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Abstract. In recent years, there has been a growing interest on tack-
ling the Non-Rigid Structure from Motion problem (NRSfM), where the
shape of a deformable object and the pose of a moving camera are si-
multaneously estimated from a monocular video sequence. Existing so-
lutions are limited to single objects and continuous, smoothly changing
sequences. In this paper we extend NRSfM to a multi-instance domain,
in which the images do not need to have temporal consistency, allowing
for instance, to jointly reconstruct the face of multiple persons from an
unordered list of images. For this purpose, we present a new formulation
of the problem based on a dual low-rank shape representation, that si-
multaneously captures the between- and within-individual deformations.
The parameters of this model are learned using a variant of the proba-
bilistic linear discriminant analysis that requires consecutive batches of
expectation and maximization steps. The resulting approach estimates
3D deformable shape and pose of multiple instances from only 2D point
observations on a collection images, without requiring pre-trained 3D
data, and is shown to be robust to noisy measurements and missing
points. We provide quantitative and qualitative evaluation on both syn-
thetic and real data, and show consistent benefits compared to current
state of the art.

1 Introduction

The joint estimation of 3D shape and camera pose from a collection of images
either acquired from different viewpoints or by a single moving camera is one
of the most active areas in computer vision. In the last two decades, many
works have addressed this problem under the assumption of a rigid scene [1–4]
(see Fig. 1-Left). More recently, a number of approaches have been proposed to
tackle the non-rigid case, and estimating a deforming 3D shape together with
the camera pose from solely 2D observations [5–9]. This is the so-called Non-
Rigid Structure from Motion (NRSfM) problem, which is inherently ambiguous
and requires introducing several priors. The most standard assumption holds on
that the observed objects do not arbitrarily change their shapes, and that defor-
mations can be ruled by low-rank models. For instance, low-rank shape models
span the shape using a linear combination of rigid and global basis, weighted
by time-varying coefficients [10–12]. This has led to a number of solutions for
sparse [7, 13, 14], dense [15], and sequential [16, 17] reconstruction. A common



2 Antonio Agudo and Francesc Moreno-Noguer

Rigid SfM Non-Rigid SfM Manifold Non-Rigid SfM

Fig. 1. Schematic comparison of our approach (denoted as Manifold Non-
Rigid SfM) against standard Rigid SfM and Non-Rigid SfM. Left: In Rigid
SfM pipelines, a collection of images, either acquired from different cameras –even with
a different calibration– and viewpoints or from a single moving camera, is used to re-
cover pose and 3D shape of a rigid scene. Center: Non-Rigid SfM normally handles
objects that deform between consecutive frames, but the collection of images normally
needs to be temporally consistent and the object remain the same. Right: Our Man-
ifold Non-Rigid SfM is applicable to image collections that do not retain temporal
consistency, and most importantly, can estimate the shape of different deforming in-
stances in the same family.

characteristic of all these NRSfM algorithms is that the input images belong
to one single object viewed from consecutive and smoothly changing viewpoints
(see Fig. 1-Center), which has been exploited to introduce further constraints
about temporal smoothness on the shape deformations [5, 11, 18], on the point
trajectories [19, 20] and on the camera motion [21]. Temporal smoothness priors
have proven to be a powerful constraint on sequential NRSfM [16, 22, 23], giving
consistent and accurate solutions.

In this paper, we depart from the assumptions of previous NRSfM approaches,
by proposing a solution that does not require temporal consistency of the input
images, and most importantly, that it can be applied to simultaneously recover
the 3D deformable shape and pose of different instances of the same class of
objects. In essence, we bring the standard scenario of the rigid structure from
motion depicted in Fig. 1-Left to a non-rigid domain, as shown in Fig. 1-Right,
in which we learn pose and a 3D non-rigid shape manifold. To do so, we expand
the NRSfM formulation using a dual low-rank shape model that independently
represents the deformations between- and within-object instances. Each of these
components and their corresponding set of weights is learned by means of a vari-
ant of the Probabilistic Linear Discriminant Analysis (PLDA) [24] and iterating
between partial expectation and maximization steps. The resulting approach es-
timates all this from the sole input of 2D input tracks on a collection of images
without requiring pre-trained 3D data, it is robust to noisy observations and it
can handle missing tracks due to occlusions or lack of visibility. We demonstrate
the effectiveness on both synthetic and real image collections, showing the ad-
vantages of the proposed approach with respect to state-of-the-art techniques.
We believe our model opens up the NRSfM topic to a series of new problems in
which the single instance and smooth camera viewpoint changes are no longer a
requirement.
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2 Related Work

