HOMOCYSTEINE AND COGNITIVE IMPAIRMENT IN PARKINSON’S DISEASE: A BIOCHEMICAL, NEUROIMAGING AND GENETIC STUDY

Rodriguez-Oroz MC1,2, Martínez Lage P3*, Sanchez-Mut J4**, Lamet I3, Pagonabarraga J5,2, Toledo JB3, García-Garcia D1,2, Clavero P1,2, Samaranch L1, Irurzun C3, Matsubara JM3, Irigoien J3, Bescos E3, Kulisevsky J5,2, Pérez-Tur J4, Obeso JA1,2

1. Department of Neurology, University Clinic and Medical School of Navarra; Neuroscience Centre, CIMA, Pamplona, Spain.
2. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
3. Department of Neurology, University Clinic and Medical School of Navarra; *Present address: Fundación ACE, Instituto Catalán de Neurociencias Aplicadas, Barcelona, Spain.
4. Unitat de Genética Molecular. Institut de Biomedicina de València-CSIC, Valencia, Spain. **Present address: Cancer Epigenetics and Biology Program (PEBC), Catalan Institute of Oncology (ICO), Hospital Duran i Reynals, L'Hospitalet de Llobregat (Barcelona) Spain
5. Department of Neurology, Hospital Sant Pau, Barcelona, Spain.
Correspondence to: Maria C Rodriguez-Oroz.
Clínica Universitaria Navarra. Av Pio XII 36
Pamplona 31008. Spain
Tfno: 34 948 255400
Fax: 34 948 296500
e-mail: mcroroz@unav.es

Title: Homocysteine and dementia in PD

Word count abstract: 199
Word count paper: 2697
Tables: 4
Figures: 1
Legends: 5
References: 45

Running title: Homocysteine and dementia in PD

Financial Disclosure: Maria C Rodriguez-Oroz and Jose Obeso have received an unrestricted research grant from Novartis Pharma (Basel, Switzerland) for this study. Jose Obeso has also served as Consultant for Novartis Pharma (Basel, Switzerland), GSK(UK) and Boeringhem Ingelheim (Germany). The other co-authors report no conflict of interest.
ABSTRACT

The role of the plasma level of homocysteine (Hcy), as a primary outcome, and the effect of silent cerebrovascular lesions and genetic variants related to Hcy metabolism, as secondary outcomes, in the cognitive decline and dementia in Parkinson’s disease (PD) were studied. This case-control study focused on 89 PD patients of minimum 10 years of evolution and older than 60 y.o., who were neuropsychologically classified either as cognitively normal (n= 37), having mild cognitive impairment (Petersen criteria) (n=22) or suffering from dementia (DSM-IV) (n=30), compared with cognitively normal age-matched control subjects (n=30). Plasma levels of Hcy, Vitamins B12 and B6, folic acid, polymorphisms in genes related to Hcy metabolism (MTHFR, MTR, MTRR, CBS) and silent cerebrovascular events were analysed. Plasma levels of Hcy were increased in PD patients (p=0.0001). There were no differences between the groups of patients. The brain vascular burden was similar among PD groups. There was no association between polymorphisms in the studied genes and the Hcy plasma levels or cognitive status in PD patients. We found no evidence for a direct relationship between Hcy plasma levels and cognitive impairment and dementia in PD. No indirect effect through cerebrovascular disease or genetic background was either found.

Key words: Homocysteine, Parkinson’s disease, dementia, mild cognitive impairment, genetics, white matter hyperintensities
INTRODUCTION

Dementia is a frequent manifestation of advanced Parkinson’s disease (PD)\(^1,^2\). Advanced age, longer duration of disease and greater severity are associated with dementia in PD\(^1\). Elevated plasma homocysteine (Hcy) levels represent a risk factor for cognitive decline and dementia in the general population\(^3\) and have been associated with mild cognitive impairment (MCI)\(^4\), Alzheimer's disease (AD)\(^4,^5\), vascular dementia\(^6\) and depression\(^7\). In patients with PD, levodopa treatment leads to increased Hcy plasma levels\(^8,^11\). Hcy is regulated by several metabolic pathways (Figure 1) and may be determined by genetic and dietary factors. Genetic polymorphisms in genes encoding enzymes involved in Hcy metabolism could be partly responsible for the hyperhomocysteinemia observed in some PD patients. For instance, remethylation of Hcy may be more or less efficient depending on the activity of the enzyme \textit{MTHFR} (5,10-Methylen-tetrahydrofolate reductase), which is determined by different genotypes\(^12\). The T/T variant of the genotype C677T of the \textit{MTHFR} reduces its enzymatic activity, leading to higher levels of Hcy in patients treated with levodopa\(^12,14\). However, this association has not been found in other studies\(^15\). All of the above leads to postulate a role for increased Hcy levels as a risk factor in the development of dementia in PD. Indeed, several open trials have been performed to reduce Hcy levels in PD patients using vitamin B12, folate supplements or treatment with catechol-o-methyl transferase (COMT) inhibitors\(^16-20\). This leads to the somewhat irregular situation where a therapeutic approach is tested for an association (i.e. high Hcy levels and dementia in PD) which has not been proven\(^21\). Current information is limited to a few studies\(^10,22-24\) which have provided contradictory results. We analyzed a large group of PD patients to
extensively assess the possible correlation between Hcy plasma levels and the
development of dementia.

