
DEEP-HybridDataCloud
FIRST PROTOTYPE OF THE DEEP AS A SERVICE

DELIVERABLE: D6.3

Document identifier: DEEP-JRA3-D6.1

Date: 03/12/2018

Activity: WP6

Lead partner: CSIC

Status: Final

Dissemination level: Public

Permalink: http://digital.csic.es/handle/10261/168088

Abstract
This document provides an updated description of the prototype implementation of the DEEP as a

Service solution that is being developed within the DEEP-Hybrid-DataCloud project Work Package
6 (WP6). As such it provides an overview of the state of the art of the relevant components and

technologies, as well as a technology readiness level assessment with regards to the required
functionality, the required interactions with other work packages in the project, as well as the

detailed work plan and risk assessment for each of the activities.

DEEP-HybridDataCloud – 777435 1

http://digital.csic.es/handle/10261/168088

Copyright Notice
Copyright © Members of the DEEP-HybridDataCloud Collaboration, 2017-2020.

Delivery Slip

Name Partner/Activity Date

From Álvaro López García CSIC / WP6 0,/13,2018

Reviewed by Marcin Płóciennik
Alessandro Costantini

PSNC
INFN

23/11/2018
01/12/2018

Approved by Steering Committee 03/12/2018

Document Log

Issue Date Comment Author/Partner

V1.0 06/10/2018 ToC Álvaro López / CSIC

V2.0 06/10/2018 User requirements relevant for
WP6

Álvaro Lopez / CSIC

V3.0 10/10/2018 Alien4Cloud sections Andy S. Alic / UPV
German Moltó / UPV

V4.0 15/10/2018 DEEPaaS API sections Álvaro López / CSIC

V5.0 20/11/2018 Prototype implementation
description

WP members

V5.0 22/11/2018 User requirements relevant for
WP6

Álvaro Lopez / CSIC

V7.0 26/11/2018 Review Marcin Płóciennik / PSNC

V8.0 01/12/2018 Review Alessandro Costantini / INFN

V8.0 03/12/2018 Changes from review Álvaro López / CSIC

DEEP-HybridDataCloud – 777435 2

Table of Contents
Executive Summary...4
1. Introduction...5

1.1. Document purpose...5
2. DEEP as a Service description..6

2.1. Overview of components and modules..6
2.2. Structure and relationships...7

3. User requirements relevant to WP6...9
4. Detailed component description..12

4.1. Application composition..13
4.2. DEEP as a Service API..15

5. Prototype implementation of the DEEP as a Service solution..18
5.1. Alien4Cloud bundle...18

5.1.1. Alien4Cloud...19
5.1.2. Orchestrator plugin...20
Settings manager..22

5.2. DEEPaaS API..22
5.3. DEEP Open Catalogue...23
5.4. Integration with storage services...27

6. Conclusions and next steps..27
7. Glossary...30
8. References...31

DEEP-HybridDataCloud – 777435 3

Executive Summary
DEEP Hybrid DataCloud (Designing and Enabling E-Infrastructures for intensive data Processing
in a Hybrid DataCloud) is a project approved within the EINFRA-21-2017 call of the Horizon 2020
framework program of the European Community. It started with the global objective of promoting
the usage of intensive computing services and techniques by different research communities and
areas, and their support by the corresponding e-Infrastructure providers and open source projects.
The project will integrate and enhance existing components in the cloud (and more specifically in
the EOSC) ecosystem, developing an innovative service supporting intensive computing techniques
that require access to specialized hardware, such as GPUs or low-latency interconnects, to explore
very large datasets. The DEEP as a Service component will provide, in the form of the DEEP
catalogue, a set of models and applications ready for reuse and a collection of predefined building
blocks, in the form of software assets, that can be composed in order to build complex applications
to be transparently executed by the DEEP users on top of the underlying resources.

This document provides an update on the status of the first prototype of the DEEP as a Service
solution with the specific implementations and integration activities that have been carried out
during the first prototype phase of the project (we provide an updated version of the detailed
component description already provided in D6.2 - Design for the DEEP as a Service solution
[D6.2]). In this regard, we have developed the needed modules to integrate the Alien4Cloud
TOSCA composition tool with the INDIGO-DataCloud orchestrator, providing a seamless tool to
compose and submit applications and topologies to the PaaS layer. In close collaboration with
WP2, and in order to expose the user applications to other users, we are leveraging the DEEPaaS
API component that provides a uniform API for application developers to consume, as well as an
intuitive user interface to be exploited by the users. We have integrated all these components
(TOSCA topologies, user applications and the DEEPaaS API) under the DEEP Open Catalogue, as
a set of ready to use modules that can be exploited on top of any existing infrastructure.

DEEP-HybridDataCloud – 777435 4

1. Introduction

1.1. Document purpose
This document reports on the work carried out in WP6 towards the delivery of the first prototype of
the DEEP as a Service solution. As such, this documents complements D6.2 - Design for the DEEP
as a Service solution [D6.2], providing an update on the component status, the work and the
implementations that have been carried out for this first prototype.

This initial prototype has mainly focused on the batch task execution, so that a user application is
trained and tuned using specialized hardware such as GPUs (as described in deliverable D6.2 -
Design for the DEEP as a Service solution). During this initial phase, WP6 has worked closely with
WP2 so that the user requirements, initially collected in D2.1 - Initial Plan for Use Cases [D2.1]
and further refined in JIRA [JIRA-DEEP], were satisfied by the developed solutions. As such, the
work carried out has consisted on the following points:

• Providing users with a graphical application modeller (Alien4Cloud) for the composition
and execution of complex applications.

• Development of an INDIGO Orchestrator plugin for Alien4Cloud as the runtime engine
to be used for the transparent deployment of an application.

• Development of a generic REST API component (DEEPaaS API) that would expose the
application functionality as a web service with minimal modifications for the use cases.

• Integration of the existing use cases with the aforementioned tools (Alien4Cloud and
DEEPaaS).

• Building TOSCA templates and Ansible roles that define the user application to be
executed.

• Elaborating the initial contents of the DEEP Open Catalogue, consisting on Docker
containers and TOSCA templates to be reused.

However, the work carried out during this first phase has not only covered the batch execution
(training) of the user applications, but also its deployment as a service. As a matter of fact, through
the DEEPaaS API, users are already able to expose their models as services accessible through an
HTTP endpoint. Moreover, we have started the initial integration of the DEEPaaS component with
a server less framework as a pre-alpha internal preview. Exploiting this framework we have also
demonstrated the feasibility of the integration with external storage solutions (coming from the
eXtreme-DataCloud project) for automated event-driven processing.

DEEP-HybridDataCloud – 777435 5

2. DEEP as a Service description

2.1. Overview of components and modules
The high level decomposition of the WP6 DEEP as a Service design was already described in D6.2
- Design for the DEEP as a Service solution and is depicted here again in Figure 1, consisting on
the following key components:

• The DEEP open Catalogue where the users, communities, etc. can browse, store and
download relevant modules for building up their applications (like ready to use machine
learning frameworks, complex application topologies, etc.).

• An application modeller or composition tool, that will be used to build up complex
application topologies in an easy way.

• A runtime engine, that will take the defined topology as input, provision the required
computing resources and deploy the application.

• The DEEP PaaS layer, that will coordinate the overall workflow execution to choose the
appropriate Cloud sites and manage the deployment of the applications to be executed.