Reconstructing the shape of a non-rigid object while recovering the camera mo-
tion from only 2D point trajectories is known to be a severely under-constrained
problem that requires prior information in order to be solved. The prior most
widely used in NRSfM consists in constraining the shape to lie on a global low-
rank shape subspace, that can be computed over a set of training data [25],
applying modal [26, 27] or spectral [28] analysis over a rest shape, or estimating
it on-the-fly [10, 12, 29]. Most approaches build upon the well-known closed-
form factorization technique used for rigid reconstruction [30], enforcing camera
orthonormality constraints. This is also done in [5, 11, 18, 31] by incorporating
temporal and spatial smoothness constraints on top of the low-rank ones. More
recently, temporal smoothness is enforced by means of differentials over the 3D
shape matrix by directly minimizing its rank [13, 15], or by means of a union of
temporal low-rank shape subspaces [14].

Alternatively, pre-defined trajectory basis have been introduced to constrain
the trajectory of every object point, turning the original trilinear problem to a
bilinear one [19]. In [32], trajectory priors were used in terms of 3D point dif-
ferentials. Subsequent works have combined shape and trajectory constraints [6,
33, 34]. More recently, both low-rank shape and trajectory subspaces have been
linked to a force subspace, giving them a physical interpretation [9]. In any event,
while achieving remarkable results, all previous approaches aim at modeling one
single object, observed from smoothly changing viewpoints. The approach we
propose here, gets rid of both these limitations.

We would also like to mention that our approach can be somewhat related
to methods that model low-dimensional shape manifolds using, e.g., Gaussian
Mixtures [35] or Gaussian Processes [36, 37]. However, note that all these tech-
niques assume again smoothly changing video sequences, and the 3D shape to
be aligned with the camera. Additionally, none of these approaches tackles the
problem of besides retrieving 3D shape, estimating the camera pose, as we do.

Contributions. In short, we propose a novel NRSfM solution which brings
together a number of characteristics not found in other methods: 1) It recovers
3D non-rigid shape and camera motion from image collections that do not exhibit
temporal continuity, i.e., our approach does not require monocular videos as
input; 2) It jointly encodes between- and within-object deformations; 3) It can
simultaneously model several instances of a same family; and 4) the number
of instances does not need to be known in advance. Our method is robust to
artifacts such as noise or discontinuities due to missing tracks, and yields accurate
reconstructions.

3 3D Deformable Shape Manifold Model

This section describes the proposed low-rank shape model, and specifically fo-
cuses on highlighting the main differences with respect to previous similar for-
mulations.
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Let sk = [(xk
1)>, . . . , (xk

N )>]> be the 3N -dimensional representation of the
shape at the k-th frame of a collection of K images, with xk

i = [xki , y
k
i , z

k
i ]>

denoting the 3D coordinates of the i-th point. Traditional low-rank shape meth-
ods [5, 11, 22] approximate the shape sk by a linear combination of a shape at
rest s0 and Q rigid shapes F ∈ 3N × Q, weighted by time-varying coefficients
γk = [γk1 , . . . , γ

k
Q]>:

sk = s0 + Fγk. (1)

In all theses approaches the collection of images is assumed to be temporally or-
dered (i.e., the superscript k conveys time information), such that the deforma-
tion between two consecutive frames k and k+1 changes smoothly. Additionally,
it is assumed that the shapes sk for k = {1, . . . ,K} belong to the same object.

