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Calculation of rovlbrational spectra of water by means of particles-on­
concentric-spheres models. II. Excited states of stretching vibrations 

Grigory A. Natanson,a) Gregory S. Ezra,b) Gerardo Delgado-Barrio,C) 
and R. Stephen Berry 
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 

(Received 15 August 1985; accepted 7 November 1985) 

It is shown that adiabatic separation of high-frequency stretching modes from bending and 
overall rotational motions in triatomic molecules XY zleads naturally to the particles-on-a-sphere 
(POS) model treated previously [J. Chem. Phys. 81, 3400 ( 1984) ]. Solution of the rovibrational 
problem using a further approximation in which stretching motions are treated as uncoupled 
modes is then investigated in detail. It is shown that, for states with a significantly larger number 
of quanta in one bond than the other, the POS model in this approximation yields energy levels 
that are essentially identical with those for the particles-on-concentric-spheres (POCS) model, 
where the latter is obtained using a different decoupling of the basic set of differential equations. 

I. INTRODUCTION 

As shown in our previous paper (part I, Ref. 1), an 
adiabatic separation offast unexcited stretching modes from 
bending and overall rotational motions in the water mole­
cule leads naturally to an approach in which the two hydro­
gen atoms are treated as particles moving on a sphere. This 
model was used to calculate bending frequencies and rota­
tional structure in the ground and excited bending states. 
Depending on the potential energy surface used, the accura­
cy of the resulting energy levels is comparable with or in 
some cases even better than that obtained with more conven­
tional models of the water molecule, such as the rigid bend­
er·3 or the semirigid bender4 modification suggested by 
Bunker and Landsberg. 

The aim of the present work is to provide a more rigor­
ous justification for the model used previously, and thereby 
to extend application of the method to states involving exci­
tation of stretching modes as well as bending modes and 
rotations. 

To the best of our knowledge, the only variational calcu­
lations to date of rotational spectra for the water molecule in 
local-mode stretching states are those recently reported by 
Reimers and Watts.s For their calculations, these authors 
used a new surface consisting of three Morse-type potentials. 
They were able to fit their calculated energy levels to experi­
mental vibrational frequencies with impressive accuracy us­
ing only nine parameters. However, we shall show below 
that this surface does not provide an accurate description of 
the effect of vibrational excitation on rotational structure. 

We have now experienced comparable difficulties in de­
scribing the effects of vibration upon rotational structure in 
our own calculations, but in our case the main source of error 
is not the potential surface used6 but the dynamical approxi-
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mations made in the Hamiltonian. In spite of these approxi­
mations we are nevertheless able to obtain qualitative regu­
larities and trends in rotational bands somewhat better than 
do Reimers and Watts,S who performed more accurate cal­
culations with a more approximate potential surface. 

II. BASIC EQUATIONS 

We start with the laboratory-frame Hamiltonian used in 
part I: 

if = - -l-(Vi + VD - ..!..VI • Vz + V(RI' Rz, r), 
2p, M 

(1) 

where R I and Rz are bond lengths, r is the included bending 
angle, m and M are masses of hydrogen and oxygen, respec­
tively, V(RI' Rz, r) is the Born-Oppenheimer potential, 
",,-I = m- I + M- 1 and 

a 
V(I) = --, (2) 

aRj 

where the vector R j is the position of hydrogen i with respect 
to the oxygen atom. 

A. 2D stretch expansion 

We now treat the (fast) stretching modes by analogy 
with the treatment of electronic motion in the zeroth-order 
Born-Oppenheimer approximation. That is, we expand the 
full molecular rovibrational wave function as 

1 - A A 

'I1v.r (R 1, Rz) = --L cl>ii (R I , Rz)X~·r(Rl' Rz), (3) 
RIRz ii 

A 

where Rj=R;lRj , and the function cl>v is a solution of the 
two-dimensional problem6 

[ 
1 ( a

Z 
a

Z 
) 1 a

z 

- 2p, aR i + aR ~ - M
coS 

r. aRlaRz 

+ V(RI> Rz, re) - E ~ZD) ]cI>v (R I, Rz) = 0, 

which is normalized as follows: 

(4) 

(5) 
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2036 Natanson et at : Calculation of water spectra. II 

Note the presence of the equilibrium bending angle re in Eq. 
(4). Indices v and v,r denote complete sets of quantum 
numbers necessary to specify solutions of the two-dimen­
sional stretching and full rotation-vibration problems, re­
spectively. In particular, 

v=n,m,K, (6a) 

where nand m (n<m) are the numbers of quanta of stretch­
ing excitation in each bond, and K is ± 1 depending upon 
whether the stretching function ~v (R IR 2 ) is symmetric 
( + 1) or antisymmetric ( - 1) with respect to permutation 
of R I and R 2• Following Lawton and Child6 we shall also use 
the notation 

(6b) 

where [K] =:sign [K]. The set of quantum numbers r includes 
V2, the number of bending quanta, J, the total angular mo­
mentum, and (Ka, Kc )' rotational quantum numbers corre­
sponding to prolate and oblate symmetric-top quantization. 