• The DEEP as a Service solution, that will offer the application functionality to the user.
• The EINFRA/EOSC data services, to be integrated with the DEEP solutions in order to

provide access to any of the data facilities existing in the European Open Science Cloud

The system is designed with extensibility in mind, taking great care in designing a framework
which can be updated easily and where a component can be replaced with a new one in case it is
needed. Many of the anticipated changes to our system in future phases will only require adding
additional functionality on top of existing components, remaining backwards compatible with
previous versions.

DEEP-HybridDataCloud – 777435 6

2.2. Structure and relationships
The high level decomposition of the WP6 DEEP as a Service design has been already described in
D6.2 - Design for the DEEP as a Service solution and it follows the design already depicted in
Figure 1. Focusing only on interactions within WP6, we can define the following interactions:

• DEEP catalogue.

• Holds the defined application building blocks.

• The catalogue interacts with the Application modeller in order to expose any
existing building blocks.

• The catalogue allows the storage and retrieval of the building blocks either from the
application modeller, the DEEP as a Service component, or directly by the users.

• Users can interact with the catalogue to browse, download and upload any module.

• Interaction with EOSC/EINFRA data services is expected for storing large datasets.

• Requires user authentication and authorization for writing purposes. Anonymous
read-only access is possible.

DEEP-HybridDataCloud – 777435 7

Figure 1: WP6 high level architecture

• Application modeller.

• Provides functionality to compose several building blocks into a more complex
application.

• Provides functionality to deploy and execute the applications in the underlying PaaS.

• The application modeller allows to load the pre-defined components from the
catalogue

• The application modeller allows to create new components, and to store them on the
catalogue.

• Interaction with other EINFRA-21 or EOSC-related data services is expected for
storing large datasets and referencing them on the built applications.

• Requires user authentication and authorization for writing purposes. Requires user
authentication and authorization for deploying and executing the user applications.
Anonymous read-only access is possible.

• DEEP as a Service.

• Provides application builders with the possibility of deploying an application as a
service in order to use the application functionality.

• Allows to deploy the application without worrying about the underlying resources.

• Final users can access this service in order to get the provided functionality.

• Interacts with the catalogue in order to retrieve the required module(s) to be
deployed as a service, as long as any configuration parameters.

• Interaction with EOSC/EINFRA data services may be needed.

• Requires user authentication and authorization for writing purposes and to create a
new application service. Anonymous read-only access may be possible.

• Runtime Engine

• Deploys an application topology using the underlying DEEP PaaS resources.

• Interacts with the application modeller in order to receive the application topology
and deploy it. Also provides information about the resources and application status.

• Users will not interact directly with this component, although advanced users will be
able to do so.

• Requires user authentication and authorization.

DEEP-HybridDataCloud – 777435 8

According to previous analysis of the alternatives, and as we already discussed in D6.2 - Design for
the DEEP as a Service solution [D6.2], in order to express the application topologies that will be
deployed by WP5 we are leveraging the usage of the TOSCA open standard [TOSCA 2017].

3. User requirements relevant to WP6
The initial collection of user requirements has been performed in D2.1 - Initial Plan for Use Cases
[D2.1] and it was further refined using the JIRA tool [JIRA-DEEP] through several iterations with
the community representatives The functional and non functional requirements relevant for WP6
are listed in the Table 1.

Key Summary Epic Link

DPD-106
Allow constraint for deployment to a
specific datacentre

MODS

DPD-255

Build a catalogue of modules

MODS

DPD-227 Plant classification

DPD-224 Deep Learning for satellite monitoring

DPD-248

Expose model functionality to end users

MODS

DPD-242 Retinopathy image classification

DPD-213 Plant classification

DPD-211 Deep Learning for satellite monitoring

DPD-74 Post-processing of QCD simulations

DPD-246

Facilitate the deployment of a trained
model for inference

MODS

DPD-240 Retinopathy image classification

DPD-210 Plant classification

DPD-209 Deep Learning for satellite monitoring

DPD-73
Facilitate the deployment of an
application

Post-processing of QCD simulations

DPD-251
Facilitate the non-skilled deployment of
an existing application

MODS

DPD-218 Plant classification

DPD-217 Deep Learning for satellite monitoring

DPD-252 Provide a containerized version of the
application

MODS

DPD-221 Plant classification

DPD-249

Provide a easy way to access a deployed
application by end users

MODS

DPD-243 Retinopathy image classification

DPD-214 Plant classification

DPD-212 Deep Learning for satellite monitoring

DEEP-HybridDataCloud – 777435 9

https://jira.deep-hybrid-datacloud.eu/browse/DPD-212
https://jira.deep-hybrid-datacloud.eu/browse/DPD-214
https://jira.deep-hybrid-datacloud.eu/browse/DPD-243
https://jira.deep-hybrid-datacloud.eu/browse/DPD-249
https://jira.deep-hybrid-datacloud.eu/browse/DPD-221
https://jira.deep-hybrid-datacloud.eu/browse/DPD-252
https://jira.deep-hybrid-datacloud.eu/browse/DPD-217
https://jira.deep-hybrid-datacloud.eu/browse/DPD-218
https://jira.deep-hybrid-datacloud.eu/browse/DPD-251
https://jira.deep-hybrid-datacloud.eu/browse/DPD-73
https://jira.deep-hybrid-datacloud.eu/browse/DPD-209
https://jira.deep-hybrid-datacloud.eu/browse/DPD-210
https://jira.deep-hybrid-datacloud.eu/browse/DPD-240
https://jira.deep-hybrid-datacloud.eu/browse/DPD-246
https://jira.deep-hybrid-datacloud.eu/browse/DPD-74
https://jira.deep-hybrid-datacloud.eu/browse/DPD-211
https://jira.deep-hybrid-datacloud.eu/browse/DPD-213
https://jira.deep-hybrid-datacloud.eu/browse/DPD-242
https://jira.deep-hybrid-datacloud.eu/browse/DPD-248
https://jira.deep-hybrid-datacloud.eu/browse/DPD-224
https://jira.deep-hybrid-datacloud.eu/browse/DPD-227
https://jira.deep-hybrid-datacloud.eu/browse/DPD-255
https://jira.deep-hybrid-datacloud.eu/browse/DPD-106

Key Summary Epic Link

DPD-241

Provide a way for the user to keep track
of the training status

MODS

DPD-235 Retinopathy image classification

DPD-206 Plant classification

DPD-204 Deep Learning for satellite monitoring

DPD-72 Post-processing of QCD simulations

DPD-260
Provide a way to compose the
application from more modules using
predefined configuration or settings

MODS

DPD-258
Provide a way to configure deployed
components separately

MODS

DPD-261
Provide a way to redeploy existing
application topology.

