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• Citizen science is useful for awareness
raising, if sensors are validated.

• Performance of 143 ozone electrochem-
ical andmetal-oxide sensors was tested.

• R2 between sensor and reference
data was 0.88 (0.78–0.96) and 0.89
(0.73–0.96).

• Sensors tested are useful to communi-
cate daily means but not peak episodes.

• Uncertainties must always be commu-
nicated to the public.
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Tropospheric ozone (O3) is an environmental pollutant of growing concern, especially in suburban and rural
areas where the density of air quality monitoring stations is not high. In this type of areas citizen science strate-
gies can be useful tools for awareness raising, but sensor technologies must be validated before sensor data are
communicated to the public. In this work, the performance under field conditions of two custom-made types
of ozone sensing devices, based on metal-oxide and electrochemical sensors, was tested. A large array of 132
metal-oxide (Sensortech MICS 2614) and 11 electrochemical (Alphasense) ozone sensors, built into 44 sensing
devices, was co-located at reference stations in Italy (4 stations) and Spain (5). Mean R2 between sensor and ref-
erence data was 0.88 (0.78–0.96) and 0.89 (0.73–0.96) for Captor (metal-oxide) and Raptor (electrochemical)
nodes. The metal-oxide sensors showed an upper limit (approximately 170 μg/m3) implying that these sensors
may be useful to communicate mean ozone concentrations but not peak episodes. The uncertainty of the
nodes was 10% between 100 and 150 μg/m3 and 20% between 150 and 200 μg/m3, for Captors, and 10% for
N100 μg/m3 for Raptors. Operating both types of nodes up to 5 months did not evidence any clear influence of
drifts. The use of these sensors in citizen science can be a useful tool for awareness raising. However, significant
data processing efforts are required to ensure high data quality, and thus machine learning strategies are advis-
able. Relative uncertainties should always be reported when communicating ozone concentration data from
sensing nodes.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tropospheric ozone (O3) is a secondary pollutant formed through
chemical reactions of gaseous precursors in the presence of sunlight.
Its complex formation mechanisms are based on the photo-oxidation
of volatile organic compounds (VOCs) and nitrogen oxides (NOx)
(Millán et al., 2000; Monks et al., 2015; Pusede et al., 2015; Richards
et al., 2013; Sillman, 1999), and both types of precursors may have nat-
ural (biogenic) and anthropogenic origin (Varinou et al., 1999). Part of
the complexity of this atmospheric pollutant is linked to the lack of lin-
earity of its formation pathways (Monks et al., 2015; Pusede et al., 2015;
Sillman, 1999), as NOx are also involved in ozone removal through titra-
tion with nitrogen monoxide (NO) to form nitrogen dioxide (NO2)
(Mészáros, 1999). Ozone formation processes are intensified with
high insolation in summer, resulting in characteristic ozone episodes es-
pecially in Southern Europe (Cristofanelli and Bonasoni, 2009; Gangoiti
et al., 2001; Gerasopoulos et al., 2006; Millán et al., 1991; Querol et al.,
2016; among others). Because of its chemical properties, ozone is haz-
ardous in the lower troposphere to human health (HEI, 2017; WHO,
2008) and ecosystems (Nali et al., 2002).

Ozone dynamics are strongly dominated by air mass transport from
regionswhere precursors are emitted (typically, urban areas) to regions
where ozone exposures occur (typically, suburban and rural areas). Ex-
amples of this kind of pattern, where the populations affected by ozone
episodes are not generally responsible for the emission of its precursors,
are frequently found in the literature especially in coastal areas where
emissions are transported inland by the sea breeze (Millán et al.,
2000; Querol et al., 2017). Although this kind of regional ozone produc-
tion may decisively contribute (Querol et al., 2016) to the exceedances
of the ozone information threshold (180 μg/m3, as established by EU Di-
rective 92/72/EEC), population awareness regarding ozone pollution is
generally low in rural areas. The lower population density in these
areas is reflected in a lower number of reference air quality monitoring
stations, and this may result in lower political and environmental pres-
sure for action.

