Multifractional theories

Multiscale and multifractional spacetimes in quantum gravity: status report

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

June 15th, 2017

Gianluca Calcagni

- E - - E Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

01/42– Main message:

 Although there are many independent quantum gravities, they all share some universal features: (1) dimensional flow, (2) entanglement entropy, (3) complex dimensions.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

01/42- Main message:

- Although there are many independent quantum gravities, they all share some universal features: (1) dimensional flow, (2) entanglement entropy, (3) complex dimensions.
- Multifractional spacetimes: new class of theories with "irregular" geometries: change of integro-differential structure. Tested with observations in particle physics, atomic physics, astrophysics, cosmology. A lot of exotic phenomena, easily falsifiable predictions (much more easily than other QGs).

Gianluca Calcagni

Multifractional theories

01/42- Main message:

- Although there are many independent quantum gravities, they all share some universal features: (1) dimensional flow, (2) entanglement entropy, (3) complex dimensions.
- Multifractional spacetimes: new class of theories with "irregular" geometries: change of integro-differential structure. Tested with observations in particle physics, atomic physics, astrophysics, cosmology. A lot of exotic phenomena, easily falsifiable predictions (much more easily than other QGs).
- Their cosmology is poorly known but extremely interesting.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Outline

→ 프 → < 프 →</p> Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Observations

Outline

- A landscape in quantum gravity
- 2 Universal properties
 - Dimensional flow
 - Entanglement entropy

Instituto de Estructura de la Materia (IEM) - CSIC

< E

Gianluca Calcagni

Multifractional theories

Outline

- 2 Universal properties
 - Dimensional flow
 - Entanglement entropy
- 3 Multifractional theories
 - Basics
 - Cosmology

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Outline

- 2 Universal properties
 - Dimensional flow
 - Entanglement entropy
- 3 Multifractional theories
 - Basics
 - Cosmology

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Observations

Outline

A landscape in quantum gravity

- 2 Universal properties
 - Dimensional flow
 - Entanglement entropy
- 3 Multifractional theories
 - Basics
 - Cosmology

4 Observations

Instituto de Estructura de la Materia (IEM) - CSIC

< E

Gianluca Calcagni

Multifractional theories

02/42- Motivations

Dimensional flow: Changing behaviour of correlation functions, spacetime with scale-dependent dimension (d_H, d_S, ...). d < 4 in the UV. Universal feature in QG ['t Hooft 1993; Carlip 2009; G.C. PRL 2010] (perturbative QG, asymptotic safety, CDT, HL gravity, noncommutative spacetimes, nonlocal gravity, LQG, spin foams, GFT,...). All QGs are multiscale.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

02/42- Motivations

- Dimensional flow: Changing behaviour of correlation functions, spacetime with scale-dependent dimension ($d_{\rm H}$, $d_{\rm S}$, ...). d < 4 in the UV. Universal feature in QG ['t Hooft 1993; Carlip 2009; G.C. PRL 2010] (perturbative QG, asymptotic safety, CDT, HL gravity, noncommutative spacetimes, nonlocal gravity, LQG, spin foams, GFT,...). All QGs are multiscale.
- Dim. flow and UV finiteness? Renormalizabile gravity?

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Motivations

- Dimensional flow: Changing behaviour of correlation functions, spacetime with scale-dependent dimension $(d_{\rm H},$ $d_{\rm S}, \ldots$). d < 4 in the UV. Universal feature in QG ['t Hooft 1993; Carlip 2009; G.C. PRL 2010] (perturbative QG, asymptotic safety, CDT, HL gravity, noncommutative spacetimes, nonlocal gravity, LQG, spin foams, GFT,...). All QGs are multiscale.
- Dim. flow and UV finiteness? Renormalizabile gravity?
- Theory and phenomenology (from particle physics to cosmology) of fractal spacetimes? Very preliminary results in the 1980s [Svozil 1986; Eynk 1989a,b; Müller, Schäfer 1986a,b].

(4) (3) (4) (4) (4) Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Observations

3/42- Example of fractal: Cantor set

Deterministic

Random

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Observations

04/42- ABC of multiscale spacetimes G.C. EPJC **76** (2016) 181 [arXiv:1602.01470]

A. Dimensional flow occurs: [A1] At least two of the dimensions $d_{\rm H}$, $d_{\rm S}$, and $d_{\rm W}$ vary. [A2] Flow is continuous from the IR to a UV cut-off. [A3] Flow occurs locally (prevents false positive).

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Observations

04/42- ABC of multiscale spacetimes G.C. EPJC **76** (2016) 181 [arXiv:1602.01470]

- A. Dimensional flow occurs: [A1] At least two of the dimensions $d_{\rm H}$, $d_{\rm S}$, and $d_{\rm W}$ vary. [A2] Flow is continuous from the IR to a UV cut-off. [A3] Flow occurs locally (prevents false positive).
- B. Integer dimension observed at a finite number of points (e.g., UV and IR extrema).