The proposed new formulation does not impose both these constraints: we let
the K images of the collection to be acquired from different viewpoints that do
not follow a smooth path, and the images may belong to C different instances of
the same class of object (e.g., faces of different individuals). For doing so, we draw
inspiration on the LDA [38, 39], and propose a model that besides the term Fγk

in Eq. (1) representing the deformations undergone by one single object (we call
them within-object deformations), it incorporates a term that approximates the
deformation among different objects of the same class (we call them between-
object deformations). More specifically, an object instance c ∈ {1, . . . , C} at
image frame k can be approximated as:

sk,c = s0 + Bψc + Fγk, (2)

where B is a 3N × B matrix containing the B shape basis vectors of the
between-individual subspace and ψc = [ψc

1, . . . , ψ
c
B ]> are their corresponding

class-varying weight coefficients.
Equation (2) can be interpreted as follows: the term s0+Bψc allows encoding

the 3D shape manifold, but not the object particularities of the k-th frame, and
thus, we do not index it with the superscript k. On the other hand, the term
Fγk is intended to encode the within-individual deformations, which are specific
for each frame k. Additionally, note that the formulation considers a vector of
coefficients ψc specific per each object c. This assumes that the partition of the
K images into C object classes is known in advance. If this is not possible, or
simply if the number of classes is unknown, we set C = 1.

Eventually, in the following section, we may compactly represent Eq. (2) as:

sk,c = s0 + Msm
k,c, (3)

where we define a 3N × (B+Q) matrix Ms ≡ [B,F] and a vector of coefficients

mk,c ≡ [ψc>,γk>]>.

4 Learning 3D Deformable Manifold, Shape and Motion

We now describe our approach to simultaneously learn the 3D deformable shape
manifold B, the shape basis F to code the time-varying deformations, their



Pose and 3D Deformable Shape from Multi-Instance Image Ensembles 5

corresponding coefficients {ψ,γ} and the camera motion from a collection of
images.

4.1 Problem Formulation

Let us consider the 3N -dimensional shape sk,c of Eq. (2) is observed by an
orthographic camera. The projection onto the image plane of the 3D points in
frame k can be written as a 2N vector wk,c:

wk,c = Gksk,c + hk + nk, (4)

where Gk = IN ⊗ Rk is the 2N × 3N camera motion matrix, IN is the N -
dimensional identity matrix, Rk are the first two rows of a full rotation matrix,
and ⊗ denotes the Kronecker product. Similarly, hk = 1N ⊗ tk is a 2N vector
resulting from concatenating N bidimensional translation vectors tk, and 1N is
a N -vector of ones. Finally, nk is a 2N dimensional vector of Gaussian noise
that accounts for the unexplained data variation.

We can then define our problem as that of estimating for k = {1, . . . ,K}, the
shape sk,c and camera pose parameters {Rk, tk}, given the 2D point observations
wk,c corrupted by noise nk and the list the classes c = {1, . . . , C}.

In order to make the problem tractable, we constrain the shape sk,c to lie on
the dual low-rank shape subspace defined by the manifold {B, s0} and by the
within-object subspace F. We therefore inject Eq. (2) into Eq. (4) to rewrite our
observation model as:

wk,c = Gk(s0 + Bψc + Fγk) + hk + nk . (5)

4.2 Probabilistic Formulation of the Problem

To simultaneously learn the 3D deformable shape manifold, the instance-specific
shape and the camera pose from 2D point correspondences as described in
Eq. (5), we propose an algorithm similar to the Probabilistic LDA approach
used to represent shape distributions [24, 40, 41]. However, these previous formu-
lations are intended to retrieve mappings that do not change the dimensionality
of the input data. In our case, we aim at estimating a mapping that brings the
2D observations to 3D interpretations, i.e., we solve an inverse problem. This
will need from a substantially different methodology.

In order to proceed we assume the between- and within-object coefficient
vectors to be normally distributed, i.e., ψc ∼ N (0; IB) and γk ∼ N (0; IQ),
respectively. Assuming these probabilistic priors, both vectors become latent
variables that can be marginalized out and never need to be explicitly computed.
We can then propagate the previous distributions to the deforming shapes on
Eq. (2), yielding:

sk,c ∼ N
(
sk,c|s0;BB> + FF>

)
. (6)

Let us also consider a Gaussian prior distribution with variance σ2 to model
the noise over the shape observations, such that nk ∼ N