Substituting the expansion (3) into the SchrOdinger 
equation ( 1 ), multiplying the resultant expression by 
R I R2 • ~v· (R IR 2 ), and integrating over RI and R2, taking 
into account the fact that the ~v (R IR2 ) form an orthonor­
mal set, we obtain a set of coupled differential equations for 
the rotation-bending functions X~:T: 

[t(1 ~V'), I~» + Wu' (r) - 8vu,Eu,T ]X~:T 

= L [av';v" (A",'I', + K' K" A",'I',) + bv';v" V",'I', • V ",'1', 
v"#v' 

A A 

+ cv';v" (RI • V,,2'1'2 + K'K"~· V "1'1'1) - wv';v' (r) ]X~~T' 
(7) 

where 

t(1",JM)=:tO(1",) +tl (1M), (8a) 

the adiabatic contribution to all the angular parts of the kinetic 
energy; 

A 1 
to(/)=: - 2/(A"I'I'1 + A",'I")' (8b) 

the (presumably large) uncoupled parts of the angular kinetic 
energy for individual hydrogens; 

tl (1)=:A!(l) + At '(1), (8c) 

all the adiabatic kinetic angular couplings; 

A 1 
At(/)=: - IV 91'1'1 • V",'I'» (8d) 

the angular coupling through the center-of-mass momenta cor­
rection in the POCS model; 

1 A ""-

At '(1) = I(R I • V",'I" + R2 • V",'I'I ), (8e) 

the adiabatic correction to the POCS model; 

I~V)=[~f R 1-
2 ~~(RI' R2)dR I dR2] -1=.u[R (V)P, 

(9) 

the effective moment of inertia of the light particle; 

1~)=[~fR ,I R 21 ~~(RI' R2)dR I dR2]-1 

=M(U)[R(U)P, (lOa) 

the effective moment of inertia of angular couplings; with 

M (v)= M [f R ,I R 2- 1 (R (V»2~~ (R I , R2)dR
I 
dR2] - I , 

(1Ob) 

the effective mass of the heavy particle; 

Wv• (r) 

= E ~~D) + J [V(R I ,R2,r) - V(R.,R2,re)] ~~ dR I dR2 

cos r 1 f a2~v' - --,- + -(cosr. - cos r) ~. dR I dR2, 
I~) M aR l aR2 

(11 ) 

the noncoupling part of the effective potential for bending in 
the stretching state Vi; 

av';u' = ~ f .u~ i ~v,~v· dR I dR2, (12a) 

the coefficient of nonadiabatic couplings through the centrifu­
gal term; 

bv';v'= ~fR,IR21~v'~u. dR l dR2, (12b) 

the coefficient of nonadiabatic couplings through momenta; 

(12c) 

the coefficient of some extra nonadiabatic couplings; and 

W v'u' (r)= f ~v· {[ V(RI' R2, re) - V(RI' R2, r) ]~u· 
1 a2 ~v" } . + -(cos r - cosr.) dR I dR2 + bv'v" cos r, 

M aR1aR2 
(13) 

nonadiabatic potential couplings. [Note that a factor 2 appears 
in error on the right-hand side ofEq. (13) in Part II.] 

Decoupling the set of equations (7) by neglecting their . 
right-hand sides leads to the relation 

[t(1~U),/~» + Wv(r) -E~~)]X~ad)=O. (14) 

This equation defines the adiabatic functions X~). Omitting 
the term At I on the right-hand side of Eq. (8c) we obtain an 
equation for the wave function ~ describing motion of two 
identical particles moving on a sphere of radius R(v) around a 
free heavy particle of mass M(V): 

[to(1~V» +At(1~» + Wv(r) -E~S]X~OS)=O, 
(15) 

where the effective masses 

m(v) = (1. __ 1_) -I (16) 
.u M(V) 

and M<v) of both the light and heavy particles depend on the 
degree of stretching excitation. Note that Eq. (15) differs from 
the SchrOdinger equation for particles on a sphere with fixed 
centee by inclusion of the center of mass correction fl.t. 

The adiabatic approach discussed here is equivalent to the 
"adiabatic bend" method of Johnson, Skodje, and Reinhardt,8 

who treated a bending mode coupled to a single stretch mode. 
A multidimensional extension of a more sophisticated ap-
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proach,9 in which the stretching-mode equation depends para­
metrically on the bending angle, will be discussed in a future 
publication. 10 

It should also be noted that a similar decoupling scheme 
performed using Radau coordinatesll

-
IS 

111 = a+RI + a_R2 , 

112 = a_RI + a+R2, 

where 

(17) 

a± =!( ~ ± 1) (18) 
2\jM+2m 

leads immediately to a model in which the light particles move 
on the surface of an immobile sphere in the space spanned by 
vectors 111 and 112' Due to elimination of the center-of-mass 
correction in Eq. (1), the quantum-mechanical kinetic energy 
is given simply by the operator to. Of course the kinematic 
separability provided by the Radau coordinates is obtained at 
the price of a complicated collective motion of the hydrogens, 
and is most likely associated with large potential energy cou­
plings as a result of mixing between local stretching modes and 
bending. The e1fectiveness of employing Radau coordinates for 
adiabatic separation of motions certainly deserves careful 
study. 16 

Returning to the set of equations (7), it must be remem­
bered when performing the adiabatic decoupling that the wave 
functions <I» n.m. + I and ~ n.m. _ I form a near-degenerate doub­
let of states for m>n, so that couplings between the functions 
x:::::t.r and X~:::;,}: cannot be omitted a priori. These couplings 
are represented by the operators 

A- _ """",, 

At~:;;;K = cn.m.K;n.m. -iC (R I • V8,'P, - R2 • V8 ,'P,) 

+ an.m.iC;n.m. - iC (A8,'P, - A8,'P, ) , (19) 

where 

. 1 J -I a<l»nm-iC d 
cn.m.K;n.m. -iC = M R 2 <l»n.m.iC aR 'RI dR2, (20) 

I 

and the coefficient Bn.m.K;n.m. _ iC is defined by Eq. (12a). The 
effects of these couplings, as well as the role of the term omitted 
in deriving Eq. (15), will be studied in a separate pUblication. 