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Observations

04/42- ABC of multiscale spacetimes G.C. EPJC **76** (2016) 181 [arXiv:1602.01470]

- A. Dimensional flow occurs: [A1] At least two of the dimensions $d_{\rm H}$, $d_{\rm S}$, and $d_{\rm W}$ vary. [A2] Flow is continuous from the IR to a UV cut-off. [A3] Flow occurs locally (prevents false positive).
- B. Integer dimension observed at a finite number of points (e.g., UV and IR extrema).
- C. Weakly multifractal spacetime: if $d_{\rm W} = 2d_{\rm H}/d_{\rm S}$ and $d_{\rm S} \le d_{\rm H}$ at all scales.

Instituto de Estructura de la Materia (IEM) – CSIC

Gianluca Calcagni

Multifractional theories

Observations

04/42- ABC of multiscale spacetimes G.C. EPJC **76** (2016) 181 [arXiv:1602.01470]

- A. Dimensional flow occurs: [A1] At least two of the dimensions $d_{\rm H}$, $d_{\rm S}$, and $d_{\rm W}$ vary. [A2] Flow is continuous from the IR to a UV cut-off. [A3] Flow occurs locally (prevents false positive).
- B. Integer dimension observed at a finite number of points (e.g., UV and IR extrema).
- C. Weakly multifractal spacetime: if $d_{\rm W} = 2d_{\rm H}/d_{\rm S}$ and $d_{\rm S} \le d_{\rm H}$ at all scales.
- D. Strongly multifractal spacetime: if, in addition of satisfying A–C, it is nowhere differentiable.

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Observations

05/42– Landscape of multiscale theories G.C. EPJC **76** (2016) 181 [arXiv:1602.01470]

Multifractional theories

Outline

2 Universal properties

- Dimensional flow
- Entanglement entropy
- 3 Multifractional theories
 - Basics
 - Cosmology

4 Observations

Instituto de Estructura de la Materia (IEM) - CSIC

< A

Gianluca Calcagni

Multifractional theories

Dimensional flow

06/42– Slow flow

Multifractional theories

Dimensional flow

7/42– Dimensions near the IR

$$d(\ell) \simeq D + b \left(rac{\ell_*}{\ell}
ight)^c + (ext{log oscillations}), \qquad d = d_{ ext{H}}, d_{ ext{S}}$$

	D	$b_{\rm H}$	\mathcal{C}_{H}	$b_{\rm S}$	cs
Asymptotic safety	4	0	—	< 0	> 0
CDT	4	0	—	< 0	2
Near black holes	D	0	—	$\frac{D+1}{2}$	2
Nonlocal gravity and string field theory	D	0	—	$\bar{< 0}$	2
Fuzzy spacetimes	D	0	—	-D	2
Gravity with quantum particles	3	0	—	$-\frac{21}{16}$	2
κ -Minkowski bicovariant ∇^2 , AN(3)	4	0	—	-2	2
κ -Minkowski bicovariant ∇^2 , AN(2)	3	0	—	$-\frac{3}{2}$	2
κ -Minkowski bicrossproduct $ abla^2$	4	0	—	1	2
κ -Minkowski cyclic invariance (o.s.)	D	< 0	1	?	?
Hořava–Lifshitz gravity	D	0	—	< 0	> 0
GFT, spin foams, LQG (o.s.)	D(=4)	< 0	2	> 0	2

Instituto de Estructura de la Materia (IEM) - CSIC

æ

<ロ> (日) (日) (日) (日) (日)

Gianluca Calcagni

Multifractional theories

Dimensional flow

08/42– Flow-equation theorem G.C., PRD **95** (2017) 064057 [arXiv:1609.02776]

Varying $d_{\rm H}$

If the Hausdorff dimension of spacetime changes with the probed scale, and if it does so slowly at large scales, then the *D*-volume is uniquely determined as

$$\mathcal{V}(\ell) \simeq \ell^{D} + \left| \frac{\ell}{\ell_{*}} \right|^{D\alpha} F_{\omega}(\ell), \qquad F_{\omega}(\ell) = 1 + \sum_{n>0} F_{n}(\ell)$$
$$F_{n}(\ell) = A_{n} \cos\left(n\omega \ln \frac{\ell}{\ell_{\infty}}\right) + \sum_{n} B_{n} \sin\left(n\omega \ln \frac{\ell}{\ell_{\infty}}\right)$$

Instituto de Estructura de la Materia (IEM) - CSIC

→ E → < E →</p>

Gianluca Calcagni

Multifractional theories

Dimensional flow

08/42– Flow-equation theorem G.C., PRD **95** (2017) 064057 [arXiv:1609.02776]

Varying $d_{\rm H}$

If the Hausdorff dimension of spacetime changes with the probed scale, and if it does so slowly at large scales, then the *D*-volume is uniquely determined as

$$\mathcal{V}(\ell) \simeq \ell^{D} + \left| \frac{\ell}{\ell_{*}} \right|^{D\alpha} F_{\omega}(\ell), \qquad F_{\omega}(\ell) = 1 + \sum_{n>0} F_{n}(\ell)$$
$$F_{n}(\ell) = A_{n} \cos\left(n\omega \ln \frac{\ell}{\ell_{\infty}}\right) + \sum_{n} B_{n} \sin\left(n\omega \ln \frac{\ell}{\ell_{\infty}}\right)$$

Similar statement for the spectral dimension $d_{\rm S}$.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Dimensional flow

Multiscaling

Scaling property: $\mathcal{V}(\lambda \ell) \sim \lambda^{D\alpha} \mathcal{V}(\ell)$ \Rightarrow $d_{\rm H} = D\alpha$

Gianluca Calcagni

★ E > < E</p> Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Dimensional flow

10/42– Discreteness G.C., JHEP 01 (2012) 065; G.C., arXiv:1705.01619

Exactly the same measure found in fractal geometry [Ren et al.

