
DEEP-Hybrid-DataCloud
FIRST IMPLEMENTATION OF SOFTWARE PLATFORM

FOR ACCESSING ACCELERATORS AND HPC
DELIVERABLE: D4.2

Document identifier: DEEP-JRA1-D4.2

Date: 30/10/2018

Activity: WP4

Lead partner: IISAS

Status: FINAL

Dissemination level: PUBLIC

Permalink: h ttp://hdl.handle.net/10261/168086

Abstract
This deliverable describes the first implementation of the software platform for accessing
accelerators and HPC. The list of components included in the software platform is based on the
analysis provided by Deliverable D4.1. This document provides detailed descriptions of software
components used in the platforms, the work done on each component and its current status.
Evaluation of achieved results and implementation plan for the next periods are also included.

DEEP-Hybrid-DataCloud – 777435 1

http://hdl.handle.net/10261/168086
http://hdl.handle.net/10261/168086

Copyright Notice
Copyright © Members of the DEEP Hybrid-DataCloud Collaboration, 2017-2020.

Delivery Slip

Name Parner/Activity Date

From Viet Tran IISAS / JRA1 19/10/2018

Reviewed by
Marcin Plociennik

Germán Moltó
PSNC
UPV

22/10/2018
22/10/2018

Approved by Steering committee 30/10/2018

Document Log

Issue Date Comment Author/Partner

TOC 01/09/2018 Table of Content Viet Tran / IISAS

V0.9 16/10/2018 Partner contributions WP members

V1.0 19/10/2018
Completed version for internal

review
Viet Tran / IISAS

V1.1 22/10/2018 Recommendations from reviewers
Marcin Plociennik / PSNC

Germán Moltó / UPV

V2.0 26/10/2018
Updated version according to

recommendations from reviewers
WP members

V3.0 30/10/2018 Final version Viet Tran / IISAS

DEEP-Hybrid-DataCloud – 777435 2

Table of Contents
Executive Summary...4
1. Introduction...5
2. Description of software platform for accessing accelerators and HPC...5

2.1. Overview..5
2.2. Detailed component description..7

2.2.1. udocker...8
2.2.2. OpenStack..9
2.2.3. OpenNebula...12
2.2.4. Apache Mesos...13
2.2.5. Kubernetes..20
2.2.6. Integration of HPC resources with DEEP platform..22
2.2.7. Tools for accessing HPC resources..24
2.2.8. Virtual HPC clusters...26

3. First implementation of software platform for accessing accelerators and HPC..........................28
3.1. udocker...28
3.2. OpenStack..29
3.3. OpenNebula...29
3.4. Mesos...29
3.5. Kubernetes...31
3.6. HPC..32

4. Next steps..33
4.1. udocker...33
4.2. OpenStack..34
4.3 OpenNebula..34
4.3. Mesos...34
4.5 Kubernetes..34
4.6 HPC...35

5. Conclusion...36
6. Glossary...37
7. References...39

DEEP-Hybrid-DataCloud – 777435 3

Executive Summary
The DEEP-HybridDataCloud (Designing and Enabling E-Infrastructures for intensive data
Processing in a Hybrid DataCloud) is a project approved in July 2017 within the EINFRA-21-2017
call of the Horizon 2020 framework program of the European Community. It will develop
innovative services to support intensive computing techniques that require specialized HPC
hardware, such as GPUs or low-latency interconnects, to explore very large datasets.

This deliverable describes the first implementation of the software platform for accessing
accelerators and HPC. Components included in the software platform are selected on the analysis
provided by Deliverable D4.1. For each component, its detailed description, current status, and
next implementation plan are presented.

From D4.1, two implementations of container technologies have been selected to be further
improved: udocker, as container technology to be used in the case of HPC platforms, and nova-lxd,
as a replacement of full hypervisors. In the first implementation of the software platform, support
for automatic passing of GPU drivers in udocker has been added. Tests have been carried out with
common GPU-enabled Docker containers and they proved that the performance of the GPU-enable
version of udocker is comparable with baremetal. Next work on udocker will be focused on
supporting fast interconnection network and compatibility.

OpenStack nova-lxd has been deployed and extensively tested in this implementation of the
software platform. It has different compatibility issues and documentation is severely missing. The
work done in the first implementation is to create a working version of OpenStack with nova-lxd,
integrate it into the DEEP testbed and update documentation. Next work on nova-lxd will be to add
GPU support and improve compatibility with other components, mainly block storages.

Support for accelerators in the first software platform is not limited only in the mentioned udocker
and nova-lxd, but also in other Cloud middleware, most notably Mesos and Kubernetes. The Mesos
schedulers, Marathon and Chronos, have been modified to provide support for GPU. The GPU
support for Kubernetes has been also thoroughly tested and documented in a series of How-to
articles. Both middleware have been integrated with DEEP IAM and the PaaS orchestration from
WP5. The next implementation plan will be to improve compatibility with OpenID connect and
better integration with the PaaS orchestrator. For completeness, OpenStack and OpenNebula
middleware with KVM PCI-passthrough are included into the first software platform, too.

HPC integration with PaaS approach has been analyzed carefully. Different approaches have been
proposed and, finally, the approach using common gateway and token translator for SSH keys has
been chosen. The work in the next period will be focused on implementation of the HPC
integration with PaaS orchestrator using the proposed approaches and tools.

DEEP-Hybrid-DataCloud – 777435 4

1. Introduction
The DEEP-HybridDataCloud (Designing and Enabling E-Infrastructures for intensive data
Processing in a Hybrid DataCloud) is a project approved in July 2017 within the EINFRA-21-2017
call of the Horizon 2020 framework program of the European Community. It will develop
innovative services to support intensive computing techniques that require baremetal performance,
specialized accelerators such as GPUs and HPC platform in the Cloud, to explore very large
datasets.

The objective of WP4 of the DEEP-Hybrid-DataCloud project is to fulfil the requirements
mentioned above by working as closely as possible with hardware resources, exploiting the full
potential of computational performance provided by the hardware including accelerators, low-
latency interconnects and HPC platforms. This workpackage is cooperating tightly with WP5 High
Level Hybrid Cloud solutions where the resources provided in this workpackage will be managed
and accessed via the PaaS Orchestration service provided by WP5.

This deliverable describes the first implementation of the software platform for accessing
accelerators and HPC. The list of components included in the software platform is based on the
analysis provided by Deliverable D4.1. This document provides detailed descriptions of software
components used in the platform, the work done on each component, and its current status.
Evaluation of achieved results and implementation plan for the next periods are also included.

2. Description of software platform for accessing
accelerators and HPC

2.1. Overview
The first software platform in WP4 is focusing on support for containers and accelerators in Cloud
and HPC environments. As it has been analyzed in D4.1, we will focus on using udocker for
supporting containers on HPC platforms. On the Cloud platforms, we will use nova-lxd plugin with
traditional OpenStack Cloud middleware, and the built-in container supports in Kubernetes and
Mesos.

The access to accelerators will be supported on all platforms mentioned above. The first
implementation of GPU support has been created in udocker within this project. Experimental GPU
supports in Kubernetes and Mesos via nvidia-docker runtime have been deployed and integrated
into the DEEP testbed. The GPU support for nova-lxd is planned in the next period.

DEEP-Hybrid-DataCloud – 777435 5

For completeness of the pictures, GPU supports via KVM PCI-passthrough are added in the first
software platform as they are being used on some sites in the testbed as a preliminary solution to
access accelerators. However, due to several technical issues of PCI-passthrough approach, that
have been analyzed in D4.1, we will not invest efforts in improvements of the technology, but only
follow its evolution with possible testing/deployment in the DEEP project.

The software platform should be accessed by end-users via the DEEP as a service from WP6 and
the PaaS orchestration services from WP5. The overall architectures of components are shown in
Fig.1.