B. Separation of stretching modes In the two-dImensional 
equation 

Instead of solving the two-dimensional stretching equa­
tion (4) numerically (cf. Ref. 6), we can approximate the ap­
propriate eigenfunctions <l»m.n. ± 1 (R IR 2) as symmetric and 
antisymmetric combinations of products of separable stretch­
ing functions, i.e., we put 

<l»n.m.K (R IR2) ~<I»t,!, (R I, R2) 

== Nnm [In (R I) 1m (R2) + Kim (R I) /,. (R2)], (21) 

where 

Nnm = 1//i for n#m, 
(22) 

Nnm = 1/2 for n = m, 

and the mode functions are solutions of the one-dimensional 
equation 

[ - d~22 + V(RI.Re,re) - EK]1: = O. (23) 

Eigenvalues E ~~~! are then approximated by expectation val­
ues of the two-dimensional Hamiltonian calculated with func­
tions (21): 

E(2D) =E(I) E(I) +~COS1/ (D)2 
n, m, K - n,m.K n,m M Ie nm 

+ f [I! (RI)/!. (R2) 

+ K(1 - ~nm)/" (RI)lm (RI)ln (R2)lm (R2)] 

X V(R I.R2,re )dR I dR2• (24) 

where 

and 

E~~~= En - (V)nn + Em - (V)mm' 

(D )nm== f In d; dR, 

(25) 

(26) 

(V)nm = f/,.(R)V(RI,Re,re)lm(R)dR. (27) 

We find 

[R (m.n.K)] -2~ [R (n.m)]-2 

= ~ [(R -2)n + (R -2)m ]=JI'/l~n.m) 
(28) 

with 

(29) 

and 

= ~[ (R -I)nn (R -I)mm + K(R -I)!m] 

(30) 
with 

(R -I)nm= J R -I/,. (R)lm (R)dR. (31) 

The potential (10) takes the form 

Wn•m•K (r) ~ wt,!, (r) 
=Wn.m(r) +KAWn.m(r)(I-~nm)' (32) 

where 

Wn•m (r) 

-E~~~ + J V(R I,R2,r)I! (RI)/!. (R2)dR I dR2 

cosr 
M [R (n.m)]2 ' 

AWn.m(r) 

(33a) 

= J V(R I.R2,r)/" (R I)/,. (R2)lm (RI)lm (R2)dR ldR2 

+ ~COSr<D)!m. (33b) 
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2038 Natanson et al. : Calculation of water spectra. II 

For n = m we obtain the expressions used in part I to calculate 
the bending-rotation spectrum of the water molecule in the 
ground stretching state. 

With the approximation (21) for the stretching wave 
functions, the adiabatic approach leads to the coupled equa­
tions for the POS model: 

[1(I(,,·m) I(",m,ic» + W[ic) (r) - B(ad) ]X[ic) 
J.' 'M n,m .. ,m,T lI,m,K,T 

- AAtic,-icX[-ic) n<m ic- ±K (34) 
- Q II,m ",m,Ie,T' ,-. 

We refer to this as the local-mode adiabatic approach. As 
shown in the next section. this approach can be derived in a 
more rigorous fashion using an expansion in terms of local 
mode functions. The POS model corresponds to the case 
X:A- K ) -0 

",m,K,T - • 

c. Local-mode expansion 

We now consider another expansion for the complete vi­
bration-rotation wave function, 

(35) 

which is closely related to the "coupled-bonds" approach re­
cently suggested by two of us. 17 In fact, transforming Eq. (35) 
to an equivalent form 

_ " A A 

'I1p , ... (R .. R2 ) = L I", (R 1)/m ,(R2 ) lP::::K, ... (R 1,R2 ), 

.. ',m' 
(36) 

where 

n',n' _ :/1',11', + 1 
if' II, m, It, T - A PI, m, K, T , 

n',m' _ ,,2 (37) 

{ 
~ [x:: '",":~, -: 1 + x:::';,,~~,;: 1], n' < m', 

lP",m,IC, ... - I 
[:;-"",m', +1 :"","', -1] n'>m', Ii ..( II, m, K, T - A. 11, na, Ie, r , 

and expanding th......e functions lP ~:'::.~, ... in terms of spherical 
harmonics Y{:.. (Rt ) and Y{:., (R2 ) as done in I, we obtain an 
expansion17 in which each bond is treated as a nearly rigid 
rotor. 

The set of coupled equations for the functions i::'m":~ IC' 

namely: 

[r(I(",m) I(",m,IC» + W[IC) (r) -B ] :;-""m,IC 
J.' 'm .. ,m ",,",K,T A.n,m,1( 

= L [av, v' (A.II.9'. + KK' A.II>9',) + bv, p' V 1I.9'.·V 11,9', 
Vi:;' V 

A A _ _ I I , 

+ cp, v' (R .. V 11,9', + KK' R2·V 11.9'. ) - Wp , p' (r)] X:::: ~ K , 

(38) 

is clearly similar to Eq. (7). In Eq. (38), the coefficients a, b, 
andccanbe obtained by substituting Eq. (21) intoEqs. (12a), 
(12b), and (12c), respectively. The quantities .iiIK] and 
R('" m) and the potential W~~~ (r) have a1readybeen defined 
in Eqs. (28), (30), and (32). The only new coefficient is 

W,=:W " , V,V m.n,K;m,n,K 

= ~KK' {f <ll~:!, CI»!:~ VeRt. R 2• r) dR I• dR2 

- (V)""' ~mm' - (V)mm' ~"n' 

+Nn'm' cosr [(D) (D) 
nm M ,.',. m'm 

where 

,.'m'_ N, N nm = rim' 
{

1, 

Nnlm" 

n' =l=m', 
n'=m'; 
n=m. 

n=l=m; 

(39) 

(40) 

It is crucial to note that an adiabatic approximation applied to 
the set of equations (38) yields precisely the same equations as 
those obtained by applying the separability approximation 
(21 ) to the 2D-stretch adiabatic approach. As long as all terms 
in Eq. (34) are kept, the same adiabatic approximation results 
as obtained starting from the expansion (36). 

