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Abstract: Meat and meat products have been described as a very good source of angiotensin I
converting enzyme (ACEI)-inhibitory peptides. The generation of bioactive peptides can occur
through the action of endogenous muscular enzymes during processing, gastrointestinal digestion,
or by using commercial enzymes in laboratory or industry under controlled conditions. Studies of
bioavailability are necessary in order to prove the positive health effect of bioactive peptides in the
body as they should resist gastrointestinal digestion, cross the intestinal barrier, and reach blood
stream and target organs. However, in order to better understand their effect, interactions, and
bioavailability, it is necessary to consider food matrix interactions and continue the development
of quantitative methodologies in order to obtain more data that will enable advances in the field of
bioactive peptides and the determination of their influence on health.
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1. Introduction

Bioactive peptides derived from food proteins can exert different effects after their absorption
in the human body, such as prevention of diseases or physiological modulation. Physiological
properties such as antihypertensive, antioxidant, antithrombotic, or hypocholesterolemic activity
in the cardiovascular system [1,2]; mineral binding, antidiabetic, antimicrobial, or anti-inflammatory
effects in the gastrointestinal system [3,4]; cytomodulatory or immunomodulatory actions in the
immune system [5]; and opioid agonist or antagonist activity in the nervous system [6] have been
recently described to be exerted by different food-derived peptides [7].

The activity of angiotensin I-converting enzyme (ACEI) inhibitors has been extensively studied
over the last decade. The main reason for this interest is the relevance of hypertension in the
development of cardiovascular diseases, which is the most important public health problem of this
century. In this respect, different synthetic drugs are available on the market for the treatment of
hypertension but their numerous side effects have focused researchers’ interest on the search of
alternative non-toxic and naturally generated peptides for controlling blood pressure [8].

ACEI is a dipeptidyl carboxypeptidase enzyme that participates in the renin–angiotensin system
(RAS) and converts angiotensin-I into the vasoconstrictor angiotensin-II by cleaving two amino acids at
the same time, thus inactivating the vasodilator bradykinin. The role of ACEI inhibitors is to maintain
the balance between the vasoconstrictive and salt-retentive effects of angiotensin-II and vasodilator
effects of bradykinin (Figure 1). Thus, the main interest for studying ACEI-inhibitory natural peptides
is due to their capacity to inhibit ACEI, which lead to a decrease in blood pressure by inactivating the
formation of angiotensin-II [9].
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Figure 1. The renin-angiotensin system (RAS). ACEI: angiotensin I-converting enzyme; ACEII:
angiotensin II-converting enzyme.

In this article, the generation of ACEI-inhibitory peptides from meat and meat products and their
identification by empirical and in silico approaches have been reviewed, as well as the latest studies on
bioavailability from the point of view of their health relevance. A discussion about current limitations
and challenges to be overcome in order to advance in the state-of-the-art of this field is also included.

2. Generation of Meat-Derived ACEI-Inhibitory Peptides

ACEI-inhibitory peptides are usually small peptides with sizes comprising between 2 and 20
amino acids. Their function depends on the protein source, hydrolysis conditions, degree of hydrolysis,
molecular mass, and amino acid composition as well as the position of amino acids in the peptide
sequences. In this respect, ACEI-inhibitory peptides have been described that have hydrophobic
and branched-chain amino acids in their structure. According to the literature, the type of amino
acids located in the three positions close to the C-terminal end of the ACEI-inhibitory peptide is
important for activity. The presence of aromatic, positively-charged, and basic amino acids in these
positions is important for competitive binding to the ACEI active site. In fact, milk-derived tripeptides
containing prolines might have different cis/trans configurations of bonds which could influence their
access/binding to the ACEI complex [10–14]. Milk proteins have been described as a very good
source of antihypertensive peptides, released during gastrointestinal digestion or food processing.
The tripeptides Ile-Pro-Pro and Val-Pro-Pro, that are released from casein during the fermentation
of milk, have been described as antihypertensive in several animal models as well as in clinical
studies [15].