In this type of lower density population areas, citizen science strate-
gies can be useful tools for awareness raising. Citizen science ap-
proaches, and more specifically sensor technologies, are currently the
focus of an increasing number of studies targeting diverse environmen-
tal pollutants (WMO, 2018). The concept of “fit for purpose” is fre-
quently addressed, referring to the fact that the quality of the data
generated by the sensors should be in accordance with their purpose
(e.g., air quality assessment, public information, awareness raising,
etc.) (Morawska et al., 2018). Different sensing technologies are avail-
able commercially and at development stage from universities and
technology centres, with varying results with regard to the quality of
the data generated by the sensors (Moltchanov et al., 2015; Jiao et al.,
2016; Lin et al., 2017; Nakayama et al., 2017; Zikova et al., 2017;
WMO, 2018; Lin et al., 2017, 2015; Spinelle et al., 2015a, b, 2017;
Williams et al., 2013, 2014; Borghi et al., 2017; Morawska et al., 2018;
Kizel et al., 2018 among others). Testing of low-cost ozone sensors
under controlled laboratory conditions has shown good correlations
(R2 N 0.90) with reference measurements (Rai et al., 2017). However,
their performance decreases significantly under field conditions (R2 =
0.01–0.94) (Broday et al., 2017; Mukherjee et al., 2017; among others).
This decrease ismainly related to interferencewith other pollutants and
with meteorological conditions (Aleixandre and Gerboles, 2012;
Spinelle et al., 2015a, b, 2017; WMO, 2018). Different interpretations
are also being put forward regarding their applications (Haklay, 2015;
Hubbell et al., 2018; Morawska et al., 2018; WMO, 2018),
e.g., regarding the method and degree that citizen science is integrated
into local, city, national, and international policy level (Haklay, 2015) or
how the introduction of sensors may change the relationship between
communities and air quality managers (Hubbell et al., 2018). Over all,
there is a general call for precaution from the atmospheric research
community to validate the performance of such low-cost sensors
(Lewis and Edwards, 2016; WMO, 2018). Because of the potentially
large datasets produced and the influence of numerous pollutant inter-
ferences, machine learning approaches such as artificial neural net-
works, boosted regression trees and Gaussian processes emulation are
being proposed for data evaluation (Lewis et al., 2016; Smith et al.,
2017; Spinelle et al., 2017; WMO, 2018; Zimmerman et al., 2018).

In this framework, this work aims to test the performance under
field conditions of two custom-made types of ozone sensing devices,
based on metal-oxide and electrochemical sensors. The sensors were
built for H2020 project CAPTOR (www.captor-project.eu) and deployed
in three European countries (Spain, Austria, Italy) with a citizen science
approach, aiming to raise awareness about ozone pollution. The ulti-
mate goal of the project was to provide ozone concentration data to cit-
izens in the study regions. To this end, the sensor nodes were inter-
compared with ozone reference instrumentation under characteristic
summer atmospheric conditions in two of the three study areas
(Spain and Italy), with the results presented in this work.
2. Methodology

2.1. Study areas

Inter-comparisons between sensor nodes and reference instruments
were carried out in Spain and Italy, with the aim to challenge the nodes
with diverse environmental conditions. The Spanish study area, cover-
ing an approximate area of 90 km × 20 km in central Catalonia (NE
Spain, Fig. 1), typically records the highest ozone concentrations in
Spain according to reference air quality monitoring stations (EEA,
2017; Querol et al., 2016). This is mainly due to the influence of the Bar-
celona city pollution plume and to the peculiar local orography andme-
teorology (ETC, 2018; Querol et al., 2017). The hourly information
threshold for ozone (180 μg/m3) was exceeded 53 times in this area
during 2017, and the maximum hourly concentration recorded was
223 μg/m3 (Table 1). The Italian study area is located in the north of
the country and it is comprised of 4 sub-regions (Piedmont, Lombardy,
Emilia Romagna and Veneto) of approximately 22,000 km2 each. It in-
cludes the Po Valley, one of the most polluted areas in Europe
(European Environment Agency, 2017) where the hourly information
threshold was exceeded 85 times in 2017 and ozone concentrations
reached up to 248 μg/m3 (Table 1).
2.2. Ozone sensor nodes

Two different types of low-cost sensor nodes were tested for ambi-
ent air ozone monitoring. Irrespective of the sensor technology used
(metal-oxide or electrochemical, see below), each node comprised sev-
eral sensing units, an external power source and an enclosure with data
transmission capabilities. The nodes using metal-oxide sensors are re-
ferred to as Captors, while those using electrochemical sensors are re-
ferred to as Raptors.
2.2.1. Captor nodes
33 Captor nodes were tested. Captor nodes were developed by the

Universitat Politecnica de Catalunya (UPC) and consist of a box with 4
SGX Sensortech MICS 2614 metal-oxide ozone sensors, 1 air tempera-
ture (T) and 1 air relative humidity (RH) sensor (DHT1 Grove). The sen-
sors were soldered on to an electronic board circuit which is connected
to an Arduino Yun platform. 3G USB connection with a global telecom
operator is the main communication channel, although they can also
use Wifi connection. The electronic board and communication chipsets
are fixed inside the box (Fig. S1). Resistance values (kOhm) reflecting
ozone concentrations were recorded with a 1-minute time resolution,
and averaged over 30-minute periods. The raw data (kOhm) were
stored in a csv file and transmitted to a central server.

http://www.captor-project.eu


Fig. 1. Top: location of the two study areas. Bottom: location of the 5 reference stations in Spain (left) and the 4 in Italy (right).