MODS

DPD-254

Provide a way to share a user
applications

MODS

DPD-247 Retinopathy image classification

DPD-225 Plant classification

DPD-222 Deep Learning for satellite monitoring

DPD-76 Post-processing of QCD simulations

DPD-256
Provide a way to submit input data to
model

MODS

DPD-230
Provide a web interface for the
application

Plant classification

DPD-253

Provide an UI for applications

MODS

DPD-223 Plant classification

DPD-220 Deep Learning for satellite monitoring

DPD-77

Provide authenticated and authorized
access

Post-processing of QCD simulations

DPD-257 MODS

DPD-228 Plant classification

DPD-226 Deep Learning for satellite monitoring

DPD-78
Provide authenticated and authorized
access to monitoring

Post-processing of QCD simulations

DPD-259
Provide monitoring history to all
endpoints and services

MODS

DPD-239
Provide resources to efficiently retrain a
model with code modification

MODS

DPD-233 Provide resources to efficiently retrain a
model with code modification

Retinopathy image classification

DPD-205 Plant classification

DEEP-HybridDataCloud – 777435 10

https://jira.deep-hybrid-datacloud.eu/browse/DPD-205
https://jira.deep-hybrid-datacloud.eu/browse/DPD-233
https://jira.deep-hybrid-datacloud.eu/browse/DPD-239
https://jira.deep-hybrid-datacloud.eu/browse/DPD-259
https://jira.deep-hybrid-datacloud.eu/browse/DPD-78
https://jira.deep-hybrid-datacloud.eu/browse/DPD-226
https://jira.deep-hybrid-datacloud.eu/browse/DPD-228
https://jira.deep-hybrid-datacloud.eu/browse/DPD-257
https://jira.deep-hybrid-datacloud.eu/browse/DPD-77
https://jira.deep-hybrid-datacloud.eu/browse/DPD-220
https://jira.deep-hybrid-datacloud.eu/browse/DPD-223
https://jira.deep-hybrid-datacloud.eu/browse/DPD-253
https://jira.deep-hybrid-datacloud.eu/browse/DPD-230
https://jira.deep-hybrid-datacloud.eu/browse/DPD-256
https://jira.deep-hybrid-datacloud.eu/browse/DPD-76
https://jira.deep-hybrid-datacloud.eu/browse/DPD-222
https://jira.deep-hybrid-datacloud.eu/browse/DPD-225
https://jira.deep-hybrid-datacloud.eu/browse/DPD-247
https://jira.deep-hybrid-datacloud.eu/browse/DPD-254
https://jira.deep-hybrid-datacloud.eu/browse/DPD-261
https://jira.deep-hybrid-datacloud.eu/browse/DPD-258
https://jira.deep-hybrid-datacloud.eu/browse/DPD-260
https://jira.deep-hybrid-datacloud.eu/browse/DPD-72
https://jira.deep-hybrid-datacloud.eu/browse/DPD-204
https://jira.deep-hybrid-datacloud.eu/browse/DPD-206
https://jira.deep-hybrid-datacloud.eu/browse/DPD-235
https://jira.deep-hybrid-datacloud.eu/browse/DPD-241

Key Summary Epic Link

DPD-203 Deep Learning for satellite monitoring

DPD-238
Provide resources to efficiently train a
model

MODS

DPD-202 Plant classification

DPD-201 Deep Learning for satellite monitoring

DPD-231
Provide with an automated way to create
a smartphone app with the trained
application

Plant classification

DPD-250

Support the redeployment of an
application

MODS

DPD-245 Retinopathy image classification

DPD-216 Deep Learning for satellite monitoring

DPD-215 Plant classification

DPD-75 Post-processing of QCD simulations

DPD-244

The trained model must be stored
permanently and must be available

MODS

DPD-237 Retinopathy image classification

DPD-208 Plant classification

DPD-207 Deep Learning for satellite monitoring

Table 1: WP2 requirements relevant for WP6.

DEEP-HybridDataCloud – 777435 11

https://jira.deep-hybrid-datacloud.eu/browse/DPD-207
https://jira.deep-hybrid-datacloud.eu/browse/DPD-208
https://jira.deep-hybrid-datacloud.eu/browse/DPD-237
https://jira.deep-hybrid-datacloud.eu/browse/DPD-244
https://jira.deep-hybrid-datacloud.eu/browse/DPD-75
https://jira.deep-hybrid-datacloud.eu/browse/DPD-215
https://jira.deep-hybrid-datacloud.eu/browse/DPD-216
https://jira.deep-hybrid-datacloud.eu/browse/DPD-245
https://jira.deep-hybrid-datacloud.eu/browse/DPD-250
https://jira.deep-hybrid-datacloud.eu/browse/DPD-231
https://jira.deep-hybrid-datacloud.eu/browse/DPD-201
https://jira.deep-hybrid-datacloud.eu/browse/DPD-202
https://jira.deep-hybrid-datacloud.eu/browse/DPD-238
https://jira.deep-hybrid-datacloud.eu/browse/DPD-203

4. Detailed component description
The template shown below is used as the structure to include a complete description of each
component in the following submissions. Deliverable D6.2 - Design for the DEEP as a Service
solution already included a detailed component description for all the services and components
involved in this work package, therefore the original components that are not involved in this
prototype are not described here. This deliverable includes an updated template for the specific
services that have been improved to support the prototype implementation of DEEP as a Service
solution. In this regard, an additional row (Implemented improvements for the prototype) has been
included to clearly indicate the implementations carried out. The information in this row is
provided as a summary, while section 4 provides additional technical details.

Identification The unique name for the component and its location in the system

Type A module, a subprogram, a data file, a control procedure, a class, etc.

Purpose

Function and performance requirements implemented by the design
component, including derived requirements. Derived requirements are not
explicitly stated in the SRS, but are implied or adjunct to formally stated
SDS requirements.

Function

What the component does, the transformation process, the specific inputs
that are processed, the algorithms that are used, the outputs that are
produced, where the data items are stored, and which data items are
modified.

High level
architecture

The internal structure of the component, its constituents, and the functional
requirements satisfied by each part.

Dependencies

How the component's function and performance relate to other components.
How this component is used by other components. The other components
that use this component. Interaction details such as timing, interaction
conditions (such as order of execution and data sharing), and responsibility
for creation, duplication, use, storage, and elimination of components.

Interfaces

Detailed descriptions of all external and internal interfaces as well as of any
mechanisms for communicating through messages, parameters, or common
data areas. All error messages and error codes should be identified. All
screen formats, interactive messages, and other user interface components
(originally defined in the SRS) should be given here.

Data
For the data internal to the component, describes the representation method,
initial values, use, semantics, and format. This information will probably be
recorded in the data dictionary.

Needed
improvement

Description of the needed improvements of this tool with regards the DEEP-
Hybrid-DataCloud objectives, in order to fulfil the user requirements and to
build the DEEP as a Service functionality.

DEEP-HybridDataCloud – 777435 12

https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.2+-+Design+for+the+DEEP+as+a+Service+solution
https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.2+-+Design+for+the+DEEP+as+a+Service+solution

Current TRL
status

A detailed description of the status of the Technology Readiness Level, for
specific set of features of the services.

Expected TRL
evolution

A detailed description of the Technology Readiness Level that DEEP
foreseen to reach for a specific set of features of the services.

Implemented
Improvements for

the Prototype

A description of the implemented improvements in the service in order to
support the prototype for hybrid Cloud deployments.

4.1. Application composition

Identification Alien4Cloud

Type A Java web-based application

Purpose

Alien4Cloud is an application that allows people in the enterprise to
collaborate in order to provide self-service deployment of complex
applications taking in account the different experts through a role based
portal by means of application architectures described in the TOSCA Simple
Profile in YAML specification.