1996-2003; Nigmatullin & Le Méhauté 2003].

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Gianluca Calcagni

Multifractional theories

Dimensional flow

10/42– Discreteness G.C., JHEP **01** (2012) 065; G.C., arXiv:1705.01619

Exactly the same measure found in fractal geometry [Ren et al. 1996–2003; Nigmatullin & Le Méhauté 2003]. Oscillatory part of $\mathcal{V}(\ell) = \ell^D + \ell^{D\alpha} F_{\omega}(\ell)$ invariant under a DSI:

$$F_{\omega}(\lambda_{\omega}^{n}\ell) = F_{\omega}(\ell), \qquad \lambda_{\omega} = \exp(-2\pi/\omega), \qquad n = 0, 1, 2, \dots$$

Instituto de Estructura de la Materia (IEM) - CSIC

・ロ・ ・ 四・ ・ ヨ・ ・

Gianluca Calcagni

Multifractional theories

Dimensional flow

10/42– Discreteness G.C., JHEP **01** (2012) 065; G.C., arXiv:1705.01619

Exactly the same measure found in fractal geometry [Ren et al. 1996–2003; Nigmatullin & Le Méhauté 2003]. Oscillatory part of $\mathcal{V}(\ell) = \ell^D + \ell^{D\alpha} F_{\omega}(\ell)$ invariant under a DSI:

$$F_{\omega}(\lambda_{\omega}^{n}\ell) = F_{\omega}(\ell), \qquad \lambda_{\omega} = \exp(-2\pi/\omega), \qquad n = 0, 1, 2, \dots$$

DSIs appear in fractals and in complex and critical systems (earthquakes, financial crashes,...) [Sornette 1998].

 $\omega = d_{
m HC}$ complex dimension!

Can we observe complex dimensions?

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

ロトスロトスモトメモト

Multifractional theories

Entanglement entropy

11/42– Entanglement entropy in quantum gravity

- Entanglement entropy is an important actor in the quantum gravity show: signals the emergence of classical spacetime. (a) Einstein eqs. recovered from thermodynamics if the e.e. is finite [Jacobson 1995]. (b) It prescribes how two spacetime regions can connect or are torn away classically depending on whether the d.o.f. within these regions entangle and disentangle at the quantum level [Van Raamsdonk 2010].
- What are the conditions on a spacetime geometry leading to a finite entanglement entropy *density* ρ_d?

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Observations

Entanglement entropy

12/42– Entanglement (von Neumann) entropy: quantum-mechanics

Measuring entanglement = counting the number of degrees of freedom on the boundary.

$$S_A = -\operatorname{tr}_A(\rho_A \ln \rho_A), \qquad \rho_A = \operatorname{tr}_B |\Psi\rangle \langle \Psi|.$$

No entanglement: $|\Psi\rangle = |\Psi_A\rangle \otimes |\Psi_B\rangle$

Instituto de Estructura de la Materia (IEM) - CSIC

ヘロト 人間 とくほ とくほう

Gianluca Calcagni

Multifractional theories

Observations

Entanglement entropy

12/42– Entanglement (von Neumann) entropy: quantum-mechanics

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Observations

Entanglement entropy

13/42– Entanglement entropy: QFT

Trace over QFT d.o.f. [Casini, Huerta 2009; Nesterov, Solodukhin 2010,2011; Solodukhin 2011]:

$$S \sim \mathcal{A}_d(\Sigma) \rho_d := \mathcal{A}_d(\Sigma) \int_{\epsilon^2}^{\infty} \frac{\mathsf{d}\sigma}{\sigma} \mathcal{P}_d(\sigma), \quad d = D - 2$$

UV finiteness \Rightarrow finite ρ_d ? No:

$$\lim_{x \to y} G(x, y) \propto \int_0^\infty \mathsf{d}\sigma \, \mathcal{P}_4(\sigma) \quad \text{but} \quad \mathcal{P}_4(\sigma) \propto \int \mathsf{d}^4 p \, \mathsf{e}^{-\sigma C(p)}$$

Rules out all QFTs on noncompact momentum space for any C(p) [Nesterov, Solodukhin 2010].