We now look for solutions ofEq. (34) which are adiabatic 
approximations to the expansion functions lP in Eq. (36). 
Thus, we set 

=2- 1/ 2 [-+ + -- ] lPn,m,K, ... - X,.,m,IC,... Xn,m,IC,T , 
(41) 

=2- 1/ 2 [-+ - ~- ] lPm,n,K, ... - Xn,m,IC,T X",m,IC, ... 

with n < m. Adding and subtracting equations (34) corre­
sponding to opposite values of ic and to a fixed value of K we 
obtain an equivalent pair of equations: 

[1(1(") I(m) I ) + w. (r) E (ad) ] m 
JI. ' '" ' raJm ft,m - n.m,K, '1" Tk,I,K,r 

+ [11 (M (R -1),,-;.2) + A.W", m (r) 
A A 

- Cn, m, 1; n, m, - 1 (R1·V 11,9', - R2·V 11.9'. )] lPk,l, K, T = 0 , 
(42) 

where 

lal' 12, I) = 10 a1,I2 ) + 11 a) , (43) 

A - - 1 1 
to (/ .. 12)= - if. A.II.9'. - il2 A.II,9'2 • (44) 

In, m== M [(R -1)nn (R -1)mm] -1, (45a) 

Mn,m=:In,ml(R(n) R(m) . (45b) 

In deriving, Eq. (42) we have also taken into account the fact 
that 

a - -=0 - -n,m,K;n,m, -I( ra,m, -K;n,m,K 

and 

C - - = -c - - . n,m,K;n,m, -I( ra,m, -K;n,m,K (47) 

Decoupling the new set of equations (42) gives an equation for 
two particles moving on concentric spheres of radii R(k) and 
R (I) with a freely moving center: 

A -(It) -em) A - - - (POCS) 
[to(/I' ,II' ) + A.t (IrI,m) + W,.,m (r)-En,m,K] 

XlP~~)=O, 

k = m, 1= n or k = n, 1= m . (48) 

J. Chern. Phys., Vol. 84, No. 4,15 February 1986 
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Comparison with the model in which the two particles move on 
concentric spheres with afixed center,t8 we see that an addi­
tional center-of-mass correction At has been introduced here. 
Calculation of the matrix elements of this term in a basis of 
spherical harmonics is done as for the case of two particles on 
the same sphere, 1 and is not discussed further here. 

It should be noted that the function: 

X~~)+1=2-1/2 (qJ~~)+qJ~~~» (49) 

describes motion of two particles on a sphere of radius R(n, m) 

interacting with the potential W", m (r). This implies that for 
n <m the function X~~~) + I should closely resemble the func­
tions X~~)± I, r of the POS model, since the three potentials 
W n; m (r), W';: m (r), and Wn, m (r) and three effective 
masses M n; m' M ,;: m' and Mn, m become very similar in this 
limit. The two models must therefore predict similar values for 
bending frequencies and rotational structure in highly excited 
local mode states. The calculations shown below support this 
conclusion. 

Note that the above discussion refers only to energy levels 
and spacings, not to intensities. The total wave functions given 
by the two models are essentially different. In fact, we have 

and 

\II~~)r (R I , R2 ) = ~n; m (Rl> R2 ) X~~)K (R I , R2 ) 

A A 

+ ~n~ m (R 1, R 2 ) X~~~) - K (R1, R2 ) , 

(SOb) 

where the function 

X
(POCS) =2-1/2 (m (POCS) _ m (POCS» 
n,m,r;-I- Tn,m,r Tm,n,r (51 ) 

is not expected to vanish. 

TABLE I. Radii of the spheres and effective masses of the oxygen calculated 
with the Sorbie-Murrell potential as modified by Lawton and Child (Ref. 
6). All the values are in atomic units. 

n+m nmK RCn.m) RCm) R c.) M{K] 
'.m M •• m 

01+ 
01- 0.9753 0.9846 0.9662 

16.080 
16.238 16.156 

2 02+ 
02- 0.9845 1.0039 0.9662 

16.245 
16.252 16.237 

11+ 0.9846 16.236 16.236 

3 03+ 
03- 0.9940 1.0244 0.9662 

16.346 
16.347 16.319 

12+ 
12- 0.9942 1.0039 0.9846 

16.165 
16.480 16.318 

04+ 
1.0038 1.0463 0.9662 

16.454 
16.402 04- 16.454 

4 

13+ 
13- 1.0039 1.0244 0.9846 

16.403 
16.424 16.400 

22 1.0039 16.400 16.400 

05+ 
1.0142 05-

5 
1.0701 0.9662 

16.573 
16.573 16.487 

14+ 
14- 1.0140 1.0463 0.9846 

16.513 
16.516 16.484 

23+ 
23- 1.0140 1.0244 

16.255 
1.0039 16.724 16.483 

The POS model is certainly convenient since it enables a 
significantly smaller basis to be used when the symmetry of the 
problem is exploited. However, it is not clear a priori which of 
the models gives better results for transition intensities. The 
POCS model is more general, since it can immediately be ex­
tended to XYZ molecules such as the HOD isotopic modifica­
tion of water. In fact, Eq. (48) can be interpreted either as 
describing motion of two particles of different mass on a single 
sphere, or on two different spheres, depending on how the par­
ticle masses are defined. The outstanding question is whether it 
is possible to give the spheres more physical significance by 
invoking the Franck-Condon principle. 