With this component we partially implement the following requirements.
Req. key Summary

DPD-106 Allow constraint for deployment to a specific datacentre.
DPD-246

Facilitate the deployment of a trained model for inference.
DPD-240
DPD-210
DPD-209
DPD-251

Facilitate the non-skilled deployment of an existing application DPD-218
DPD-217

DPD-260
Provide a way to compose the application from more modules using
predefined configuration or settings

DPD-258 Provide a way to configure deployed components separately
DPD-261 Provide a way to redeploy existing application topology.
DPD-254

Provide a way to share a user applications
DPD-247
DPD-225
DPD-222
DPD-239

Provide resources to efficiently retrain a model with code modification
DPD-233
DPD-205
DPD-203
DPD-238

Provide resources to efficiently train a model DPD-202
DPD-201
DPD-250 Support the redeployment of an application

Function Alien4Cloud consists on a web-based application that supports i) the
definition of multiple user accounts with different roles; ii) importing
multiple TOSCA types as building blocks; iii) the composition of TOSCA

DEEP-HybridDataCloud – 777435 13

https://jira.deep-hybrid-datacloud.eu/browse/DPD-250?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-201?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-202?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-238?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-203?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-205?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-233?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-239?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-222?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-225?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-247?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-254?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-261?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-258?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-260?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-217?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-218?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-251?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-209?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-210?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-240?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-246?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-106?src=confmacro

templates by means of said building blocks; iv) the deployment of TOSCA
templates to a TOSCA runtime engine (Cloudify and Puccini) are supported,
and Mesos; v) the life cycle management of said deployment.

High level
architecture

The internal architecture of Alien4Cloud is described in the following
picture (credit: https://alien4cloud.github.io/#/developer_guide/internal-
architecture.html):

ALIEN is an AngularJS (frontend) + Spring (backend) web-application.
Plugins for ALIEN are managed as singular Spring applications context that
all share the same parent context (ALIEN core application context). Each
plugin uses it’s own class loader to ensure that they don’t collide with each
others.

Dependencies

Alien4Cloud depends on a Java Runtime Environment (JRE) to deploy the
web-based application. It also depends on a set of TOSCA types that are
required to perform the composition of TOSCA templates. Finally, it
depends on a TOSCA runtime engine, also known as Orchestrator, to
perform the provision and deployment of virtual infrastructures on multiple
Cloud sites.

Interfaces

Alien4Cloud supports a web-based graphical user interface to interact with
the software (user management, TOSCA types importing, topology
composition, deployment, etc.). It also supports a fully featured REST API
to interact with: users, plugins, orchestrators, metaproperties, catalogue,
workspaces, applications, applications deployment, topology editor,
administrator. The REST API is described in
https://alien4cloud.github.io/roadmap/index.html#/documentation/2.0.0/rest/
overview.html

Data Data is used at multiple levels in Alien4Cloud but the main focus is set on
the Catalogue.
Alien 4 Cloud TOSCA Catalogue is an index of components/elements

DEEP-HybridDataCloud – 777435 14

https://alien4cloud.github.io/roadmap/index.html#/documentation/2.0.0/rest/overview.html
https://alien4cloud.github.io/roadmap/index.html#/documentation/2.0.0/rest/overview.html
https://alien4cloud.github.io/#/developer_guide/internal-architecture.html
https://alien4cloud.github.io/#/developer_guide/internal-architecture.html

defined in a TOSCA archive. Among these elements we find two main
categories Types (reusable building blocks) and Topologies (Composition
and definition of the building blocks to define what a user wants to deploy).
When adding or creating a TOSCA archive in Alien 4 Cloud the archive is
automatically store on a File System but also indexed to provide browsing
and search features. In addition to the types and topology in an archive
Alien4Cloud also indexes an object that represents the archive and its meta-
data. This is referenced in alien as the CSAR (for Cloud Service ARchive).

Needed
improvement

Alien4Cloud is adopted in DEEP-Hybrid-DataCloud as the tool to facilitate
the composition of TOSCA Templates out of the TOSCA Types. To this aim,
three improvements are required. First, the TOSCA Types that were created
in the INDIGO-DataCloud project that already support multiple scientific
applications and which are used in the INDIGO-DataCloud PaaS
Orchestrator, will be adapted to be used in Alien4Cloud. This involves
minor adjustments in the syntax and attributes employed to allow seamless
compatibility between Alien4Cloud and the PaaS Orchestrator. Second, a
plugin will be developed in order to integrate the INDIGO-DataCloud PaaS
Orchestrator as one of the orchestrators supported in Alien4Cloud.
Fortunately, the plugin system available in Alien4Cloud will allow to easily
modularise the creation of the plugin without requiring to maintain a
separate version of Alien4Cloud and push the changes upstream. Finally,
support for OpenID Connect should be integrated in order to foster its
integration with the IAM solutions available in EOSC.

Current TRL
status

Alien4Cloud can be currently considered in TRL 8. The latest version
released is 2.0.0 and the web page describes several success stories
highlighting its adoption across multiple use cases involving several
underlying computing platforms (IaaS Cloud sites and Kubernetes clusters).
It is actively developed in GitHub.

Expected TRL
evolution

Alien4Cloud will maintain the TRL 8. The plugins developed will be
developed and assessed through the proper Software Quality Assurance
requirements defined by the project to achieve a similar Technology
Readiness Level.

Implemented
Improvements for

the Prototype

• Bug fixing and adaptation of A4C to better comply with TOSCA
standard.

• Implementation of INDIGO Orchestrator plugin.
• Initial work on AAI integration.
• Implemented A4C settings tool.

4.2. DEEP as a Service API

Identification DEEPaaS API

Type A Python REST API implementation

Purpose The main function of the DEEPaaS component is to expose user model

DEEP-HybridDataCloud – 777435 15

through a REST API. With this component we partially implement the
following requirements.

Req. key Summary
DPD-106 Allow constraint for deployment to a specific datacentre
DPD-246

Facilitate the deployment of a trained model for inference
DPD-240
DPD-210
DPD-209
DPD-251

Facilitate the non-skilled deployment of an existing application DPD-218
DPD-217

DPD-260
Provide a way to compose the application from more modules using
predefined configuration or settings

DPD-258 Provide a way to configure deployed components separately
DPD-261 Provide a way to redeploy existing application topology.
DPD-254

Provide a way to share a user applications
DPD-247
DPD-225
DPD-222
DPD-239

Provide resources to efficiently retrain a model with code modification
DPD-233
DPD-205
DPD-203
DPD-238

Provide resources to efficiently train a model DPD-202
DPD-201
DPD-250

Support the redeployment of an application
DPD-245
DPD-216
DPD-215

Function

The DEEPaaS API is intended to expose the user's model functionality by
means of a REST API, so that the most common actions (e.g. train, predict,
evaluate) can be done over this HTTP endpoint. DEEPaaS interfaces with
the user application by loading the user defined entry points within a
common namespace, so that minimal modifications are required in the user
application. When DEEPaaS is started, it fetches and loads the existing
entry points, exposing them in their own namespace (thus several models
can be loaded at the same time).

DEEP-HybridDataCloud – 777435 16

https://jira.deep-hybrid-datacloud.eu/browse/DPD-215?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-216?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-245?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-250?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-201?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-202?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-238?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-203?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-205?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-233?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-239?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-222?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-225?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-247?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-254?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-261?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-258?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-260?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-217?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-218?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-251?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-209?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-210?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-240?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-246?src=confmacro
https://jira.deep-hybrid-datacloud.eu/browse/DPD-106?src=confmacro

High level
architecture

Dependencies
DEEPaaS has minimal dependencies on Python libraries. There are no
special services or components required.

Interfaces
DEEPaaS exposes a REST endpoint based on the OpenAPI specification
[OpenAPI], with self-documented and machine readable interfaces.

Data

DEEPaaS is a stateless component, although the underlying models that
DEEPaaS will load consume data in different ways. For the training
operations, the underlying models require fast efficient access to the data to
be used, as well as a data storage to save the results, configurations, etc. For
the inference operations, the data is being send (both input and output data)
through the HTTP endpoint (requests are synchronous). Asynchronous
requests will be implemented in the future, thus data requirements may
change.

