼ 3.7 × 104
�

M
M⊙

�
−1=3

: ð65Þ

By equating these two conditions, we can define the critical
point mass fraction fp;crit:

fp;crit ¼ 3.2 × 10−5
�

M
M⊙

�
1=3

: ð66Þ

When fp > fp;crit, μt;max is determined from Eq. (64),
whereas when fp < fp;crit, μt;max is determined from
Eq. (65). One condition to determine μt;min is R1 ¼ R2,
which gives μt;min ≲ 1. In practice, μt;min would be deter-
mined by the extent of the arc in the direction perpendicular
to the critical curve. We tentatively set μt;min ¼ 10, which
corresponds to the maximum distance from the critical
curve, θh;max ≈ 1.300 [see Eq. (31)]. In some cases, however,
μt;min determined from R1 ¼ R2 becomes larger than 10,
and in that case we adopt the former value as μt;min.
Plugging in the parameter values for MACS J1149 LS1,

we have

dN
dt

≈ 5.0 × 105fp

�
M
M⊙

�
−1=2

�
v

500 km s−1

�
IðMÞ

þ 4.5 × 104fp

�
M
M⊙

�
−1=2

�
v

500 km s−1

�
JðMÞ;

ð67Þ

IðMÞ ¼
Z

μt;max

μt;min

dμt
μ3=2t

��
R⊙
R1

�
2

−
�
R⊙
R2

�
2
�

≈ 9.3 × 10−7ðμ1=2t;max − μ1=2t;minÞ
�

M
M⊙

�
1=3

þ 3.7 × 10−6ðμ−1=2t;max − μ−1=2t;minÞ; ð68Þ

JðMÞ ¼
�

R⊙
R1jμt;max

�
2

−
�
R⊙
R2

�
2

≈ 4.7 × 10−7μt;max

�
M
M⊙

�
1=3

− 1.9 × 10−6; ð69Þ

where dN=dt is the event rate, i.e., the number of caustic
crossing events per year.
We compute the event rate as a function of lens mass M

and mass fraction of the lens fp using Eq. (67). We can use
this predicted rate calculation to place additional con-
straints on the lens population. Since MACS J1149 LS1
is observed with ∼2 years of monitoring observations of
MACS J1149, the 2σ limit of the predicted rate is

dN
dt

≳ 0.025 year−1: ð70Þ

Here we do not consider the additional event (Iapyx) in the
rate constraint because its peak brightness may be fainter
than 26 mag.
Figure 3 shows the constraint from the event rate

[Eq. (70)] in the M − fp plane. We find that there exists
an allowed region withM ≲ 4 × 103 M⊙ and fp ≲ 0.3. For
a fixed fp, large lens masses result in low event rates
because the mean free path of a source is proportional to
M−1=2, whereas small lens masses also result in low event
rates because of the lower maximum magnification [see
Eq. (48)]. Interestingly, this allowed region is fully con-
sistent with the ICL component, which has the right mass
range and mass fraction. Therefore, together with the result
shown in Fig. 2, we conclude that the observation of
MACS J1149 LS1 is fully explained by microlensing due to
an ICL star.
When marginalized over fp, the result in Fig. 3 provides

an additional constraint on the mass range of the point lens

FIG. 3. Constraints in the M − fp plane for MACS J1149 LS1,
where M is the lens mass and fp is the mass fraction of the point
mass component to the total mass. Shaded regions show excluded
regions from the event rate [rate, Eq. (70)]. The small rectangular
region shows the rough mass fraction and the mass range of ICL
stars. Contours show the constant event rate in this plane. From
inner to outer contours, we show contours for dN=dt ¼ 10−2,
10−3, 10−4, and 10−5.
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component that produced MACS J1149 LS1. Thus, in
Fig. 4, we revisit the constraints in the R −M plane, with
the additional constraint from Fig. 3. We find that the
additional constraint makes the allowed ranges of the lens
mass and source size narrower. However, the most plau-
sible values of R ≈ 180R⊙ and M ≈ 0.3 M⊙ assuming the
prior distributions (see discussions in Sec. IV B) are kept
unchanged by this additional constraint. This new con-
straint from the event rate limits more severely the
possibility of explaining MACS J1149 LS1 by exotic dark
matter models such as PBHs.
Are there any ways to further constrain the lens mass?