ACEI-inhibitory peptides obtained from food sources are inactive within the intact parent protein
but can exert their activity once they are released by hydrolysis. Different ways of generating
ACEI-inhibitory peptides have been utilised, as shown in Figure 2.
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2.1. Bioactive Peptides Generated during Gastrointestinal Digestion

Gastrointestinal digestion (GI) is the last step for the generation of bioactive peptides from foods.
After food ingestion, gastrointestinal peptidases such as pepsin, trypsin, or chymotrypsin are the
main proteases responsible for the generation of multiple peptides, including bioactive sequences.
In the laboratory, gastrointestinal digestion can be simulated using specific commercial enzymes and
controlled conditions of pH and temperature. Thus, a simulated gastrointestinal digestion of raw pork
meat using pepsin and pancreatin indicated that the physiological digestion of pork proteins could
generate peptides with biological activity [16]. These results were later confirmed in vitro with the
ACEI-inhibitory peptides KAPVA (Lys-Ala-Pro-Val-Ala) and PTPVP (Pro-Thr-Pro-Val-Pro), showing
half maximal inhibitory concentration (IC50) values of 46.56 and 256.41 µM, respectively [17], using the
ACEI-inhibitory method described by Sentandreu and Toldrá (2006) [18]. Later, it was confirmed that
these peptides also produced in vivo a decrease in the systolic blood pressure (SBP) of spontaneously
hypertensive rats (SHRs) of 33.72 ± 8.01 mmHg and 25.66 ± 6.84 mmHg, respectively, after single oral
administration of the synthesised peptides dissolved in distilled water at a concentration of 2 mg/mL
and adjusted to 1 mg of peptide/kg of body weight administered by gastric intubation. The SBP was
measured by the tail cuff method with a programmed electro-sphygmomanometer, and the effect
lasted up to 6 h after single administration [19]. A recent study evaluated the digestion of beef proteins
by studying the kinetics of peptide release in vivo by regularly sampling the gastric contents using a
cannula. The obtained results were evaluated with bioinformatics tools in order to identify potentially
bioactive peptides [20].

On the other hand, GI simulation has also been used in studies of bioavailability of certain
peptide sequences in order to demonstrate whether they could exert a positive health effect in the
body, as they should resist further GI digestion, cross the intestinal barrier, and reach the blood stream
and target organs.

Finally, necessary treatments of meat before consumption such as cooking could facilitate the later
generation of bioactive peptides due to denatured proteins being more susceptible to be hydrolysed by
the enzymes of the intestinal tract.

2.2. Hydrolysis Treatments with Commercial Enzymes

The most used methodology for the generation of bioactive peptides is the hydrolysis of proteins
with commercial enzymes. Proteases from different sources such as of microbial, plant, or animal
origin, have been used for the hydrolysis of food proteins. In meat and meat products, Flavourzyme
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from Aspergillus oryzae, and Neutrase and Alcalase from Bacillus subtilis and Bacillus lincheniformis,
respectively, have been the most used in the generation of bioactive peptides. In addition, proteases
from plant origin such as bromelain and papain have been described as interesting enzymes for
the hydrolysis of meat proteins by their contribution to meat tenderisation. These enzymes show a
wider specificity in comparison with other enzymes such as trypsin or pepsin, cleaving peptide bonds
from a wide variety of regions and frequently acting as either endopeptidases, or as exopeptidases
hydrolysing amino acids from N- and C-terminal sites. In fact, the activity and hydrolytic specificity of
many commercial peptidases is not clearly defined by manufacturers and thus, the degree of hydrolysis
and final content of peptides is difficult to predict [8].

Several studies have reported the generation and identification of ACEI-inhibitory peptides
resulting from hydrolysates of pork [17,21,22], chicken [23,24], and beef [25]. However, proteins
obtained from by-products constitute good substrates that can be used to obtain bioactive peptides
through this methodology [26,27], giving an extra added value to these products as well as reducing
their environmental impact. In fact, this is the most commonly used procedure when the objective is to
obtain high amounts of bioactive peptides for commercialisation, because its efficiency is optimised in
a laboratory and later scaled up for pilot plant and industrial production.

2.3. Bioactive Peptide Generation during Ageing and the Processing of Meat

Bioactive peptides can be generated through the action of endogenous enzymes in ageing and
curing processes as well as in combination with microbial peptidases such as in fermentation processes.
Proteolysis by endogenous proteases is the most important phenomena occurring in the ageing of meat
that influences its final characteristics with endogenous peptidases as main figures. Broadly speaking,
endopeptidases such as calpains and cathepsins are first responsible for the hydrolysis of proteins into
large fragments and oligopeptides, which affect the texture of meat during ageing and the initial steps of
curing processes. Later, the activity of exopeptidases such as aminopeptidases and carboxypeptidases
will generate small peptides and free amino acids, responsible for the characteristic flavour of dry-cured
products. Some of the generated small peptides have also been described as bioactive peptides, exerting
activities such as ACEI-inhibitory activity and antihypertensive, antioxidant, antilisteria, dipeptidyl
peptidase IV (DPP-IV) inhibitory, and anti-inflammatory activity.