Needed
improvement

DEEPaaS is developed to expose the user model functionality towards end
users. This component needs to evolve according to the user needs,
fulfilling their requirements, but at the same time it is needed that it remains
generic to all the use cases so that one single component can be used for a
large number of use cases.
The specific improvements that we have collected up to date are the
following:

• Implement generic and dynamic loading mechanism, so that users do
not need to plug manually their model into the API

• Implement factory-based loading of models to provide even more
dynamic loading mechanisms

• Integration with authentication and authorization infrastructures
(AAI), namely OpenID Connect.

• Ability to expose several models through the same API endpoint.
• Ability to specify, with a larger granularity, the parameters that are

exposed from the underlying model through the API.
• Ability to provide monitoring information of the training status.

Current TRL TRL6. Currently it is being used in the pilot preview testbed by the DEEP

DEEP-HybridDataCloud – 777435 17

status use cases

Expected TRL
evolution

TRL8 during second half of the project.

Implemented
Improvements for

the Prototype

• Dynamic loading of modules, through configurable entry-points.
• Ability to load and expose several models into the API namespace,

instead of only one.
• Implementation of training functionality, metadata fetching and

inference/prediction.
• Initial prototype (pre-alpha) implementation of integration with

server less frameworks.

5. Prototype implementation of the DEEP as a
Service solution
In the following section we elaborate on the developments carried out in the aforementioned tools,
so that the user requirements were fulfilled form WP6 perspective.

5.1. Alien4Cloud bundle
Alien4Cloud has been elected as the tool able to provide an easy to use and intuitive application
composition (see details in D6.2 - Design for the DEEP as a Service solution). We offer
Alien4Cloud as part of a bundle [A4C-DEEP] contained in a Docker image, ready to be used
without any compilation and installation steps. This bundle contains three different important parts,
that are described here: the Alien4Cloud application, the orchestrator plugin that allows
Alien4Cloud to communicate with the INDIGO-DataCloud orchestrator, and a settings manager
specifically designed to handle the container's environment variables needed for the Alien4Cloud
settings. The Alien4Cloud bundle is automatically released through DockerHub following the
automated process setup by the project for all the software development activities, as set up by
WP3 and available at https://jenkins.indigo-datacloud.eu:8080/view/DEEP/.

We based our developments in the latest stable version of Alien4Cloud, version 2.0.0 as, at the time
of writing, the development version, 2.1.0, was not considered stable. The adoption of a newer
version of Alien4Cloud will be considered as soon as it will be released. Moreover, we identified
several issues and improvements in the official code repository (see Table 2) that would need to be
tackled. In order to improve the official product, we fixed some of the issues and submitted
upstream merge requests that are still under review by the Alien4Cloud developers. In order to get
around the problem and continue our developments, we decided to maintain our own fork of
Alien4CLoud [A4C-DEEP] with the aim to merge all the implemented modifications into the
upstream repository.

DEEP-HybridDataCloud – 777435 18

https://jenkins.indigo-datacloud.eu:8080/view/DEEP/
https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.2+-+Design+for+the+DEEP+as+a+Service+solution

ID Title Link

#167
Version 2.0.0 no outputs for
Attributes

https://github.com/alien4cloud/alien4cloud/issues/167

#165
Plugin from init dir replaced
when a4c restarted

https://github.com/alien4cloud/alien4cloud/issues/165

#148 get_attribute error https://github.com/alien4cloud/alien4cloud/issues/148

#143 Outputs YAML errors https://github.com/alien4cloud/alien4cloud/issues/148

Table 2: List of A4C open issues from DEEP.

5.1.1.Alien4Cloud

Figure 2 shows the internal architecture of Alien4Cloud. There are three main components that
work together: the web client (the view), the web server (the controller), and the data storage
(the model). All these are packed in a self-executable WAR file. We present an overview of the
aforementioned components in the following paragraphs.

Figure 2: Alien4Cloud internal architecture.

The web client is built around AngularJS 1. It allows the user to interact with the web server. There
are three main features (as seen in Figure 3) grouped in the "Applications", "Catalog", and
"Administration" menus. The first menu allows the user to create and manage applications. These
applications can be edited and then launched on different instances of the orchestrators supported
by Alien4Cloud (through plugins). Users can check the available components, add new, or remove
existing ones through the Catalog UI. Alien4Cloud supports uploading CSARs directly through its
interface, as well as specifying the Github repository where the TOSCA definitions are kept.

DEEP-HybridDataCloud – 777435 19

https://github.com/alien4cloud/alien4cloud/issues/148
https://github.com/alien4cloud/alien4cloud/issues/148
https://github.com/alien4cloud/alien4cloud/issues/165
https://github.com/alien4cloud/alien4cloud/issues/167

The web server consists of different components, with one of the most important being the REST
API. It is used by the Alien4Cloud web client (running in a browser) and it can also be used
directly by the user. The core is the main part, being responsible for the TOSCA parsing,
application management (like keeping track of the created applications, stored into the
ElasticSearch storage and deployment), Alien4Cloud management (like server information,
starting up the application, and loading the pre-installed plugins and TOSCA templates), etc. The
plugin manager represents the interface made available to the developers that allows the creation of
external plugins. We use this component for our own plugin, as described in the next section.
Another important part of the web server is the security component. It deals with the authentication
(local, but also involved in the LDAP and OAuth).

The data storage saves and holds the persistent information such as user-created applications,
settings, and TOSCA components. Alien4Cloud implements two methods of storage: plain and
ElasticSearch. The former holds plugins, CSARs and other data sources that don't necessarily need
indexing and a DB engine (at least for the data sources themselves, they can be unpacked and
indexed though to improve performance). Our plugin is stored in the plain storage, in the init
directory, and then loaded by Alien4Cloud during startup. The former storage deals with
information like users and available applications, information that lends itself very well to this type
of storage.

5.1.2.Orchestrator plugin

The second component present in the Docker image is the actual plugin that enables the
communication between Alien4Cloud and the DEEP orchestrator. This plugin is compiled when the
image is built, and then installed in the Alien4Cloud's init directory. We use the same init directory
to install the TOSCA custom types defined in the INDIGO-DataCloud project. The plugin allows
configuration through a number of parameters, modifiable when an instance of it is created. We

DEEP-HybridDataCloud – 777435 20

Figure 3: Alien4Cloud main page

explain the use of these parameters in the README file found in the Github repository at [A4C-
DEEP]. Our users have to set the client ID and client secret, because each new instance of
Alien4Cloud should have a different pair. An IAM instance requires these values (along with the
user name and the password) to generate a token that allows the user to deploy with the
orchestrator.

At the time of writing, the administrator has to create local users in the Alien4Cloud instance that
have the same name and password as the ones registered with IAM. As a temporary solution, in
order to allow the authentication during the application deployment, we had to modify the original
code of Alien4Cloud to store the user's password and not just its hash. It is a temporary solution for
our users, and we already are in the initial phases of the development of a feature/plugin that would
authenticates the user against an IAM instance. Once the authentication component development is
completed, the plugin can be installed on any Alien4Cloud instance that was compiled from the
original source code. This is one of our most important goals, the compatibility with the original
source code.