III. RESULTS 

We tested both the POS and POCS models on excited 
stretching states of the water molecule using the Sorbie--Mur­
rell potential as modified by Lawton and Child.6 Our choice of 
potential was determined by the fact that Lawton and Child6,19 
studied both the two- and three-dimensional vibrational prob­
lem, so that it is possible to estimate errors resulting from the 
use of local-mode wave functions (21) instead of solutions 
~ n, m, K (R I' R2 ) of the two-dimensional problem. 

It would also be of interest to attempt to reproduce the 
results of the Reimers-Watts calculationss using our model. 
Unfortunately this was not possible. Reimers and WattsS ex­
press the Wilson-Howard-Watson Hamiltonian20,21 in terms 
of rectilinear vibrational coordinates, which are not precisely 
defined in their paper. Our guess is that these authors have 
exploited a set of rectilinear coordinates "locally coincident" 
(in the terminology of Ref. 22) with the geometrical internal 
coordinates defined in their equation (24); however, in this 
case, their potential is mass dependent and should not be used 
for study of isotopic modifications of water as done by Reimers 
and Watts.s Note that the main difficulty which Reimers and 
Watts try to overcome is that the Wilson-Howard-Watson 
Hamiltonian is inappropriate for molecules exhibiting local­
mode behavior, in contrast to the method presented here. 

In Table I we present calculated sphere radii and effective 
central (oxygen) atom masses for stretching states with no 
more than five quanta of excitation. It is an intriguing result 
that the effective masses of the oxygen atom in the POCS model 
and the sphere radii in the POS model depend only on the total 
number of stretching quanta. 

It should be noted that the effective mass Mo in Table III of 
part I was calculated by means of the formula: 

(52) 

TABLE II. Effective masses (a.u.) of the oxygen in the water molecule and 
its C 2. isotopic modifications. 

Moo(a.u.) 

CCL B(A) B(B) 

H2O 16.077 16.076 16.075 
D20 16.053 16.052 16.051 
T20 16.045 16.045 16.043 
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TABLE III. Radii of the spheres and effective masses of the oxygen calcu­
lated with Botschwina's (Ref. 27) potential B. All the values are in atomic 
units. 

n+m nmK R(n,m) R(m) R (n) MIKJ 
'.m M •• m 

01+ 
01- 0.9717 0.9784 

16.075 
0.9651 16.233 16.153 

02+ 
0.9861 

16.228 
02- 0.9754 0.9651 16.233 16.227 

2 

11+ 0.9784 16.231 16.231 

where Re is the equilibrium bond length. Calculation of the 
mass Mo using Eq. (45b) shows that it is essentially indepen­
dent of the choice of potential surface. Recalculated values of 
the oxygen effective mass in the water molecule and its C 2v 

isotopic modifications are shown in Table II for the Camey­
Curtiss-Langhoff 23 (CCL) and two Botschwina24 (B) poten­
tials. Using the Lawton-Child potential gives the value 
Moo = 16.075 a.u. 

Excitation of stretching modes makes both quantities 
i('" m) and M". m more sensitive to the choice of potential 
surface, as can be seen by comparing the first lines of Table I 
with Table III, which was obtained using Botschwina's poten­
tial B. The scatter of values within the multiplet m + n = 2 is 
also larger. 

In Table IV we use the notation Avi~ for the difference 

Av(V) = (E (I) - E (I) - v(W) (53) 
2D n,m,K 0,0 n.m,K' 

where values V(2D) = E (2D) - E (2d) are taken from the n,m,l( n,m,K 00.+1 

paper by Lawton and Child.6 The second columiJ. of Table IV 
shows differences between vibrational frequencies calculated 
by means of POS model and those calculated by Child and 
Lawton 19 using the accurate Hamiltonian. It is remarkable that 

I 

TABLE IV. Errors in calculating vibrational frequencies by means of the 
POS model based on the local-mode expansion. The dift'erenees 6vgJ are 
determined by relation (52), where the eigenvalues ofthe two-dimensional 
problem were taken from Ref. 6. The notation 6V~~ is used for the dift'er-
enees between the POS predictions for vibrational frequencies and the val-
ues calculated by Child and Lawton (Ref. 19) using the accurate Hamilton-
ian. Here and below all the frequencies are given in cm - •. 

v. V3 nm lK1 6v1~ 6V~~ 6v~2 - 6vgJ 

1 0 01+ -7 -7 0 
0 1 01- -6 -10 -4 
2 0 02+ 42 34 -8 
1 1 02- -12 -16 -4 
0 2 11+ -68 -60 8 
1 2 12+ -58 -47 11 
0 3 12- - 38 -39 -1 
4 0 13+ 82 64 -18 
1 3 13- -48 -43 5 
1 4 23+ -141 -101 40 
0 5 23- -76 -68 8 
0 4 22+ -159 -120 39 
3 0 03+ 22 10 
2 1 03- 3 -5 
2 2 04+ 9 -6 
3 1 04- 5 -9 
3 2 05+ 0.6 -24 
4 1 05- 0.0 -24 
5 0 14+ 61 30 
2 3 14- -5 -16 

for states with m - n < 3 most of the error is caused by use of 
the local-mode expansion instead of the two-dimensional 
stretching approach. That is, interaction between stretching 
modes is important in these states. As expected, the difference 
between the two approaches decreases upon increasing the 
number of quanta in one bond compared to the other. 