Dry-fermented sausages are elaborated using shorter processes with microorganisms such as
lactic acid bacteria (LAB) (as a starter), yeasts, or moulds that are responsible for fermentation followed
by ripening/drying. Lactic acid bacteria such as Lactobacillus sakei, Lactobacillus curvatus, Lactobacillus
plantarum and Lactobacillus casei alone or in combination with staphylococci, Kocuria, yeast, or moulds,
exert proteolysis through the action of endo- and exopeptidases. In general, these fermentation
processes are involved in the liberation of small peptides and free amino acids that not only affect
flavour development but also contribute to the generation of bioactive peptides [28].

The presence of ACEI-inhibitory peptides naturally generated during the processing of meat
products such as dry-cured hams or dry-fermented sausages has also been described [29–33].

3. Identification of ACEI-Inhibitory Peptides

Traditionally, empirical approaches have been the method of choice for the identification of
bioactive peptides from food matrices. However, it is very challenging when the objective is to
generate specific peptide sequences that are able to exert certain activity. Then, the experimental design
can be simplified by using bioinformatics for computer simulation in silico.

Empirical approaches used for the identification of bioactive peptides including ACEI-inhibitory
peptides in complex sample matrices such as meat and meat products involve: (1) the release of the
bioactive sequences from the parent protein; (2) preliminary in vitro assays to screen for bioactivity;
(3) purification and separation through the use of high-resolution techniques, such as chromatography;
(4) additional in vitro assays to determine the most active fractions; (5) identification of peptides by mass
spectrometry (MS) techniques; (6) selection and synthesis of potential bioactive peptides; and (7) in vitro
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and in vivo confirmation of the bioactivity [34]. A scheme of the traditional empirical procedure for the
identification and confirmation of bioactive peptides from food matrices is shown in Figure 3.

In vitro ACEI-inhibitory activity is typically measured by monitoring the conversion of a specific
substrate by ACEI in the presence and absence of inhibitors. Spectrophotometric and chromatographic
methods have been commonly used to measure the hydrolysis of substrates such as Hippuryl-His-Leu
(HHL) or the fluorogenic o-aminobenzoylglycyl-p-nitrophenylalanylproline. However, the inhibitory
activities of these peptides on ACEI activity do not always correlate with antihypertensive effects.
In this regard, SHRs are the animal model most frequently used to verify the in vivo efficacy of
ACEI-inhibitory peptides. Some studies have evaluated the effects on SBP of SHRs after oral
administration of meat hydrolysates or peptide extracts showing ACEI-inhibitory activity [19,35–37].
Table 1 shows the antihypertensive effects of meat-derived peptides after single oral administration to
SHR [38–44]. As a last step, human clinical trials are the most accurate method to assess the efficacy and
physiological functions of meat-derived antihypertensive peptides, although few studies have been
done in this respect due to the complexity and expensive costs. Hodgson et al. (2006) suggested that a
partial substitution of carbohydrate intake with protein-rich foods such as lean red meat may lower
SBP in hypertensive persons [45], whereas a clinical study done by Saiga-Egusa et al. (2009) using
chicken collagen hydrolysate observed a SBP reduction in mildly hypertensive subjects by inhibiting
ACEI and plasma renin activity [46]. Additionally, it has been reported that the regular consumption
of dry-cured ham would not increase blood pressure despite its high salt content, and even could
exert other beneficial effects on cardiovascular health related to glucose and lipid metabolism, and
inflammatory processes [47–49].
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Table 1. Angiotensin I-converting enzyme (ACEI)-inhibitory peptides identified in meat and meat products with antihypertensive effects in spontaneously
hypertensive rats.