The plugin has three main functions:

• Manage the life cycle of a deployment (deploy, undeploy, get status)
• When a user presses the deploy button, the plugin takes charge
• The plugin sends the topology and the additional necessary information

(authentication token , input parameters etc.) to the DEEP orchestrator
• It asks for the status of the deployment through the DEEP orchestrator API

• Each time the Alien4Cloud web page is refreshed
• We plan to implement automatic status updates in the near future

• It sends the undeploy command
• Convert between Alien4Cloud's TOSCA variant and the DEEP orchestrator's

• Some elements the Alien4Cloud specific TOSCA have to be converted
• e.g. the imports section has to use an external file not a version as it is used

by Alien4Cloud
• Connect the user to the orchestrator, and allowing graphical management of the deployment

• The plugin retrieves a token used from the DEEP IAM instance
• Token is sent with every REST call to the DEEP orchestrator

• User password and name are loaded from the Alien4Cloud running instance each
time a REST operation which involves the DEEP orchestrator is performed

• Alien4Cloud sends the UI actions related to the deployment of a topology to our
plugin

• The internal workings of the plugin are hidden from the user by the
Alien4Cloud web UI

DEEP-HybridDataCloud – 777435 21

Settings manager

The third component is a utility used to change the settings of Alien4Cloud. It is a Java application
(therefore it doesn't require additional runtime in the container) that uses the ENV variables of the
container to alter the configuration files. This application runs each time the container starts, before
executing the Alien4Cloud web server.

This utility allows the configuration of the instance without the need of editing the configuration
files individually. This way, the administrator (who manages the Alien4Cloud deployment and its
life afterwards) can launch the container and configure Alien4Cloud just by setting some variables.

5.2. DEEPaaS API
In order to easily expose the user application functionality we decided to develop a generic REST
API component that could be plugged on top of the WP2 applications. This component will
therefore expose the underlying functionality with minor modifications on the users' code. We
based the development on the OpenAPI Specification developed by the OpenAPI Initiative. The
OpenAPI Specification (OAS) [OpenAPI] defines a standard, programming language-agnostic
interface description for REST APIs, which allows both humans and computers to discover and
understand the capabilities of a service without requiring access to source code, additional
documentation, or inspection of network traffic. When properly defined via OpenAPI, a consumer
can understand and interact with the remote service with a minimal amount of implementation
logic.

The DEEPaaS API component defines a set of entry points that need to be declared at the user
application side. When installed together with the application, DEEPaaS looks up those entry
points, loading the user application and exposing the underlying functionality via the a REST
endpoint. Since it follows the OpenAPI specification, a Swagger documentation UI [Swagger] is
automatically provided (Figure 5), as well as the JSON OpenAPI specification (Figure 4).

DEEP-HybridDataCloud – 777435 22

Figure 4: OpenAPI JSON Specification.Figure 5: Swagger UI for a DEEPaaS.

https://en.wikipedia.org/wiki/Representational_state_transfer

This API component provides the following functionality:

• Loading any installed model, exposing several applications through the same endpoint.
• Fetching metadata from the installed modules.
• Triggering a training of a model, with the possibility of passing down training parameters to

the model.
• Performing the evaluation of a trained model.
• Triggering an inference/prediction/classification using the loaded model, therefore exposing

its functionality.
• Preliminary support for server less components.

Once an application is properly integrated with DEEPaaS API (i.e. defining which entry points
should be invoked for any of the aforementioned items) it is possible access the model's
functionality via the REST API in any execution environment that is available. Apart from the entry
point definition, this integration is being carried out by installing DEEPaaS API and the user
application together into the same Docker container. This allows to cover a wide range of execution
environments, like the local computer of the scientist, a Mesos instance (as provided via WP5), a
Kubernetes deployment (created by the user), a server less component (with preliminary support
for the time being) or an HPC installation via uDocker.

5.3. DEEP Open Catalogue
One of the objectives of WP6 is the definition and elaboration of the DEEP Open Catalogue,
containing reusable modules both for the end-users and application developers. The DEEP Open
Catalogue has been structured as a set of Docker images (stored under the DEEP-Hybrid-
DataCloud DockerHub [INDIGO-Docker-Hub] organization), source code repositories (stored
under the INDIGO-DataCloud GitHub Organization), TOSCA templates (stored under the
INDIGO-DataCloud GitHub Organization [INDIGO-DC]) and so on, that can be composed
together via the application Alien4Cloud. In this way users can either reuse any existing application
(and topology), modify an existing one or develop one from scratch. Currently the DEEP Open
Catalogue is composed by the components described in Table 3.

Component Purpose Link

DEEP as a Service
Dogs breed
determination

Example application used by
WP2 to show integration
steps and testbed validation.

https://github.com/indigo-dc/DEEP-OC-
dogs_breed_det

https://hub.docker.com/r/deephdc/deep-oc-
dogs_breed_det/

DEEP as a Service
container for Conus
(Marine Snails)
classification

WP2 deep learning
application for biodiversity
classification use cases

https://github.com/indigo-dc/DEEP-OC-
conus-classification

https://hub.docker.com/r/deephdc/deep-oc-
conus-classification/

DEEP-HybridDataCloud – 777435 23

https://hub.docker.com/r/deephdc/deep-oc-conus-classification/
https://hub.docker.com/r/deephdc/deep-oc-conus-classification/
https://github.com/indigo-dc/DEEP-OC-conus-classification
https://github.com/indigo-dc/DEEP-OC-conus-classification
https://hub.docker.com/r/deephdc/deep-oc-dogs_breed_det/
https://hub.docker.com/r/deephdc/deep-oc-dogs_breed_det/
https://github.com/indigo-dc/DEEP-OC-dogs_breed_det
https://github.com/indigo-dc/DEEP-OC-dogs_breed_det

DEEP as a Service
container for seeds
classification

WP2 deep learning
application for biodiversity
classification use cases

https://github.com/indigo-dc/DEEP-OC-
seeds-classification

https://hub.docker.com/r/deephdc/deep-oc-
seeds-classification/

DEEP as a Service
container for plant
classification

WP2 deep learning
application for biodiversity
classification use cases

https://github.com/indigo-dc/DEEP-OC-
plant-classification-theano

https://hub.docker.com/r/deephdc/deep-oc-
plant-classification-theano/

DEEP as a Service
container for
retinopathy detection

WP2 deep learning
application for retinopathy
detection

https://github.com/indigo-dc/DEEP-OC-
retinopathy_test

https://hub.docker.com/r/deephdc/deep-oc-
retinopathy_test/

DEEP as a Service
MODS container

WP2 deep learning
application for anomaly
detection using massive
online data streams

https://github.com/indigo-dc/DEEP-OC-
mods

https://hub.docker.com/r/deephdc/deep-oc-
mods/

DEEP as a Service
biodiversity
classificator

WP2 deep learning bundle
containing all biodiversity
applications into a single
container

https://github.com/indigo-dc/DEEP-OC-
engine

https://hub.docker.com/r/deephdc/deep-oc-
engine/

DEEP as a Service
container for
phytoplankton
classification

External use case (from
LifeWatch Belgium)
leveraging DEEP solutions
for automatic classification
of phytoplankton

https://github.com/indigo-dc/DEEP-OC-
phytoplankton-classification

https://hub.docker.com/r/deephdc/deep-oc-
phytoplankton-classification/

DEEP as a Service
generic container

Generic container with
DEEPaaS API installation
and configuration, to be used
by other use cases

https://github.com/indigo-dc/DEEP-OC-
generic-container

https://hub.docker.com/r/deephdc/deep-oc-
generic-container/

DEEP Cookiecutter
Data Science

Repository template for
WP2 applications

https://github.com/indigo-dc/cookiecutter-
data-science

Ansible roles
Ansible roles for installing
Data Analytic Stack (DAS)
in OS container