One possible way is to check the positions of caustic
crossing events. Because point mass lenses with larger
masses can produce higher magnifications due to caustic
crossing, the macro lens magnification μt required to
exceed the peak magnitude threshold can be smaller.
This means that microlensing by large mass lenses can
be observed at positions farther away from the critical curve
of the macro mass model. We check this point explicitly by
computing distributions of the distance from the macro
model critical curve, θh, for different lens masses. The
result shown in Fig. 5, which plots the normalized differ-
ential distribution of the event rate as a function of θh,
indicates that this is indeed the case. With just one event it
is impossible to conclude which lens mass is favored, but
by observing many caustic crossing events near the critical
curve, we may be able to constrain the mass of the point
mass lens component more directly.
Another way to better constrain the lens mass is to

observe multiple caustic crossing events by a single lens,
because the time interval between those events provides
information on the mass of the lens [see Eq. (42)]. For
instance, the light curve of MACS J1149 LS1 shows a
possible peak in the spring of 2014 [1]. If this is interpreted
as a caustic crossing event from the same lens, the

observation suggests tEin ≈ 2 years, which implies M ≈
0.3 M⊙ from Eq. (56), which is fully consistent with other
constraints derived in this paper.

C. Effects of model parameter uncertainties

Predictions of event rates and constraints on lens and
source properties described in the previous subsection are
subject to model parameter uncertainties. Among others, the
assumption on the transverse velocity is a source of large
uncertainties given that the probability distribution of the
velocity is quite broad, with the width of the distribution
being a factor of∼2 [37]. In addition, as discussed in Sec. IV,
the macro model magnification may also involve a large
uncertainty, which can have a large impact on our results.
Here we explore effects of model parameter uncertainties on
our results, focusing on uncertainties associated with the
transverse velocity v and the macro model magnification μh
defined in Eq. (31), assuming the uncertainty of �0.5 dex
(i.e., factors of 2 and 0.5) on these parameters.
First, we discuss uncertainties of predicted event rates

due to uncertainties of v and μh. From Eq. (63), it is found
that the event rate is linearly proportional to both v and μh.
Therefore, the uncertainty of �0.5 dex on v and μh directly
translates into the uncertainty of �0.5 dex on the predicted
event rate. This indicates that our prediction on the event
rate for Icarus is uncertainty by a factor of 2 or so.
Next, we check the effects of the uncertainty on these

parameters on our constraints on lens and source properties

FIG. 4. Similar to Fig. 2, but an additional constraint on the lens
mass range from the event rate (see Fig. 3) is included.

FIG. 5. The expected distribution of the positions of caustic
crossing events from the macro model critical curve θh, i.e.,
the normalized differential distribution of the event rate,
ðd2N=dθhdtÞ=ð

R
dθhd2N=dθhdtÞ. The distribution is essentially

the integrand of Eq. (63). Parameters are tuned for those of
MACS J1149 LS1 as considered in Sec. IV B. We consider two
different masses of the point mass lens component, M ¼
0.0003 M⊙ (solid) and 30 M⊙ (dashed). Given the relation
given in Eq. (31), the distribution of θh can also be converted
to that of the macro model magnification μt.

UNDERSTANDING CAUSTIC CROSSINGS IN GIANT … PHYS. REV. D 97, 023518 (2018)

023518-11



that are summarized in Fig. 4. In Fig. 6, we show how the
allowed region shown in Fig. 4 changes by shifting v and μh
by �0.5 dex. We find that the impact of these model
parameter uncertainties on our results is indeed significant.
Interestingly, the lens mass of ∼1 M⊙ and the source star
radius of ∼100R⊙ is allowed even if we take into account
these model parameter uncertainties.

