Principal component analysis of reference sites for Earth observation satellites

Joaquin Campos', Alejandro Ferrero!, Emma Woolliams?, Claire Greenwell?, Agnieszka Bialek?,
Luisa Hernanz' and Alicia Pons!
!nstituto de Optica (I0-CSIC), Madrid, Spain. National Physical laboratory (NPL) Teddington, United Kingdom

Corresponding e-mail address: joaquin.campos(@csic.es

Determining reflectance factor and its variability
across reference sites for Earth observation
satellites is a problem involving large amounts of
data. Principal component analysis (PCA) may be
used to simplify this problem by reducing the size
of the data and by highlighting spectral features
that could be related to physical phenomena. This
work presents the results obtained in applying PCA
to two reference sites in La Crau (France) and
Gobabeb (Namibia).

INTRODUCTION

Satellite reference sites are used for satellite
calibration and validation and are ecither considered
sufficiently  stable long-term  (pseudo-invariant
calibration sites, e.g. deserts), or are instrumented to
monitor surface reflectance and atmospheric condition
(RadCalNet). Because satellites observe with a
resolution which is typically 10 m — 300 m, the spatial
uniformity of such sites is critical as is knowledge of
the spectral properties of the surface.

To analyse the ground uniformity, measurements
are made across the area in a sampling strategy that
matches the spatial resolution of the satellites. For each
surface element measured we the
reflectance factorp, (x;, y;, A)).

Principal Component Analysis (PCA) [1] is a
powerful statistical technique that can be used to
identify and quantify uncorrelated contributions to the
total variance of a collection of data. This method has
been successfully applied to different scenarios,
providing physical insight about the origin of noise
contributions and extracting meaningful signals from
a wide variety of situations [2].

determine

PRINCIPAL COMPONENT ANALYSIS

If the number of surface elements of a reference site is
N and the number of spectral values in each spectrum
is L, the total number of data points to be handled is
N x L. The PCA method produces three types of
elements: N eigenvalues, y, N eigenvectors, ¢;;, and N
eigenspectra, H,. The -eigenvalues quantify the
importance and the contribution to the total data

variance of their associated eigenspectra. The
eigenvectors can be seen as the coefficients of the
transformation from the correlated variables given by
the spectra to a new set of uncorrelated variables
expressed by the eigenspectra.

Following PCA, spectral reflectance factor values

can be recovered as:
pr(xi, yi 4) = (pr (X1, yi))a -

] + 20 (e yi) - H;j(4)] (D
where (p,(x;,v;)), is the spectral average on the
surface element located at (x;, ;) and M is the number
of eigenspectra needed to reproduce the reflectance
factor spectrum. Here, H; and ¢,(x,y) were rescaled so
that the standard deviation of F, is 1. This way, the
value of ¢/(x,y) quantifies the contribution of every
component at the locations.

The dimensionality of the problem will be
significantly reduced if pattern spectra can be found
underlying the reflectance factor values, making it
unnecessary to use all the eigenspectra (i.e. M << N).
This is likely to be the case for satellite reference sites
because the ground is generally uniform across them.
The number M has to be determined taking into
account the significance of each eigenspectra given by
v; and the uncertainty allowed for in the calibration.

PCA RESULTS FOR REFERENCE SITES

PCA analysis has been applied to two reference sites:
La Crau (France), where 14 surface elements were
selected, and Gobabeb (Namibia), where 16 surface
elements were selected. The number of eigenspectra
needed to reproduce spectral reflectance factors with a
residual error lower than 0.1 % is four for La Crau and
two for Gobabeb, a significant reduction in the number
of spectra in both sites. This implies that the Gobabeb
site has less spectral variation between the surface
elements.

Spectral features of main eigenspectra (Fig. 1 for
La Crau and Fig. 2 for Gobabeb) are also different for
the two reference sites, showing more spectral
variability La Crau’s site than Gobabeb’s one. This
might be related to different composition of the sites,



and may have an influence on the calibration of N/A. From figure 3 it can be concluded that spatial

specific spectral bands of observation instruments.
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Figure 1. Main eigenspectra for the La Crau site
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Figure 2. Main eigenspectra for the Gobabeb
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The coefficients ¢(x,y) to be used to reconstruct
the reflectance factor values at every calibration
position, show the contribution to the spectral variance
of every component across the site. Fig. 3 shows the
value of ¢j(x,y) for each of the four principal
components at each of the 14 measured locations at La
Crau (spatially arranged in a grid pattern), while Fig. 4
shows the coefficients for the two principal
components for the 16 surface element at Gobabeb. No
data were available for the grid position marked as

-003

Figure 3. Spatial distribution of ¢,(x,y) for the La Crau
site (N/A at non-measured locations).

variability at La Crau does not follow any apparent
pattern since no relation can be established between
the coefficient value at different positions, while it
does it at Gobabeb, since steps are seeing in figure 4 in
the coefficient of the second

corresponding to points in the same row.
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Figure 4. ¢/(x,y) for the relevant components at
Gobabeb.

CONCLUSIONS

PCA shows patterns hidden in the data set that may be
used to analyse spectral and spatial variability between
the surface elements of the reference site and to get the
number of independent spectra involved in the
problem. Spectral features varying across the site may
be relevant to evaluate uncertainty values.

PCA may help to identify physical processes
influencing the reflectance factor of surface elements
by associating spectral features to physical phenomena.
It may help to study temporal evolution of identified
phenomena if the measurements are repeated over time.
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