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

→ E → < E →</p>

Instituto de Estructura de la Materia (IEM) - CSIC

Entanglement entropy

4/42- Spectral zeta function

Spectral theory, $\Box \psi = \lambda \psi$: $\frac{1}{\lambda^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} d\sigma \, \sigma^{s-1} e^{-\sigma \lambda}$. Mellin transform of return probability:

$$\zeta_d(s) := \frac{1}{\Gamma(s)} \int_0^{+\infty} \mathsf{d}\sigma \, \sigma^{s-1} \mathcal{P}_d(\sigma) \sim \sum_n \frac{1}{\lambda_n^s} \, .$$

Gianluca Calcagni

Multifractional theories

Entanglement entropy

4/42- Spectral zeta function

Spectral theory, $\Box \psi = \lambda \psi$: $\frac{1}{\lambda^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} d\sigma \, \sigma^{s-1} e^{-\sigma \lambda}$. Mellin transform of return probability:

$$\zeta_d(s) := \frac{1}{\Gamma(s)} \int_0^{+\infty} \mathsf{d}\sigma \, \sigma^{s-1} \mathcal{P}_d(\sigma) \sim \sum_n \frac{1}{\lambda_n^s} \, .$$

$$\rho_d = \lim_{s \to 0} \Gamma(s) \, \zeta_d(s)$$

Instituto de Estructura de la Materia (IEM) - CSIC

★ E → < E →</p>

Gianluca Calcagni

Multifractional theories

Observations

Entanglement entropy

15/42– Constant spectral dimension

Popular definition $\mathcal{P}_D \sim \sigma^{-d_s/2}$ (QG):

$$d_{\rm S} = -2 \lim_{\sigma \to 0} \frac{\ln \mathcal{P}_D(\sigma)}{\ln \sigma} \to -2 \frac{{\rm d} \ln \mathcal{P}_D(\sigma)}{{\rm d} \ln \sigma} \,. \label{eq:ds}$$

Alternative definition [Bessis et al. 1983,1984]: pole of ζ_D at $\sigma \ll 1$ (fractal geometry):

$$\mathcal{P}_D(\sigma) = rac{1}{2\pi \mathsf{i}} \int_{\epsilon-\mathsf{i}\infty}^{\epsilon+\mathsf{i}\infty} \mathsf{d}s \,\zeta_D(s) \Gamma(s) \,\sigma^{-s}$$

Can we extend it to geometries with variable d_S ?

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

ヘロト 人間 とくほ とくほう

Multifractional theories

Observations

Entanglement entropy

General result Arzano, G.C., arXiv:1704.01141

Necessary condition for a finite entropy density

If the entanglement entropy density ρ_d is finite and nonzero, then the spectral dimension d_{s}^{b} of the spatial boundary never vanishes at any scale.

Gianluca Calcagni

(4) E (4) E (4) E Instituto de Estructura de la Materia (IEM) - CSIC

A landscape in quantum gravity

Universal properties

Multifractional theories

Observations

Entanglement entropy

17/42– Dimensional flows with $0 < \rho_d < \infty$

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC
Multifractional theories

Entanglement entropy

18/42- Interpretation: degenerate or rough boundary

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Entanglement entropy

19/42– Examples Arzano, G.C., arXiv:1704.01141

 $\rho_d = \infty$ or $\rho_d = 0$:

• $C(p) = |p|^{2\gamma}$: $d_{\rm S} = {\rm const.}$

- κ -Minkowski (UV finite): $d_{\rm S}^{\rm UV} = 0$ [Arzano et al. 2015,2016].
- GFT/LQG/spin foams: $d_{\rm S}^{\rm UV} = 0$ [G.C., Oriti, Thürigen 2014,2015].
- Nonlocal quantum gravity (UV finite): d^{UV}_S = 0 [G.C., Modesto 2014].

 $\underline{0 < \rho_d < \infty}:$

- String theory: $d_{\rm S}^{\rm UV} = 2$ [G.C., Modesto 2014].
- CDT: only if $d_{\rm S}^{\rm UV} \neq 2$.
- Multifractional spacetimes: $d_{\rm S}^{\rm UV} = D\alpha \neq 0$.

Gianluca Calcagni

Multifractional theories

Entanglement entropy

20/42- LQG, spin foams, GFT

General states $|\psi\rangle = \sum_{j,C} a_{j,C} |j,C\rangle$. Discreteness combinatorial effects drive $d_{\rm S}$ to zero [G.C., Oriti, Thürigen 2014, 2015], hence $\rho_d = \infty$ (or 0).

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Outline

A landscape in quantum gravity

- 2 Universal properties
 - Dimensional flow
 - Entanglement entropy
- 3 Multifractional theories
 - Basics
 - Cosmology

4 Observations

Instituto de Estructura de la Materia (IEM) - CSIC

< - 17 →

Gianluca Calcagni

Multifractional theories

Basics

20/42- Multifractional theories G.C., JHEP **03** (2017) 138 [arXiv:1612.05632]

$$S[\phi^i] = \int \mathrm{d}\varrho(x) \,\mathcal{L}[\mathcal{D}_x, \phi^i] \,, \qquad \mathrm{d}\varrho(x) = \prod_{\mu} \mathrm{d}q^{\mu}(x^{\mu})$$

Same measure, different choices of Lagrangian symmetries $(v = \partial_x q)$:

- Weighted derivatives: $\mathcal{D}_x = v^{-1/2} \partial_x (v^{1/2} \cdot)$.
- 2 *q*-derivatives (multifractal): $\partial_q = v^{-1} \partial_x$.
- Similar Fractional derivatives (multifractal): $\mathbb{D}_x \sim \partial_x^{\alpha}$.