(
0;σ2I2N

)
. Any remain-

ing variation on the observations that is not explained by the shape parameters
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Fig. 2. Left: Graphical representation of our probabilistic NRSFM formulation with
a dual low-rank shape model. Given the 2D observations wk,c of K shapes belonging
to C different object instances, the proposed approach learns, for each image frame,
the pose parameters Θk and a shape model. The shape is represented by two low-
rank matrices B and F approximating the deformation between- and within-objects,
with their corresponding weights φc and γk, respectively. These latent variables and
the 2D observations are assumed to be normally distributed with covariances IB , IQ
and σ2I2N , respectively, also learned from data. Right: Evolution of the log-likelihood
function in Eq. (8) as a number of iterations, for a specific problem with 200 images
and 157 points.

is described as noise. Since both latent variables follow a Gaussian prior distribu-
tion, the distribution of the observed variables wk,c on Eq. (5) is also Gaussian:

wk,c ∼ N
(
wk,c|Gks0 + hk;GkBB>Gk> + GkFF>Gk> + σ2I2N

)
. (7)

In order to learn the parameters of this distribution we use an Expectation-
Maximization (EM) algorithm, as done in other NRSfM approaches [5, 7, 9].
However, this approach will need a bit more of machinery, as previous methods
did only consider one single latent variable. Here we are estimating two latent
variables (γk and ψc) which will require to re-define the algorithm by including
multiple consecutive E-steps.

4.3 Expectation Maximization

We next describe the details of the EM algorithm to learn the PLDA-inspired
model from 2D point correspondences. Let us denote by Θk ≡ {Rk, tk} the set
of pose parameters that need to be estimated per frame, and by Υ ≡ {B,F, σ2}
the set of parameters that are common for all frames of the collection. Regarding
the latent space, let Ψ = [ψ1, . . . ,ψC ] and Γ = [γ1, . . . ,γK ] be the between-
and within-object latent variables, respectively.

Our problem consists in estimating the parameters Θ = {Θ1, . . . ,ΘK} and
Υ , given the set of 2D positions of all points w = {w1,C(1), . . . ,wK,C(K)}, where
C(k) = c is a function that returns the instance label c associated to the k-th
frame. Recall that we do not assume temporal coherence between two consecutive
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observations wk,C(k) and wk+1,C(k+1). See Fig. 2-Left for a representation of the
problem as a graphical model.

The corresponding data likelihood we seek to maximize is therefore given by:

p (w|Θ,Υ ) ∼
K∏

k=1

p
(
wk,C(k)|Rk, tk,B,F, σ2

)
. (8)

In order to maximize this equation, the EM algorithm we propose iteratively
alternates between two steps: the E-step to obtain the distribution over latent
coordinates and the M -step to update the model parameters. However, since our
model contains two types of latent variables and several model parameters, we
use partial E- and M - steps, as we next explain.

E-steps: To estimate the posterior distribution over the latent variables ψc and
γk given the current model parameters and observations, we propose executing
two consecutive E-steps. Assuming independent and identically distributed ran-
dom samples, and applying the Bayes’ rule and the Woodbury’s matrix iden-
tity [42], the distribution over Ψ can be shown to be:

p (Ψ |w,Θ,Υ ) =

C∏
c=1

p (ψc|w,Θ,Υ ) ∼
C∏

c=1

N
(
µc
ψ;Σc

ψ

)
,

with:

µc
ψ =Λc

ψ

K∑
k=1

(
wk,c −Gks0 − hk

)
I(k) ,

Σc
ψ =IB −Λc

ψ

( K∑
k=1

GkI(k)

)
B,

Λc
ψ =B>

( K∑
k=1

GkI(k)

)>(
σ2I2N +

( K∑
k=1

GkI(k)
)(

FF> + BB>
)( K∑

k=1

GkI(k)
)>)−1

,

where I(k) = 1 if C(k) == c, and zero otherwise. Note that this indicator function
enforces computing µc

ψ, Σc
ψ and Λc

ψ using only the image frames k belonging
to the object class c.

Once the distribution over Ψ is known, the distribution over Γ can be esti-
mated by:

p (Γ |w,Θ,Υ ,Ψ) =

K∏
k=1

p
(
γk|w,Θ,Υ ,Ψ

)
∼

K∏
k=1

N
(
µk
γ ;Σk

γ

)
,

with:

µk
γ =Λk

γ

(
wk,C(k) −Gks0 −GkBµc

ψ − hk
)
,

Σk
γ =IQ −Λk

γG
kF,

Λk
γ =σ−2F>Gk>

(
I2N − σ−2GkF

(
IQ + σ−2F>Gk>GkF

)−1
F>Gk>

)
.
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M-steps: We then replace the latent variables by their expected values and
update the model parameters by optimizing the following negative log-likelihood
function A(Θ,w) with respect to the parameters Θk, for k = {1, . . . ,K} and
Υ :

A(Θ,w) =E
[
−

K∑
k=1

log p(wk,c|Θk,Υ )
]

=
1

2σ2

K∑
k=1

E
[
‖wk,c −Gk(s0 + Msm

k,c)− hk‖22
]

+NK log(2πσ2).