Table 1
Air quality monitoring reference stations used in this work.

Code Name Location Coordinates
UTM (m)

Elevation
(masl)

Study
areas

Pollutant
situation

Hours with O3 higher than
180 μg/m3 in 2017

Hourly max
concentration
in 2017

MAN Manlleu (hospital
comarcal)

Manlleu 440960,
4650395

460 Spain Suburban
background

7 201

VIC Vic (estadi) Vic 436986,
4642840

498 Spain Suburban
background

12 206

TON Tona (zona esportiva) Tona 435035,
4633053

620 Spain Rural background 27 223

MSY La Castanya Montseny 446649,
4625477

693 Spain Rural background 7 193

PR Palau Reial Barcelona 426062,
4582127

81 Spain Urban background – –

PM Parco Monteccuco Piacenza 500000,
4982950

61 Italy Urban background 21 202

CUN Alpini Cuneo 383575,
4915293

553 Italy Urban background – –

OS Osio Sotto Osio Sotto 547691,
5052072

182 Italy Suburban
background

43 248

CE Colli Euganei Cinto
Euganei

707237,
5018513

12 Italy Rural background 21 207
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Fig. 3. Frequency distribution of the correlation coefficients of each individualmetal-oxide
(top) and electrochemical (bottom) sensor during first and second calibration.

Fig. 2. Alternative methods available for calibration of low-cost sensor systems.
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2.2.2. Raptor nodes
11 Raptor nodeswere tested. Raptor nodes (hardware and software)

were developedby the SMIRgroupof the laboratory of LIMOSof Univer-
sity Clermont Auvergne (UCA). A Raptor platform consists of a Raptor
Local Server (RLC) and at least one Raptor End-Device (RED), maximum
number of RED for RLC is 20. The RLC is built by using one uSu-Edu
board and one Raspberry Pi 3 board, equipped with a 3G/4G modem
for internet connection. Notice that Ethernet and Wi-Fi may also be
used for internet connection. The RED is based on uSu-Edu board de-
signed by UCA and equipped with 1 Alphasense's electrochemical
ozone sensor (OX-B431), 1 Alphasense's electrochemical nitrogen diox-
ide sensor (NO2-B43F), 1 air temperature and 1 air relative humidity
sensor (Fig. S1). The default sample period of sensory data is 1 min
and it may be reconfigured. The raw sensory data is sent to RLC through
IEEE802.15.4. The RLC processes the raw sensory data before sending to
the remote servers: UCA remote server. An API was developed to enable
users to access in near real-time to the raw and calibrate data from the
UCA remote server.

2.3. Field testing

Data quality is assessed as a function of sensor sensitivity, selec-
tivity, temporal resolution, reproducibility, and stability over time
(WMO, 2018). These assessments are carried out by comparing sen-
sor data with those from reference instrumentation, under condi-
tions which may range from laboratory to environmental, and
using different degrees of signal processing. Each of these options
has different requirements and results in varying degrees of data
quality (Fig. 2). In this work, the performance of 33 Captor and 11
Raptor nodes (132 metal-oxide ozone sensors and 11 electrochemi-
cal ozone sensors) was tested between May and October 2017 by
comparison with ozone reference data from 5 local air quality mon-
itoring stations in Spain and 4 in Italy (Fig. 1, Tables 1 and S1 in
Supporting information). All of the air quality monitoring stations
are equipped with reference instrumentation for ozone monitoring
according to Directive 2008/50/EC.

• In Spain: Manlleu suburban background station (7 Captor nodes), Vic
suburban background station (1 Captor), Tona rural background
station (10 Captors and 1 Raptor), Montseny rural background station
(1 Captor), and Palau Reial urban background station (6 Captors and 1
Raptor) (Table S1).
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• In Italy:Montecucco urban background station (3 Captor and 2 Raptor
nodes), Cuneo urban background station (3 Captors and 2 Raptors),
Osio Sotto suburban background station (1 Captors and 3 Raptors),
and Colli Euganei rural background station (1 Captor and 3 Raptors)
(Table S1).
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campaigns (referred to as first and second calibration) before and after
the summer period (between May and July, and in September and
October).