Fig. 1 Architecture of components in WP4

It is worth to mention that some components, specifically Kubernetes, Mesos, and HPC clusters
can be deployed in the Cloud instead of on baremetal by the PaaS orchestrator (Fig. 2). In that case,
the PaaS orchestration layer takes care of the provisioning of the Cloud resources and of the
installation and configuration of the software components. Then it is possible to submit the
application services (e.g. DEEPaaS) to the newly deployed components. The software inside the
components deployed in the Cloud should be the same as the components deployed on baremetal,
including supports for containers and accelerators.

Fig. 2 Components deployed in Cloud via PaaS orchestration services

DEEP-Hybrid-DataCloud – 777435 6

2.2. Detailed component description
The template shown below will be used as the structure for including a complete description of
each component in the following submissions.

Identification The unique name for the component and its location in the system

Type A module, a subprogram, a data file, a control procedure, a class, etc.

Purpose

Function and performance requirements implemented by the design
component, including derived requirements. Derived requirements are not
explicitly stated in the SRS, but are implied or adjunct to formally stated
SDS requirements.

Function

What the component does, the transformation process, the specific inputs
that are processed, the algorithms that are used, the outputs that are
produced, where the data items are stored, and which data items are
modified.

High level
architecture

The internal structure of the component, its constituents, and the functional
requirements satisfied by each part.

Dependencies

How the component's function and performance relate to other components.
How this component is used by other components. The other components
that use this component. Interaction details such as timing, interaction
conditions (such as order of execution and data sharing), and responsibility
for creation, duplication, use, storage, and elimination of components.

Interfaces

Detailed descriptions of all external and internal interfaces as well as of any
mechanisms for communicating through messages, parameters, or common
data areas. All error messages and error codes should be identified. All
screen formats, interactive messages, and other user interface components
(originally defined in the SRS) should be given here.

Data
For the data internal to the component, describes the representation method,
initial values, use, semantics, and format. This information will probably be
recorded in the data dictionary.

Needed
improvement

Description of the needed improvements of this tool with regards the DEEP-
Hybrid-DataCloud objectives, in order to fulfill the user requirements and to
build the DEEP as a Service functionality.

Current TRL
status

A detailed description of the status of the Technology Readiness Level, for
specific set of features of the services.

Expected TRL
evolution

A detailed description of the Technology Readiness Level that DEEP
foreseen to reach for a specific set of features of the services.

DEEP-Hybrid-DataCloud – 777435 7

2.2.1.udocker

Identification udocker

Type Python client tool

Purpose
Tool to execute simple Docker containers in user space without requiring
root privileges.

Function

Enables download and execution of Docker containers by non-privileged
users in Linux systems where Docker is not available. It can be used to pull
and execute Docker containers in Linux batch systems and interactive
clusters that are managed by other entities such as grid infrastructures or
externally managed batch or interactive systems.

High level
architecture

udocker implements the following commands:
 search <repo/image:tag> :Search Docker Hub for container images
 pull <repo/image:tag> :Pull container image from Docker Hub
 images :List container images
 create <repo/image:tag> :Create container from a pulled image
 ps :List created containers
 rm <container> :Delete container
 run <container> :Execute container
 inspect <container> :Low level information on container
 name <container_id> <name> :Give name to container
 rmname <name> :Delete name from container

 rmi <repo/image:tag> :Delete image
 rm <container-id> :Delete container
 import <tar> <repo/image:tag> :Import tar file (exported by Docker)
 import - <repo/image:tag> :Import from stdin (exported by Docker)
 load -i <exported-image> :Load image from file (saved by Docker)
 load :Load image from stdin (saved by Docker)
 export -o <tar> <container> :Export container rootfs to file
 export - <container> :Export container rootfs to stdin
 inspect <repo/image:tag> :Return low level information on image
 verify <repo/image:tag> :Verify a pulled image
 clone <container> :duplicate container

 protect <repo/image:tag> :Protect repository
 unprotect <repo/image:tag> :Unprotect repository
 protect <container> :Protect container
 unprotect <container> :Unprotect container

 mkrepo <topdir> :Create repository in another location
 setup :Change container execution settings
 login :Login into Docker repository
 logout :Logout from Docker repository

 version :Shows udocker version and exits

 help :This help
 run --help :Command specific help

Dependencies
Written in Python, it has a minimal set of dependencies so that can be
executed in a wide range of Linux systems.

Interfaces Not applicable

Data Not applicable

DEEP-Hybrid-DataCloud – 777435 8

Needed
improvement

Automatic use of GPUs: implement code that allows the use of GPUs
without the user needing to install and match the NVIDIA drivers in the
image or containers.

Increase automation of using low latency interconnects such as Infiniband

Current TRL
status

TRL 9 - this refers to the current version

TRL 6 - support for GPUs and low latency interconnects

Expected TRL
evolution

TRL 8 or 9 - support for GPUs and low latency interconnects

2.2.2.OpenStack

Identification OpenStack

Type A middleware (set of daemons/services)

Purpose
OpenStack provides management of Cloud resources.
OpenStack is able to run on bare metal and/or LXC containers.

Function

Deployment of virtual machines and other instances into an environment
which also contains LXC containers. Because one of the main functional
requirements is GPU support, version of LXC and LXD has to be 3.X at
least.

High level
architecture

The high-level architecture of the OpenStack cloud environment (depicted
belove) is composed by:

• Master node: It manages all slave nodes from the OpenStack cloud
environment. For the sake of simplification and clarity, the
environment has only one master node (it is not a problem to handle
the extended case if it will be needed for example due to a better load

DEEP-Hybrid-DataCloud – 777435 9

balance). The master node is an All-in-One installation of OpenStack
with limited Nova module and Cinder module. Those modules are
responsible for a (global) resource management only. The computing
and storage resources are offered by host nodes.

• Host nodes: They are registered/recognized by the master node and
offering their computing and storage resources to it. According to it,
they have installed nova module, cinder module, and nova-lxd
plugin.

The main components of an OpenStack environment are:

• Horizon: OpenStack module responsible for an OpenStack
Dashboard. It provides administrators and users with a graphical
interface to access, provision, and automate deployment of cloud-
based resources.

• Glance: OpenStack module for an image management. It provides
discovery, registration, and delivery services for disk and server
images. Stored images can be used as a template. It can also be used
to store and catalog an unlimited number of backup.

• Keystone: OpenStack module for an identity management. It
provides a central directory of users mapped to the OpenStack
services they can access. It acts as a common authentication system
across the cloud operating system and can integrate with existing
backend directory services

• Neutron: OpenStack networking module managing networks and IP
addresses. It ensures the network is not a bottleneck or limiting
factor in a cloud deployment,[citation needed] and gives users self-
service ability, even over network configurations. Neutron provides
networking models for different applications or user groups. The
module manages IP addresses, allowing for dedicated static IP
addresses or DHCP, and associating floating IP addresses let traffic
be dynamically rerouted to any resources in the IT infrastructure, so
users can redirect traffic during maintenance or in case of a failure.

• Cinder: OpenStack module for management of block storage. It
provides persistent block-level storage devices for use with
OpenStack compute instances. The block storage system manages
the creation, attaching and detaching of the block devices to servers.
Block storage volumes are fully integrated into OpenStack Compute
and the Dashboard allowing for cloud users to manage their own
storage needs.

• Nova: OpenStack Compute module. It is a cloud computing fabric
controller, which manages and automates pools of computer
resources and can work with widely available virtualization

DEEP-Hybrid-DataCloud – 777435 10

technologies, as well as bare metal and high-performance computing
(HPC) configurations. There are many options for hypervisor
technology (virtual machine monitor), we choose nova-lxd (which
gives us GPU support in the OpenStack cloud environment).

Supporting tools used by an OpenStack cloud environment are:

• Ansible is open source software that automates software
provisioning, configuration management, and application
deployment. OpenStack-Ansible provides Ansible playbooks and
roles for the deployment and configuration of an OpenStack
environment.

• Rsyslog (the Rocket-fast SYStem for LOG processing) is an open
source software used on UNIX and Unix-like computer systems for
forwarding log messages in an IP network. It implements the basic
syslog protocol, extends it with content-based filtering, rich filtering
capabilities, flexible configuration options and adds important
features such as using TCP for transport.