Since this function cannot be minimized in closed form for all parameters, we
perform partial M -steps over each of the model parameters. For doing so, we first
consider the compact model on Eq. (3) and define the following expectations:

µk,c
m = E[mk,c] =

[
µc
ψ
> µk

γ
>
]>

, µ̂k,c
m = [1 µk,c

m

>
]>,

φk,c
mm = E[mk,cmk,c>] =

[
φc
ψψ µc

ψµ
k
γ
>

µk
γµ

c
ψ
> φk

γγ

]
, φ̂

k,c

mm =

[
1 µk,c

m
>

µk,c
m φk,c

mm

]
,

where φc
ψψ = E[ψcψc>] = Σc

ψ + µc
ψµ

c
ψ
> and φk

γγ = E[γk(γk)>] = Σk
γ +

µk
γ(µk

γ)>.
To update each of the individual model parameters, we set ∂A/∂Θ = 0 for

each parameter on Θ. The update rules can be shown to be:

vec(Ms)←

(
K∑

k=1

(
φk,c

mm

>
⊗
(
Gk>Gk

)))−1
vec

(
K∑

k=1

Gk> (wk,c −Gks0 − hk
)
µk,c

m

>
)
,

Rk ← arg min
s.t.RkRk>=I2

‖Rk
N∑
i=1

(
Msφ̂

k,c

mmM>s

)
i
−

N∑
i=1

(wk,c
i − tk)

(
Msµ̂

k,c
m

)>
i
‖2F ,

tk ← 1

N

N∑
i=1

(
wk,c

i −Rk(s0,i + (Msµ
k,c
m )i)

)
,

σ2 ← 1

2NK

K∑
k=1

(
‖wk,c−Gks0 − hk‖2 − 2

(
wk,c−Gks0−hk

)>×
×GkMsµ

k,c
m + tr

(
M>s G

k>GkMsφ
k,c
mm

))
,

where wk,c = [(wk,c
1 )>, . . . , (wk,c

N )>]> is a 2N -dimensional vector, wk,c
i are 2D

coordinates of the i-th point in frame k, and (Msµ
k,c
m )i is the i-th 3D point of

the 3N vector Msµ
k,c
m . To solve the optimization for Rk we use a non-linear

minimization routine.
The overall process is quite efficient, and requires, in average, a few tens of

iterations to converge for collections of a few hundreds of images. Figure 2-Right
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plots the evolution of the log-likelihood of Eq. (8) for a collection of 200 images
with 157 points each. In this case, the algorithm converged in 30 iterations,
taking 323 seconds on a laptop with an Intel Core i7 processor at 2.4GHz.

We initialize motion parameters by rigid factorization (similar to shape-
based NRSfM approaches [5, 12, 15]) and the dual low-rank model by means
of a coarse-to-fine approach, where each basis that is added explains as much
of the deformable motion variance as possible. Additionally, since we are esti-
mating global models we can handle occlusions, and missing observations can
be easily inferred from the observed data. We will demonstrate this robustness
in the results section.

5 Experiments

We next report quantitative and qualitative results of our method on face recon-
struction. These results can be best viewed in the supplemental video1. For the
quantitative results, we report the mean 3D reconstruction error [%] as defined
in [12, 15].

5.1 Synthetic Images

To quantitatively validate our method, we first consider a synthetic sequence
with 3D ground truth. From the real and dense mocap data of [43], we render
a sequence of 200 frames and 157 points per frame (denoted in the following
as Face sequence), in which one person performs several face movements and
gestures. We randomly shuffle the frames ordering in order to build a collection
of images without temporal coherence. For this specific experiment we do not
test the multi-object instance scenario. This is not a problem for our model
though, despite it considers the between- and within-object subspaces. We could
have forced the between-object subspace to be zero, but decided not doing so,
and show that our approach can generalize from one to several objects.