2.4. Data processing

After the collocation period, a datasetwas obtained for each node in-
cludingdate stamp, ozone concentration from the reference station, raw
data (resistance values, kOhm) from the four ozonemetal-oxide sensors
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in order to randomly include high and low ozone concentrations in
both subsets of data. The sensors were then calibrated with the re-
sults from the training set, and the goodness of the fit with regard
to reference data was quantified by applying the calibration coeffi-
cients obtained with the training set to the validation set (Hastie
et al., 2001).

Calibration was carried out applying Multiple Linear Regression
(MLR) to the training datasets of each individual ozone sensor, by
regressing the raw data (in units of electrical resistance) against the si-
multaneous reference ozone concentrations (μg/m3). Temperature and
RH were included in the model as dependent variables, and also nitro-
gen dioxide in the case of Raptors. In order to do this, all datasets
were previously normalizedwith respect theirmean and standard devi-
ation. MLR then produced normalized coefficients (referred to as “beta”
coefficients) for each individual ozone, T and RH sensor in the Captor
nodes (and ozone, nitrogen dioxide, T and RH for the Raptor nodes).
In total, four ozone regression coefficients were calculated for the Cap-
tor nodes, and 1 for Raptor nodes, for each of the calibration periods
(first and second calibration).
Table 2
Correlation coefficient and linear regression coefficients of sensor vs. reference data.

Hourly average

Captor node Location Corre

17001 Manlleu 0.91
17002 Manlleu 0.87
17003 Manlleu 0.93
17005 Manlleu 0.94
17010 Manlleu 0.91
17011 Manlleu 0.90
17013 Manlleu 0.88
17004 Tona 0.96
17006 Tona 0.84
17007 Tona 0.85
17012 Tona 0.93
17014 Tona 0.88
17017 Tona 0.84
17022 Tona 0.78
17023 Tona 0.90
17025 Tona 0.95
17027 Tona 0.92
17009 Palau Reial 0.83
17015 Palau Reial 0.87
17018 Palau Reial 0.86
17019 Palau Reial 0.85
17020 Palau Reial 0.87
17026 Palau Reial 0.87
17016 Vic 0.89
17021 Montseny 0.92
17024 Cuneo 0.83
17029 Cuneo 0.84
17031 Cuneo 0.83
17028 Monte Cucco 0.88
17033 Monte Cucco 0.89
17034 Monte Cucco 0.87
17030 Colli Euganei 0.81
17035 Osio Sotto 0.90

Hourly average

Raptor node Location Corr

69 Monte Cucco 0.88
216 Monte Cucco 0.90
204 Cuneo 0.73
210 Cuneo 0.82
202 Colli Euganei 0.83
206 Colli Euganei 0.92
208 Colli Euganei 0.93
212 Osio Sotto 0.93
214 Osio Sotto 0.95
218 Osio Sotto 0.90
70 Palau Reial 0.89
70 Tona 0.96
Subsequently, ozone concentrations for each individual sensor were
calculated by denormalizing the data using the following equations:

XO3Rnorm ¼ XO3R−μO3Rð Þ=σO3R ð1Þ

XNO2Rnorm ¼ XNO2R−μNO2Rð Þ=σNO2R ð2Þ

XTnorm ¼ XT−μTð Þ=σT ð3Þ

XRHnorm ¼ XRH−μRHð Þ=σRH ð4Þ

YO3RSnorm ¼ YO3RS−μO3RSð Þ=σRS ð5Þ

YO3RSnorm ¼ β0 þ βO3XO3Rnorm þ βTXTnorm þ βRHXRHnorm ð6Þ

YO3RSnorm ¼ β0 þ βNO2XNO2Rnorm þ βO3XO3Rnorm þ βTXTnorm
þ βRHXRhnorm þ ε ð7Þ

where parameters μO3RS, μO3R, μNO2R, μT and μRH are themeans of the ref-
erence station data (μg/m3), resistor (metal-oxide) or voltage (electro-
lation (R2) Slope Intercept

0.91 6.97
0.83 14.21
0.94 3.76
0.94 3.59
0.91 5.24
0.91 5.57
0.79 14.31
0.99 −0.08
0.75 18.72
0.74 18.48
0.96 1.58
0.84 11.05
0.74 22.68
0.72 28.85
0.81 17.39
0.93 0.99
0.90 5.96
0.94 8.99
0.85 9.93
0.87 8.88
0.81 13.70
0.90 8.74
0.84 10.03
0.96 12.21
0.84 12.77
0.86 11.82
0.79 11.41
0.91 3.84
0.89 9.52
0.90 2.91
0.92 6.76
0.78 21.23
0.93 −4.88

elation (R2) Slope Intercept

0.90 15.32
0.94 −0.55
0.85 10.76
0.78 21.21
0.90 2.13
0.92 3.96
0.95 −0.35
0.99 −7.92
0.94 6.54
0.90 −3.30
0.95 −4.49
0.92 1.67



Table 3
Summary statistics of correlation coefficients for all Captor and Raptor nodes.