D. Dependence of event rates on model parameters

The expected event rate given by Eq. (63) depends on
variousmodel parameters. To understand themodel depend-
ence on the event rate, we repeat the computation of the
event rate for MACS J1149 LS1, changing one of the model
parameters while fixing the other model parameters.
Herewe change the source redshift zs, the surface brightness
of the arc, and the limiting magnitude of the monitoring
observation mlim. We show the result in Fig. 7.
We find that the event rate is relatively a steep function of

the source redshift zs. This is simply because we need higher
magnification in order for stars at higher redshifts to be
observed. Since the observed maximum flux is an increasing
function of the source radius R [see Eq. (28)], stars detected
in giant arcs at higher redshifts correspond to intrinsically
more luminous stars. The event rate becomes zero beyond
zs ∼ 3.8, because there is no star that has the observed
maximum flux that exceeds the detection limit mlim.
The dependence on the surface brightness is easily

understood. The number of stars is proportional to the
total luminosity of the arc, and increasing the surface
brightness with a fixed arc size simply increases the total
luminosity.

We also find that the dependence of the event rate on the
limiting magnitudemlim is strong. For example, by monitor-
ing with 2 magnitude deeper images, which can be enabled
with the James Webb Space Telescope, we may be able to
detect ∼10 times more caustic crossing events, allowing
more-detailed statistical studies of the caustic crossing events
such as the spatial distribution, as discussed in Sec. V B.
Again, Eq. (28) indicates that deeper observations allow
us to detect less luminous stars, which are more abundant.

FIG. 6. Dependence of constraints in the R −M plane shown in
Fig. 4 on model parameters. The solid line indicates an allowed
region in the R −M plane in our fiducial setup, as shown in
Fig. 4. Dotted and short dashed lines show how the allowed
region changes by changing the transverse velocity v by factors of
2 and 0.5, respectively. Long dashed and dotted-dashed lines
show how the allowed region changes by changing the macro
model magnification μh by factors of 2 and 0.5, respectively.

FIG. 7. The dependences of the event rate [Eq. (63)] on various
model parameters. We consider model parameters that are tuned
for the MACS J1149 LS1 (see Sec. IV B), and fix the mass
fraction of the point mass lens fp ¼ 0.01 and the lens mass
M ¼ 0.3 M⊙. From the top panel to the bottom, we show the
dependences of the event rate on the source redshift zs, the
surface brightness of the arc, and the limiting magnitude of
the monitoring observation mlim. The vertical dotted lines show
our fiducial values for MACS J1149 LS1. In the top panel, we
also show the results for the limiting magnitudes brighter and
fainter by 1 mag (i.e., mlim ¼ 25 and 27) by dashed lines.
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There is a sharp cutoff atmlim ∼ 23.5 for the same reason as in
the source redshift zs.

VI. CONSTRAINTS ON COMPACT DARK
MATTER IN THE PRESENCE OF ICL

As discussed in [1,26,27], even though ICL stars can
fully explain MACS J1149 LS1, we can still place con-
straints on the compact dark matter scenario where some
fraction of dark matter consists of compact objects such as
black holes. This is because such compact dark matter can
break the caustic due to the macro lens model into micro-
caustics, which reduce the magnification significantly (see
discussions in Sec. III B). The high fraction of compact
dark matter leads to significant saturation at the position of
MACS J1149 LS1, which effectively reduces the macro
model magnification at that position. Since the smaller
macro model magnification leads to fainter peak magnitudes
of caustic crossing events, the high level of saturation can be
inconsistent with the observation of MACS J1149 LS1.
We can quantify the constraint as follows. From the peak

magnitude [Eq. (50)] and the constraint on the source
radius [Eq. (57)], we can derive the minimum (brightest)
peak magnitude as