• Maria DB is a community-developed fork of the MySQL relational
database management system intended to remain free under the GNU
GPL. Galera Cluster is a synchronous multi-master database cluster,
based on synchronous replication and Oracle’s MySQL/InnoDB.

• RabbitMQ is an open source message broker software (sometimes
called message-oriented middleware) that originally implemented the
Advanced Message Queuing Protocol (AMQP) and has since been
extended with a plug-in architecture to support Streaming Text
Oriented Messaging Protocol (STOMP), Message Queuing
Telemetry Transport (MQTT), and other protocols.

• Memcached is a general-purpose distributed memory caching
system. It puts caching data and objects in RAM to reduce the
number of times an external data source must be read.

Dependencies
Linux system with Python packages and Ansible (supporting tools used by
an OpenStack cloud environment - Rsyslog, MariaDB, Galeria, RabbitMQ,
and Memcached are installed/configured by Ansible).

Interfaces

It has three main interfaces:
• Web UI, and dashboard (it is provided by a Horizon module)
• REST API
• CLI

Data
JSON messages, configuration files, images, volumes, and snapshots of
virtual machines.

Needed Simplification of nova-lxd plugin installation/configuration

DEEP-Hybrid-DataCloud – 777435 11

improvement Adding GPU support to nova-lxd

Current TRL
status

TRL 9 - OpenStack system.
TRL 6 - nova-lxd plugin and its integration into OpenStack environment

Expected TRL
evolution

TRL 8 for nova-lxd

TRL 8 for accelerators support in nova-lxd

2.2.3. OpenNebula

Identification OpenNebula

Type
A middleware (set of daemons/services) for Cloud infrastructure
management

Purpose
Cloud management software stack

Function
Deployment and management of Virtual Machines on physical
infrastructures.

High level
architecture

DEEP-Hybrid-DataCloud – 777435 12

Dependencies Linux systems

Interfaces

Web-based GUI

CLI

REST interfaces: OCA (OpenNebula Cloud API), EC2, rOCCI

Data Application's internal data stored in SQL database and accessed via CLI.

Needed
improvement

GPU support unsatisfactory, only KVM PCI-passthrough supported

Current TRL
status

TRL 9 for the system itself, TRL 6-7 for GPU support.

Expected TRL
evolution

TRL 9 for the system itself, TRL 8 for selected GPU configuration

2.2.4. Apache Mesos

Identification Apache Mesos [10]

Type A middleware (set of daemons/services) for cluster management

Purpose

Mesos provides efficient resource isolation and sharing across distributed
applications (frameworks).

Mesos can run on top of Virtual Machines and/or bare metal and/or Docker
containers.

Function Mesos requires computing resources to be assigned to it, so that it can
deploy distributed applications on these resources.

Mesos provides the following main functionalities:

• resource allocation/revocation/re-allocation: Mesos implements a
pluggable resource allocation module architecture that allows users
to create allocation policies with algorithms that best fit a particular
deployment. By default, Mesos includes a strict priority resource
allocation module and a modified fair sharing resource allocation
module. Resources are generally reallocated when tasks end.
However, if a task takes too long, it can be killed to reallocate.

• performance isolation among framework executors running on the
same slave node through pluggable isolation modules. The default
mechanism leverages the Linux container technologies.

• framework authorization implemented through configurable ACLs
in JSON format that allow 1) frameworks to (re-) register with
authorized roles; 2) frameworks to launch tasks/executors as

DEEP-Hybrid-DataCloud – 777435 13

authorized users; 3) Authorized users to shutdown framework(s)
through “/shutdown” HTTP endpoint

• framework rate-limiting that allows to configure the maximum
number of queries per seconds for each framework. This feature aims
at protecting the throughput of high-SLA frameworks by having the
master throttle messages from other (e.g., development, batch)
frameworks.

• monitoring: Mesos master and slave nodes report a set of statistics
and metrics including details about available resources, used
resources, registered frameworks, active slaves, and task state. These
metrics are available querying the http endpoints exposed by the
master and slave nodes.

• slave recovery: this feature allows 1) Executors/tasks to keep
running when the slave process is down and allows 2) a restarted
slave process to reconnect with running executors/tasks on the slave.

• native Docker support that allows users to launch a Docker image
as a Task, or as an Executor.

High level
architecture

The high-level architecture of Mesos is depicted below:

The two main components are:

• Mesos master

• Mesos slave

The Mesos master is a daemon that manages slave daemons running on each
cluster node. The high-availability and fault-tolerance of the master can be
achieved using multiple masters and a quorum manager like Zookeeper.
Moreover, the master is designed as a soft-state component and is able to

DEEP-Hybrid-DataCloud – 777435 14

rebuild its internal state from the messages periodically sent by the slaves
and from the framework schedulers. The slaves register with the master and
offer “resources” i.e. capacity to be able to run tasks.

The Executor is responsible for launching tasks in a framework specific way
(i.e., creating new threads, new processes, etc). One or more executors from
the same framework may run concurrently on the same machine. A
dedicated class, “MesosExecutorDriver”, is used both to manage the
Executor’s lifecycle (start it, stop it, or wait for it to finish) and to connect
the Framework Executor to Mesos.

Mesos provides the Scheduler interface to be implemented by each specific
framework; this interface includes methods to register, re-register, unregister
with the Mesos master and to accept or reject resource offers.
The master decides how many resources must be offered to each framework
scheduler according to a given organizational policy, such as fair sharing, or
strict priority. To support a diverse set of policies, the master employs a
modular architecture that makes it easy to add new allocation modules via a
plugin mechanism.

Dependencies
Mesos depends on:

• Zookeper servers for leader election in high-availability mode;

Interfaces

Mesos handles the following main interfaces:

• Configuration files

• REST API: the Mesos masters and slaves provide a handful of
REST endpoints that can be useful for users and operators.

• Web UI: Mesos provides a simple web interface to monitor the
cluster state

Data

The sandbox is a special directory on each slave node that acts as the
execution environment (from a storage perspective) and also contains
relevant log files as well as stderr and stdout for the command being
executed.

Needed
improvement

The integration of Mesos clusters with the PaaS requires that the user
requests can be authenticated/authorized via oauth tokens issued by INDIGO
IAM. Openid-Connect/OAuth2.0 is not natively supported by Apache
Mesos; therefore, we need to explore and investigate ways for enabling it on
top of Mesos.

Moreover, in order to support the distributed deep-learning applications
developed by the project use-cases, it is important to test and verify the
support for accelerators in Mesos. The NVIDIA GPU support was
introduced since version 1.0 and mimics the support provided by nvidia-

DEEP-Hybrid-DataCloud – 777435 15

docker to automatically mount the proper NVIDIA drivers and tools directly
into the Docker container. We will provide guides and recipes to install and
configure the Mesos components automatically (including the GPU support)
in order to ease their deployment at the sites providing infrastructure-level
services. GPU sharing and support for RDMA-capable networking
(Infiniband) will be investigated as well and, if needed, the missing support
will be developed.

Current TRL
status

TRL6 for accelerators support

TRL8-9 for the other functions

Expected TRL
evolution

TRL8 for accelerators support

Identification Marathon [11]

Type Apache Mesos Framework for long-running services

Purpose
Marathon allows to deploy and execute long-running services on top of a
Mesos cluster, providing advanced features like fault-tolerance, high-
availability, application dependencies, etc.

Function Marathon provides the following main functionalities:

• Basic Authentication and SSL: it is possible to secure Marathon
API endpoints via SSL and limit access to them with HTTP basic
access authentication.

• Application scaling: users can request to increase/decrease the
number of instances of their applications using the API endpoint or
the web UI;

• Application high-availability: Marathon implements an automated
hardware and software failure handling. For example, in case of a
node failure, the application is automatically re-scheduled and started
on another node.

• Health Checks: check your application's health via HTTP or TCP
checks.

• Application dependencies: Marathon allows to group your
applications. Groups make it easy to manage logically related
applications and allow you to perform actions on the entire group,
such as scaling or restart.

• Placement constraints: constraints in Marathon allow restricting
where a particular application runs, and thus, you can benefit from

DEEP-Hybrid-DataCloud – 777435 16

the locality, fault tolerance, or any other constraint.