Instituto de Estructura de la Materia (IEM) - CSIC

・ロン ・回 と ・ ヨン・

Gianluca Calcagni

Multifractional theories

Observations

Basics

21/42- Status: 2012-2017

	\mathcal{D}^2	\Box_q	\mathbb{D}^2
Foundations	 Image: A second s	√	?
Relativistic mechanics	 Image: A set of the set of the	>	?
QFT and Standard Model	 Image: A set of the set of the	~	√?
Perturbative renormalizability	X	×	√?
Gravity and cosmology	 Image: A set of the set of the	~	?
Phenomenology: particles	 Image: A set of the set of the	~	?
Phenomenology: astrophysics	 Image: A set of the set of the	~	?
Phenomenology: inflation	?	√	?
Phenomenology: dark energy	?	?	?

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

æ

<ロ> <四> <四> <三</p>

Multifractional theories

Basics

UV divergence, $\rho_d < \infty$: multifractional theory 23/42with q-derivatives

$$\zeta_D(s) = \zeta_{D,\alpha}(s) = \frac{\sigma_*^s}{(1-\alpha)(4\pi\sigma_*)^{\frac{D}{2}}} \frac{\Gamma\left[\frac{D-2s}{2(1-\alpha)}\right]\Gamma\left[\frac{2s-D\alpha}{2(1-\alpha)}\right]}{\Gamma\left(\frac{D}{2}\right)\Gamma(s)}$$

★ 문 → ★ 문 → Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Basics

23/42– UV divergence, $\rho_d < \infty$: multifractional theory with *q*-derivatives

$$\zeta_D(s) = \zeta_{D,\alpha}(s) = \frac{\sigma_*^s}{(1-\alpha)(4\pi\sigma_*)^{\frac{D}{2}}} \frac{\Gamma\left[\frac{D-2s}{2(1-\alpha)}\right]\Gamma\left[\frac{2s-D\alpha}{2(1-\alpha)}\right]}{\Gamma\left(\frac{D}{2}\right)\Gamma(s)}$$
$$d_{\rm S}^{\rm IR} = D, \qquad d_{\rm S}^{\rm UV} = D\alpha$$

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Multifractional theories

Basics

23/42– UV divergence, $\rho_d < \infty$: multifractional theory with *q*-derivatives

$$\zeta_D(s) = \zeta_{D,\alpha}(s) = \frac{\sigma_*^s}{(1-\alpha)(4\pi\sigma_*)^{\frac{D}{2}}} \frac{\Gamma\left[\frac{D-2s}{2(1-\alpha)}\right]\Gamma\left[\frac{2s-D\alpha}{2(1-\alpha)}\right]}{\Gamma\left(\frac{D}{2}\right)\Gamma(s)}$$

 $d_{\rm S}^{\rm IR} = D\,, \qquad d_{\rm S}^{\rm UV} = D\alpha$

$$\rho_d = \frac{\Gamma\left[\frac{d}{2(1-\alpha)}\right]\Gamma\left[-\frac{d\alpha}{2(1-\alpha)}\right]}{(1-\alpha)(4\pi\sigma_*)^{\frac{d}{2}}\Gamma\left(\frac{d}{2}\right)}, \qquad \alpha \neq \frac{2}{D}, \frac{4}{2+D}, \frac{6}{4+D}, \cdots$$