mpeak;min ≈ 25.1 − 0.625 log

�
M
M⊙

�

− 1.875 log

�
μt;LS1
100

�
; ð71Þ

where μt;LS1 is given by Eq. (64) for the case of interest
here. For compact dark matter with masses M < 10 M⊙,
we conservatively assume that the MACS J1149 LS1 is
produced by an ICL star with the mass 10 M⊙ because
larger lens masses predict brighter peak magnitudes. Given
the condition mpeak;min < 26 we obtain the following
constraint on fp:

fp < 0.08: ð72Þ

For compact dark matter with massesM > 10 M⊙, we can
achieve brighter peak magnitudes by assuming that the
caustic crossing event was produced by compact dark
matter rather than an ICL star. In this case, from the same
condition mpeak;min < 26, we obtain

log fp < −1.44þ 1

3
log

�
M
M⊙

�
: ð73Þ

The condition given in Eq. (72) is in principle independent
of the mass of the compact dark matter microlens, which
means that this constraint can be applied for a wide mass
range below 10 M⊙. However, when the mass of the
compact dark matter microlens is very small, the extent
of the caustic produced by compact dark matter becomes

much smaller than the source size. In this case, any lensing
effects by compact dark matter are smeared out due to the
finite source size effect, and as a result it does not cause any
saturation. We can write this condition as

θEffiffiffiffi
μt

p ≲ βR: ð74Þ

Given the allowed range of the source radius R and
μt < 100, this condition reduces to

M ≲ 1.5 × 10−5 M⊙: ð75Þ

From this argument, we can derive constraints on the
massM and abundance fp of compact dark matter. Figure 8
shows the rough excluded region in theM − fp plane from
the observation of MACS J1149 LS1. As discussed in [1],
the very high abundance of ∼30 M⊙ black holes [28],
which is motivated by recent observations of gravitational
waves [44], is excluded, although more careful compar-
isons with simulated microlensing light curves should be
made in order to place more robust constraints.
As discussed in Sec. V C, our constraints are subject to

model parameter uncertainties. While we find that the

FIG. 8. Constraints on the mass (M) and abundance (fp) of
compact dark matter. Shaded regions show excluded regions from
the caustic crossing studied in this paper, microlensing observa-
tions of M31 with Subaru/Hyper Suprime-Cam (HSC) [11],
EROS/MACHO microlensing [6,9], ultrafaint dwarf galaxies
(UFDs) [45], and Planck cosmic microwave background obser-
vations (Planck) [46]. We also show constraints from the caustic
crossing with different assumptions on the transverse velocity
(factors of 2 and 0.5 different from the fiducial value) by dotted
lines. For UFDs and Planck, conservative limits are shown by
solid lines, whereas more stringent limits are shown by dashed
lines. For the Planck constraint, the stringent limit assumes the
collisional ionization around PBHs, whereas the conservative
limit assumes the photoionization due to the PBH radiation. For
the UFDs constraint, different constraints reflect different as-
sumptions on the dark matter densities and initial sizes of star
clusters in UFDs.
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uncertainty of the macro model magnification μh does not
affect our constraint on fp from the saturation condition,
the uncertainty on the transverse velocity v is expected to
have a large impact on our result via the dependence of the
maximum source star radius on the velocity [Eq. (57)]. To
evaluate this, we repeat the analysis presented above with
different values of the transverse velocity by �0.5 dex, i.e.,
factors of 2 and 0.5 different from the original value of
v ¼ 500 km s−1. The resulting constraints shown in Fig. 8
indicate that our results on the compact dark matter
abundance are indeed sensitive to the assumed transverse
velocity. We find that the constraint on fp is weaker for the
higher velocity, because Eq. (57) suggests that larger source
radii (i.e., intrinsically brighter source stars) are allowed for
the higher velocity. We find that the very high abundance of
∼30 M⊙ black holes are still excluded even for the high
velocity case, which is encouraging. In order to draw more
robust constraints on fp, we need to convolve our con-
straints on the probability distributions of the transverse
velocity, as well as other model parameters, which we leave
for future work.
We expect that we can place tighter constraints on

