

Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically

Journal:	Plant Biology
Manuscript ID	PlaBio-2016-10-0400-RP.R2
Manuscript Type:	Research Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Marcer, Arnald; Universitat Autonoma de Barcelona Centre de Recerca Ecologica i Aplicacions Forestals Vidigal, Deborah; Wageningen Universiteit James, Patrick; Universite de Montreal Fortin, Marie-Josee; University of Toronto Mendez-Vigo, Belen; CSIC, Genética Molecular de Plantas; Hilhorst, Henk W.M.; Wageningen University, Wageningen Seed Lab, Lab of Plant Physiology Bentsink, Leonie; Wageningen University, Laboratory of Plant Physiology; Wageningen University, PSG Alonso-Blanco, Carlos; Centro Nacional de Biotecnologia Picó, Xavier; CSIC, EBD
Keyword:	adaptive evolution, environmental gradients, flowering time, seed dormancy, sliding window analysis, geographically weighted regressions

SCHOLARONE[™] Manuscripts

1	RESEARCH PAPER
2	
3	Temperature fine-tunes Mediterranean Arabidopsis
4	thaliana life-cycle phenology geographically
5	
6	A. Marcer ^{1,2} , D. S. Vidigal ³ , P. M. A. James ⁴ , MJ. Fortin ⁵ , B. Méndez-Vigo ⁶ ,
7	H. W. M. Hilhorst ³ , L. Bentsink ³ , C. Alonso-Blanco ⁶ & F. X. Picó ⁷
8	
9	1 CREAF, Cerdanyola del Vallès, 08193 Spain
10	2 Univ. Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Spain
11	3 Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB
12	Wageningen, The Netherlands
13	4 Département de Sciences Biologiques, Université de Montréal, C.P. 6128, succursale
14	Centre-ville, Montréal, QC H3C 3J7, Canada
15	5 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto
16	(Ontario), M5S 3G5, Canada
17	6 Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB),
18	Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
19	7 Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo
20	Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
21	

- 22 *Running head*: life-cycle phenology of *Arabidopsis thaliana*
- 23
- 24 Corresponding author: F. Xavier Picó, Departamento de Ecología Integrativa, Estación
- 25 Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Av.
- 26 Américo Vespucio s/n, 41092 Sevilla, Spain. Tel.: +34 95 446 6700. E-mail:
- 27 xpico@ebd.csic.es
- 28
- .ner. 29 *Keywords*: adaptive evolution, environmental gradients, flowering time, geographically
- 30 weighted regressions, seed dormancy, sliding window analysis

32 ABSTRACT

33	•	To understand how adaptive evolution in life-cycle phenology operates in plants, we need
34		to unravel the effects of geographical variation in putative agents of natural selection on
35		life-cycle phenology by considering all key developmental transitions and their co-
36		variation patterns. We address this goal by quantifying the temperature-driven and
37		geographically varying relationship between seed dormancy and flowering time in the
38		annual Arabidopsis thaliana across the Iberian Peninsula.
39	•	We used data on genetic variation in two major life-cycle traits, seed dormancy
40		(DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the
41		Iberian Peninsula. The geographically varying relationship between life-cycle traits and
42		minimum temperature, a major driver of variation in DSDS50 and FT, was explored with
43		geographically weighted regressions. The environmentally varying correlation between
44		DSDS50 and FT was analysed by means of sliding window analysis across a minimum
45		temperature gradient.
45 46	•	temperature gradient. The maximum local adjustments between minimum temperature and life-cycle traits were
	•	
46	•	The maximum local adjustments between minimum temperature and life-cycle traits were
46 47	•	The maximum local adjustments between minimum temperature and life-cycle traits were obtained in south-western Iberian Peninsula, an area with the highest minimum
46 47 48	•	The maximum local adjustments between minimum temperature and life-cycle traits were obtained in south-western Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-south-western locations, the effects of minimum
46 47 48 49	•	The maximum local adjustments between minimum temperature and life-cycle traits were obtained in south-western Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-south-western locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of
46 47 48 49 50	•	The maximum local adjustments between minimum temperature and life-cycle traits were obtained in south-western Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-south-western locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable with peaks of strong local adjustments
46 47 48 49 50 51	•	The maximum local adjustments between minimum temperature and life-cycle traits were obtained in south-western Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-south-western locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable with peaks of strong local adjustments of GWR models in central and north-western Spain. Sliding window analysis identified a
 46 47 48 49 50 51 52 	•	The maximum local adjustments between minimum temperature and life-cycle traits were obtained in south-western Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-south-western locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable with peaks of strong local adjustments of GWR models in central and north-western Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around
 46 47 48 49 50 51 52 53 	•	The maximum local adjustments between minimum temperature and life-cycle traits were obtained in south-western Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-south-western locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable with peaks of strong local adjustments of GWR models in central and north-western Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2°C. Above this minimum temperature turning point, the

South-western Iberian Peninsula emerges as an area where variation in life-cycle
phenology appears to be restricted by the duration and severity of the hot summer
drought. The temperature-driven varying relationship between DSDS50 and FT detected
the environmental boundaries for the co-evolution between FT and DSDS50 in *A*. *thaliana*. In a context of global warming, we conclude that the *A. thaliana* phenology
from south-western Iberian Peninsula, determined by early flowering and deep seed
dormancy, might become the most common life-cycle phenotype for this annual plant in

64 the region.

65 INTRODUCTION

66	Pronounced environmental heterogeneity in soil fertility, climate seasonality and fire
67	frequency typically characterises Mediterranean-climate regions. Broad agreement exists that
68	environmental heterogeneity has chiefly accounted for the high regional plant diversity
69	observed in these scarce climate regions, i.e. almost 20% of the known vascular plant species
70	occur in less than 5% of the Earth's surface (Cowling et al. 1996; Lobo et al. 2001). In
71	addition, the Quaternary glacial history of some Mediterranean-climate regions, e.g. the
72	Mediterranean Basin, has also played a very important role in structuring their current
73	patterns of plant biodiversity (Comes and Kadereit 1998; Hewitt 1999; Hughes et al. 2006;
74	Médail and Diadema 2009). As a result of such inherent environmental heterogeneity, the
75	agents of natural selection are assumed to have been acting on a fine scale, which is also
76	regarded as an additional explanation for the high plant diversity of these regions (Cowling et
77	al. 1996). Thus, Mediterranean-climate regions are appropriate natural scenarios to undertake
78	evolutionary studies on the processes underlying plant differentiation.
78 79	evolutionary studies on the processes underlying plant differentiation. One of these evolutionary processes deals with the adaptive adjustment of life-cycle
79	One of these evolutionary processes deals with the adaptive adjustment of life-cycle
79 80	One of these evolutionary processes deals with the adaptive adjustment of life-cycle phenology, i.e. the seasonal timing of developmental events spanning from seed to seed, to
79 80 81	One of these evolutionary processes deals with the adaptive adjustment of life-cycle phenology, i.e. the seasonal timing of developmental events spanning from seed to seed, to heterogeneous environments (Rathcke and Lacey 1985; Donohue 2005; Wilczek <i>et al.</i> 2009;
79 80 81 82	One of these evolutionary processes deals with the adaptive adjustment of life-cycle phenology, i.e. the seasonal timing of developmental events spanning from seed to seed, to heterogeneous environments (Rathcke and Lacey 1985; Donohue 2005; Wilczek <i>et al.</i> 2009; Huang <i>et al.</i> 2010; Chiang <i>et al.</i> 2013; Burghardt <i>et al.</i> 2015). Life-cycle phenology must be
 79 80 81 82 83 	One of these evolutionary processes deals with the adaptive adjustment of life-cycle phenology, i.e. the seasonal timing of developmental events spanning from seed to seed, to heterogeneous environments (Rathcke and Lacey 1985; Donohue 2005; Wilczek <i>et al.</i> 2009; Huang <i>et al.</i> 2010; Chiang <i>et al.</i> 2013; Burghardt <i>et al.</i> 2015). Life-cycle phenology must be regarded as a composite trait influenced by the interaction between genetic and environmental
 79 80 81 82 83 84 	One of these evolutionary processes deals with the adaptive adjustment of life-cycle phenology, i.e. the seasonal timing of developmental events spanning from seed to seed, to heterogeneous environments (Rathcke and Lacey 1985; Donohue 2005; Wilczek <i>et al.</i> 2009; Huang <i>et al.</i> 2010; Chiang <i>et al.</i> 2013; Burghardt <i>et al.</i> 2015). Life-cycle phenology must be regarded as a composite trait influenced by the interaction between genetic and environmental factors and whose adaptive variation enhances long-term population fitness. Variation in the
 79 80 81 82 83 84 85 	One of these evolutionary processes deals with the adaptive adjustment of life-cycle phenology, i.e. the seasonal timing of developmental events spanning from seed to seed, to heterogeneous environments (Rathcke and Lacey 1985; Donohue 2005; Wilczek <i>et al.</i> 2009; Huang <i>et al.</i> 2010; Chiang <i>et al.</i> 2013; Burghardt <i>et al.</i> 2015). Life-cycle phenology must be regarded as a composite trait influenced by the interaction between genetic and environmental factors and whose adaptive variation enhances long-term population fitness. Variation in the life-cycle phenology components with the highest impact on fitness, i.e. the timing of seed
 79 80 81 82 83 84 85 86 	One of these evolutionary processes deals with the adaptive adjustment of life-cycle phenology, i.e. the seasonal timing of developmental events spanning from seed to seed, to heterogeneous environments (Rathcke and Lacey 1985; Donohue 2005; Wilczek <i>et al.</i> 2009; Huang <i>et al.</i> 2010; Chiang <i>et al.</i> 2013; Burghardt <i>et al.</i> 2015). Life-cycle phenology must be regarded as a composite trait influenced by the interaction between genetic and environmental factors and whose adaptive variation enhances long-term population fitness. Variation in the life-cycle phenology components with the highest impact on fitness, i.e. the timing of seed germination and the timing of reproduction, are expected to be related to the variation