Correlation (R2) All Captors All Raptors

Number of nodes 33 11
Mean 0.88 0.89
Median 0.88 0.90
Max 0.96 0.96
Min 0.78 0.73

1173A. Ripoll et al. / Science of the Total Environment 651 (2019) 1166–1179
chemical) of ozone or nitrogen dioxide sensors (KOhm or Volts), T (°C)
and RH (%) respectively. Parameters σO3RS, σO3R, σNO2R, σT and σRH are
the standard deviation for the same parameters. Parameters XO3R,
XNO2R, XT, XRH are the data measured in the low-cost sensors, YO3RS is
the reference station ozone concentration and ε is the error, Gaussian
distributed with mean zero and variance σ2, i.e., ε ~ N(0, σ2).

As a result of this calibration process, four time-series of ozone con-
centrations were obtained for each Captor node during each of the cal-
ibration periods, and one time-series per calibration period for each
Raptor node. All of these time series were then compared with the si-
multaneous reference ozone concentrations, and the root mean square
error (RMSE) was calculated for each individual sensor during each
co-located period (143 sensors; Table S2). The RMSE was used to iden-
tify the best performing sensor during each calibration period, to assess
potential differences in performance between both calibration periods
(e.g., drifts), as well as to compare the performance between Captor
and Raptor nodes. The final ozone concentration for each of the Captor
nodes was selected as that of the best performing sensor. The initial in-
tention was to apply a clustering approach in order to combine the dif-
ferent sensor signals within a single node to calculate the final ozone
concentration time series (Smith et al., 2017). However, it was observed
that the errors of the different sensors were correlated, and therefore
applying a fusion algorithm did not reduce the RMSE. As a result, a
single-sensor approach was used instead.

3. Results and discussion

3.1. Comparison between raw sensor and reference ozone data

As described in the previous section, thefirst phase of the calibration
process involved correlating raw sensor data (in electrical resistance
units) with simultaneous reference ozone concentrations (μg/m3). The
correlation coefficients (R2) between raw sensor and reference data
and their distribution are shown in Fig. 3. For the Captor sensors, the
R2 ranged between 0.10 and 0.89, with 16 out of 132 sensors showing
a correlation b0.10 during the first calibration (Fig. 3). During the sec-
ond calibration it ranged between 0.10 and 0.95, and only 1 out of 132
sensors had a correlation b0.10 (Fig. 3). This analysis evidences that
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R² = 0.8879
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results improved during the second calibration period (September–Oc-
tober) with regard to the first (May–June), which was interpreted as
resulting from the lower ambient ozone concentrations registered after
the summer (e.g., mean ozone at Tona reference station = 80 μg/m3 in
May–June with 189 μg/m3 hourly maximum, vs. 49 μg/m3 in
September–October with 128 μg/m3 hourly maximum). It is known
thatmetal-oxide sensors generally underestimate high ozone concentra-
tions (Moltchanov et al., 2015; Spinelle et al., 2015a, b;WMO, 2018), and
as a result perform better (when compared with reference instruments)
when exposed to lower ambient concentrations. R2 coefficients obtained
for Raptor sensors ranged between 0.31 and 0.98, with only 1 out of 11
sensors showing a correlation b0.75 during the first calibration (Fig. 3).
During the second calibration they ranged between 0.48 and 0.98 with
3 out of 11 sensors having a correlation b0.75 (Fig. 3). Because electro-
chemical sensors do not suffer from the same limitations as metal-
oxide sensors when challenged with high concentrations, similar results
were obtained for Raptor sensors during both calibrations. This is also
probably related to the fact that the response of electrochemical sensors
with T and RH is more linear than that of metal-oxide sensors
(Moltchanov et al., 2015; WMO, 2018).