compact dark matter from long monitoring observations
of giant arcs and careful analysis of observed light curves.
This is because point mass lenses with different masses
have quite different characteristics of light curves such as
time scales and peak magnifications. Therefore, observa-
tions or absence of light curve peaks with different time
scales may be used to place constraints on the abundance of
compact dark matter with different masses, although we
have to take into account the uncertainty in the velocity for
the robust interpretation. As discussed in [26], another clue
may be obtained by detailed observations of light curves
before and after the peak. As mentioned above, in order to
obtain robust constraints on compact dark matter from
observations, it is also important to conduct ray-tracing
simulations that include both ICL stars and compact dark
matter, as was partly done in [26]. Ray-tracing simulations
are helpful to better understand what kind of light curves
such compound lens systems predict.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have adopted a simple analytical lens
model that consists of a point mass lens and a constant
convergence and shear field, which is used to study lensing
properties of a point mass lens embedded in high magni-
fication regions due to the cluster potential. This model has
been used to derive characteristic scales of caustic crossing
events in giant arcs, such as the time scale of light curves
and maximum magnifications, as a function of the mass of
the point mass lens and the radius of the source star. We
have tuned model parameters to the MACS J1149 LS1
event to constrain lens and source properties of this event.
We have also computed expected event rates, and derived

additional constraints on the lens and source properties of
MACS J1149 LS1.
Our results that are summarized in Figs. 3 and 4 indicate

that MACS J1149 LS1 is fully consistent with micro-
lensing by ICL stars. The allowed ranges of the lens mass
and source radius are 0.1 M⊙ ≲M ≲ 4 × 103 M⊙ and
40R⊙ ≲ R≲ 260R⊙, respectively. The most plausible
radius of the source star is R ≈ 180R⊙ (luminosity
L ≈ 6 × 105L⊙), which is consistent with a blue super-
giant. In this case, the source star should have been
magnified by a factor of ≈4300 at the peak. Our results
suggest that the allowed ranges of the lens mass and
source radius are relatively narrow, which limits the
possibility of explaining MACS J1149 LS1 with exotic
dark matter models.
We have discussed the possibility of constraining

compact dark matter in the presence of ICL stars.
Using the saturation argument, we have shown that
compact dark matter models with high fractional matter
densities (fp ≳ 0.1) for a wide mass range of 10−5 M⊙ ≲
M ≲ 102 M⊙ are inconsistent with the observation of
MACS J1149 LS1 because such models predict too low
magnifications at the position of MACS J1149 LS1. We
note that this constraint from the saturation condition
should be applicable to the total compact dark matter
fraction for models with extended mass functions [47]. We
expect that we can place tighter constraints on the
abundance and mass of compact dark matter by careful
analysis of observed light curves as well as more obser-
vations of caustic crossing events.
In this paper, we have assumed a single star as a source.

As discussed in [1], there is a possibility that the source is in
fact a binary star, based on multiple peaks in the light curve.
Even for a binary star system, our results are broadly
applicable to individual stars that constitute the binary
system.
There are several additional caveats in our analysis. As

discussed in the paper, our constraints sensitively depend
on the assumption of the velocity v as well as the macro
model magnification. To draw a more robust conclusion,
we have to take into account the distributions of the
velocity and the macro model magnification. We can also
consider more realistic star models, such as an improved
mass-radius relation of stars beyond the blackbody relation
[Eq. (27)] and a more realistic population of stars with
various temperatures.
We also did not discuss the “counterimage” (Iapyx) of