Page 6 of 35

90	selective pressure on life-cycle phenology, adaptive patterns of variation in continuous
91	populations are commonly captured by distinctive geographical clines, revealing the interplay
92	between life-cycle phenology, genetic loci that govern fitness-related life-cycle traits, and
93	climatic factors (Aranzana et al. 2005; Atwell et al. 2010; Fournier-Level et al. 2011, 2013;
94	Hancock et al. 2011; Méndez-Vigo et al. 2011; Savolainen et al. 2013; Vidigal et al. 2016).
95	It is becoming increasingly accepted that the evolutionary implications of variation in
96	life-cycle phenology cannot be fully understood if its components are considered in isolation
97	(Toorop et al. 2012; Debieu et al. 2013; Burghardt et al. 2016). As a matter of fact, the
98	success of an organism when facing heterogeneous or novel environments depends on its
99	ability to coordinate adaptive shifts in fitness-related traits that are closely correlated with
100	each other (Montesinos-Navarro et al. 2011; Fischer et al. 2016). Recent studies on the annual
101	plant Arabidopsis thaliana indeed showed the influence that flowering time, which strongly
102	determines seed maturation conditions and post-dispersal temperatures, has on seed dormancy
103	induction and germination behaviour (Donohue 2005, 2009, 2014; Finch-Savage and
104	Leubner-Metzger 2006; Chiang et al. 2011; Springthorpe and Penfield 2015; Burghardt et al.
105	2015, 2016). Hence, seed dormancy and flowering time, given their impact on fitness, are
106	expected to be tightly correlated, eventually determining adaptive variation in life-cycle
107	phenology.
108	Such a correlation has recently been found in A. thaliana, indicating that seed
109	dormancy and flowering time are negatively correlated at both regional (Vidigal et al. 2016)
110	and global (Debieu et al. 2013) scales. Interestingly, patterns of co-variation between seed
111	dormancy and flowering time appear to vary geographically and independently of major
112	genetic population structure. This supports the view that geographical patterns of variation in
113	life-cycle phenology are adaptive (Chuine 2010; Debieu et al. 2013) and that correlations
114	between fitness-related traits need not be constant over space and probably over time (Fischer

Manuscript submitted to editorial office

115	et al. 2016). Nevertheless, gaining and in-depth understanding of the evolutionary potential of
116	co-variation between seed dormancy and flowering time might be more complicated than
117	expected. For example, Debieu et al. (2013) used a set of 112 A. thaliana accessions to show
118	how vegetative growth, flowering time and seed dormancy followed a latitudinal cline across
119	Europe and how co-variation patterns between these traits differed between North and South
120	Europe. However, only latitude appeared to have some explanatory power in their study,
121	explaining only up to 5% and 11% of the observed variation in seed dormancy and flowering
122	time, respectively (Debieu et al. 2013). In contrast, Vidigal et al. (2016), using a collection of
123	300 A. thaliana accessions exclusively from the Iberian Peninsula, observed that early-
124	flowering accessions with very high seed dormancy mostly occurred in south-western Iberian
125	Peninsula. In this case, the high number of geo-referenced accessions allowed the
126	identification of minimum temperature as a major driver of variation in these traits. Average
127	annual minimum temperature alone explained up to 44.8% and 39.5% of the genetic variation
128	in seed dormancy and flowering time, respectively (Vidigal et al. 2016). Overall, these results
129	stress the value of high-density regional collections of natural accessions to study large-scale
130	variation in A. thaliana's life-cycle phenology. However, regional patterns can vary
131	substantially across the species' distribution range, which eventually determine the density of
132	populations needed to detect such patterns.
133	The main goal of this study is to reveal and quantify the temperature-driven and
134	geographically varying relationship between seed dormancy and flowering time in A. thaliana
135	across the Iberian Peninsula in West Mediterranean Basin, which is the A. thaliana's
136	distribution area known to harbour the largest regional genomic diversity (Picó et al. 2008;
137	Cao et al. 2011; Weigel 2012; Brennan et al. 2014; The 1001 Genomes Consortium 2016).
138	We use recent data on genetic variation in seed dormancy and flowering time for the 300
139	Iberian A. thaliana accessions mentioned above (Vidigal et al. 2016). We hypothesise that the

reactive completion arbitrited between good domagness and flowering time is motivally

140	negative correlation exhibited between seed domancy and nowering time is spatially
141	heterogeneous across the Iberian Peninsula. It is already known that temperature strongly
142	shapes phenotypic variation in Iberian A. thaliana with warmer environments selecting for
143	early flowering (Méndez-Vigo et al. 2011; Manzano-Piedras et al. 2014) and high seed
144	dormancy (Vidigal et al. 2016). Beyond this general trend, however, we ignore how the
145	species fine-tunes life-cycle phenology across the region, since temperature sharply changes
146	along altitudinal and latitudinal clines. This requires a spatially-explicit approach to quantify
147	the effects of temperature variation, not only on seed dormancy and flowering time separately
148	but on the relationship between these two major components. This knowledge will help better
149	understand how adaptive evolution in life-cycle phenology operates in plants (Debieu et al.
150	2013) as well as inferring how plants will manage to keep up with global climate change by
151	modifying their life-cycle phenology (Wilczek et al. 2014).
152	
153	MATERIAL AND METHODS

154 Source accessions

- 155 The 300 Iberian A. thaliana accessions are part of a long-term project to generate a permanent
- 156 collection of natural populations from south-western Mediterranean Basin across Spain,
- 157 Portugal and Morocco for the integrative and comprehensive study of the species'
- evolutionary ecology and functional genetics (Picó et al. 2008; Méndez-Vigo et al. 2011;
- 159 Brennan et al. 2014; Manzano-Piedras et al. 2014; Marcer et al. 2016; Vidigal et al. 2016).
- 160 For this study, we surveyed natural populations across the entire Iberian Peninsula (latitude
- 161 range = $36.52^{\circ}N 43.40^{\circ}N$, longitude range = $3.19^{\circ}E 8.54^{\circ}W$; altitude range = 1 2662
- 162 m.a.s.l.; between-population distance range = 1 1042 km) uninterruptedly between 2000 and
- 163 2010. We collected seed from several individuals per population depending on population
- size. A few months after the field season of every sampling year, individuals were multiplied