When plotting the raw sensor against reference ozone data for each
of the calibration periods, the performance of individual sensors varied
largely fromunit to unit. Selected examples for twoCaptor and twoRap-
tor sensors are shown in Fig. 4, and the results for all of the sensors (132
metal-oxide and 11 electrochemical) are shown in Supporting informa-
tion (Fig. S2 and Table S2). Whereas for some of the sensors slope of the
regression line remained stable for both calibration periods (e.g., Captor
#17004-sensor 4, and Raptor 208; Fig. 4), suggesting an apparent ab-
sence of drifts, for others a clear change in the slope was detected
(e.g., Captor #17007-sensor 3, and Raptor 218; Fig. 4). In the latter
cases, theperformance of some sensors decreased over timewhile it im-
proved for others, and thus these changes could not be ascribed to sen-
sor deterioration over time. Prior experiences in this research project
(data from 2016, not shown) suggested that sensor signal stability
may have been influenced by physical transport of the nodes to and
from measurement locations, as components inside the nodes shifted:
however, in theperiod reported in thiswork thiswas not the case (com-
ponents were fixed properly inside the boxes), given that several of the
nodeswere transported to othermonitoring locations betweenfirst and
second calibration periods and their signals remained stable. In general,
the decreasing performance of sensors is frequently observed (WMO,
2018) and may be attributed to internal drifts due to manufacturing
process (Moltchanov et al., 2015; Spinelle et al., 2015a, b, 2017) and
or to sensors ageing. As stated above, for some sensors in this work
the drifts resulted (unexpected) in improvements in performance (e.g.
Captor #17012-sensor 4 or #17015-sensor 1; Fig. S2).

Further research is currently underway aiming to understand the
different performance of the sensors over time and in producing better
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Fig. 7. Comparison between the results from a linear (left) and a non-linear (right) calibration method, tested for a subset of data (850 data points, hourly means, from node
17001, sensor 4).
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estimator algorithms. As shown above, Fig. 4 (Captor #17007) indicates
that the response during the second calibration can be linked to differ-
ent environmental conditions in terms of lower average ozone concen-
trations and different average temperature and relative humidity than
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future) using a short calibration period (around 3 weeks). This would
imply predicting ozone concentrations while correcting for variability
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linked to environmental conditions, not to drifts linked to technical is-
sues. This work is currently underway, and studies on this are already
available (Kizel et al., 2018).

3.2. Root mean square errors (RMSE)

As described in the Methodology, MLR analysis was applied to the
sensor raw data using the reference ozone concentrations as indepen-
dent variable in order to obtain the beta coefficients necessary to con-
vert the sensor raw data to ozone concentrations (in μg/m3). The
ozone time series obtained from the sensors were then compared to
the reference data, and the root mean square error (RMSE) was calcu-
lated for each individual sensor during both calibration periods (Fig. 5
and Table S2). For each node 4 RMSEs are presented, one for each of
the sensing units. The RMSE are presented as absolute (μg/m3) and
not relative (%) concentrations in order to avoid the influence of the
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Captor sensors showed RMSEs between 9 and 26 μg/m3 during the
first calibration and between 7 and 19 μg/m3 during the second calibra-
tion period (Fig. 5). The higher RMSEs obtained for the first calibration
period seem to confirm the poorer performance of themetal-oxide sen-
sors when challenged with high concentrations, when compared to the
lower concentrations recorded in September–October. RMSEs obtained
for the lower concentration ranges were similar for both calibration pe-
riods (7–9 μg/m3). In the case of Raptor nodes (electrochemical sen-
sors), the RMSEs obtained ranged between 6 and 17 μg/m3 (first
calibration) and 5–14 μg/m3 (second calibration) and were thus rela-
tively comparable to those obtained for Captor nodes (metal-oxides)
for the second calibration period, i.e., for the lower concentration
range (e.g., mean ozone at Tona reference station = 48.7 μg/m3 in
September–October with 128 μg/m3 hourly maximum). The RMSEs
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from the Raptor nodes showed a lower variability across calibration pe-
riods, thus evidencing a better performance for higher ozone concentra-
tions and a lower influence of ambient conditions.

Intra-nodal variability of the RMSEs was also assessed for Captor
nodes (4 sensors). Even though a limited number of nodes showed sim-
ilar RMSEs for all sensors (e.g. #17022 during the first calibration, or
#17009 during both calibrations), the overall trend showed a 5–7 μg/
m3 difference between sensors in a given node. This would be the un-
certainty associated to using a single-sensor approach for the quantifi-
cation of ozone concentrations as opposed to a clustering approach
(Kizel et al., 2018; Smith et al., 2017).
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3.3. Selection of final ozone time series and performance testing

The RMSEs quantified for each individual sensor were used to select
the best performing sensor, whichwas the onewith the lowest RMSE. In
addition, for the best performing sensor, the beta coefficients (obtained
from MLR analysis) obtained for each of the calibration periods were
assessed in order to select the coefficients which better reproduced
ozone concentrations under high (May–June) and low (September–Oc-
tober) ambient ozone concentrations. Based on these assessments
(RMSE and MLR coefficients from each of the calibration periods), the
final ozone time series for each of the Captor nodes were selected.
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This process was not necessary for the Raptor nodes as they only
contained one sensing unit each.