Note that the splitting E ~~~. + I - E ~~~. _ I is determined by the expression: 

For n = 0, m = 1, relation (54) gives the value 106.5 em-I, 
whereas the numerical solution of Eq. (4) by Lawton and 
Child6 gives 106.3 em-I. Using the POS model decreases the 
splitting to 98.9 em-I. This decrease is only in qualitative 
agreement with the calculations of Child and Lawton,I9 who 
obtained the value 102.1 em -I using the accurate Hamiltonian. 
Exciting the bending mode results in a slight increase in the 
splitting (104.2 em-I for V2 = 1, 107.7 em-I for V2 = 2) in 
qualitative agreement with Ref. 19 (103.7 em-I for V2 = 1, 
104.9 em-I for V2 = 2). 

As can be seen from Table V, relation (54) gives the major 
contribution to the splitting for other states with m - n = 1, 
although agreement is worse. For states with one mode highly 
excited neglect of interactions between bonds become a ques­
tionable approximation for the calculation of the splittings. 

Since the POCS model does not resolve doublets nm + and 

(54) 

nm -, it is clearly not suitable for describing states with 
m - n = 1 for which splittings are relatively large. However, 
for states with an excess of at least two quanta in one bond the 
accuracy of both the POS and POCS models becomes of the 
same order. For example, the POS model gives 
G(2, 0, 0) = 7239.6 cm- I and G(1,O, 1) = 7241.0 em-I, 
while both levels are represented in the poes model by the 
single number 7240.0 em -I. 

Note that the correspondence between local and normal 
mode assignments used here follows the work of Child and 
Lawton.19 As pointed out by these authors, the (4v20) levels 
are in fact higher in energy than the (2V22) levels and the 
( 5V20) levels higher than the (3V22) levels due to anharmonic 
coupling. This is in contrast to the assignments made on the 
basis of their two-dimensional treatment of the water molecule. 
Reimers and Watts apparently overlooked the more recent 
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TABLE V. Splittings of vibrational levels in doublets of states having the 
same number of quanta in one bond. 

G .. m _ t - G .. m,+t 

2D 3D 

n,m [6] Ref. 53 [19] POS 

o 1 106.3 106.5 102.1 98.8 
1 2 201.2 220.8 176.6 185.2 
2 3 277.6 342.7 224.1 256.6 
02 57.6 3.3 51.0 1.4 
1 3 138.2 8.3 109.1 2.4 
03 19.8 15.0 
1 4 67.2 0.8 43.8 1.8 

work of Child and Lawton, and so have incorrectly assigned 
thelevels (4<Th), (310S'), (40ls), (500s), (410S') [in the nota­
tion of Ref. 5; these are normal mode states (202), (400), 
(212), (302), (500)]. Experimental values are available for all 
these levels (Ref. 17), and are in reasonable agreement with the 
values calculated by Reimers and WattsS in view of the simple 
form of their potential. 

In Table VI we study the effect of excitation of stretching 
modes on the bending frequencies. Since the calculated value of 
G(010) is not given in Ref. 19, we have given in Table VI the 
shifts of bending frequencies relative to that in the state (00 1). 
As a rule the POS tends of overestimate these splittings. 

It should be cautioned that the good agreement seen in 
Table VI is probably a fortuitous consequence of the choice of 
potential. In particular, use of the POS model with Botsch-

TABLE VI. Changes of the bending frequencies due to excitation of stretch-
ing mode$ in the accurate calculations (Ref. 19) and our model calcula-
tions. 

G(Vt ,O,V3) - G(Vt ,V2,V3) - G(O,O,I) + G(O,V2,1) 
V2 = 1 v2 =2 

VtV3 nm[K] POS [19] POS [19] 

10 01+ 5 2 9 3 

02 11+ 30 27 56 54 
20 02+ 31 32 59 64 
11 02- 33 32 61 65 

03 12- 54 59 103 115 
12 12+ 68 67 130 131 
30 03+ 68 71 129 138 
21 03- 68 72 129 141 

04 22+ 95 94 183 186 
40 13+ 96 108 185 212 
13 13- 100 106 193 208 
22 04+ 107 114 207 224 
31 04- 107 115 207 226 

05 23- 121 134 235 265 
14 23+ 144 148 278 289 
50 14+ 139 153 270 299 
23 14- 140 154 271 301 
32 05+ 152 159 296 319 
41 05- 152 159 296 320 

TABLE VII. Changes of the bending frequencies due to giving two quanta 
to excitation of stretching modes, according to calculations performed with 
Botschwina's potential B. 

G(Vt ,O,V3) - G(VtoV2'V3) + G(O,v2,1) - G(O,O,I) 

~=1 ~=2 ~=3 

02 11+ 18 16 45 33 52 47 
11 02- 12 20 24 44 36 67 

wina's potential B does not reveal any regularities in the discre­
pancies between exact and predicted shifts (see Table VII). 

Analysis of experimental data2S-33 shows that excitation of 
stretching modes leads to changes in rotational levels that are of 
the order of the absolute errors in the calculations performed 
both here and in Ref. 5. In view of this, we do not find Table 4 of 
Ref. 5 convincing. AS can be seen from Tables VIII and IX of 
the present paper, the potential suggested by Reimers and 
WattsS is not sufficiently accurate to describe the observed pat­
tern of rotational structure. 