• Event Bus Subscription: Marathon's internal bus captures all the
events of Marathon, API requests, scaling events, and so on. This can
be used to integrate load balancers, monitoring, and other external
systems with Marathon.

• Metrics: available at /metrics in JSON format

• Web UI: allows to deploy and monitor the applications using a very
user-friendly interface

• JSON/REST API for easy integration and scriptability

High level
architecture

Marathon implements the Mesos Framework interfaces; it consists of two
components: the scheduler and the executors. The scheduler is responsible
for coordinating the execution. The executor provides the ability to control
the task execution.

Dependencies

Marathon behavior strictly depends on the Mesos components (see the
diagram below): Marathon Scheduler will be offered resources by the Mesos
Master and will accept or reject them; the Scheduler will call the Mesos
Master to launch its tasks when the resource offers satisfy their
requirements.

Marathon Task Executor will interact with the Mesos slave agent to perform
the execution of the real tasks and monitor them.

Optionally, the Marathon executor delegates the local Docker daemon for
image discovery and management when the user requests to launch a
dockerized application.

Interfaces The main interfaces of Marathon are:

DEEP-Hybrid-DataCloud – 777435 17

• configuration files

• Artifact Store: The artifact store is the location for storing
application-specific resources for deployment that an application
needs in order to run, like certain files, for example.

• Docker Registry: in case of Docker-based application, Marathon
executor interacts with the Docker Registry (optionally the registry
can be a private Docker Registry) to pull the container images into
the slave.

• Rest API: Marathon provides a rich set of RESTful API to manage
the users’ application deployment (start, restart, stop, scale, monitor,
etc.).

• Web UI: it is a very convenient interface with Marathon. It allows to
deploy and monitor the applications.

Data Marathon handles Application definition files in JSON format

Needed
improvement

The improvements foreseen for Mesos apply to Marathon:

• enable the missing support for OAuth2.0 providing guidelines and
configurations;

• conduct further tests on accelerators (GPUs, Infiniband) support by
running the project deep-learning training applications

• provide recipes for the automatic deployment and configuration of
the components

Current TRL
status

TRL6 for accelerators support

TRL8-9 for the other functions

Expected TRL
evolution

TRL8 for accelerators support

Identification Chronos [12]

Type Apache Mesos Framework for recurring job execution

Purpose

Chronos allows to schedule jobs using ISO8601 repeating interval notation.
Typical jobs that do not need to always be running but have to be triggered at
a particular time repeatedly are backups, Extract-Transform-Load (ETL) jobs,
running other frameworks, and so on. Chronos allows also to run complex
jobs pipelines; a typical use-case is the processing of a data set.

Function Chronos provides the following main functionalities:

DEEP-Hybrid-DataCloud – 777435 18

• Basic Authentication and SSL: it is possible to secure Chronos API
endpoints via SSL and limit access to them with HTTP basic access
authentication.

• Job dependencies: Chronos supports the definition of jobs triggered
by the completion of other jobs, and it also supports arbitrarily long
dependency chains.

• Handling of job failures and configurable retries: Chronos allows to
specify the number of retries to attempt if a command returns a non-
zero exit-code;

• Job History (e.g. job duration, start time, end time, failure/success)

• Fault Tolerance

• Native Docker support: Chronos allows to easily schedule Docker
containers to run jobs. Launching a Docker container is as simple as
performing a POST request to the Chronos scheduler.

• Web UI can be used to add, delete, list, modify and run jobs. It can
also show a graph of job dependencies.

• REST API for the entire job management and monitoring. JSON is
used to describe the jobs. Chronos REST endpoint can return the jobs
graph in the form of a DOT file

High level
architecture

Chronos implements the Mesos Framework interfaces; it consists of two
components: the scheduler and the executors. The scheduler is responsible for
coordinating the execution. The executor provides the ability to control the job
execution.

Dependencies

Like Marathon, the behaviour of Chronos strictly depends on the Mesos
components: Chronos Scheduler will be offered resources by the Mesos
Master and will accept or reject them; the Scheduler will call the Mesos
Master to launch its tasks when the resource offers satisfy their requirements.
Chronos Task Executor will interact with the Mesos slave agent to perform the
real task execution and monitor them.

Other dependencies:
• Zookeeper servers for storing state (for high-availability)

Interfaces

The main interfaces of Chronos are:
• configuration files
• Docker Registry: in case of Docker-based job, Chronos executor

interacts with the Docker Registry (optionally the registry can be a
Private Docker Registry) to pull the container images into the slave.

• RESTful API: Chronos provides a rich set of RESTful API to add,
schedule and monitor the user’s jobs;

DEEP-Hybrid-DataCloud – 777435 19

• Web UI: it is a very convenient interface with Chronos. It allows to
add, schedule and monitor the jobs in a very simple way. Moreover, it
provides a graph of the jobs dependencies.

Data Chronos handles the job definition file in JSON format

Needed
improvement

The improvements foreseen for Mesos apply to Chronos:

• enable the missing support for OAuth2.0 providing guidelines and
configurations;

• conduct further tests on accelerators (GPUs, infiniband) support by
running the project deep-learning training applications;

• provide recipes for the automatic deployment and configuration of the
components

• Unlike Marathon, the GPU support in Chronos is not officially
documented and included in the mainstream: there is a pull request [6]
that is in good shape but it has not been merged yet since some unit
tests required by the review process have not been provided yet. We
will verify the correct functioning of the patch and eventually provide
the needed tests for including the patch in the mainstream version.

Current TRL
status

TRL6 for accelerators support

TRL8 for the other functions

Expected
TRL
evolution

TRL8

2.2.5.Kubernetes

Identification Kubernetes

Type
An open-source system for managing containerized applications across multiple
hosts in a cluster

Purpose
Kubernetes provides a platform for automating deployment, scaling, and
operations of application containers across clusters of hosts.

Function

Kubernetes provides mechanisms for application deployment, scheduling,
updating, maintenance, and scaling. A key feature of Kubernetes is that it
actively manages the containers to ensure that the state of the cluster
continually matches the user's intentions.

High level
architecture

Kubernetes implements a client-server architecture. The master server consists
of various components including a kube-apiserver, an etcd storage, a kube-
controller-manager, a kube-scheduler, and a DNS server for Kubernetes

DEEP-Hybrid-DataCloud – 777435 20

services. Node components include kubelet and kube-proxy on top of Docker.

Dependencies The main dependencies are:

• etcd

• container runner: Docker or rkt

Advanced features may require the interaction with other external components,
for example:

• enabling persistent storage requires integration with external storage
services (NFS, Cloud block storage services, etc.)

DEEP-Hybrid-DataCloud – 777435 21

• load-balancing can require external haproxy or nginx or Cloud load-
balancer

• specific networking: many plugins are available, e.g. calico, weave,
flannel, open-vswitch, ect.

• GPU support requires nvidia-docker installed on the nodes

Interfaces

• Kubernetes CLI interface: Kubernetes offers a command line tool
named kubectl and it controls the Kubernetes cluster manager.

• Kubernetes User Interface: The Kubernetes UI can be used to
introspect the cluster, such as checking how resources are used, or
looking at error messages. It cannot be used to modify the cluster.

• Kubernetes APIs

Data
etcd is a highly-available key/value store which Kubernetes uses for persistent
storage of all of its REST API objects

Needed
improvement

The adoption of Kubernetes in the DEEP project required the integration with
the INDIGO IAM authentication/authorization system. The support for
OpenID-Connect in Kubernetes is officially documented but we needed to
perform tests in order to verify the correct integration with INDIGO IAM.

Moreover, in order to meet the project requirements, the support for GPUs was
required. Therefore, the evaluation and testing of such support was carried out
and the outcomes of this activities have been documented in order to provide
guides and procedures for the resource providers willing to deploy a Kubernetes
cluster for the DEEP users.