https://github.com/indigo-dc/ansible-role-
jupyterhub

https://github.com/indigo-dc/DEEP-OC-
mods-ansible

TOSCA templates
and types

TOSCA templates and the
needed types for the
deployment of the DEEP-
OC components

https://github.com/indigo-dc/tosca-templates

https://github.com/indigo-dc/tosca-types

DEEP-HybridDataCloud – 777435 24

https://github.com/indigo-dc/tosca-types
https://github.com/indigo-dc/tosca-templates
https://github.com/indigo-dc/DEEP-OC-mods-ansible
https://github.com/indigo-dc/DEEP-OC-mods-ansible
https://github.com/indigo-dc/ansible-role-jupyterhub
https://github.com/indigo-dc/ansible-role-jupyterhub
https://github.com/indigo-dc/cookiecutter-data-science
https://github.com/indigo-dc/cookiecutter-data-science
https://hub.docker.com/r/deephdc/deep-oc-generic-container/
https://hub.docker.com/r/deephdc/deep-oc-generic-container/
https://github.com/indigo-dc/DEEP-OC-generic-container
https://github.com/indigo-dc/DEEP-OC-generic-container
https://hub.docker.com/r/deephdc/deep-oc-phytoplankton-classification/
https://hub.docker.com/r/deephdc/deep-oc-phytoplankton-classification/
https://github.com/indigo-dc/DEEP-OC-phytoplankton-classification
https://github.com/indigo-dc/DEEP-OC-phytoplankton-classification
https://hub.docker.com/r/deephdc/deep-oc-engine/
https://hub.docker.com/r/deephdc/deep-oc-engine/
https://github.com/indigo-dc/DEEP-OC-engine
https://github.com/indigo-dc/DEEP-OC-engine
https://hub.docker.com/r/deephdc/deep-oc-mods/
https://hub.docker.com/r/deephdc/deep-oc-mods/
https://github.com/indigo-dc/DEEP-OC-mods
https://github.com/indigo-dc/DEEP-OC-mods
https://hub.docker.com/r/deephdc/deep-oc-retinopathy_test/
https://hub.docker.com/r/deephdc/deep-oc-retinopathy_test/
https://github.com/indigo-dc/DEEP-OC-retinopathy_test
https://github.com/indigo-dc/DEEP-OC-retinopathy_test
https://hub.docker.com/r/deephdc/deep-oc-plant-classification-theano/
https://hub.docker.com/r/deephdc/deep-oc-plant-classification-theano/
https://github.com/indigo-dc/DEEP-OC-plant-classification-theano
https://github.com/indigo-dc/DEEP-OC-plant-classification-theano
https://hub.docker.com/r/deephdc/deep-oc-seeds-classification/
https://hub.docker.com/r/deephdc/deep-oc-seeds-classification/
https://github.com/indigo-dc/DEEP-OC-seeds-classification
https://github.com/indigo-dc/DEEP-OC-seeds-classification

Table 3: Contents of the DEEP Open Catalogue for the prototype.

This set of initial contents has been created in close collaboration with the networking activity
(NA) Work Package 2. As a matter of fact, both work packages elaborated and adopted a templated
repository for the use cases, so that the adoption of new user applications follow the same
repository structure and pattern, facilitating the integration of the applications into the final
solution. This templated repository includes configuration for automated builds and software
quality assurance processes, tasks that are carried out under the service activity (SA) of WP3. This
way, the corresponding Docker container is created automatically in the DEEP-Hybrid-DataCloud
DockerHub organization, as shown in Figure 6, whenever a change is merged into the master
branch of the source code repository and all the required tests are passed. Moreover, since all these
components are integrated with the DEEPaaS API (as explained before) any change in this
component will trigger an update on the user application container. This is currently being done
using the DockerHub repository links. We expect in the next period to perform this task by
adopting the tools operated by WP3 in order to have more control on the creation of the new
container.

As already stated, all the DEEP Open Catalog (DEEP-OC) modules that contain a user application
are based in the DEEPaaS API described before. By exploiting Docker containers together with
DEEPaaS we provide a way to the users to execute their applications in different computing
infrastructures and platforms:

• A user can download a module an execute it in their local computers using Docker.
• The Docker application can be executed on a production-grade server, using any of the

common deployment tools.
• The Docker application can be executed on any container orchestration engine, such as

Mesos (as it is being done through the Alien4Cloud and the Orchestrator) or Kubernetes.

DEEP-HybridDataCloud – 777435 25

Figure 6: DevOps pipeline currently implemented

• The Docker application can be executed on a server less infrastructure. This work is
currently undergoing, but a pilot preview is provided to some use cases.

• The user application can be executed on an HPC facility, by means of the uDocker tool.

In order to provide a graphical user interface to browse all the components of the DEEP-OC
catalogue we created a "marketplace" web page (http://marketplace.deep-hybrid-datacloud.eu/)
where all the developed modules have been included, as shown in Figure 7. This is a simple web
portal that lists, links and provides information about the developed modules, but it does not
provide any extra functionality like submission of an application to the infrastructure, as this is task
of Alien4Cloud. However, as part of the exploitation plans of the project, we expect to integrate
these modules into a production marketplace of the European Open Science Cloud, through the
EOSC-Hub project or the EGI.eu Application Database (or similar tools).

DEEP-HybridDataCloud – 777435 26

Figure 7: The DEEP-OC marketplace.

http://marketplace.deep-hybrid-datacloud.eu/)

5.4. Integration with storage services
For this first half of the project our approach was based on the utilization of a local deployment of
NextCloud to provide access to the users to a sync and share solution, and the rClone [RCLONE]
tool to gain seamless access to the data from the execution environment. From the user's
perspective, the sync and share approach is the most natural way to store and retrieve their data,
therefore with this approach we will be able to replace NextCloud [NEXTCLOUD] for any similar
solution deployed in the EOSC (like the storage solutions provided by the eXtreme-DataCloud
project). Moreover, by leveraging rClone we are able to get seamless access to any cloud storage
API (WebDav, S3, etc.) transparently for the users. Obviously, this first approach does not provide
the required efficient data access for the application training, but we do expect to solve this issue
during the second half of the project with the close collaboration with the eXtreme-DataCloud
project (XDC) that we have set up.

In this regard, in order to adopt advanced storage solutions from XDC into DEEP so as to provide
data access to the WP2 use cases we have leveraged a common and external use case (common in
the sense that both projects should try to satisfy their requirements, external in the sense that it was
not covered by any of the projects before). This use case is based on the automatic and marker-less
pose estimation using deep learning techniques and requires from efficient data storage to perform
the training, as well as a way to perform automatic and asynchronous classifications of large video
data sets. As a preliminary outcome of this collaboration we set up a demo at the Digital
Infrastructures for Research 2018 event (https://www.digitalinfrastructures.eu/) where we
performed an automated classification of a video using the DEEP-Hybrid-DataCloud tools,
reacting to storage events produced by the eXtreme-DataCloud solutions.

6. Conclusions and next steps
This document describes the initial development and integration tasks that have been carried to
provide the use cases with an appropriate solution for the training of machine learning and deep
learning models, exploiting accelerators through the WP5 and WP4 developments. Taking into
account the milestones that were setup for this work package (listed in Table 4), at present this
activity has completed the MS4, MS9 and MS14 milestones. Currently the MS19 is partially
implemented and a pre-alpha preview is available for use cases to verify the required functionality.