In Tables VIII-X we present energy differences obtained 
by subtracting rotational energies in excited vibrational states 
(V1V2V3) from those in the state (Ov20), i.e., no excitation in 
stretching modes. For the 01+ and 01- states there is relatively 
good agreement between observed2S-27,29.3O and POS values ex­
cept for 331 and 330 rotational levels in the second and third 
excited bending states. The POS model also predicts the correct 
sign for rotational level shifts due to excitation of two different 
one-quantum stretching levels, but underestimates the magni­
tudes. The POS model also provides reasonably accurate pre­
dictions of changes in rotational structure due to the presence 
of two quanta in two local modes, even though it does not lead 
to any distinction between shifts for the three vibrational states 
of 02 +, 02-, and 11 + (in contrast to experiment, Ref. 28). 
Theoretical values presented in Table IX are for the 02- or 
(1 v21) state. The results of Reimers and Watts for the other 
two vibrational states are very close, whereas the POS model 
leads to essentially the same rotational energies in all three 
states. 

When discussing the rotational structure for H20 in the 
02 -, 03 -, and 12- states Reimers and WattsS refer to the old 
experimental data of Mecke and collaborators.32 Comparison 
with the data ofToth and Margolis2S for the 02- state shows 
that the older measurements were not sufficiently accurate. 
The data of Ref. 35 for 03- and 12- should also be viewed with 
suspicion because they do not provide a monotonic decrease of 
rotational energies with increasing numbers of quanta in local 
modes. 

For states with five quanta in local modes even experimen­
tal rotational structures33 become very close, at least for the 
states with all five quanta in one bond, 34 which are presented in 
Table X. However as one can see from Table X, rotational 
energies in the rotational states 331 and 330 tum out to be signifi­
cantly overestimated. 

It should finally be mentioned that, starting with a total of 
two quanta oflocal mode excitation, the POS and POCS mod­
els give rise to very similar rotational structures. 
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TABLE VIII. Changes in rotational levels due to excitation of stretching modes. Tables VIII-X give differences between the rotational energies of states 
(Ov20) with no excitation in stretching modes and the energies of the same rotational states of various levels (VIV2V3 ) with the same number of quanta in the 
bending mode and various numbers VI and V3 of quanta in the symmetric and antisymmetric stretching modes, respectively. This table deals with one quantum 
of stretching excitation and (a) no bending excitation, (b) one quantum of bending excitation, (c) two quanta of bending excitation, and (d) three quanta of 
bending excitation. 

(a) (100) (001) v+-v-

J K. Kc Expt POS Ref. S Expt POS Ref. S Expt POS Ref. S 

0 1 0.4 0.4 0.4 0.2 0.3 0.2 0.2 0.1 -0.2 
1 1 0.9 1.0 0.6 1.3 1.2 0.6 -0.4 -0.2 0.0 
1 0 1.0 1.0 0.7 1.3 1.1 0.8 -0.4 -0.1 -0.1 

2 0 2 1.2 1.1 1.3 0.8 0.9 0.7 0.4 0.2 0.6 
1 2 1.7 1.7 I.S 1.9 1.8 1.2 -0.2 -0.1 0.3 
1 1 1.8 1.7 1.6 1.7 1.6 1.1 0.1 0.1 O.S 
2 1 3.3 3.9 2.2 S.1 4.6 2.S -1.8 -0.7 -0.3 
2 0 3.3 3.7 1.7 S.O 4.4 2.S -1.7 -0.7 -0.8 

3 0 3 2.S 2.4 1.9 2.2 0.6 0.2 
1 3 2.8 2.8 2.6 2.8 -0.2 0.0 
1 2 3.1 2.9 2.S 2.S 0.6 0.4 
2 2 4.S 4.9 S.6 S.S -1.1 -0.6 
2 1 4.S 4.7 S.2 S.O -0.7 -0.3 
3 1 7.0 8.S 11.1 10.3 -4.1 - 1.8 
3 0 7.1 8.S 11.0 10.3 -3.9 - 1.8 

(b) (110) (011 ) v+-v-

J K. Kc Expt POS Ref. S Expt POS Ref. S Expt POS Ref. S 

0 1 0.4 0.3 O.S 0.2 0.2 -0.2 0.2 0.1 0.7 
1 1 1.0 1.3 0.8 1.7 1.6 0.4 -0.7 -0.3 0.4 
1 0 1.1 1.3 0.7 1.7 1.4 0.9 -0.6 -0.1 -0.2 

2 0 2 1.2 1.0 1.5 0.7 0.8 -O.S O.S 0.2 2.0 
1 2 1.8 1.9 1.9 2.2 2.1 0.2 -0.4 -0.2 1.7 

1 1 1.9 1.9 1.6 2.0 1.9 1.7 -0.1 0.0 -0.1 

2 1 3.8 4.9 1.6 6.S S.8 3.S -2.7 -0.9 - 1.9 
2 0 3.7 4.8 1.8 6.3 S.6 2.6 -2.6 -0.8 -0.8 

3 0 3 2.4 2.1 1.8 1.9 0.6 0.2 
1 3 2.9 2.9 2.9 3.0 0.0 -0.1 
1 2 3.1 2.8 2.6 2.S O.S 0.3 
2 2 S.O S.7 6.0 6.4 -1.0 -0.7 

2 1 S.O S.4 6.2 S.9 -1.2 -O.S 
3 1 8.4 IO.S 14.0 12.S -S.6 -2.0 

3 0 9.1 10.5 14.0 12.S -4.9 -2.0 

(c) (120) (021) v+ -v-

J K. Kc Expt POS Expt POS Ref. S Expt POS 

0 1 0.2 0.2 0.2 -1.6 
1 1 1.8 2.3 2.0 0.3 
1 0 1.7 2.3 1.9 0.9 

2 0 2 0.9 0.7 0.8 -3.0 
1 2 2.4 2.7 2.6 0.8 
1 1 2.2 2.S 2.2 I.S 
2 1 4.7 6.6 8.8 7.4 2.7 -4.1 -0.8 

2 0 4.7 6.4 8.7 7.3 2.9 -4.0 -0.9 

3 0 3 2.0 1.7 1.8 
1 3 3.3 3.2 3.4 
1 2 3.0 3.0 2.8 
2 2 5.9 7.4 9.6 8.1 -3.7 -0.7 

2 1 6.1 7.0 9.1 7.S -3.0 -O.S 
3 1 9.8 14.0 19.0 16.0 -9.2 -2.0 

3 0 9.9 14.0 19.0 16.0 -9.1 -2.0 
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TABLE VIII (continued). 