Manuscript submitted to editorial office

165	by the single seed descent method in controlled conditions in the glasshouses at the Centro
166	Nacional de Biotecnología (Madrid, ES) and stored in dry conditions in cellophane bags at
167	room temperature in darkness. When possible, accessions were chosen based on their
168	flowering time and/or vernalization requirement during the multiplication experiments. This
169	is important for our study as we selected one individual with a common phenotype within its
170	population, increasing the odds of using those phenotypes best suited to their local
171	environments. By selecting a common phenotype per population, we are also buffering the
172	effects, if any, of changing environmental conditions during the sampling period (2000-2010)
173	on life-cycle traits. Here, we assume that temporal changes in environmental conditions
174	during this period of time have not substantially affected population mean values of major
175	life-cycle traits of interest, as suggested by preliminary data (F.X. Picó et al., unpublished
176	material). Study accessions were genetically different from each other based on 250
177	polymorphic genome-wide neutral SNPs (Manzano-Piedras et al. 2014). In 2013, all
178	accessions were multiplied again in the greenhouses at Wageningen University (Wageningen,
179	NL) to synchronise their seed production, which is mandatory to obtain accurate seed
180	dormancy estimates (Vidigal et al. 2016).
181	domiancy estimates (vielgar et ul. 2010).

182 Life-cycle phenology

183 Arabidopsis thaliana's life-cyle phenology was characterised by variation in two major life-

184 cycle traits: seed dormancy and flowering time. For each accession, seed dormancy was

185 quantified as DSDS50, i.e. days of seed dry storage required to reach 50% of germination (see

- 186 He et al. 2014 for details on its calculation), whereas flowering time (FT hereafter) was
- 187 quantified as the number of days from the planting date until the anthesis of the first flower.
- 188 To estimate DSDS50, vernalized mother plants were first grown in standard conditions in a
- 189 glasshouse (20°C day/18°C night; 16 h light: 8 h darkness; 70% relative humidity) to

synchronise seed harvest among all accessions. Subsequently, seed was used to estimate

191	DSDS50 in an incubator at 22°C and constant light during 5 days (see Vidigal et al. 2016). FT
192	was estimated in a growth chamber at 21°C with a long-day photoperiod (16 h light: 8 h
193	darkness; see Méndez-Vigo et al. 2011). Experiments to estimate DSDS50 and FT lasted for a
194	maximum of 559 and 220 days, respectively (Méndez-Vigo et al. 2011; Vidigal et al. 2016).
195	Both seed dormancy and flowering time were estimated under controlled laboratory
196	conditions, providing the quantitative genetic component for both traits.
197	
198	Minimum temperature data
199	Previous studies indicated that minimum temperature is the main contributing factor to the
200	observed patterns of variation in DSDS50 and FT in Iberian A. thaliana far above other
201	environmental factors (Méndez-Vigo et al. 2011; Manzano-Piedras et al. 2014; Vidigal et al.
202	2016). Given the predominant role of minimum temperature shaping patterns of phenotypic
203	variation in Iberian A. thaliana, for the sake of clarity and simplicity we used the average
204	annual minimum temperature (minimum temperature hereafter) as the explanatory variable in
205	all analyses. Additional analyses using variables related to precipitation, vegetation and soil,
206	alone or in combination with minimum temperature, neither improved the outcomes nor
207	added any value to the interpretation of the resulting patterns in a significant way (results not
208	shown). Minimum temperature from every population was obtained from the Digital Climatic
209	Atlas of the Iberian Peninsula (Ninyerola et al. 2000). Minimum temperature data came from
210	a spatial interpolation using temperature records from a total of 3608 meteorological stations
211	across Portugal and Spain during the period 1950–1999. Hence, although our A. thaliana
212	populations were sampled between 2000 and 2010, the minimum temperature data used in
213	this study reflect the environmental conditions where A. thaliana has probably been occurring

and adapting for long time in the Iberian Peninsula.

215	
216	Statistical analyses
217	The hypothesised geographically varying relationship between life-cycle phenology traits and
218	minimum temperature was explored with geographically weighted regression (GWR) models
219	(Fotheringham et al. 2002) using SAM software (Rangel et al. 2010). First, we performed a
220	GWR to test the effect of minimum temperature on DSDS50 and another GWR to test the
221	effect of minimum temperature on FT. GWR is a spatially-explicit explanatory regression
222	where regression parameters are estimated at each sampled location <i>i</i> as follows:
223	
224	$y_i = \beta(v_i, v_i) x_i + \varepsilon_i ,$
225	
226	where y_i is the dependent variable, x_i is the independent variable, ε_i is the Gaussian error,
227	(v_i, v_i) are the geographical coordinates, and $\beta(v_i, v_i)$ is the GWR varying coefficient at each
228	location <i>i</i> . GWR performed a local regression at each of the 300 locations by taking a fraction
229	(10 - 15%) of the neighbouring locations into account using an optimal bandwidth size. For
230	each location, the selected bandwidth was optimised by using a Gaussian spatial weighting
231	function minimising the Akaike information criterion (AICc). This procedure generally
232	enhances the goodness-of-fit of GWR by setting the optimal number of neighbouring
233	locations to perform local regressions as well as by controlling for border and sampling
234	effects. GWR and OLS (ordinary least squares) results were also compared with an ANOVA
235	to check that the explanatory power of GWR was better than that of OLS. The lack of
236	autocorrelation of the residuals was checked with a spatial correlogram plotting Moran's I
237	values of GWR residuals. Thus, GWR provided local estimates of the adjustment of DSD50
238	and FT values to minimum temperatures in Iberian A. thaliana populations, i.e. local adjusted
239	pseudo- R^2 values.

240	After assessing the relationship between minimum temperature and DSDS50 and FT
241	in two separate GWR models, we uncovered the environmentally varying correlation between
242	DSDS50 and FT by means of sliding window analysis (as in Debieu et al. 2013). Sliding
243	window analyses are used to display the dynamic relationship between variables across a
244	continuous space. In this study, we used a temperature sliding window to account for the co-
245	variation between life-cycle traits across a minimum temperature gradient. We selected a
246	temperature sliding window instead of a geographical sliding window because minimum
247	temperature does a better job than geography in characterising the environment of Iberian A.
248	thaliana populations. For example, geographically close populations can exhibit pronounced
249	differences in minimum temperature if they are located along the same altitudinal gradient
250	(Montesinos et al. 2009; Méndez-Vigo et al. 2011). Hence, all 300 A. thaliana populations
251	were first ranked according to their minimum temperatures (range = $-0.7^{\circ} - 13.0^{\circ}$ C). For
252	every population along the minimum temperature gradient and regardless of its geographical
253	location, we sub-sampled all populations whose minimum temperatures fell within a
254	temperature interval around it. We tested different temperature breadths and eventually
255	selected a temperature interval of 7°C centred on the minimum temperature characterising
256	each population. The temperature breadth determines the number of populations falling within
257	the temperature interval as well as the truncation of the sampling window for those
258	populations at the low and high ends of the temperature gradient. Consistent patterns were
259	detected with narrower temperature breadths (results not shown) but the chosen one optimised
260	the patterns observed.
261	For each of the 300 values of the minimum temperature gradient, we computed the
262	correlation between DSDS50 and FT as well as the mean and SD of the FT/DSDS50 ratio

- 263 using all the accessions falling within the temperature interval of 7° C (mean ± SD number of
- sampling accessions per minimum temperature = 194.6 ± 53.1). It must be noted that we used