Current TRL
status

TRL6 for GPU support

TRL8 for the other features

Expected
TRL
evolution

TRL8

2.2.6. Integration of HPC resources with DEEP platform

Adoption of Cloud computing for running HPC workloads is more and more popular and most of
the Cloud providers are able to provide virtual instances with accelerators and low latency
interconnection network. Several benefits can come from this integration, which facilitates both
workload management and interaction with remote resources. Exposing HPC resources to the end-
users through the Platform-as-a-Service layer aims to lower barriers in accessing HPC
environments. This way of accessing HPC resources can hide the technical details of accessing

DEEP-Hybrid-DataCloud – 777435 22

resources and therefore can be especially advantageous for some non-IT specialized groups of user
and for some parallel applications

Compared to traditional HPC environments, Clouds users can easily adjust their resource pools, via
a mechanism known as elasticity, and optimize resource utilization. These features help adding
more flexibility to HPC applications but require a different model of using and managing
resources. These new trends are leading HPC admins and architects to embrace new approaches: 1)
run both containerized and non-containerized workloads on existing HPC clusters; 2) run HPC
environments on cloud managed resources.

These two approaches are not exclusive and both should be supported if possible, although it is not
recommended that the same physical resources will be managed by two different resource
management systems. Tightly coupled applications can benefit from better performance running on
traditional HPC cluster (with high-performance network); on the other hand, embarrassingly
parallel applications can be deployed on non-overbooked cloud ecosystem or on container
orchestration platforms without performance penalty. With some additional effort, it is possible to
prepare an application that can exploit built-in elasticity features of the cloud environment.

The first approach concerns the submission of job requests to sites not managed by cloud system
(e.g. Mesos or Kubernetes). PaaS Orchestrator should be extended with support for submission of
containerized jobs and applications to LRMS at HPC site, possibly with using udocker containers
to run user applications. Technical problems of accessing and managing HPC must be solved,
especially authentication, information system, job and resources monitoring etc. More detailed
analysis of HPC specific and problems for PaaS integration was included in deliverable D4.1. This
approach is addressed by tools described in 2.2.6.1.

The second approach is more pioneering and it is likely to become more common as the
availability of new application frameworks (Artificial intelligence, Big Data, Deep-Learning, etc.)
designed and implemented to run natively on these platforms (Kubernetes, Mesos) increases. The
most important limitation compared to traditional HPC is that the administrator of the resources has
reduced control over the utilization of resources by single users. This kind of resource control was
not needed in classical Cloud paradigm as either the resource pool was considered to be infinite or
the decisions about the allocation was business driven therefore the requests are limited by the
available budget. On the other hand traditionally HPC resources were offered to scientific
communities cost-free therefore a mechanism that ensures fair access to the resources was created.
If the cloud will be the next generation compute environment for science, a fair, shared access
model must be introduced to the Cloud. This approach is addressed in 2.2.6.2

Indeed, the co-existence of the two environments, the traditional on premise HPC cluster and the
Kubernetes/Mesos cluster, allows to run mixed workloads and to select the most suited
environment depending on the characteristics of the workload itself.

DEEP-Hybrid-DataCloud – 777435 23

2.2.7.Tools for accessing HPC resources

Identification HPC Integration Tools

Type A set of services

Purpose Provides the way to access HPC resources from the PaaS Orchestrator

Function

One of the approaches for HPC and Cloud integration is to allow PaaS
services to submit job requests to existing traditional Local Resource
Management Systems (LRMS), such as SLURM. Implementation of this
approach must take into account many aspects, especially authentication,
interaction with HPC, HPC information system and HPC resources
monitoring. A set of tools needs to be prepared to provide the required
functionality.

High level
architecture

Integration of HPC resources involves a set of components that provide
various functionalities.

Authentication module

This module is responsible for the authentication of users on HPC
resources. There are two actions that must be supported. The first action
is the creation of an account for a new user. Accounts should be created
automatically with administrator supervision using information from
IAM. Account import module must be tailored to the specific sites needs
and configuration. The second action is an actual authentication
conducted each time user accesses resources. Authentication process
should accept Indigo IAM token and validate it with a project IAM
service.

Interaction with computing services

DEEP-Hybrid-DataCloud – 777435 24

PaaS Orchestrator must be able to submit computational requests to HPC.
It is strongly recommended to use a submission service that hides the
complexity of HPC resources accessing and works with different LRMS.
Such service should offer on-demand access to computing resources and
jobs over the REST interface. It allows for remote submission of jobs to
scheduling systems as well as remote control over these jobs. In
particular, it currently offers methods to:

• submit a job,

• monitor a job’s state,

• cancel a submitted job,

• query about submitted jobs,

• query about available resources.

When possible an existing solution should be used as a submission
service, e.g. open source QCG-computing service [8]

HPC information system provider

Information about HPC configuration must be passed to DEEP CMDB
and SLAM services. This information comes from the local resource
management system and from the local accounting system. Configuration
can be obtained by querying LRMS system. A specific implementation of
cloud-info-system should be prepared for the most popular LRMS (e.g.
SLURM). Information about user SLA may depend on the specific
solution used by different HPC. Therefore the SLA information provider
should be tailored to specific HPC site requirements.

HPC monitoring probe

The probe will extend the set of probes prepared by WP5. It will work in
push mode: agents execute periodically on HPC resources and send data
to the central server at will. Monitoring data for HPC resources can come
from resources itself or from local HPC monitoring systems, which
collects data locally, aggregates them and pushes to the central DEEP
Zabbix server.

Dependencies

CMDB: for collecting HPC configuration information like queue names,
number of cores, memory sizes etc.

SLAM: if HPC have a service level agreements with users this
information should be submitted to SLAM

Monitoring System: HPC monitoring probe should submit monitoring
data to it

IAM: required for the authentication of users

DEEP-Hybrid-DataCloud – 777435 25

Interfaces Job submission interface – it is defined by computing service

Data

Computing service: JSON

HPC-info-system: Glue2

HPC monitoring probe: JSON/XML

Needed
improvement

The components are under development and not yet ready for integration.

Current TRL
status

Authentication module: TRL3

Interaction with computing services: TRL2

HPC information system provider: TRL4

HPC monitoring probe: TRL2

Expected TRL
evolution

TRL6: is planned for internal milestone in month 24
TRL8: is expected level in the second implementation of software
platform.

2.2.8.Virtual HPC clusters

Identification HPC related Cloud extensions

Type Extensions to other software components

Purpose

These components implement the second (first is in 2.2.6) agreed
approach for integration PaaS Orchestrator with HPC resources. HPC is
managed by a Cloud management system (e.g. OpenStack, Mesos or
Kubernetes) and orchestrator submits computation request to it.

Function

The components extend existing software components (e.g. Orchestrator,
Mesos) to provide a better control over the resources and its usage by
users. Software components must obey site policies of assigning
resources to users, e.g. a maximum number of cores assigned to a single
request, a user or a group of users; maximum time length of a request or
assigning priorities to users requests.

High level
architecture

HPC resources are controlled by a Cloud management system and the
PaaS Orchestrator accesses them. Almost all required functionality is
provided by INDIGO and DEEP stack components. Extensions are
foreseen to provide better control of HPC resources which is a crucial
functionality for resources owners. Cloud management system assumes
unlimited resources and no restriction on the usage of it. This is contrary
to traditional HPC model with LRMS which limits jobs time and
resources available for a single user.

DEEP-Hybrid-DataCloud – 777435 26

Recommended solution would be to modify or extend Cloud system
schedulers to support resource allocation policy that takes into account
job lifetime. Not all cloud system support this (e.g. OpenStack), therefore
in such cases an alternative solution will be implemented. Introduction of
a short term Cloud requests, which means that the computational requests
from PaaS must be limited in time and killed when the time exceeds.

Dependencies

SLAM – to store requests limit agreed between users and HPC owners

Orchestrator – additional module to control the limits of submitted
requests and cancel them in case of time is up.

Cloud management system – additional module to control jobs execution
(if supported by the Cloud)

Interfaces

Communication with Cloud Management Systems can be done via:

• configuration files

• REST API

• Web UI

Data Module configuration stored in files

Needed
improvement

The components are under development and not yet ready for integration.