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

・ロン ・回 と ・ ヨン・

Multifractional theories

Basics

4/42- Observational constraints

WEIGHTED DER.	t _* (S)	ℓ _* (m)	E_* (eV)	source
$\alpha_{\rm QED}$ quasars		—	—	G.C., Magueijo, Rodríguez, PRD 2014
CMB black body	—	—	_	G.C., Kuroyanagi, Tsujikawa, JCAP 2016
Lamb shift	$< 10^{-23}$	$< 10^{-14}$	$> 10^{7}$	G.C., Nardelli, Rodríguez, PRD 2016(b)
$\alpha_{\rm QED}$ measurements	$< 10^{-26}$	$< 10^{-17}$	$> 10^{10}$	G.C., Nardelli, Rodríguez, PRD 2016(b)
GWs and GRBs	_	_	—	G.C., EPJC 2017
<i>a</i> -DFR	t_{\pm} (S)	l., (m)	E. (eV)	source
9	** (0)	* ()	2* (0.)	660166
primordial CMB (!)	weak	weak	weak	G.C., Kuroyanagi, Tsujikawa, JCAP 2016
primordial CMB (!) CMB black body	weak	weak	weak	G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Kuroyanagi, Tsujikawa, JCAP 2016
primordial CMB (!) CMB black body Muon lifetime	weak $ < 10^{-13}$	weak $ < 10^{-5}$	weak $-$ > 10^{-3}	G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Nardelli, Rodríguez, PRD 2016(a)
primordial CMB (!) CMB black body Muon lifetime Lamb shift	$\begin{tabular}{ c c c c c } \hline weak & & & \\ \hline & & & \\ \hline & & < 10^{-13} \\ & < 10^{-23} \end{tabular}$	weak $ < 10^{-5}$ $< 10^{-15}$	weak $-$ > 10 ⁻³ > 10 ⁷	G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Nardelli, Rodríguez, PRD 2016(a) G.C., Nardelli, Rodríguez, PRD 2016(a)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	weak 	G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Nardelli, Rodríguez, PRD 2016(a) G.C., Nardelli, Rodríguez, PRD 2016(a) G.C., Nardelli, Rodríguez, PRD 2016(b)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{tabular}{ c c c c c c c } \hline weak & - & & \\ \hline & < 10^{-13} & & \\ < 10^{-23} & - & & \\ \hline & & < 10^{-22} & & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline weak & - & \\ \hline & < 10^{-5} & \\ \hline & < 10^{-15} & \\ \hline & - & \\ \hline & < 10^{-14} & \\ \hline \end{tabular}$	weak 	G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Kuroyanagi, Tsujikawa, JCAP 2016 G.C., Nardelli, Rodríguez, PRD 2016(a) G.C., Nardelli, Rodríguez, PRD 2016(a) G.C., Nardelli, Rodríguez, PRD 2016(b) G.C., EPJC 2017

- * 日 * * 個 * * 画 * * 画 * - 画 * うへで

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Cosmology

25/42- *q*-derivatives: gravity G.C., JCAP **12** (2013) 041 [arXiv:1307.6382]

$${}^{q}\Gamma^{\rho}_{\mu\nu} := \frac{1}{2}g^{\rho\sigma} \left(\frac{1}{v_{\mu}} \partial_{\mu}g_{\nu\sigma} + \frac{1}{v_{\nu}} \partial_{\nu}g_{\mu\sigma} - \frac{1}{v_{\sigma}} \partial_{\sigma}g_{\mu\nu} \right) ,$$
$${}^{q}R^{\rho}_{\mu\sigma\nu} := \frac{1}{v_{\sigma}} \partial_{\sigma}{}^{q}\Gamma^{\rho}_{\mu\nu} - \frac{1}{v_{\nu}} \partial_{\nu}{}^{q}\Gamma^{\rho}_{\mu\sigma} + {}^{q}\Gamma^{\tau}_{\mu\nu} {}^{q}\Gamma^{\rho}_{\sigma\tau} - {}^{q}\Gamma^{\tau}_{\mu\sigma} {}^{q}\Gamma^{\rho}_{\nu\tau} .$$

Action:

$$S = \frac{1}{2\kappa^2} \int \mathrm{d}^D x \, v \, \sqrt{-g} \, ({}^q R - 2\Lambda) + S_\mathrm{m} \, .$$

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回ト ・ヨト ・ヨト

Multifractional theories

Cosmology

25/42- *q*-derivatives: gravity G.C., JCAP **12** (2013) 041 [arXiv:1307.6382]

$${}^{q}\Gamma^{\rho}_{\mu\nu} := \frac{1}{2}g^{\rho\sigma} \left(\frac{1}{\nu_{\mu}} \partial_{\mu}g_{\nu\sigma} + \frac{1}{\nu_{\nu}} \partial_{\nu}g_{\mu\sigma} - \frac{1}{\nu_{\sigma}} \partial_{\sigma}g_{\mu\nu} \right) ,$$
$${}^{q}R^{\rho}_{\mu\sigma\nu} := \frac{1}{\nu_{\sigma}} \partial_{\sigma}{}^{q}\Gamma^{\rho}_{\mu\nu} - \frac{1}{\nu_{\nu}} \partial_{\nu}{}^{q}\Gamma^{\rho}_{\mu\sigma} + {}^{q}\Gamma^{\tau}_{\mu\nu} {}^{q}\Gamma^{\rho}_{\sigma\tau} - {}^{q}\Gamma^{\tau}_{\mu\sigma} {}^{q}\Gamma^{\rho}_{\nu\tau} .$$

Action:

$$S = \frac{1}{2\kappa^2} \int \mathrm{d}^D x \, v \, \sqrt{-g} \, (^q R - 2\Lambda) + S_\mathrm{m} \, .$$

Einstein equations:

$${}^{q}R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}({}^{q}R - 2\Lambda) = \kappa^{2} {}^{q}T_{\mu\nu} \,.$$

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

★ 문 → < 문 →</p>

Multifractional theories

Observations

Cosmology

6/42- q-derivatives: local inertial frames

 LIF: centered on the observer, locally isomorphic to multifractional Minkowski spacetime, *q*-Poincaré transformations

$$q'^{\mu}(x^{\mu}) = \Lambda_{\nu}^{\ \mu}q^{\nu}(x^{\nu}) + a^{\mu}$$

Each and every LIF has its own anomalous geometry q(x).