265 more than 100 accessions in 93% of the analyses (279 of 300 analyses). The FT/DSDS50 266 ratio provided an integrated measure of variation between the two life-cycle traits because 267 accessions with early flowering times and high seed dormancy had low FT/DSDS50 ratios, 268 whereas late flowering accessions with low seed dormancy exhibited high FT/DSDS50 ratios. 269 The significance of the correlations between DSDS50 and FT for every minimum temperature 270 was tested with the Dutilleul's modified t test, using the R package SpatialPack (Osorio and 271 Vallejos 2014), to take any spatial autocorrelation in the data into account. The Dutilleul's 272 modified t test corrects the variance of the test statistic and the degrees of freedom according 273 to the extent of spatial autocorrelation of each variable of the correlation (Dutilleul et al. 274 1993). Our large sample size (N = 300) ensures a high accuracy of the results, as required in 275 spatially-explicit statistical tests (Legendre *et al.* 2002). 276 277 RESULTS 278 The geographically varying relationship between life-cycle phenology traits, i.e. DSDS50 and 279 FT, and minimum temperature was explored with two separate geographically weighted 280 regression (GWR) models. For DSDS50 and minimum temperature, the GWR results showed 281 that local models based on GWR performed better than the global model based on the

282 classical ordinary least squares (OLS) regression model ($F_{5.9, 292.1} = 6.68, P < 0.0001$;

ANOVA; adjusted $R^2 = 0.41$ and 0.34 for GWR and OLS regression, respectively). All local

models were significant (P < 0.001 in all cases) and all local standardised coefficients of

regression were positive (range of r = 0.33 - 0.90), indicating that minimum temperature and

- 286 DSDS50 were positively correlated in all cases, i.e. accessions from warmer locations
- exhibited higher seed dormancy. The local adjusted pseudo- R^2 values (range of pseudo- R^2 =

 $288 \quad 0.18 - 0.50$) clearly increased along a north-south latitudinal gradient reaching the highest

values in south-western Iberian Peninsula (Fig. 1A).

290	For FT and minimum temperature, the GWR results also showed that local models
291	performed better than the global OLS model ($F_{9.4, 288.6} = 8.90, P < 0.0001$; ANOVA; adjusted
292	$R^2 = 0.49$ and 0.36 for GWR and OLS regression, respectively). All local models were
293	significant ($P < 0.003$ in all cases) and all local standardised coefficients of regression were
294	negative (range of $r = -0.311.00$). Therefore, minimum temperature and FT were
295	negatively correlated in all cases, i.e. accessions from warmer locations flowered earlier. The
296	local adjusted pseudo- R^2 values for FT were more variable (range of pseudo- $R^2 = 0.13 - 0.65$)
297	and exhibited more geographical complexity than those estimated for DSDS50 (Fig. 1B). In
298	particular, south-western Iberian Peninsula was again an area where the adjustment between
299	minimum temperature and FT peaked, but strong adjustment peaks in other nuclei of
300	accessions in central and north-western Spain were also detected (Fig. 1B).
301	The environmentally varying relationship between DSDS50 and FT was analysed with
302	a temperature sliding window analysis. The results depicted the co-variation between DSD50
303	and FT along a minimum temperature gradient. The mean (\pm SD) of the FT/DSDS50 ratio
304	computed from all accessions falling within the temperature interval of 7°C along the
305	minimum temperature gradient varied from a low of 0.26 ± 0.21 , i.e. accessions with early
306	flowering time and high seed dormancy, to a high of 2.10 ± 0.79 , i.e. accessions with late
307	flowering time and low seed dormancy (Fig. 2A). As expected, the mean of the FT/DSDS50
308	ratio progressively decreased with increasing minimum temperatures (Fig. 2A). In contrast,
309	the slope of the relationship between minimum temperature and the SD of the $FT/DSDS50$
310	ratio exhibited a turning point at a minimum temperature around 7.2°C: the SD of the
311	FT/DSDS50 ratio decreased faster with minimum temperatures above this turning point (Fig.
312	2B).
313	The temperature sliding window analysis also indicated that the correlation between

314 FT and DSDS50 was not significant for populations with minimum temperatures below 3.6°C

Manuscript submitted to editorial office

315	and above 12.3°C ($N = 42$ out of 300; Fig. 2C). In between these two thresholds, the
316	correlation between FT and DSDS50 along the minimum temperature axis was significant and
317	negative, but progressively increased with increasing minimum temperatures around 7.3°C
318	(range of <i>r</i> values before the turning point = $-0.180.39$; Fig. 2C). From that minimum
319	temperature onwards, the significant correlation between FT and DSDS50 first had relatively
320	constant coefficients close to the maximum observed value to end with a more variable
321	behaviour with increasing minimum temperature (range of r values after the turning point = -
322	0.300.41; Fig. 2C). It is worth noting that the turning point in the relationship between FT
323	and DSDS50 along a minimum temperature gradient was also observed with additional
324	sliding window analyses depicting the correlation between each life-cycle trait and minimum
325	temperature along the minimum temperature gradient (Fig. S1). These results showed that the
326	correlation between DSDS50 and minimum temperature and between FT and minimum
327	temperature also reached a major turning point very close to those reported above.
328	The representation of two groups of populations, whose minimum temperature is
329	above and below the turning point for the correlation between FT and DSDS50, onto a
330	minimum temperature map, provides hints on the geographical and ecological differentiation
331	of A. thaliana governed by minimum temperature (Fig. 3). In particular, A. thaliana
332	populations with minimum temperatures below the turning point are mostly located in the
333	northern half of the Iberian Peninsula, including the main mountain ranges (e.g. Pyrenees,
334	Cantabrian, Central and Iberian ranges), the northern plateau, and Sierra Nevada in South
335	Spain with the highest mountain of the Iberian Peninsula (Fig. 3). In contrast, A. thaliana
336	populations with minimum temperatures above the turning point occur in the southern half of
337	the Iberian Peninsula as well as in coastal locations around the region (Fig. 3). As a result, the
338	two groups of A. thaliana populations occurring below $(N = 191)$ and above $(N = 109)$ the
339	minimum temperature turning point for the correlation between FT and DSDS50 significantly

340	differed in altitude (mean \pm SE altitudes = 973.7 \pm 24.0 and 459.4 \pm 24.1 m.a.s.l. for the
341	former and the latter, respectively; $F_{1,298} = 198.61$, $P < 0.0001$; one-way ANOVA). In
342	addition, higher elevation populations with minimum temperatures below the turning point
343	also exhibited a higher percentage of wild habitat than lower elevation populations with
344	minimum temperatures above the turning point (mean \pm SE percentages of wild habitat = 64.4
345	± 2.6 and $45.3 \pm 3.7\%$ for the former and the latter, respectively; $F_{1,298} = 18.95$, $P < 0.0001$;
346	one-way ANOVA). This makes sense as human activity with more dramatic impacts on
347	natural plant communities has traditionally been concentrated at lower elevations. In contrast,
348	the two groups of populations did not differ in total annual precipitation, mean annual solar
349	radiation, or soil pH ($P > 0.10$ in all cases; one-way ANOVA). Overall, these results stress the
350	explanatory power of minimum temperature for variation in life-cycle phenology in Iberian A.
351	thaliana.

353 **DISCUSSION**

354 Mediterranean-climate regions represent outstanding natural scenarios to address multitude of 355 evolutionary issues in plants. Adaptive variation in life-cycle phenology is particularly 356 appropriate because major events of life-cycle phenology are markedly influenced by climatic 357 factors, whose seasonality, in fact, defines the Mediterranean climate. It is clear that we need 358 to unravel the effects of climatic factors, not only on life-cycle traits separately, but on the 359 life-cycle phenology as a whole (Post et al. 2008; Debieu et al. 2013; Burghardt et al. 2016). 360 This is supported by increasingly abundant studies on A. thaliana as an evolutionary model 361 system, focused on the tight interplay between flowering time and seed germination 362 (Donohue 2005, 2009, 2014; Finch-Savage and Leubner-Metzger 2006; Chiang et al. 2011; 363 Toorop et al. 2012; Debieu et al. 2013; Wilczek et al. 2014; Springthorpe and Penfield 2015; 364 Burghardt et al. 2015, 2016) as well as on the effects of seasonal environmental variation on