Current TRL
status

TLR2 – study of how technologies could be applied in the final solution

Expected TRL
evolution

TRL6 - The integration and testing of basic components in a simulated
environment in the second implementation of software platform

DEEP-Hybrid-DataCloud – 777435 27

3. First implementation of software platform for
accessing accelerators and HPC
Since components included in the first implementation of the software platform for accessing
accelerators and HPC have different levels of maturity, the work done in the first implementation
for each component is different. The udocker has production status regarding to executing
containers and no configuration is needed, so we can work on improving GPU support by adding
automatic passing GPU drivers to containers. The nova-lxd plugin in OpenStack still need
improvements before reaching production level, it only works with certain software combination
and documentation for its correct configuration is severely missing. Therefore, the work in nova-
lxd has been focused on finding proper ways for deployment/configuration and making
documentations about that. GPU support in Kubernetes and Mesos is experimental so most of the
efforts have been done in deployment, configuration, integration with DEEP tesbed and some
patches for improving GPU support. HPC integration with PaaS orchestration services is still in the
phase of design.

3.1. udocker
udocker [1] is a tool which enables the user to execute Linux containers in user mode. Its main aim
is to execute applications in environments where users do not have administration/root privileges.

The use of NVIDIA GPUs for scientific computing requires the deployment of proprietary drivers
and libraries. In order to use the GPUs inside containers, the devices associated with the GPU have
to be visible inside the container. Furthermore, the driver has to be installed in the image and the
version has to match the one deployed on the host. This turns the Docker images un-shareable and
the image must be built locally for each host. The alternative is to have an image for each version
of the driver, which is un-manageable since at each update, many images would have to be built.

The udocker released at the end of the Indigo-Datacloud project does not have such features, as
such in order to use GPUs, the image has to have the NVIDIA drivers and libraries matching the
host system. On the other hand, it is not necessary to pass the NVIDIA devices to the udocker
container since they are visible inside the container, in the same way a non-privileged user can use
those devices in the host system.

The work performed during the first months of the DEEP-HybridDataCloud project was to
implement such automatism. The development is available in the "devel" branch of the official
GitHub repository [9], and scheduled for the first release of the DEEP-HybridDataCloud software
stack at the end of October 2018. The libraries and drivers deployed in the host system are made
available to the containers.

DEEP-Hybrid-DataCloud – 777435 28

This version has been tested under several conditions and by several users and use cases. The tests
performed in the framework of DEEP-HybridDataCloud project WP3 and WP4 are described in
[2].

3.2. OpenStack
During deploying and integrating of the nova-lxd plugin into an OpenStack environment, we faced
significant configuration problems which prevented us from testing of GPUs in the OpenStack
environment. The problems were such heavy that we had been pushed into configuration tests of
the nova-lxd plugin (documented in [3]). It is caused that the plugin has not been prepared for the
new version of OpenStack, and the new version of LXD/LXC (with the support of a ZFS storage
backend). Those facts (and an announcement of a new Ubuntu LST) caused many problems that
had not been taken into account during scheduling.

According to the performed test [14], we chose OpenStack Ansible repository for deployment of an
OpenStack Cloud. The main reason is that it deploys a standard OpenStack Cloud with LXD/LXC
3.0.1 which supports GPUs.

Our experiences are documented in a series of How-to articles which are published in DEEP-
HybridDataCloud documentation repository in GitHub at [7].

3.3. OpenNebula
An experimental site with OpenNebula and NVIDIA Tesla K20 card via PCI passthrough has been
deployed according to documentation [15]. The support for vGPU in OpenNebula has been
requested but so far no development is done for this feature [16].

From OpenNebula version 4.14, GPUs are discovered by the monitoring probe that gets the list of
PCI cards and can be added to the VM template. GPUs are then assigned to a VM by the PCI
Passthrough driver by first configuring the kernel to support I/O MMU, then loading the vfio-pci
driver and blacklisting the drivers for the selected card. The same blacklisting must be done in the
system configuration and the vfio-pci driver should be loaded passing the id of the PCI cards one
wants to attach to VMs. This means each GPU can be assigned to just one VM and no sharing is
currently possible.

However, it has been brought to our attention that, at least for more recent consumer-grade
NVIDIA cards, the relevant drivers for KVM virtualization may not be supported any more without
additional patching, e.g. [17]. This will be investigated in the next future.

3.4. Mesos
In the first period of the project, we have focussed on the following aspects:

DEEP-Hybrid-DataCloud – 777435 29

1. adding Openid-Connect/Oauth2.0 authentication/authorization to the API endpoints of
Apache Mesos and its frameworks, Marathon and Chronos;

2. testing the NVIDIA GPU support in Mesos and its frameworks (Marathon/Chronos).

Both aspects are essential for the integration with the PaaS layer (WP5).

Concerning 1) Mesos/Marathon/Chronos does not support Openid-Connect authentication natively.
A very simple solution is to front the Mesos cluster with an Apache server that itself is capable of
negotiating authentication for users. We have documented and tested the configuration [5] that can
be used to setup a reverse proxy that uses the apache module mod_auth_openidc.

Concerning 2) we have setup some testing environments in order to verify the support for GPUs in
Mesos/Marathon/Chronos. We have documented the procedures [4] needed to add the GPU support
in a cluster and developed ansible recipes to automate these installation and configuration steps.

In case of Chronos, we started from the mainstream code and applied the patch [12] available on
GitHub to include the GPU support; we have compiled the code and created a Docker image to be
used for the deployment of the Chronos framework.

Several tests have been performed to verify the correct management of the available GPUs for
Marathon applications (long running services) and Chronos jobs (batch-like processing jobs). In
particular, tensorflow Docker images with different versions of CUDA and cuDNN have been used
in the tests in order to verify that Mesos is able to mimic the behaviour of nvidia-docker mounting
automatically the proper NVIDIA drivers and tools directly into the Docker containers.

In Mesos, GPUs are treated as the other resources available in the cluster, i.e. cores, memory, and
disk. However, there is an important difference in the containerization mechanism used to run the
tasks: in case of tasks requiring one or more GPUs only the MESOS containerizer [13] is
supported, whereas, in case of tasks requiring only CPUs, both MESOS and DOCKER
containerizers can be used. We have verified that in case of tasks running with the MESOS
containerizer we are able to specify all the required features (ports, volumes, etc.) as for tasks
running with the DOCKER containerizer. The definition of the task is, of course, different and this
has impacts on how the PaaS interacts with the Marathon and Chronos APIs. Examples of JSON
definitions for submitting a Marathon application running tensorflow without and with GPUs are
provided in [4].

As shown in those examples, there are some differences between the two cases: 1) the container
type (DOCKER vs MESOS); 2) the network mode: since the MESOS Containerizer does not
support the bridge networking, the host network mode is requested. Anyway, in both cases the
service port can be requested and exposed on the cluster load-balancer (haproxy) so that the user
will access the Marathon application in the same way both in case of tasks using GPUs and in case

DEEP-Hybrid-DataCloud – 777435 30

of tasks using only CPUs. The PaaS Orchestrator will be modified in order to submit the proper
JSON definition as described above.

Currently, Mesos clusters with GPU support are available both in the development and in the
preview testbeds.

3.5. Kubernetes
To explore the features of Kubernetes and in particular the built-in batch system, the support to
GPGPUs and the integration in the PaaS layer, a pilot cluster have been installed and configured.
As an initial work, started from a similar activity in installing and configuring a Kubernetes cluster
on top of the Ubuntu Operating System, the procedure for installation and configuration of a
Kubernetes cluster on CentOS7 has been provided. The cluster is composed by a Master node and
one Worker node. The worker node supports up to 2 GPUs Tesla K40m, CUDA 9.1 and NVIDIA
Driver 390.30. For such purpose, a set of additional components have been installed in the
workernode hosting the GPUs. Among those components, there is the cuda repo for CentOS.

As part of the work, a specific set of examples have been implemented to test both the correct setup
of the cluster and the versatility of the GPUs integration.