(d) (130) (031) v+ -v-

J K. Kc Expt POS Expt POS Expt POS 

0 1 0.4 0.2 0.2 0.2 0.2 0.0 
1 1 1.5 2.6 3.4 2.8 -1.9 -0.2 
1 0 1.S 2.4 3.3 2.6 -1.8 -0.2 

2 0 2 1.2 0.8 0.6 0.7 0.6 0.1 
1 2 2.2 3.1 3.7 3.2 -1.S -0.1 
1 1 2.2 2.8 3.5 2.8 -1.3 0.0 
2 1 6.0 9.4 12.8 10.1 -6.8 -0.7 
2 0 6.1 9.3 12.7 10.0 -6.6 -0.7 

3 0 3 2.6 i.9 1.7 1.7 0.9 0.2 
1 3 3.5 4.0 4.8 4.1 -1.3 -0.1 
1 2 3.5 3.5 4.0 3.4 -0.5 0.1 
2 2 7.2 10.1 13.4 10.7 -6.2 -0.6 
2 1 6.7 9.7 12.8 10.2 -6.1 -0.5 
3 1 13.2 19.7 27.2 21.3 -14.0 -1.6 
3 0 13.2 19.7 27.1 21.3 -13.9 - 1.6 

TABLE IX. Dift"erences between the rotational energies of states with two stretching quanta and corresponding states with no,stretching excitation, for (left 
columns) no bending excitation and (right columns) one quantum of bending excitation. 

V2 =0 V2 = I 

Expt Expt 

J K. Kc (200) (101) (002) POS Ref. 5 (210) (111) (012) POS Ref. 5 

0 1 0.8 0.6 0.5 0.6 
1 1 1.9 2.2 2.6 2.3 
1 0 1.9 2.2 2.5 2.1 

2 0 2 2.3 2.0 1.7 1.9 
1 2 3.4 4.1 3.6 3.S 
1 1 3.5 3.2 3.6 3.2 
2 1 7.0 8.1 9.5 8.2 
2 0 6.1 8.0 9.3 8.0 

3 0 3 4.8 4.3 3.8 4.2 
1 3 5.6 5.9 5.3 5.4 
1 2 5.9 5.1 5.0 4.9 
2 2 9.4 10.5 11.0 9.9 
2 1 8.5 10.1 10.1 9.1 
3 1 13.8 17.5 17.9 
3 0 13.9 17.5 20.5 17.9 

TABLE X. Dift"erences in rotational energies of states with five stretching 
quanta and those with no stretching quanta. The experimental differences 
are obtained by subtraction of the values given by Rothman (Ref. 33) for 
the bands (302) and (401) from the frequencies reported by Antipov et al. 
(Ref. 31) for rotation-vibration transitions. 

Expt 

J K. Kc (302) (401) POS 

0 1 1.7 1.6 1.5 
1 1 3.7 3.6 5.3 
1 0 3.8 3.8 5.1 

2 0 2 4.9 4.9 
1 2 6.9 6.8 8.4 
1 1 7.4 7.3 7.8 
2 1 12.0 11.5 19.6 
2 0 11.9 11.6 18.5 

3 0 3 11.0 11.0 10.8 
1 3 11.9 11.5 13.3 
1 2 12.6 13.1 13.5 
2 2 16.7 16.1 23.8 
2 1 16.5 15.9 21.6 
3 1 18.6 42.5 
3 0 18.6 18.9 42.3 

0.5 
1.2 
1.4 

1.9 
2.5 
3.0 
4.2 
4.3 

0.7 0.6 0.4 0.5 0.8 
2.1 2.7 3.2 2.8 1.3 
2.2 2.7 3.1 2.6 1.6 

2.3 1.9 1.6 1.8 2.0 
3.6 4.1 4.2 3.9 2.5 
3.7 2.4 3.9 3.6 2.9 
9.3' 9.9 11.9 10.3 4.6 
7.6 9.8 11.6 10.1 4.7 

4.7 4.2 3.7 4.0 
5.9 6.1 5.8 5.8 
6.0 5.0 5.3 5.1 

10.9 12.0 13.2 11.9 
9.6 11.4 12.3 11.0 

16.5 21.3 25.6 22.3 
16.5 21.3 25.6 22.4 

Our work thus gives rise to the new approach to calculat­
ing rotation-vibrational spectra of water-like molecules with 
excitation in local modes. After it was completed, we learned of 
very accurate vibrational calculations carried out by Chen, 
Maessen, and Wolfsbergls for the ground and one-quantum 
excited vibrational state of H20. These calculations essentially 
exploit the normal-mode basis set and hence can only be ex­
tended to states with several quanta in stretching modes by 
using a large number ofbasis wave functions. Either quantiza­
tion of the problem in a space-fixed frame17 or using the Eckart 
Hamiltonian expressed in terms of geometrical coordinates36 

seem to be more effective alternatives to the aforementioned 
expansion of the normal-mode basis set for describing high 
vibrational states. 
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