365	key developmental-timing genes affecting multiple developmental transitions (Chiang et al.
366	2009; Atwell et al. 2010; Chen et al. 2014; Huo et al. 2016). Nevertheless, the separate
367	analyses of the geographically varying relationship between minimum temperature and A.
368	thaliana's life-cycle traits still provide valuable elements that are worth considering. For
369	example, the GWR results indicated that south-western Iberian Peninsula represents an area
370	with strong local adjustments for both FT and DSDS50 (Fig. 1). This confirms the capital role
371	of minimum temperatures in shaping up life-cycle phenology towards early flowering time
372	and strong seed dormancy as the environment becomes warmer (Méndez-Vigo et al. 2011;
373	Manzano-Piedras et al. 2014; Vidigal et al. 2016).
374	Interestingly, our analyses indicated that for the rest of the Iberian Peninsula there
375	were notorious differences in the geographically varying effect of minimum temperature on
376	each of the study life-cycle traits. On the one hand, the positive relationship between
377	minimum temperature and DSDS50 remained rather moderate and homogeneous for
378	accessions from off-south-western locations (Fig. 1A). Overall, these results suggest that
379	minimum temperature increases its intensity as an agent of natural selection for DSDS50
380	towards south-western Iberian Peninsula, i.e. an area with the highest minimum temperatures.
381	Based on this, we hypothesise that the windows of opportunity for germination also follow a
382	north-south gradient, becoming narrower towards south-western Iberian Peninsula as a result
383	of the longer and more severe summer droughts in that area. Although field demographic
384	studies from northern A. thaliana populations indicated that germination peaks in early/mid
385	autumn, and to a lesser extent between late winter and early spring (Montesinos et al. 2009;
386	Picó 2012), we still lack germination data from southern populations. Therefore, further field
387	work is needed to quantify in detail the geographical patterns of variation in seed germination
388	behaviour in natural A. thaliana populations across the warmest area of the Iberian Peninsula
389	to test this hypothesis.

390	On the other hand, the negative relationship between minimum temperature and FT in
391	off-south-western locations was far more variable, with additional areas of pronounced local
392	adjustments of the GWR models, especially in central and north-western Spain (Fig. 1B). In
393	this case, orography might explain these results because central and north-western Spain are
394	mountainous areas with remarkable altitudinal gradients, which imply a rapid change in
395	ecological conditions over relatively short distances. As a matter of fact, altitudinal gradients
396	represent an important source of phenotypic and adaptive variation in A. thaliana in different
397	regions across its distribution range (Montesinos et al. 2009; Méndez-Vigo et al. 2011;
398	Montesinos-Navarro et al. 2011; Picó 2012; Suter et al. 2014; Luo et al. 2015a, 2015b; Tyagi
399	et al. 2016; but see Günther et al. 2016). We have previously shown that decreasing
400	temperatures with increasing altitude in Iberian mountains are related to late flowering in A.
401	thaliana through the obligate vernalization requirement (Méndez-Vigo et al. 2011). This is a
402	flowering-inductive effect of low temperature that appears to be restricted to altitudes above
403	800 m (Méndez-Vigo et al. 2011), locations with typically cooler climates that are practically
404	absent in south-western Iberian Peninsula (Marcer et al. 2016). Hence, the preponderance of a
405	vernalization requirement to trigger flowering at high altitude cool environments and the lack
406	thereof in generally warmer lowland environments illustrate the variety and complexity of the
407	genetic mechanisms underlying adaptive variation in FT in A. thaliana (Koornneef et al.
408	1998; Simpson and Dean 2002; Alonso-Blanco et al. 2009; Wilczek et al. 2009).
409	On top of these geographically varying relationships between minimum temperature
410	and life-cycle traits, in this study we took a step further towards understanding how the
411	relationship between FT and DSDS50 varied across a minimum temperature gradient. The
412	results of the temperature sliding window analysis indicated that FT and DSDS50 co-varied
413	negatively with minimum temperature, in agreement with the behaviour of each life-cycle
414	trait with minimum temperature shown in this study, as well as with previous observations

Manuscript submitted to editorial office

415 (Debieu et al. 2013; Vidigal et al. 2016). The novel contribution of the sliding temperature 416 analysis is that it allowed the visualization and quantification of the heterogeneity of the 417 relationship between FT and DSDS50 along the minimum temperature gradient. Of particular 418 relevance is the existence of a minimum temperature turning point in the relationship between 419 FT and DSDS50, which has interesting ecological and evolutionary implications to better 420 understand life-cycle phenology, not only for A. thaliana, but for several other annuals and 421 short-lived perennials strongly relying on fast life cycles to succeed in their environments 422 (García et al. 2008).

423 For example, A. thaliana populations with minimum temperatures above the turning 424 point exhibited faster decreasing variability in the FT/DSDS50 ratio with respect to increasing 425 minimum temperature (Fig. 2B). This means that variation in A. thaliana's life-cycle 426 phenology becomes progressively constrained as minimum temperatures become higher. In 427 Iberian warm environments, the duration and severity of the summer drought force A. 428 *thaliana* to complete its life cycle quickly, which can only be accomplished by becoming 429 dormant during the long hot summer together with early flowering before temperatures 430 become too high again. In fact, A. thaliana populations from south-western Iberian Peninsula 431 shed seed between mid April and early May and, in the warmest locations, between late 432 February and mid March (C. Alonso-Blanco and F.X. Picó, personal observation). Such early 433 flowering and fruiting imply that the maternal and post-dispersal environments encountered 434 by seeds might also promote deeper physiological seed dormancy, ensuring late germinations 435 when the summer drought is over with the first autumn rains. 436 Another implication of the existence of a minimum temperature turning point in the

Another implication of the existence of a minimum temperature turning point in the
relationship between FT and DSDS50 involves the strength of the correlation between the two
life-cycle traits. The turning point identified a minimum temperature threshold from which
the correlation coefficient between FT and DSDS50 cannot increase any further (Fig. 2C).

440 Hence, the temperature sliding window analysis provides a tool to detect the environmental 441 boundaries for the co-evolution between FT and DSDS50 for A. thaliana in Mediterranean 442 environments. In particular, below the minimum temperature threshold, A. thaliana shows 443 substantial phenotypic space to adjust its life-cycle phenology by progressively advancing 444 flowering time and increasing seed dormancy with increasing minimum temperature. Above 445 the minimum temperature threshold, A. thaliana might have reached the limits to adjust its 446 life-cycle phenology as described, which otherwise does not prevent the species to succeed in 447 warmer environments. Interestingly, populations characterised by minimum temperatures 448 above the turning point occur in southern Iberian Peninsula and in warmer coastal areas from 449 all over the Iberian Peninsula, whereas those below the turning point mostly occur in the 450 northern mountainous Iberian Peninsula (Fig. 3). Thus, unravelling the phenotypic limits for 451 the co-variation between key life-cycle traits and circumscribing such limits into a 452 geographical and ecological space, in our case strongly characterised by variation in 453 minimum temperature, might be more enlightening than depicting patterns of variation along 454 geographical or environmental gradients if we aim to extend our understanding of adaptive 455 evolution in plants. 456 In this study, we have shown that the genetic co-variation between flowering time and

457 seed dormancy is geographically fine-tuned by minimum temperature in Mediterranean A. 458 thaliana. However, it remains to be seen to what extent the timing of flowering initiation 459 affects the timing of seed germination, e.g. maternal environmental effects on seed dormancy 460 and germination patterns, or, conversely, whether the timing of seed germination affects the 461 timing of flowering initiation, e.g. environmental cues for flowering affecting rosettes from 462 seeds germinated at different times (see Donohue 2009). In any case, our results represent a 463 first step towards the development of spatially-explicit models to assess the evolutionary 464 dynamics of life-cycle phenology as well as the impact of climate change on adaptive