Gianluca Calcagni

Multifractional theories

Observations

Cosmology

6/42- q-derivatives: local inertial frames

 LIF: centered on the observer, locally isomorphic to multifractional Minkowski spacetime, *q*-Poincaré transformations

$$q'^{\mu}(x^{\mu}) = \Lambda^{\ \mu}_{\nu} q^{\nu}(x^{\nu}) + a^{\mu}$$

Each and every LIF has its own anomalous geometry q(x).

• Relational measurements. Choosing measurement units is a convention. Measuring a size or a velocity by an observer in a multifractal world is not different from measuring them in a normal non-anomalous world: $v_x = \Delta x / \Delta t$ vs. $v_q = \Delta q(x) / \Delta q(t)$.

Gianluca Calcagni

Multifractional theories

Observations

Cosmology

6/42- q-derivatives: local inertial frames

 LIF: centered on the observer, locally isomorphic to multifractional Minkowski spacetime, *q*-Poincaré transformations

$$q'^{\mu}(x^{\mu}) = \Lambda^{\ \mu}_{\nu} q^{\nu}(x^{\nu}) + a^{\mu}$$

Each and every LIF has its own anomalous geometry q(x).

• Relational measurements. Choosing measurement units is a convention. Measuring a size or a velocity by an observer in a multifractal world is not different from measuring them in a normal non-anomalous world: $v_x = \Delta x / \Delta t$ vs. $v_q = \Delta q(x) / \Delta q(t)$. Measurements of **dimensionless** observables do discriminate! $v_x(O_1) / v_x(O_2)$ vs. $v_q(O_1) / v_q(O_2)$ where $scale(O_1) \ll scale(O_2)$.

Gianluca Calcagni

Multifractional theories

Observations

Cosmology

27/42– FRW cosmology

$$\begin{split} \frac{H^2}{v^2} &= \frac{\kappa^2}{3}\,\rho + \frac{\Lambda}{3} - \frac{\kappa}{a^2}\,, \qquad \dot{\rho} + 3H(\rho + P) = 0\\ \rho &= \frac{\dot{\phi}^2}{2v^2} + V(\phi) \end{split}$$

Ordinary slow-roll approximation unnecessary.

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回ト ・ヨト ・ヨト

Gianluca Calcagni

Multifractional theories

Cosmology

27/42– FRW cosmology

$$\begin{split} \frac{H^2}{v^2} &= \frac{\kappa^2}{3}\,\rho + \frac{\Lambda}{3} - \frac{\mathsf{K}}{a^2}\,, \qquad \dot{\rho} + 3H(\rho + P) = 0\\ \rho &= \frac{\dot{\phi}^2}{2v^2} + V(\phi) \end{split}$$

Ordinary slow-roll approximation unnecessary. Cyclic universe

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Cosmology

8/42– Inflationary spectra

General behaviour (from p(k) = 1/q(1/k)):

$$P_{\mathrm{s}} = \mathcal{A}_{\mathrm{s}} \tilde{k}^{n_{\mathrm{s}}-1} \sim \mathcal{A}_{\mathrm{s}} \left(rac{k}{k_{*}}
ight)^{lpha(n_{\mathrm{s}}-1)} [F_{\omega}(\ln k)]^{1-n_{\mathrm{s}}}$$

Scale invariance without strong slow-roll approximation and a log-oscillating pattern.

 \rightarrow Spacetime discrete at scales $\sim \ell_{\infty}$ (totally disconnected?). Visible effect of this geometry: not "holes" in the fabric of spacetime but a logarithmic modulation of the power spectrum of primordial fluctuations!

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Cosmology

CMB spectra G.C., Kuroyanagi, Tsujikawa, JCAP 08 (2016) 039

Gianluca Calcagni

• = • Instituto de Estructura de la Materia (IEM) - CSIC

э

Multifractional theories

Observations

Cosmology

30/42- 2D contours without log-oscillations

Instituto de Estructura de la Materia (IEM) - CSIC

э

Gianluca Calcagni

Multifractional theories

Observations

Cosmology

31/42- 2D contours with log-oscillations

E.g. N = 4: Upper bound $\alpha < 0.1$. In general, $\alpha \leq 0.1 - 0.6$.

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

(UV)

Cosmology

2/42- Consequences for spacetime dimension

The Hausdorff dimension of space $d_{\rm H}^{\rm space} = 3\alpha$ in the UV cannot exceed $N = 2: \qquad d_{\rm H}^{\rm space} \lesssim 0.3 \qquad ({\rm UV})$ $N = 3: \qquad d_{\rm H}^{\rm space} \lesssim 1.9 \qquad ({\rm UV})$

 $d_{\rm H}^{\rm space} \lesssim 1.7$

Counter-intuitive!

Instituto de Estructura de la Materia (IEM) - CSIC

→ E → < E →</p>

Gianluca Calcagni

Multiscale and multifractional spacetimes in quantum gravity: status report

N = 4:

Multifractional theories

Cosmology

33/42- 2D contours with log-oscillations

Example: $N = 2, \alpha = 0.1, 0.5$

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Cosmology

M/42– Upper bounds on A_1, B_1

Amplitudes of log oscillations of geometry cannot exceed

N = 2:	A < 0.3, B < 0.4
N = 3:	A < 0.3, B < 0.2
N = 4:	A < 0.4, B < 1.0

First constraints of this kind.