Source Peptide Sequence Parent Protein Hydrolysis Treatment IC50 (µM) a Dose (mg/kg BW) b SBP (mmHg) c Time (h) d Reference

Chicken muscle IKW — Thermolysin 0.21 60 −0.17 4 [23]
Chicken muscle LKP Aldolase Thermolysin 0.32 60 −0.18 4 [23]
Chicken muscle FKGRYYP Creatine kinase Thermolysin 0.55 60 0 — [23]
Chicken muscle GA(Hyp)GL(Hyp)GP Collagen Proteases 29.4 4.5 −0.18 6 [39]
Chicken bone YYRA Inmunoglobin heavy chain Pepsin 57.2 10 −0.20 6 [40]

Porcine muscle MNPPK Myosin Thermolysin 945.5 1 −0.23 6 [35]
Porcine muscle ITTNP Myosin Thermolysin 549 1 −0.21 6 [35]
Porcine muscle VKKVLGNP Myosin light chain Pepsin 29 10 −0.24 3 [41]
Porcine muscle KRQKYDI Troponin Pepsin 26.2 10 −0.9 6 [42]
Porcine muscle KRVITY Myosin heavy chain Pepsin 6.1 10 −0.23 6 [43]
Porcine muscle VKAGF Actin Pepsin 20.3 10 −0.17 6 [43]
Porcine muscle RPR Nebulin Pepsin + pancreatin 382 1 −0.33 6 [19]
Porcine muscle KAPVA Titin Pepsin + pancreatin 46.56 1 −0.33 6 [19]
Porcine muscle PTPVP Titin Pepsin + pancreatin 256.41 1 −0.25 6 [19]

Porcine skin GF(Hyp)GP Collagen Aspergillus protease 91 10 −0.20 8 [44]
Goat muscle FQPS — Protamex® + Flavourzyme® 27.0 2.39 −0.10 8 [45]

Spanish dry-cured ham AAATP Allantoicase No treatment 100 1 −0.26 8 [19]
a IC50 value is the peptide concentration that inhibits 50% of ACE activity; b Oral administration of the peptide expressed as mg/kg body weight of rat; c Maximum decrease in systolic
blood pressure (SBP) after administration of the peptide to spontaneously hypertensive rats; d Time after peptide administration to exert the maximum decrease in systolic blood pressure.
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In addition to empirical approaches, the use of in silico analyses that combine bioinformatics
tools and peptide databases has been increasingly used as a cost- and time-effective alternative. This
predictive strategy enables to obtain biological and chemometric information on peptide sequences
to be obtained through a series of steps: (1) selection of proteins of interest with known amino
acid sequences by predicting their potential as precursors of novel bioactive peptides; (2) in silico
protein digestion by selected proteolytic enzymes; (3) in silico identification and characterisation
of peptides; (4) bioactivity prediction using a combination of sequence biochemical properties and
databases of known bioactive peptides; (5) peptide synthesis; and (6) in vitro or in vivo confirmation
of the bioactivity [50]. Figure 4 shows the main steps of in silico approaches and suggests open
access databases and bioinformatics tools for the selection of the protein, hydrolysis simulation
and bioactivity prediction. In this regard, BIOPEP is a widely used database for the study and
identification of food-derived bioactive peptides as well as for in silico digestion and prediction
of their bioactivities. In addition, computational models such as quantitative structure-activity
relationships (QSAR), quantitative structure-property relationships (QSPR), and molecular docking
simulations allow the discovery and characterisation of structural and physical-chemical properties
such as hydrophilicity-hydrophobicity, molecular size, and electronic and steric characteristics, and
results in very useful information to evaluate the potential affinity between the biopeptide sequence of
interest and the target [50,51].
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In silico approaches have shown that some bovine, porcine and chicken proteins such as collagen,
connectin, and myosin are good sources of ACEI-inhibitory peptides, which could be released from the
parent protein through the action of determined enzymes [52–54]. Moreover, computer simulations
are fundamental for understanding molecular mechanisms and ACEI-peptide interactions such as the
fact that the C-terminal tripeptide sequence, hydrophobicity, and positive charge of the amino acid
residues in this region of the peptide have a major influence on ACEI inhibition [55].

At the end, empirical and in silico approaches converge in the need for the confirmation of both
the identity of the generated/predicted peptide sequences and their activity in the complexity of the
matrix (see Figure 4).
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4. Bioavailability of ACEI-Inhibitory Peptides

Bioavailability studies are necessary to assess whether the bioactive peptide can reach its target
site in active form and sufficient quantity to exert health effects in the organism. The action of
gastrointestinal enzymes, intestinal absorption, cellular uptake, and action of blood plasma peptidases
can modify the structure of ACEI-inhibitory peptides or hydrolyse them leading to a loss, maintenance,
or gain of bioactivity [11,56].