465	variation in A. thaliana (see non-spatially-explicit recent models for A. thaliana in Burghardt
466	et al. 2015; Fournier-Level et al. 2016). This is important because it has been predicted that
467	Mediterranean-climate regions, and in particular the Mediterranean Basin, will be
468	dramatically affected by global climate change before the end of the century, with a
469	generalised warming and an increase of the duration and severity of the summer drought
470	(Klausmeyer and Shaw 2009; Gómez-Navarro et al. 2010; Jacobeit et al. 2014). In this
471	context, our results suggest that the phenology exhibited by south-western Iberian A. thaliana
472	determined by early flowering and deep seed dormancy, might become the most common life
473	cycle of this annual plant in the climate scenarios forecasted for this region.
474	
475	ACKNOWLEDGEMENTS
476	We are grateful to technicians from CNB-CSIC, WUR and CREAF for lab assistance. We
477	thank two anonymous reviewers for their helpful and constructive comments on the
478	manuscript, and J. Arroyo and J.D. Thompson for the invitation to participate in this special
479	issue. F.X.P. and A.M. were funded by a grant from the Ministerio de Economía y
480	Competitividad of Spain (CGL2016-77720-P). F.X.P. acknowledges the Severo Ochoa
481	Programme for Centres of Excellence in R+D+I (SEV-2012-0262) in Spain. A.M., M.J.F. and
482	P.M.A.J. acknowledge the NEWFORESTS project (PIRSES-GA-2013-612645) from the
483	European 7FP. A.M. acknowledges the Agency for Management of University and Research
484	Grants of the Generalitat de Catalunya (2014-SGR-913). D.S.V. was funded by the
485	Technology Foundation STW (grant 11314). L.B. was funded by the VIDI program of the
486	Technology Foundation STW (grant 12951).
487	

488 **REFERENCES**

- 489 Alonso-Blanco C., Aarts M.G.M., Bentsink L., Keurentjes J.J.B., Reymond M., Vreugdenhil
- 490 D., Koornneef M. (2009) What has natural variation taught us about plant development,
- 491 physiology, and adaptation? *Plant Cell*, **21**, 1877–1896.
- 492 Aranzana M.J., Kim S., Zhao K., Bakker E., Horton M., Jakob K., et al. (2005) Genome-wide
- 493 association mapping in *Arabidopsis* identifies previously known flowering time and
- 494 pathogen resistance genes. *PLoS Genetics*, **1**, e60.
- 495 Atwell S., Huang Y.S., Vilhjalmsson B.J., Willems G., Horton M., Li Y., et al. (2010)
- 496 Genome-wide association study of 107 phenotypes in *Arabidopsis thaliana* inbred lines.
- 497 *Nature*, **465**, 627–631.
- 498 Brennan A.C., Méndez-Vigo B., Haddioui A., Martínez-Zapater J.M., Picó F.X., Alonso-
- 499 Blanco C. (2014) The genetic structure of *Arabidopsis thaliana* in the south-western
- 500 Mediterranean range reveals a shared history between North Africa and southern Europe.
- 501 *BMC Plant Biology*, **14**, 17.
- 502 Burghardt L.T., Metcalf C.J., Wilczek A.M., Schmitt J., Donohue K. (2015) Modeling the
- 503 influence of genetic and environmental variation on the expression of plant life cycles
- 504 across landscapes. *American Naturalist*, **185**, 212–227.
- 505 Burghardt L.T., Metcalf C.J., Donohue K. (2016) A cline in seed dormancy helps conserve
- the environment experienced during reproduction across the range of *Arabidopsis thaliana*. *American Journal of Botany*, **103**, 47–59.
- 508 Caicedo A.L., Stinchcombe J.R., Olsen K.M., Schmitt J., Purugganan M.D. (2004) Epistatic
- 509 interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal
- 510 cline in a life history trait. *Proceedings of the National Academy of Sciences*, **101**, 15670–
- 511 15675.

- 512 Cao J., Schneeberger K., Ossowski S., Günther T., Bender S., Fitz J., et al. (2011) Whole-
- 513 genome sequencing of multiple *Arabidopsis thaliana* populations. *Nature Genetics*, 43,
 514 956–963.
- 515 Chen J., Tsuda Y., Stocks M., Källman T., Xu N., Kärkkäinen K., et al. (2014) Clinal
- 516 variation at phenology-related genes in spruce: parallel evolution in *FTL2* and *Gigantea*?
- 517 *Genetics*, **197**, 1025–1038.
- 518 Chiang G.C., Barua D., Kramer E.M., Amasino R.M., Donohue K. (2009) Major flowering
- 519 time gene, flowering locus C, regulates seed germination in *Arabidopsis thaliana*.
- 520 *Proceedings of the National Academy of Sciences*, **106**, 11661–11666.
- 521 Chiang G.C., Bartsch M., Barua D., Nakabayashi K., Debieu M., Kronholm I., et al. (2011)
- 522 *DOG1* expression is predicted by the seed-maturation environment and contributes to
- 523 geographical variation in germination in *Arabidopsis thaliana*. *Molecular Ecology*, **20**,
- 524 3336–3349.
- 525 Chiang G.C., Barua D., Dittmar E., Kramer E.M., de Casas R.R., Donohue K. (2013)
- 526 Pleiotropy in the wild: the dormancy gene *DOG1* exerts cascading control on life cycles.
- 527 *Evolution*, **67**, 883–893.
- 528 Chuine I. (2010) Why does phenology drive species distribution? *Philosophical Transactions*
- *of the Royal Society B*, **365**, 3149–3160.
- 530 Comes H.P., Kadereit J.W. (1998) The effect of Quaternary climatic changes on plant
- 531 distribution and evolution. *Trends in Plant Science*, **3**, 432–438.
- 532 Cowling R.M., Rundel P.W., Lamont B.B., Arroyo M.K., Arianoutsou M. (1996) Plant
- 533 diversity in Mediterranean-climate regions. *Trends in Ecology and Evolution*, **11**, 362–366.
- 534 Debieu M., Tang C., Stich B., Sikosek T., Effgen S., Josephs E., et al. (2013) Co-variation
- between seed dormancy, growth rate and flowering time changes with latitude in
- 536 Arabidopsis thaliana. PLoS One, 8, e61075.

- 537 Donohue K. (2005) Niche construction through phenological plasticity: life history dynamics
- and ecological consequences. *New Phytologist*, **166**, 83–92.
- 539 Donohue K. (2009) Completing the cycle: maternal effects as the missing link in plant life
- 540 histories. *Philosophical Transactions of the Royal Society B*, **364**, 1059–1074.
- 541 Donohue K. (2014) Why ontogeny matters during adaptation: developmental niche
- 542 construction and pleiotropy across the life cycle in *Arabidopsis thaliana*. *Evolution*, **68**,
- 543 32–47.
- 544 Dutilleul P. (1993) Modifying the *t* test for assessing the correlation between two spatial
- 545 processes. *Biometrics*, **49**, 305–314.
- 546 Finch-Savage W.E., Leubner-Metzger G. (2006) Seed dormancy and the control of
- 547 germination. New Phytologist, **171**, 501–523.
- 548 Fischer E.K., Ghalambor C.K., Hoke K.L. (2016) Plasticity and evolution in correlated suites
- of traits. *Journal of Evolutionary Biology*, **29**, 991–1002.
- 550 Fotheringham A.S., Brunsdon C., Charlton M. (2002) Geographically Weighted Regression:
- 551 The Analysis of Spatially Varying Relationships. John Wiley & Sons, Inc., Hoboken, NJ,
- 552 USA: 284 pp.
- 553 Fournier-Level A., Korte A., Cooper M.D., Nordborg M., Schmitt J., Wilczek A.M. (2011) A
- 554 map of local adaptation in *Arabidopsis thaliana*. *Science*, **334**, 86–89.
- 555 Fournier-Level A., Wilczek A.M., Cooper M.D., Roe J. L., Anderson J., Eaton D., et al.
- 556 (2013) Paths to selection on life history loci in different natural environments across the
- 557 native range of *Arabidopsis thaliana*. *Molecular Ecology*, **22**, 3552–3566.
- 558 Fournier-Level A., Perry E.O., Wang J.A., Braun P.T., Migneault A., Cooper M.D., et al.
- 559 (2016) Predicting the evolutionary dynamics of seasonal adaptation to novel climates in
- 560 Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 113, E2812–
- 561 E2821.