We developed a plugin for Alien4Cloud that allows the deployment of applications directly from its
graphical user interface, exploiting the INDIGO-DataCloud orchestrator. We created the
corresponding TOSCA documents and templates that allow the deployment of all the modules from
the A4C tool. In this regard, we integrated the use cases in Docker containers, together with the
DEEPaaS API as a way to expose the user functionality in a generic way that can be either used
directly by the users (by means of its web interface) or exploited by any tool (by means of its REST
API).

DEEP-HybridDataCloud – 777435 27

https://www.digitalinfrastructures.eu/

No. Milestone title Month Status

MS4 DEEP Catalog base content 3
Completed (reported in D6.1 - State-of-the-art
Deep Learning, Neural Networks and Machine
Learning frameworks and libraries)

MS9
DEEP-as-a-Service
architecture and API
description

6
Completed (reported in D6.2 - Design for the
DEEP as a Service solution)

MS14
Batch executions in the
DEEP-as-a-Service solution

12 Completed

MS19
Application-as-a-service
implementation

24 In progress

MS22 DEEP-as-a-Service solution 24 In progress

Table 4: List of milestones for work package 6.

Moreover, although the focus has been put on the training task through batch executions, we have
also carried out developments activities towards the deployment as a service of the user
applications. The DEEPaaS API provides enough functionality to deploy it as a service on different
execution environments and platforms (local computer, server, container orchestration engine). We
expect to work further in this regard during the second half of the project, as detailed in the next
paragraph.

Beyond the expected improvement activities carried out during the project lifetime, the next steps
for WP6 are the following:

• Integration of Alien4Cloud with OpenID connect. Currently A4C does not support OpenID
connect authentication, therefore a temporary solution was implemented for the pilot
preview. We have put our effort in the support for the INDIGO-DataCloud orchestrator, as
well as unexpected bug fixing in order to support our use cases, therefore we could not
implement this support yet. We foresee to implement this functionality in a proper way
during the next phases of the project.

• Creation of Ansible roles for the configuration and deployment of the components. Several
of the DEEP Open Catalogue Docker containers install and configure the same components
(like DEEPaaS API) manually. We expect to create Ansible roles to that these components
can be deployed and configured using them.

• Addition of components into the DEEP-OC. We will continue creating and adding
components into the catalogue, as requested by our use cases and project stakeholders.

• Integration of Big Data analytics tools into the DEEP-OC. The catalogue currently does not
contain any Big Data analytics tools, but we do expect to incorporate them during the
second half of the project, when the WP2 use cases will require this kind of components.
Moreover, we expect to also incorporate tools from the eXtreme-DataCloud project.

DEEP-HybridDataCloud – 777435 28

https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.2+-+Design+for+the+DEEP+as+a+Service+solution
https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.2+-+Design+for+the+DEEP+as+a+Service+solution
https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.1+-+State-of-the-art+Deep+Learning%2C+Neural+Networks+and+Machine+Learning+frameworks+and+libraries
https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.1+-+State-of-the-art+Deep+Learning%2C+Neural+Networks+and+Machine+Learning+frameworks+and+libraries
https://confluence.deep-hybrid-datacloud.eu/display/DEEP/D6.1+-+State-of-the-art+Deep+Learning%2C+Neural+Networks+and+Machine+Learning+frameworks+and+libraries

• Definition of the automated DevOps pipeline for the automated deployment of the user
applications as a service. We have performed preliminary steps towards the implementation
of the DevOps pipeline for the user applications. Currently the user containers are created
automatically whenever a change is merged into the repository but we will incorporate
additional testing for the user applications. Moreover, we will define the pipeline to update
the deployed user services whenever a change is done in the underlying model, meaning
that a change in the code or model configuration will trigger an update of the services.

• Integration of DEEP-OC applications into production marketplaces. As part of the
exploitation plans we expect to start activities in order to integrate our marketplace and the
rest of the tools into production marketplaces or the corresponding tools, like the EGI.eu
Application Database.

• Evolution of DEEPaaS API. We expect that the DEEPaaS API component evolves together
with the use cases. We expect to elaborate a major release during the second half of the
project in order to incorporate all the use cases feedback.

• OpenID Connect integration into DEEPaaS API. Currently this component does not support
OpenID connect authentication. As this feature has been requested by some use cases, it is
expected to be implemented in the next period.

DEEP-HybridDataCloud – 777435 29

7. Glossary
A4C Alien4Cloud

AAI Authentication and Authorization Infrastructure

API Application Programming Interface

CLI Command Line Interface

CMF Cloud Management Framework

CMP Container Management Platform

CSAR Cloud Service Archive

DEEP-OC DEEP Open Catalogue

EOSC European Open Science Cloud

GUI Graphical User Interface

IAM Identity and Access Management service

IM Infrastructure Manager

IS Information System

JRA Joint Research Activities

REST Representational State Transfer

SAML Security Assertion Markup Language

TOSCA Topology and Orchestration Specification for Cloud Applications

TRL Technology Readiness Level

VM Virtual Machine

VPC Virtual Private Cloud

VPN Virtual Private Network

WP Work Package

YAML Yet Another Markup Language

DEEP-HybridDataCloud – 777435 30

8. References
[A4C-DEEP] https://github.com/indigo-dc/alien4cloud-deep/

[D2.1] Initial Plan for Use Cases http://hdl.handle.net/10261/164311

[D6.1] State-of-the-art Deep Learning, Neural Networks and Machine Learning frameworks and
libraries https://confluence.deep-hybrid-datacloud.eu/download/attachments/3145850/DEEP-
JRA3-D6.1.pdf?api=v2

[D6.2] Design for the DEEP as a Service solution http://hdl.handle.net/10261/164314

[JIRA-DEEP] https://jira.deep-hybrid-datacloud.eu/

[INDIGO-DC] https://github.com/indigo-dc

[INDIGO-Docker-Hub] https://hub.docker.com/u/deephdc/

[NEXTCLOUD] https://nextcloud.com/

[OpenAPI] http://www.openapis.org/

[RCLONE] https://rclone.org/

[Swagger] https://swagger.staging.wpengine.com/swagger-ui/

[TOSCA 2017] Crandall, John, and Paul Lipton. “OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC.”
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca.

DEEP-HybridDataCloud – 777435 31

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://swagger.staging.wpengine.com/swagger-ui/
https://hub.docker.com/u/deephdc/
https://github.com/indigo-dc
https://jira.deep-hybrid-datacloud.eu/
http://hdl.handle.net/10261/164314
https://confluence.deep-hybrid-datacloud.eu/download/attachments/3145850/DEEP-JRA3-D6.1.pdf?api=v2
https://confluence.deep-hybrid-datacloud.eu/download/attachments/3145850/DEEP-JRA3-D6.1.pdf?api=v2
http://hdl.handle.net/10261/164311
https://github.com/indigo-dc/alien4cloud-deep/blob/master/README.md

	Executive Summary
	1. Introduction
	1.1. Document purpose

	2. DEEP as a Service description
	2.1. Overview of components and modules
	2.2. Structure and relationships

	3. User requirements relevant to WP6
	4. Detailed component description
	4.1. Application composition
	4.2. DEEP as a Service API

	5. Prototype implementation of the DEEP as a Service solution
	5.1. Alien4Cloud bundle
	5.1.1. Alien4Cloud
	5.1.2. Orchestrator plugin
	Settings manager

	5.2. DEEPaaS API
	5.3. DEEP Open Catalogue
	5.4. Integration with storage services

	6. Conclusions and next steps
	7. Glossary
	8. References