MACS J1149 LS1 presented in [1]. The position of the
second image, which was separated by 0.26′′ from MACS
J1149 LS1, is consistent with being the counterimage. The
authors of [1] argued that a point mass lens withM ≳ 3 M⊙
is needed to demagnify the counterimage for several years.
From Eq. (11), we can estimate the time scale of the
demagnification as tdemag≈2βcrit;þ=u≈14ðM=M⊙Þ1=2 year,
which suggests that indeed a pointmass lenswithM ∼ 3 M⊙
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is capable of demagnifying the counterimage formany years.
In order for this conclusion to hold, the counterimagemust be
bright enough to be detected in the absence of microlensing.
FromEq. (50), we can estimate the apparent brightness of the
counterimage without microlensing magnification (but with
the macro model magnification) to be ≈28.9 mag for
R ¼ 180R⊙, which is much fainter than the limiting magni-
tude of the monitoring observation. However, the source
radius is allowed to be as large as R ¼ 260R⊙ (see Fig. 4),
which suggests that the counterimage can be as bright as
≈28.1 mag without microlensing, which can marginally be
detected in individual observations of MACS J1149. In
observations, while a source with the magnitude ≈28 was
observed in previous images [1], given the expected fluctua-
tions of light curves and the limited time coverage of
observations, it is not clear whether this really corresponds
to the brightness of the source for the macro model
magnification μtμr ¼ 300. Therefore, the conclusion about
the demagnification of the counterimage crucially depends
on the intrinsic radius (luminosity) of the source star. There is
also a possibility that this is in fact not a counterimage but a
distinct star magnified by microlensing. While this may be
more plausible given the relatively low probability of caustic
crossing events for individual source stars, simulations in [1]
indicate that a single star tends to be responsible for the vast
majority of the detectable microlensing peaks. This, together
with the rarity of blue supergiant stars, prefers the scenario
that Icarus and Iapyx originate from the same star.
An additional caveat is that substructures can also

change the relative macro model magnifications of

Icarus and Iapyx, as noted in [1]. While the standard
cold dark matter naturally predicts such dark halo sub-
structures, compact dark matter with relatively large
masses can produce more fluctuations on the macro
model magnification due to the Poisson fluctuations of
the projected surface mass density as a function of
position on the sky. Such spatial variation of the macro
model magnifications should have an impact on our
quantitative results, including constraints on compact
dark matter from the saturation argument (Sec. VI). We
leave the exploration of this effect to future work.
To summarize, our analytic examinations have demon-

strated that observations of caustic crossing events in giant
arcs have a great potential to study the nature of dark
matter. Our predictions on characteristic scales and event
rates should provide useful guidance for future monitoring
of giant arcs in clusters for obtaining various constraints
from caustic crossing events.
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[24] E. Mediavilla, J. Jiménez-Vicente, J. A. Muñoz, H. Vives-

Arias, and J. Calderón-Infante, Astrophys. J. 836, L18
(2017).

UNDERSTANDING CAUSTIC CROSSINGS IN GIANT … PHYS. REV. D 97, 023518 (2018)

023518-15

http://arXiv.org/abs/1706.10279
https://doi.org/10.1126/science.aaa3350
http://arXiv.org/abs/1707.02434
https://doi.org/10.1038/365621a0
https://doi.org/10.1086/309512
https://doi.org/10.1086/309512
https://doi.org/10.1086/375212
https://doi.org/10.1051/0004-6361:20053812
https://doi.org/10.1051/0004-6361:20053812
https://doi.org/10.1051/0004-6361:20066017
https://doi.org/10.1051/0004-6361:20066017
https://doi.org/10.1103/PhysRevLett.111.181302
https://doi.org/10.1103/PhysRevLett.111.181302
http://arXiv.org/abs/1701.02151
https://doi.org/10.1038/282561a0
https://doi.org/10.1086/163919
https://doi.org/10.1086/343856
https://doi.org/10.1086/343856
https://doi.org/10.1086/185773
https://doi.org/10.1086/185773
https://doi.org/10.1086/512115
https://doi.org/10.1088/0004-637X/693/1/174
https://doi.org/10.1088/0004-637X/712/2/1129
https://doi.org/10.1088/0004-637X/729/1/34
https://doi.org/10.1088/0004-637X/806/2/251
https://doi.org/10.3847/2041-8213/aa5dab
https://doi.org/10.3847/2041-8213/aa5dab
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