- 562 García M.B., Picó F.X., Ehrlén J. (2008) Life span correlates with population dynamics in
- 563 perennial herbaceous plants. *American Journal of Botany*, **95**, 258–262.
- 564 Gómez-Navarro J.J., Montávez J.P., Jimenez-Guerrero P., Jerez S., García-Valero J.A.,
- 565 González-Rouco J.F. (2010) Warming patterns in regional climate change projections over
- the Iberian Peninsula. *Meteorologische Zeitschrift*, **19**, 275–285.
- 567 Günther T., Lampei C., Barilar I., Schmid K.J. (2016) Genomic and phenotypic
- 568 differentiation of *Arabidopsis thaliana* along altitudinal gradients in the North Italian Alps.
- 569 *Molecular Ecology*, **25**, 3574–3592.
- 570 Hancock A.M., Brachi B., Faure N., Horton M.W., Jarymowycz L.B., Sperone F.G., et al.
- 571 (2011) Adaptation to climate across the *Arabidopsis thaliana* genome. *Science*, **334**, 83–
- 572 86.
- 573 He H., Vidigal D.S., Snoek L.B., Schnabel S., Nijveen H., Hilhorst H., et al. (2014)
- 574 Interaction between parental environment and genotype affects plant and seed performance
- 575 in Arabidopsis. Journal of Experimental Botany, 65, 6603–6615.
- 576 Hewitt G.M. (1999) Post-glacial re-colonization of European biota. Biological Journal of the
- 577 *Linnean Society*, **68**, 87–112.
- 578 Huang X., Schmitt J., Dorn L., Griffith C., Effgen S., Takao S., et al. (2010) The earliest
- 579 stages of adaptation in an experimental plant population: strong selection on QTLS for
- seed dormancy. *Molecular Ecology*, **19**, 1335–1351.
- 581 Hughes P.D., Woodward J.C., Gibbard P.L. (2006) Quaternary glacial history of the
- 582 Mediterranean mountains. *Progress in Physical Geography*, **30**, 334–364.
- 583 Huo H., Wei S, Bradford K.J. (2016) DELAY OF GERMINATION1 (DOG1) regulates both
- seed dormancy and flowering time through microRNA pathways. *Proceedings of the*
- 585 *National Academy of Sciences*, 113, E2199–E2206.

- Jacobeit J., Hertig E., Seubert, S., Lutz K. (2014) Statistical downscaling for climate change
- 587 projections in the Mediterranean region: methods and results. *Regional Environmental*
- 588 *Change*, **14**, 1891–1906.
- 589 Klausmeyer K.R., Shaw M.R. (2009) Climate change, habitat loss, protected areas and the
- 590 climate adaptation potential of species in Mediterranean ecosystems worldwide. *PLoS One*,
- **4**, e6392.
- 592 Koornneef M., Alonso-Blanco C., Peeters A.J.M., Soppe W. (1998) Genetic control of
- flowering time in *Arabidopsis*. *Annual Review of Plant Physiology and Plant Molecular*
- *Biology*, **49**, 345–370.
- 595 Kronholm I., Picó F.X., Alonso-Blanco C., Goudet J., de Meaux J. (2012) Genetic basis of
- adaptation in *Arabidopsis thaliana*: local adaptation at the seed dormancy QTL *DOG1*.
- *Evolution*, **66**, 2287–2302.
- 598 Legendre P., Dale M.R.T., Fortin M.J., Gurevitch J., Hohn M., Myers D. (2002) The
- 599 consequences of spatial structure for the design and analysis of ecological field surveys.
- 600 *Ecography*, **25**, 601–615.
- Lempe J., Balasubramanian S., Sureshkumar S., Singh A., Schmid M., Weigel D. (2005)
- 602 Diversity of flowering responses in wild *Arabidopsis thaliana* strains. *PLoS Genetics*, 1,
- 603 0109–0118.
- 604 Lobo J.M., Castro I., Moreno J.C. (2001) Spatial and environmental determinants of vascular
- 605 plant species richness distribution in the Iberian Peninsula and Balearic Islands. *Biological*
- *Journal of the Linnean Society*, **73**, 233–253.
- 607 Luo Y., Widmer A., Karrenberg S. (2015a) The roles of genetic drift and natural selection in
- 608 quantitative trait divergence along an altitudinal gradient in *Arabidopsis thaliana*.
- 609 *Heredity*, **114**, 220–228.

610	Luo Y., Dong X., Yu T., Shi X., Li Z., Yang W., et al. (2015b) A single nucleotide deletion in
611	Gibberellin20-oxidase1 causes alpine dwarfism in Arabidopsis. Plant Physiology, 168,
612	930–937.

- 613 Manzano-Piedras E., Marcer A., Alonso-Blanco C., Picó F.X. (2014) Deciphering the
- 614 adjustment between environment and life history in annuals: lessons from a
- 615 geographically-explicit approach in *Arabidopsis thaliana*. *PLoS One*, **9**, e87836.
- 616 Médail F., Diadema K. (2009) Glacial refugia influence plant diversity patterns in the
- 617 Mediterranean Basin. *Journal of Biogeography*, **36**, 1333–1345.
- 618 Méndez-Vigo B., Picó F.X., Ramiro M., Martínez-Zapater J.M., Alonso-Blanco C. (2011)
- 619 Altitudinal and climatic adaptation is mediated by flowering traits and *FRI*, *FLC* and
- 620 PHYC genes in Arabidopsis. Plant Physiology, 157, 1942–1955.
- 621 Montesinos A., Tonsor S.J., Alonso-Blanco C., Picó F.X. (2009) Demographic and genetic
- 622 patterns of variation among populations of *Arabidopsis thaliana* from contrasting native
- 623 environments. *PLoS One*, **4**, e7213.
- 624 Montesinos-Navarro A., Wig J., Picó F.X., Tonsor S.J. (2011) Arabidopsis thaliana
- 625 populations show clinal variation in a climatic gradient associated with altitude. *New*
- 626 *Phytologist*, **189**, 282–294.
- 627 Ninyerola M., Pons X., Roure J.M. (2000) A methodological approach of climatological
- 628 modelling of air temperature and precipitation through GIS techniques. *International*
- 629 *Journal of Climatology*, **20**, 1823–1841.
- 630 Osorio F., Vallejos R. (2014) SpatialPack: Package for analysis of spatial data. R package
- 631 version 0.2-3. URL: CRAN.R-project.org/package=SpatialPack.
- 632 Picó F.X., Méndez-Vigo B., Martínez-Zapater J.M., Alonso-Blanco C. (2008) Natural genetic
- 633 variation of *Arabidopsis thaliana* is geographically structured in the Iberian Peninsula.
- 634 *Genetics*, **180**, 1009–1021.

- 635 Picó F.X. (2012) Demographic fate of Arabidopsis thaliana cohorts of autumn- and spring-
- 636 germinated plants along an altitudinal gradient. *Journal of Ecology*, **100**, 1009–1018.
- 637 Post E.S., Pedersen C., Wilmers C.C., Forchhammer M.C. (2008) Phenological sequences
- reveal aggregate life history response to climatic warming. *Ecology*, **89**, 363–370.
- 639 Rangel T.F., Diniz-Filho J.A.F., Bini L.M. (2010) SAM: A comprehensive application for
- 640 spatial analysis in macroecology. *Ecography*, **33**, 46–50.
- 641 Rathcke B., Lacey E.P (1985) Phenological patterns of terrestrial plants. Annual Review of
- 642 *Ecology, Evolution and Systematics*, **16**, 179-214.
- 643 Savolainen O., Lascoux M., Merilä J. (2013) Ecological genomics of local adaptation. *Nature*
- 644 *Genetics Reviews*, **14**, 807–820.
- 645 Shindo C., Aranzana M.J., Lister C., Baxter C., Nicholls C., Nordborg M., et al. (2005) Role
- 646 of *FRIGIDA* and *FLOWERING LOCUS C* in determining variation in flowering time of
- 647 *Arabidopsis. Plant Physiology*, **138**, 1163–1173.
- Simpson G.G., Dean C. (2002) *Arabidopsis*, the rosetta stone of flowering time? *Science*, 296,
 285–289.
- 650 Springthorpe V., Penfield S. (2015) Flowering time and seed dormancy control use external
- 651 coincidence to generate life history strategy. *eLife*, **4**, e05557.
- 652 Stinchcombe J.R., Weinig C., Ungerer M., Olsen K.M., Mays C., Halldorsdottir S.S., et al.
- 653 (2004) A latitudinal cline in flowering time in *Arabidopsis thaliana* modulated by the
- flowering time gene *FRIGIDA*. *Proceedings of the National Academy of Sciences*, **101**,
- 655 4712–4717.
- 656 Suter L., Rüegg M., Zemp N., Hennig L., Widmer A. (2014) Gene regulatory variation
- 657 mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis.
- 658 *Plant Physiology*, **166**, 1928–1942.