The use of digestion models and LC-MS techniques combined with in silico and in vitro/in vivo
approaches have enabled evaluation of the stability of ACEI-inhibitory peptides from beef, chicken and
pork meat in gastrointestinal digestion as well as the identification and quantification of the resulting
products [17,20,30,57–59]. On the other hand, cell models such as heterogeneous human epithelial
colorectal adenocarcinoma cells (Caco-2 cell) monolayers have been useful to study the transepithelial
transport of ACEI-inhibitory peptides derived from meat proteins, being able to determine structural
changes and amount of peptides transported or the involved transport pathway [60–62]. The ability
of peptides to resist enzymatic degradation and be transported across intestinal membranes into
blood circulation depends on their characteristics, length, and amino acid composition. In this
regard, proline-rich peptides are more resistant to be attacked by gastrointestinal enzymes, and di-
and tri-peptides could be absorbed intact by peptide transporter systems and hydrolysed later [63].
The low transport ability of oligopeptides compared to di- and tri-peptides is probably due to their
length and involve paracellular route, while the hydrophobicity of peptides does not seem to influence
absorption [64]. Additionally, the absorption of peptides could be affected by co-existing peptides and
food components, which can share the transport pathway or participate in its regulation [64].

The bioavailability and bioaccessibility of bioactive peptides can also be affected by
processing/storage conditions and food matrix-peptide interactions that can lead to peptide
modifications with changes in its native structure and activity [65]. Several studies have evaluated the
stability of ACEI-inhibitory peptides after household cooking preparations of pork and beef meat [66],
different temperatures and pH used when processing meat products [30,67], and the effect of ageing
under industrial conditions (vacuum-packed and chilled-storage) and cooking of beef meat [68].

5. Challenges and Limitations

Currently, with the basis of knowledge for the identification of bioactive peptides already clear,
it is necessary to continue the research in bioactive peptides to achieve a better understanding of their
effect, interactions, and bioavailability. In this sense, several authors have established the need for
serious consideration of food matrix interactions, especially when the objective is to use the bioactive
peptides as a functional ingredient [65]. Increasingly, once the peptide has been identified in a food
matrix, it is synthesised and characterised as an individual molecule. However, the expected in vitro
and/or in vivo activity may differ when the peptide interacts with the complex mixture of compounds
that are taking part of any food.

On the other hand, increased effort on the development of quantitative methodologies for a better
understanding of hydrolysis, bioactivity, and/or bioavailability is necessary. Data such as the quantity
of specific naturally generated peptides in the original food and the dose of a bioactive peptide needed
to exert an effect in vivo, as well as the final sequences and amount present in bloodstream and target
organ after GI digestion are key data for advancing in the field of bioactive peptides and their health
influence. In fact, determining the quantity of ACEI-inhibitory peptides in the meat sample that are
able to reach the target site in the human system is of fundamental importance in bioavailability studies
to better understand the effects and mechanisms of action of these peptides. The main limitation for
quantitation is the nature of sample: small peptides often comprise fewer than four amino acids at low
abundance, and there is high complexity of the matrix [69]. Current advances in mass spectrometry
instrumentation, bioinformatics tools, and updated protein databases are contributing to progress in
quantitative peptidomics [68].
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6. Conclusions

Meat and meat products have been described as a very good source of ACEI-inhibitory peptides.
With proteins being a major constituent of meats, the generation of bioactive peptides from meat
proteins has been described as occurring either through the action of endogenous muscular enzymes
during processing, during GI digestion, or by using commercial enzymes in the laboratory or in
industrial processes under controlled conditions. The identification of ACEI-inhibitory peptides
has been traditionally done using empirical approaches, although currently there is an increasing
interest in in silico approaches based on bioinformatics as they are less time-consuming and cheaper
methodologies. However, despite the identification of bioactive peptides being clear, there is an
increasing need to study food matrix interactions, especially when the objective is to use the bioactive
peptides as a functional ingredient. The quantitation of these peptides for a better understanding of
their health influence and bioavailability is necessary to advance in this field.
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