Instituto de Estructura de la Materia (IEM) - CSIC

イロト イヨト イヨト イヨト

Gianluca Calcagni

Multifractional theories

Cosmology

35/42– Beyond first harmonic G.C., arXiv:1705.01619; G.C., Ronco, arXiv:1706.02159

Parametrization inspired by critical systems [Gluzman, Sornette 2002]:

$$A_n = 2\xi \frac{\mathrm{e}^{-\gamma n}}{n^u} \cos(\psi_n + \beta_n), \quad B_n = -2\xi \frac{\mathrm{e}^{-\gamma n}}{n^u} \sin(\psi_n + \beta_n), \quad \beta_n := n\omega \frac{\ell_\infty}{\ell_*}$$

Instituto de Estructura de la Materia (IEM) - CSIC

→ 프 → < 프 →</p>

Gianluca Calcagni

Multifractional theories

Cosmology

35/42– Beyond first harmonic G.C., arXiv:1705.01619; G.C., Ronco, arXiv:1706.02159

Parametrization inspired by critical systems [Gluzman, Sornette 2002]:

$$A_n = 2\xi \frac{\mathsf{e}^{-\gamma n}}{n^u} \cos(\psi_n + \beta_n), \quad B_n = -2\xi \frac{\mathsf{e}^{-\gamma n}}{n^u} \sin(\psi_n + \beta_n), \quad \beta_n := n\omega \frac{\ell_\infty}{\ell_*}$$

Nowhere differentiable measure (stochastic spacetime): fast-varying (ergodic mixing) phases

$$\psi_n = \Omega n \ln(\Omega n), \qquad \psi_n = \Omega n^2, \qquad \psi_n = \Omega e^{n/\Omega},$$

Instituto de Estructura de la Materia (IEM) - CSIC

.

Gianluca Calcagni

Multifractional theories

Cosmology

36/42– Beyond first harmonic G.C., arXiv:1705.01619; G.C., Shafieloo, *in progress*

Discrete Scale Invariance: imprint of complex dimensions in the CMB

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Cosmology

37/42– Summary: future lines

Physical origin of a finite entropy density:

- Main agent is dimensional flow. But not sufficient (compact-momentum-space and nonlocal examples).
- Role of discreteness is less clear, but it might turn out to be a liability rather than an asset (LQG/GFT example).
- String theory and the multifractional example show that discreteness is not necessary.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Cosmology

37/42– Summary: future lines

Physical origin of a finite entropy density:

- Main agent is dimensional flow. But not sufficient (compact-momentum-space and nonlocal examples).
- Role of discreteness is less clear, but it might turn out to be a liability rather than an asset (LQG/GFT example).
- String theory and the multifractional example show that discreteness is not necessary.

Multifractional theories:

• Full study of the theory with fractional derivatives.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

Cosmology

7/42– Summary: future lines

Physical origin of a finite entropy density:

- Main agent is dimensional flow. But not sufficient (compact-momentum-space and nonlocal examples).
- Role of discreteness is less clear, but it might turn out to be a liability rather than an asset (LQG/GFT example).
- String theory and the multifractional example show that discreteness is not necessary.

Multifractional theories:

• Full study of the theory with fractional derivatives.

Cosmology with *q*-derivatives:

- Theory and phenomenology fully studied: only dark energy is missing!
- Geometry cannot sustain inflation but it could act as dark energy.

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Outline

- A landscape in quantum gravity
- 2 Universal properties
 - Dimensional flow
 - Entanglement entropy
- 3 Multifractional theories
 - Basics
 - Cosmology

Instituto de Estructura de la Materia (IEM) - CSIC

< 🗇 🕨

Gianluca Calcagni

Multifractional theories

Observations

38/42– Accelerators LHC (ongoing), KEK (ongoing)

- * ロ > * @ > * 注 > * 注 > … 注 … のへの

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

39/42– CMB and polarization PLANCK (finished), LiteBIRD (2022)

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

Multifractional theories

Observations

40/42- Gravitational waves aLIGO (ongoing), KAGRA (2018) (ground-based)

- **・ ロ ・ ・ (**) ・ ・ ヨ ・ ・ ヨ ・ クへ()

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Multifractional theories

41/42- Gravitational waves eLISA (2034), DECIGO (proposed) (space-borne)

・ロト・西ト・ヨト・ヨー りへの

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

A landscape in quantum gravity

Universal properties

Multifractional theories

Observations

42/42- Dark energy Euclid (2020)

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC
Universal properties

Multifractional theories

どうもありがとうございました!

Thank you! ¡Muchas gracias! Grazie! Muito obrigado! Danke schön!

Instituto de Estructura de la Materia (IEM) - CSIC

イロト イヨト イヨト イヨト

Gianluca Calcagni

Multiscale and multifractional spacetimes in quantum gravity: status report