The examples are ranging from a very basic sample, that implements element by element vector
addition using different Docker images with different versions of CUDA drivers installed, to a
more complex example where a bunch of different CUDA jobs with different running time have
been submitted with the scope to highlighting the features of the scheduler (FIFO) embedded in the
Kubernetes cluster.

To improve the activities carried out so far, the procedure for the integration between a Kubernetes
cluster and DEEP-IAM Service (https://iam.deep-hybrid-datacloud.eu) has been carried out with
the final goals to i) authenticate users with OpenID Connect (OIDC) protocol and ii) authorize
them by using token claims (username or groups).

As a first step, some Kubernetes services and the client have been configured to define the IAM
service used for OIDC authentication. In the second step, from the IAM dashboard have been
created groups with different privileges and some users have been assigned to those groups. The
creation in IAM of a new client completes the initial configuration.

Also, in this case, a defined set of examples showing the different authentication/authorization
(AuthN/AuthZ) mechanisms both per user and per group have been defined as attribute-based
access control (ABAC) policies and implemented to enable or limit the usual set of actions that a
user may perform in a Kubernetes cluster.

Both activities have been extensively documented as How-to articles and made public available [7]
for the project purposes.

DEEP-Hybrid-DataCloud – 777435 31

https://iam.deep-hybrid-datacloud.eu/login

3.6. HPC
The integration of HPC resources in the Cloud model assumed by the DEEP project required
careful definition of available functionalities, requirements, and existing solutions. Recently the
Cloud paradigm evolves and covers new application areas, including those requiring intense
computation. Nowadays almost all the Cloud providers are able to provide virtual instances with
accelerators and low latency interconnection network, although intense computations are still a
domain of HPC centers.

Typical HPC systems consist of at least one head node and a set of working nodes connected to
each other via a very fast network (e.g. Infiniband, Ethernet, or proprietary). HPC workloads
typically consist of a number of short, computationally intensive and resource demanding jobs
spanning tens or in some cases hundreds of physical servers. The resource manager is aware and
takes into account physical properties of the supercomputer (such as network topology, memory
hierarchy etc) and, in many cases, the application comes with a description of how in the physical
layout of the application should look like. Application, libraries, and tools offered for users are
prepared by HPC administrator and optimised to the actual hardware resources.

Typical Cloud model assumes an infinite number of resources assigned to services on demand and
neglects the physical layout and properties of the hardware. Cloud services usually are long term
and less resource demanding. Application, libraries, and tools are provided by users in virtual
machine images and job templates. Thus the software components and version exactly meet users'
needs but the efficiency may be not optimal. The processing speed can vary unless virtual machines
are bounded to the hardware.

Several benefits can come from the integration of both models, which facilitates both workload
management and interaction with remote resources. In fact, some resource providers apply a mixed
Cloud-HPC where nodes are virtual images deployed on the hardware via some Cloud management
system, but the interface for end users is still a queuing system.

DEEP partners represent both user and resource providers, which enabled the fruitful discussion
about the possible approaches and technical possibilities of implementation of DEEP services for
Cloud and HPC integration. Exchange of ideas via e-mail, cyclic teleconferences and face-to-face
meetings allowed to work out the initial design (presented in deliverable D4.1) and implementation
plan for services and tools. Two possible approaches were examined and both will be supported by
DEEP projects. The problems that need to be solved include:

• The PaaS Orchestrator must have permission to access site Cloud system. Users must be
imported before or provisioned during the first request.

• PaaS must know what physical resources are available, e.g. RAM, GPUS, interconnections,
CPUs. This can be handled by appropriate cloud-info-provider component and sent to
CMDB and SLA Manager.

DEEP-Hybrid-DataCloud – 777435 32

• PaaS must be aware, that resources are limited and can be temporarily inaccessible. Most
probably they will be occupied by another users’ jobs. This is handled by the orchestrator,
the Service Level Agreement Manager (SLAM) and the Cloud Provider Ranker (CPR).

• HPC systems provide resources to many users and must guarantee some level of fairness.
E.g. a single user cannot block resources for weeks and system must limit the time of
assigning resources to a single resource request.

• The VM and Docker images selected by the PaaS Orchestrator must be tailored to the
hardware, so that applications, libraries and tools can be executed efficiently.

4. Next steps

4.1. udocker
The results and tests of new features in udocker regarding the first months of the DEEP-
HybridDataCloud project were described in section 3.1 and [2]. In addition to the implementation
of GPU automatic support, several bug fixes and enhancements have been implemented, in
particular, the ability to run udocker inside a Docker container where the Docker image is "Alpine",
also to run udocker in "ARM" architectures.

The plans for the next months are the following:

• Improve support for MPI applications. By matching MPI libraries both inside and outside
of the container, udocker can support MPI applications using OpenMPI over shared
memory or TCP/IP. This support will be further tested and improved aiming at accessing
low latency interconnects directly.

• Support for Python3: The current version of udocker is supported in Python 2.6 and 2.7, due
to the End of Life of Python 2.7 in 2020, a move to Python3 is necessary.

• Modularization of the udocker source code: udocker is currently a single Python script, this
eases the download and use by users with minimal dependencies, and its use as a standalone
"executable". Modularization of udocker will allow its sustainability, a better support, and
compliance with WP3 SQA requirements, code clarity, re-usability as well as the use of the
Pypi to distribute the package. On the other hand, udocker should still be supported in older
platforms (or Operating Systems such as Centos6) still existing in many HPC clusters, and
for that there is still a need to produce a "single" executable binary. This can be
accomplished through tools such as "pyinstaller", that can build a single binary with all
dependencies included. Such an option is currently under evaluation and initial testing.

DEEP-Hybrid-DataCloud – 777435 33

4.2. OpenStack
According to the configuration tests (see section 3.2), we choose Ansible for deployment of the
OpenStack Cloud environment.

The plans for the next months are the following:

• An adoption of OpenStack into the project environment is necessary (an integration with
INDIGO IAM authentication/authorization system). Verification of OpenID is the key task
within the integration effort

• The next step will be an evaluation of GPU support through LXD/LXC. It is officially
supported but we need to perform tests of its usability.

4.3 OpenNebula
The next steps will be more practical tests of the use of NVIDIA GPUs with OpenNebula, to check
the features and usability. Also, the roadmap for virtualization support by the vendor will be
investigated to ensure the long-term sustainability of the solution.

4.3. Mesos
The work done for enabling OpenID-Connect authentication and the support for GPUs (as
described in Section 3.4) was essential for the implementation of the new features in the PaaS layer
(WP5). Indeed, the integration with the PaaS is progressing smoothly thanks to the analysis and
tests described in this document.

For the next months, the following activities are planned:

• evaluation of the support of low-latency interconnections (namely Infiniband) and usage of
MPI in applications running as Mesos tasks;

• investigation about GPU sharing across Mesos tasks;

• better resource selection according to user requirements;

• upgrade of the components (Mesos/Marathon/Chronos) to the latest stable versions.

4.5 Kubernetes
The activities performed in the first part of the project led to the successful integration of
Kubernetes with the DEEP INDIGO IAM instance as demonstrated in the clusters available in the
project integration and preview testbeds. Moreover, in the same clusters the support of GPUs has
been enabled and tested successfully so that users from WP2 managed to run some of their
applications requiring GPUs.

DEEP-Hybrid-DataCloud – 777435 34

For the next months the following activities are expected:

• evaluation of the support of low-latency interconnections (namely Infiniband) and usage of
MPI in applications running as Docker containers on top of the kube nodes;

• investigation about GPU sharing across dockerized applications;

• better resource selection according to user requirements;

• upgrade of the components (if needed) to the latest stable versions.

4.6 HPC
The implementation of HPC integration components is not completed. During the next months, the
focus will be on supporting the integration of PaaS with traditional HPC resources.

• An interface will be prepared to access HPC resources. SSH plugin using Indigo IAM
authentication token can be used by PaaS Orchestrator (or user applications) for accessing
data stored on HPC sites.

• Import module for importing users from Indigo IAM to local HPC site user bases. The first
proof of concept will be prepared for one site.