The comparison between the reference and sensor ozone time se-
ries, for selected Captor and Raptor nodes, is shown in Fig. 5. The results
for the 33 Captor and 11 Raptor nodes analysed in this work (143 indi-
vidual sensors in total) are shown in Table 2 and in Supporting informa-
tion (Figs. S3 and S5). As shown in the tables, when applying a
calibration strategy such as the one described in this work, mean R2

values for all nodes were comparable for the 33 Captors and 11 Raptors
tested (R2 = 0.88 and 0.89, respectively, Table 3). The minimum and
maximum R2 values were also similar for both types of sensors
(0.73–0.78, and 0.96, respectively), with a slightly higher median for
Raptor nodes (0.90, vs. 0.88 for Captor nodes). These results were irre-
spective of the sample size, given that similar results were obtained
for the nodes which were collocated for 5 months (highlighted in bold
in Table 2) and those collocated for 1month (only during the calibration
periods).

This assessment, which is based strictly on mean R2 values, does not
allow to conclude a better performance of the electrochemical sensors
(compared to the metal-oxide ones) when exposed to higher concen-
trations. However, Fig. 6 shows that themetal-oxide sensors in the Cap-
tor nodes seemed to have anupper limit around 170 μg/m3, which is not
the case for the electrochemical sensors in the Raptors (at least within
the concentration range to which the nodes were exposed; Fig. 6),
which were able to measure higher ozone concentrations (N200 μg/
m3).With regard to the lower detection limit, both types of nodes (Cap-
tor and Raptor) seemed to report reliable concentrations down to ap-
proximately 20–30 μg/m3, with smaller differences between both
types of sensors. The results for all of the nodes are shown in the
Supporting information (Figs. S4 and S5). These findings are consistent
with the literature (Moltchanov et al., 2015; Spinelle et al., 2015a, b;
Kizel et al., 2018; WMO, 2018), where the non-linear response of the
metal-oxide sensors is already described. While the literature reports
this limitation based on studies which apply linear models for sensor
calibration (WMO, 2018; and references therein), the large dataset
available in the present work (N4 month time series; 132 metal-oxide
sensors) could be sufficient to evidence that this limitation could be
overcome by applying non-linear regression models to calibrate
metal-oxide sensors. Work is currently underway in this research
direction.

A preliminary evaluation of the potential of non-linear regression
was carried out by comparing the results from the linear calibration
(MLR; Fig. 7 left) and non-linear calibration (SVR, Support Vector Re-
gression; Fig. 7 right) of a subset of data (850 data points, hourly
means, from node 17001, sensor 4). The model SVR (Esposito et al.,
2017) uses a similar approach to artificial neural networks (ANN;
Spinelle et al., 2017). Preliminary results for this subset of data were
that the calibration with MLR (linear) resulted in an RMSE of 9.1 μg/
m3 with R2 = 0.95, while the non-linear calibration (SVR) had lower
RMSE (6.2 μg/m3) and higher R2 (0.98). The main advantage of the
SVR calibration was its ability to reproduce high hourly concentrations
(Fig. 7): while the linear calibration of the CAPTOR node was unable
to reach the highest means (left), with the non-linear calibration these
were adequately reproduced by the model. Calibration of the lowest
hourly means also improved with the non-linear method, although to
a lower extent than the highest means (Fig. 7).

Consequently, based on these results it may be concluded that the
performance of the metal-oxide sensors tested in this work could be
considered adequate for raising awareness about daily ozone means,
but that the sensors would not be adequate to monitor high ozone con-
centrations during ozone episodes.

Because of thedifferent performance of sensors at different pollutant
concentrations, the absolute and relative uncertainty of the Captor and
Raptor data with regard to the reference concentrations was quantified
for different ozone concentration ranges (Figs. 8 and S6). According to
this analysis, the absolute uncertainty of Captor nodes (i.e., including
the uncertainty of the sensing units and of the calibration method)
was around 10–12 μg/m3 for ambient ozone concentrations between
30 and 100 μg/m3, while it increased to 15 μg/m3 for concentrations
100–150 μg/m3 and was maximal (from 20 to 40 μg/m3) for concentra-
tions in the range 150–200 μg/m3. The uncertainty of Raptor nodes was
8–12 μg/m3 for concentrations 30–100 μg/m3 and around 10–15 μg/m3

for concentrations N100 μg/m3.