We use this sequence to compare the proposed method against several low-
rank shape, trajectory and shape-trajectory methods in state of the art. In par-
ticular, we consider: EM-LDS [5], the metric projections MP [12], SPM [13]
and EM-PND [7] for shape space; the point trajectory approach (PTA) [19]
for trajectory space; the column space fitting (CSF2) [20] and the kernel shape
trajectory approach (KSTA) [6] for shape-trajectory methods. The parameters
of these methods were set as suggested in the original papers. In our case, we
only have to set the rank B and Q of the between- and within-object subspaces,
respectively.

We conduced experiments with and without noise in the observations. For the
noisy case, we corrupted the measurements using additive zero-mean Gaussian
noise with standard deviation σnoise = 0.02κ, where κ denotes the maximum dis-
tance of a 2D point observation to the mean position of all observations. In Fig. 3,

1 Videos can be found on website: http://www.iri.upc.edu/people/aagudo.
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Fig. 3. Mean 3D reconstruction error in the Face sequence, as a function of ba-
sis rank Q for state-of-the-art methods: EM-LDS [5], MP [12], PTA [19], CSF2 [20],
KSTA [6] and EM-PND [7]; and our approach. For the EM-PND [7], the 3D recon-
struction error was 21.0% and 21.2% for the noise-less and noisy cases, respectively.
For our approach, the between-object rank was set to a fixed value of B = 3. Left:
Noise-less 2D measurements. Right: Noisy 2D measurements. Best viewed in color.

we plot the mean 3D reconstruction error as a function of the within-object ba-
sis rank Q, for our method and the other seven methods aforementioned. In
our formulation the between-object basis rank was not accurately tuned and it
was set to a constant value of B = 3. Observe that our approach consistently
outperforms the rest of competing approaches for both the noise and noiseless
experiments. Since EM-PND [7] does not need to set the basis rank, we did not
include this method in the graph, and just report its reconstruction error, which
is of 21.0%, far above from the rest of methods. Regarding SPM [13], the ap-
proach is not applicable to larger ranks as the number of linear-matrix-inequality
constraints is not sufficient to solve this case, obtaining an error of 10.69% for
Q = 1. It is worth noting that our results for Q = 1 are remarkably better than
other approaches for Q ≥ 4, that is our equivalent rank if we consider the 3
vectors of B. In Fig. 4 we represent the significance of the reconstruction error
values, and show some qualitative results, including the 2D input data and our
reconstructed 3D shape.

5.2 Real Images

For the real data we consider two experiments with human faces of two or more
individuals.

In the first scenario we process an American Sign Language (ASL) database,
that consists in a collection of 229 images belonging to 2 subjects (male and
female) with 77 feature points per frame. One of the challenges of this dataset is
that some of the frames are heavily occluded by one or two hands, or by the own
rotation of the face. The dataset is built from two sequences previously used
to test NRSfM algorithms: the ASL1, consisting of 115 frames with a 17.4%
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Fig. 4. Synthetic results on the Face sequence. We show the input images at the
top, and at the bottom a frontal and side views of the reconstructed shapes. For all
cases, we display the results with Q = 3 and B = 3. Best viewed in color.

of missing data [33], and the ASL2 sequence, consisting of 114 frames with a
11.5% of missing data [20]. Before processing the collection of images, we shuffle
the frames to break the temporal continuity. In Fig. 5 we show two views per
image of the shape estimated by our method, CSF2 [20] and KSTA [6]. For our
approach we set C = 1. By doing this we ensure a fair comparison with the
other two approaches, as we do not exploit the fact that the identity of each
individual is known. Additionally we set B = 2 and Q = 3. From Fig. 5 we can
observe that our model yields a qualitatively correct estimation of the shape.
However, while CSF2 [20] provides very good results when processing the two
sequences ASL1 and ASL2 independently, it is prone to fail when merging their
data and shuffling the frames, using exactly the same rank of the subspace.
Note the completely wrong estimation of the nose in some of the frames. This is
relieved by KSTA [6], although by providing a quasi-rigid solution with almost
no deformation adaption. Observe, for instance, that the lips remain always
closed (see for example frames #105 and #62 of the upper and lower sequence
in Fig. 5). Although only qualitatively, our approach correctly retrieves these
deformations.