• PaaS Orchestrator extension will be prepared to submit computation requests to dedicated
middleware (QCG computing)

• HPC-information-module will be prepared. The first supported system will be SLURM

• integration with project Zabbix will be prepared. In the first phase some exemplary
monitoring probes will be prepared.

It is expected that the basic functionality will be achieved for an internal milestone in month 24 and
that final version will be ready for the second implementation of software platform

Implementation of the second approach - HPC extensions to Cloud management system is planed
in the later phase of the project

PSNC will dedicate some resources to prepare a small cluster managed by a Cloud middleware to
test the cluster on demand approach. The tests can take into account both, open source (e.g.
Kubernetes) or commercial software (e.g. Huawei Fusion), depending on the local conditions in
HPC centres. Specific points of interest, which will be dealt with during the implementation of the
project:

• support for short term requests in PaaS Orchestrator

• limit enforcement modules in existing Cloud management system where possible

DEEP-Hybrid-DataCloud – 777435 35

• sharing of resources between HPC and Cloud environment (especially file and object stores,
integration of sync&share systems with HPC);

• management of templates of working environments (e.g. containers based templates for
various classes of execution environment with support for creation, update and
optimization);

5. Conclusion
In this document, the first software platform for supporting containers and accelerators has been
described. The platform consists of components with different types: traditional Cloud management
frameworks OpenStack and OpenNebula, pure-containers Kubernetes and Mesos, and HPC
platform. In all components, the supports for containers and accelerators are emphasized.

Since it is the first software platform, its components are still in developments and reach different
levels of maturity. The udocker is production status regarding to executing containers but GPU
support is still experimental (TRL 6). The nova-lxd plugin in OpenStack needs improvements,
especially regarding deployment and documentation, before reaching production status and GPU
support is planned in the next period. GPU support in Kubernetes and Mesos is experimental and
still needs some improvements. Finally, HPC integration with PaaS orchestration is still ongoing.

In the next period, the work in WP4 will be focused on development and improvements of all
components according to the plan specified in Section 4. The overall objectives are to reach
production levels of all components, both generally and specifically regarding to support for
accelerators, better integration, and support with higher software layers (DEEPaaS, PaaS
Orchestration services) and delivering complete software platform for accessing accelerators for
user communities.

DEEP-Hybrid-DataCloud – 777435 36

6. Glossary
API: Application Programming Interface

CLI: Command-Line Interface

CMDB: Configuration Management Database

CPU: Central Processing Unit

CUDA: Compute Unified Device Architecture

DB: DataBase

DEEPaaS: DEEP as a Service

DNS: Domain Name System

GPU: Graphics Processing Unit

GUI: Graphical User Interface

HPC: High-Performance Computing

IAM: Identity and Access Management

JSON: JavaScript Object Notation

KVM: Kernel-based Virtual Machine

LRMS: Local Resource Management System

LXC: Linux Containers

LXD: Linux Container Daemon

MNIST: Modified National Institute of Standards and Technology

MPI: Message Passing Interface

MQ: Message Queue

PaaS: Platform as a Service

QCG: Quality in Cloud and Grid

REST: Representational State Transfer

SLAM: Service Level Agreement (SLA) Manager

SSH: Secure Shell

SSL: Secure Sockets Layer

DEEP-Hybrid-DataCloud – 777435 37

TRL: Technology Readiness Levels

UI: User Interface

VM: Vritual Machine

XML: Extensible Markup Language

DEEP-Hybrid-DataCloud – 777435 38

7. References
1. Jorge Gomes, Emanuele Bagnaschi, Isabel Campos, MarioDavid, Luís Alves, João Martins,

João Pina, Alvaro López-García, PabloOrviz, "Enabling rootless Linux Containers in multi-
user environments: The udocker tool", Computer Physics Communications, Volume 232,
2018, Pages 84-97, ISSN 0010-4655, https://doi.org/10.1016/j.cpc.2018.05.021.

2. Test and evaluation of new GPU implementation in udocker:
https://github.com/indigo-dc/deep-docs/blob/master/docs/udocker/udocker_gpu_1stimplem
entation_tests.md

3. Testing of nova-lxd with different software configurations:
https://github.com/indigo-dc/deep-docs/blob/master/docs/nova-lxd/nova-lxd-configuration-
testing.md

4. Enabling GPU support in Mesos: https://github.com/indigo-dc/deep-docs/blob/master/docs/
mesos-cluster/enable-gpu-support.md

5. Enabling open-id connect authentication:
https://github.com/indigo-dc/deep-docs/blob/master/docs/mesos-cluster/enable-openid-
authentication.md

6. Add GPU support via --enable-features: https://github.com/mesos/chronos/pull/810

7. Documentation repository: https://github.com/indigo-dc/deep-docs

8. QCG Computing: http://www.qoscosgrid.org/trac/qcg-computing

9. udocker official GitHub repository: https://github.com/indigo-dc/udocker

10. Apache Mesos: http://mesos.apache.org/

11. Marathon: https://mesosphere.github.io/marathon/

12. Chronos: http://mesos.github.io/chronos/

13. Mesos Containerizer: http://mesos.apache.org/documentation/latest/mesos-containerizer/

14. Deploying nova-lxd with Openstack Ansible: https://github.com/indigo-dc/deep-docs/blob/
master/docs/nova-lxd/nova-lxd-ansible.md

15. PCI Passthrough – OpenNebula documentaion: http://docs.opennebula.org/5.6/deployment/
open_cloud_host_setup/pci_passthrough.html

16. Feature #3028: support shared vgpu, eg: nvidia GRID:
https://dev.opennebula.org/issues/3028

17. nvidia-kvm-patcher: https://github.com/sk1080/nvidia-kvm-patcher

DEEP-Hybrid-DataCloud – 777435 39

https://github.com/sk1080/nvidia-kvm-patcher
https://dev.opennebula.org/issues/3028
http://docs.opennebula.org/5.6/deployment/open_cloud_host_setup/pci_passthrough.html
http://docs.opennebula.org/5.6/deployment/open_cloud_host_setup/pci_passthrough.html
https://github.com/indigo-dc/deep-docs/blob/master/docs/nova-lxd/nova-lxd-ansible.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/nova-lxd/nova-lxd-ansible.md
http://mesos.apache.org/documentation/latest/mesos-containerizer/
http://mesos.github.io/chronos/
https://mesosphere.github.io/marathon/
http://mesos.apache.org/
https://github.com/indigo-dc/udocker
http://www.qoscosgrid.org/trac/qcg-computing
https://github.com/indigo-dc/deep-docs
https://github.com/mesos/chronos/pull/810
https://github.com/indigo-dc/deep-docs/blob/master/docs/mesos-cluster/enable-openid-authentication.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/mesos-cluster/enable-openid-authentication.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/mesos-cluster/enable-gpu-support.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/mesos-cluster/enable-gpu-support.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/nova-lxd/nova-lxd-configuration-testing.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/nova-lxd/nova-lxd-configuration-testing.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/udocker/udocker_gpu_1stimplementation_tests.md
https://github.com/indigo-dc/deep-docs/blob/master/docs/udocker/udocker_gpu_1stimplementation_tests.md
https://doi.org/10.1016/j.cpc.2018.05.021

	Executive Summary
	1. Introduction
	2. Description of software platform for accessing accelerators and HPC
	2.1. Overview
	2.2. Detailed component description
	2.2.1. udocker
	2.2.2. OpenStack
	2.2.3. OpenNebula
	2.2.4. Apache Mesos
	2.2.5. Kubernetes
	2.2.6. Integration of HPC resources with DEEP platform
	2.2.7. Tools for accessing HPC resources
	2.2.8. Virtual HPC clusters

	3. First implementation of software platform for accessing accelerators and HPC
	3.1. udocker
	3.2. OpenStack
	3.3. OpenNebula
	3.4. Mesos
	3.5. Kubernetes
	3.6. HPC

	4. Next steps
	4.1. udocker
	4.2. OpenStack
	4.3 OpenNebula
	4.3. Mesos
	4.5 Kubernetes
	4.6 HPC

	5. Conclusion
	6. Glossary
	7. References