- The 1001 Genomes Consortium (2016) 1,135 Genomes reveal the global pattern of
- polymorphism in *Arabidopsis thaliana*. *Cell*, **166**, 481–491.
- Toorop P.E., Cuerva R.C., Begg G.S., Locardi B., Squire G.R., Iannetta P.P. (2012) Co-
- adaptation of seed dormancy and flowering time in the arable weed *Capsella bursa*-
- 663 *pastoris* (shepherd's purse). *Annals of Botany*, **109**, 481–489.
- Tyagi A., Singh S., Mishra P., Singh A., Tripathi A.M., Jena S.N., et al. (2016) Genetic
- diversity and population structure of *Arabidopsis thaliana* along an altitudinal gradient.
- 666 *AoB PLANTS*, **8**, plv145.
- 667 Vidigal D.S., Marques A.C.S.S., Willems L.A.J., Buijs G., Méndez-Vigo B., Hilhorst
- H.W.M., *et al.* (2016) Altitudinal and climatic associations of seed dormancy and
- flowering traits evidence adaptation of annual life cycle timing in *Arabidopsis thaliana*.
- 670 *Plant, Cell and Environment*, **39**, 1737–1748.
- 671 Weigel D. (2012) Natural variation in *Arabidopsis*: from molecular genetics to ecological
- 672 genomics. *Plant Physiology*, **158**, 2–22.
- 673 Wilczek A.M., Roe J.L., Knapp M.C., Cooper M.D., Lopez-Gallego C., Martin L.J., et al.
- 674 (2009) Effects of genetic perturbation on seasonal life history plasticity. *Science*, **323**, 930–
- 675 934.
- 676 Wilczek A.M., Cooper M.D., Korves T.M. Schmitt J. (2014). Lagging adaptation to warming
- 677 climate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 111,
- 678 7906–7913.

679 FIGURE LEGENDS

680

Fig. 1. (A) Map showing the geographical position of accessions indicating their GWR local adjusted pseudo- R^2 values for DSDS50 and minimum temperature. (B) Map showing the geographical position of accessions indicating their GWR local adjusted pseudo- R^2 values for FT and minimum temperature.

685

686 Fig. 2. (A) Relationship between minimum temperature and the mean of the FT/DSDS50 687 ratio. (B) Relationship between minimum temperature and the standard deviation of the 688 FT/DSDS50 ratio. Regression lines are given for accessions below and above the turning point at 7.2°C, which maximises the R^2 values of the two groups of accessions. (C) 689 690 Relationship between minimum temperature and the correlation coefficients between FT and 691 DSDS50. Filled dots indicated significant correlation coefficients based on Dutilleul's 692 modified t test. Regression lines are given for accessions with significant correlation coefficients below and above the turning point at 7.3°C, which maximises the R^2 values of the 693 694 two groups of accessions. In all three cases, values were obtained from temperature sliding 695 window analyses and ranked along the minimum temperature gradient. 696 697 Fig. 3. Minimum temperature map for the Iberian Peninsula indicating the geographical 698 position of A. thaliana populations with minimum temperatures below (hollow dots) and 699 above (filled dots) the turning poing of 7.3°C for the correlation between FT and DSDS50 700 along the minimum temperature gradient (see Fig. 2C). 701 702

703 SUPPORTING INFORMATION

- 704
- 705 Fig. S1. (A) Relationship between minimum temperature and the correlation coefficients
- 706 between DSDS50 and minimum temperature. (B) Relationship between minimum
- 707 temperature and the correlation coefficients between FT and minimum temperature. Filled
- 708 dots indicated significant correlation coefficients based on Dutilleul's modified t test. The
- 709 major turning point of each panel was detected at 7.4 and 6.9°C for DSDS50 and FT,
- 710 respectively. In all three cases, values were obtained from temperature sliding window
- 711 analyses and ranked along the minimum temperature gradient.

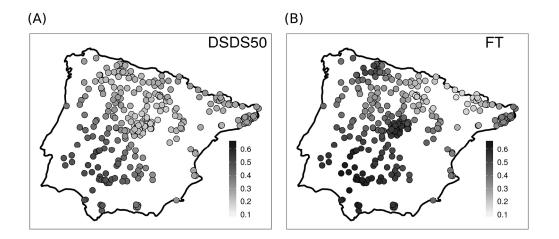


Fig. 1. (A) Map showing the geographical position of accessions indicating their GWR local adjusted pseudo-R2 values for DSDS50 and minimum temperature. (B) Map showing the geographical position of accessions indicating their GWR local adjusted pseudo-R2 values for FT and minimum temperature.

Fig. 1 297x209mm (300 x 300 DPI)

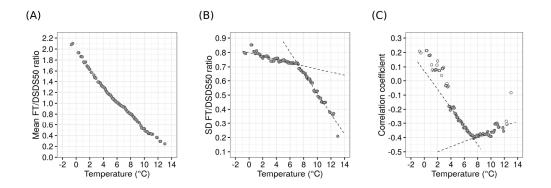


Fig. 2. (A) Relationship between minimum temperature and the mean of the FT/DSDS50 ratio. (B)
Relationship between minimum temperature and the standard deviation of the FT/DSDS50 ratio. Regression
lines are given for accessions below and above the turning point at 7.2°C, which maximises the R2 values of the two groups of accessions. (C) Relationship between minimum temperature and the correlation coefficients between FT and DSDS50. Filled dots indicated significant correlation coefficients based on Dutilleul's modified t test. Regression lines are given for accessions with significant correlation coefficients below and above the turning point at 7.3°C, which maximises the R2 values of the two groups of accessions. In all three cases, values were obtained from temperature sliding window analyses and ranked along the minimum temperature gradient.

Fig. 2 297x209mm (300 x 300 DPI)

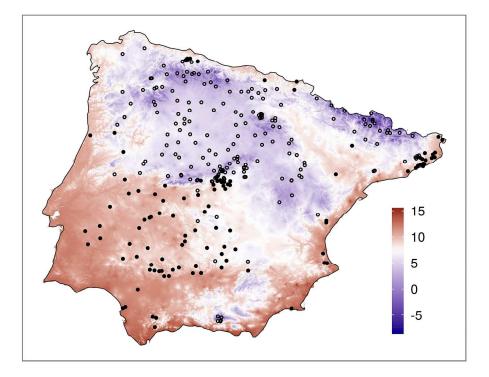
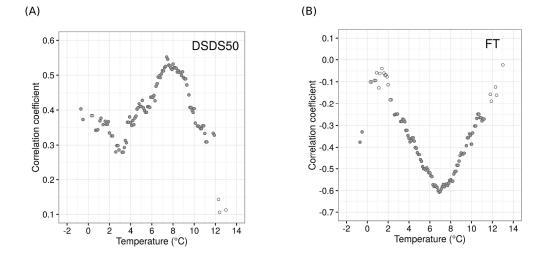



Fig. 3. Minimum temperature map for the Iberian Peninsula indicating the geographical position of A. thaliana populations with minimum temperatures below (hollow dots) and above (filled dots) the turning poing of 7.3°C for the correlation between FT and DSDS50 along the minimum temperature gradient (see

Fig. 2C). Fig. 3 297x209mm (300 x 300 DPI)

297x209mm (300 x 300 DPI)