In order to bring some quantitative results to this analysis, we have built a
pseudo-ground truth of this database (real 3D ground truth is not available) by
independently processing ASL1 and ASL2 using the NRSfM approach proposed
in [9] –the method that seems to provide best performance for these sequences–
and compared its 3D reconstructions with the ones obtained when simultane-
ously processing the faces of the two persons. A summary of these results are pro-
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Fig. 5. ASL database. In each row we show the same information. Top: 2D tracking
data and reconstructed 3D shape reprojected into several images with green circles
and red squares, respectively. Blue squares correspond to missing points. Bottom:
Camera frame and side-views of the reconstructed 3D shape: our solution, CSF2 [20]
and KSTA [6], respectively. We also represent the number of image k in the input data,
showing as different objects are intercalated. Best viewed in color.

vided in Table 1. In this case, we obtain the following errors: CSF2 [20] (14.93%),
KSTA [6] (3.62%), EM-PFS [9] (8.37%), our approach (2.66%). If we specifically
focus on the lips reconstruction, which is highly deformable, as expected the
differences become more clear: CSF2 [20] (12.74%), KSTA [6] (11.08%), EM-
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Table 1. Quantitative comparison on ASL database. Comparison of our ap-
proach against CSF2 [20], KSTA [6] and EM-PFS [9] for the full face shape and the
corresponding lips area in terms of 3D error [%]. In all cases we show the minimum
error with the number of rank Q in the subspace (in brackets).

PPPPPPPData
Method

CSF2 [20] KSTA [6] EM-PFS [9] Ours (C=1) Ours (C=2)

Face 14.93(6) 3.62(6) 8.37(5) 2.66(3) 2.50(3)
Lips 12.74(6) 11.08(6) 7.79(5) 4.53(3) 4.35(3)

PFS [9] (7.79%), our approach (4.53%). It is worth to point that the performance
of EM-PFS [9] degrades when jointly processing images of ASL1 and ASL2. We
presume the intrinsic physical model considered by this approach is sensitive to
the differences between the two individuals. Additionally, we can exploit the list
the classes c in our formulation. In this case, we obtain more accurate solutions:
2.50% considering all object shape and 4.35% for lips reconstruction.

In the final experiment we evaluate our approach on a subset of the MUCT
face database [44]. We gather an heterogeneous collection of 302 images belong-
ing including very different face morphologies, poses and expressions. We ensure
the input images contain similar numbers of males and females, and a cross
section of ages and races. Once the images are chosen, we obtain the 2D obser-
vations using an off-the-shelf 2D active appearance model [45]. Again, in order
to highlight the generality of our approach, we do not take advantage of the fact
of knowing the object label of each input image, and we set C = 1. Figure 6
shows the qualitative results of our approach. We can observe how our method
provides results that seem very realistic and correlate with the appearance of the
images. Note, for instance that some of the faces have an overall thin shape (see
woman in the first column) while other convey a quite round shape (see woman
in the second column).

6 Conclusion

In this paper we have proposed a new formulation of the NRSfM problem that
allows dealing with collections of images with no temporal coherence, and in-
cluding several instances of the same class of object. In order to make this
possible we have proposed a dual low-rank space that separately models the
deformations within each specific object and the deformations between individ-
uals. These low-rank subspaces are learned using a variant of the probabilistic
linear discriminant analysis, and an EM strategy that consecutively executes sev-
eral expectation and maximization steps. We validate the approach in synthetic
image collections –with one single object instance– and show improved results
compared to state-of-the-art. Real results on datasets including faces of two or
more persons, depict an even larger gap with previous NRSfM approaches. In
the future we aim at extending our approach to different types of datasets, not
only human faces. For instance, we believe we can readily exploit our formulation
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Fig. 6. MUCT database. In each row we show the same information. Top: 2D track-
ing data and reconstructed 3D shape reprojected into several images with green circles
and red squares, respectively. Bottom: Camera frame and side-views of the recon-
structed 3D shape. Best viewed in color.

to learn deformable shape manifolds of human full body motions. Other fields,
such as computer graphics animation could also benefit from this approach and
transfer motion styles between different characters.
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