3.4. Intra-node variability

Final time series of ozone concentrations from Captor and Raptor
nodes during collocated periods at reference stations are depicted in
Fig. 9 (selected examples) and Fig. S4 in Supporting information. In
Fig. 9, the different nodes followed comparable daily patterns, similar
to that of the simultaneous reference station: diurnal cycles with in-
creasing concentrations during themorning, peaking atmidday and de-
creasing in the afternoon. During the first calibration period the intra-
node variability was low (maximum hourly difference between nodes
= 5 μg/m3), with high precision. However, precision decreased signifi-
cantly during the second calibration period (maximum hourly differ-
ence between nodes = 20 μg/m3), while the accuracy increased due
to the lower ozone ambient concentrations. This resulted in better sen-
sor performance for the dailymaxima. As discussed above, this decrease
in precision could be related to ageing of the sensors, although further
research would be necessary to fully understand the nature of these
drifts.

3.5. Long-term performance analysis

With the aim to evaluate the long-termperformance of both types of
sensors, 8 Captor and 4 Raptor nodes (32 metal-oxide and 4 electro-
chemical ozone sensors) were deployed at reference stations during
the entire duration of the study (between 5 and 2.5 months depending
on each case). The results are shown in Fig. 10 for 2 examples (1 station
in Spain and 1 in Italy), and for all of the stations in Fig. S5. Different sta-
tions and countries were selected in Fig. 10 in order to challenge the
sensors with different ozone concentrations and ambient meteorologi-
cal conditions.

The time series analysis of Captor and Raptor data, as well as the
scatter plots, evidence a good comparability between sensor and refer-
ence data across the 5 study months and under the different environ-
mental conditions in the Italian and Spanish reference stations. R2

coefficients were 8.84–0.89 for the Captor nodes and 0.88–0.96 for the
Raptor nodes, which are within the range obtained for the calibration
periods (0.78–0.96 for Captors and 0.73–0.96 for Raptors, Table 3).
Thus, during the continued 5-monthperiod the performance of the Cap-
tor and Raptor nodes seemed stable and comparable to that during the
calibration periods (1–2 months), with no indication of drifts due to
ageing of the sensors. This does not mean, however, that drifts may ap-
pear after longer periods of time (N5 months). The time series in Fig. 10
show that the comparability between sensor and reference data was
maintained during high and low ozone periods, corresponding to the
middle and end of the summer.

4. Summary and conclusions

The performance of two types of custom-made sensor nodes for
ozone monitoring in a citizen science approach was assessed in this
work. The sensors aimed to fulfil the purpose of awareness raising,
and were thus not meant for compliance checking or air quality
reporting. The sensing nodeswere equippedwithmetal-oxide (referred
to as Captor nodes, 33 units tested, 132 individual ozone sensors) and
electrochemical (referred to as Raptor nodes, 11 units tested, 11 individ-
ual ozone and 11 individual NO2 sensors) sensors. They were tested in
the field by collocation at reference air quality monitoring stations,
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and were exposed to different ambient ozone concentrations and envi-
ronmental conditions in Italy and Spain.

The individual sensor datasets were calibrated applyingmulti-linear
regression (MLR) analysis, which resulted in mean R2 between cali-
brated sensor and reference data of 0.88 and 0.89 for Captor and Raptor
nodes, respectively (with ranges 0.78–0.96 for Captors and 0.73–0.96
for Raptors). These results support the validity of the calibration ap-
proach applied. However, the metal-oxide sensors seemed to have an
upper concentration limit (approximately 170 μg/m3) which was not
the case for the electrochemical sensors. This behaviour was consistent
with the literature. For this reason,metal-oxide sensorsmay be useful in
citizen science approaches to communicatemeanozone concentrations,
but not peak episodes. In order to overcome this limitation, non-linear
regression models are probably better suited than linear ones to cali-
brate metal-oxide sensors. Linear ones are adequate for calibration of
electrochemical sensors.

The relative uncertainty of the Captor nodeswith regard to the refer-
ence concentrationswas quantified, as a function of ambient ozone con-
centrations to account for the upper limit described above. This
uncertaintywas around 10% for ambient ozone concentrations between
100 and 150 μg/m3, while it increased to 20% for concentrations
150–200 μg/m3. The relative uncertainty of Raptors nodes was 10% for
concentrations N100 μg/m3. The long-term performance (up to
5 months) of both types of nodes was comparable to that in the short-
term (1–2 months), with no evidence of drifts over time.

Based on these results, it may be concluded that the performance of
the metal-oxide sensors tested in this work is considered adequate for
reporting daily ozonemeans for awareness raising, but that the sensors
would not be adequate for communicating high summer midday ozone
episodes typical of the Mediterranean region, with the calibration
methods used in this work. Thus, over all, the use of these sensors in a
citizen science can be a useful tool for awareness raising. The data pro-
cessing effort required implies that, for the sensing nodes tested in this
work, the application ofmachine learning strategieswould be advisable.
The relative uncertainties quantified in this work should always be
taken into account when reporting ozone concentration data from Cap-
tor and Raptor sensing nodes.
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