METHODS

The Ethics Committee for Medical Research approved the study. All patients and controls provided written informed consent. For patients with dementia, this was obtained from a relative. PD patients diagnosed according to the UK Brain Bank criteria25 were recruited from our movement disorders clinic. Patients were older than 60 y.o. and had disease duration of 10 years or longer. Patients with other brain disorders, vascular or severe systemic disease, major psychiatric illness, previous cerebral surgery, or receiving anticonvulsants, vitamin B, folate supplements or COMT inhibitors were excluded. The Hoehn and Yahr scale and the Unified Parkinson’s Disease Rating Scale motor section (UPDRS-III) were used to evaluate disease severity. Patients were classified as being cognitively normal (PD-CN), with mild-cognitive impairment (PD-MCI) and demented (PD-D). MCI was defined according to Petersen et al’s criteria26 which includes memory complaint, normal activities of daily living, normal general cognitive function, abnormal memory for age, and absence of dementia. The DSM-IV criteria were applied for diagnosis dementia. Patients exhibited multiple cognitive deficits (table 2) and impairment of daily life activities. Healthy controls were recruited among members of the Association of Blood Donors of Navarra (Spain). Cases with history of any neurological, psychiatric or major medical illness, with scores below normal in the neuropsychological assessment or with abnormalities in the MRI were ruled out.
The primary aim of this study was to determine the relationship between Hcy plasma levels and cognitive decline in advanced PD patients. Secondary objectives were the role of genetic factors related to Hcy metabolism and of silent vascular events in the cognitive decline of PD patients and their possible association with Hcy levels. The relationship between depression and Hcy and the role of factors such as vitamins Bs and folate plasma levels were also investigated.

Neuropsychological evaluations

Global cognitive function was evaluated with the Mini Mental State of Folstein (MMSE)\(^{27}\) and the Blessed cognitive scale (BDS)\(^{28}\). Activities of daily living were evaluated with the Interview for Deterioration in Daily Living in Dementia scale (IDDD)\(^{29}\). Depression was rated using the Yesavage Geriatric Depression Rating Scale (GDS)\(^{30}\). The different cognitive domains were evaluated by the following tests: verbal episodic memory (Free and Cue Selective Reminding test of Buschke\(^{31}\) and Cerad word list\(^{32}\); visual episodic memory (copy and delayed recall of two simple figures (Massachusetts General Hospital, Boston)); language (Boston naming test)\(^{33}\); attention and executive functions (Raven Progressive matrices\(^{34}\), semantic (animals) and phonetic (words starting with “p”) verbal fluency\(^{35}\), Trail Making Test parts A and B\(^{36}\), the Stroop test and digit span forward and backwards\(^{37}\). All tests were blindly applied by the same person in each center to control subjects and patients while under treatment, and were used alongside the diagnostic criteria described above to determine the cognitive status.

Biochemistry

All blood samples were obtained by antecubital venopuncture under fasting conditions and 4-6 hours after the first morning levodopa dose in PD patients. Plasma levels of Hcy, Vitamin B12 and folate were determined using a solid phase competitive
chemiluminescent enzyme immunoassay (INMUNOLITE 2500). Vitamin B6 was determined by radioisotopic assay (BUHLMANN laboratories Ag, Switzerland ALLSCHWIL).

Genetic study

Seven polymorphisms in genes involved in Hcy metabolism were typed using either restriction fragment length polymorphism (RFLP) assays or allele specific amplification with the primers and conditions available upon request. The polymorphisms included in this study were rs1801133 (c.C677T, p.A222V) and rs1801131 (c.A1298C, p.E429A) in MTHFR (accession numbers: NM_005957, NP_005948), rs1805087 (c.A2756G, p.D919G) in methionine synthase (MTR) (accession numbers: NM_000254, NP_000245), rs1801394 (c.A66G, p.I22M) in methionine synthase reductase (MTRR) (accession numbers: NM_002454, NP_002445) and c.844ins68, rs5742905 (c.T833C, p.I278T) and rs11700812 (c.G919A, p.R369H) in Cystathionine β-synthase (CBS) (accession numbers: NM_000071, NP_000062).

Magnetic Resonance Imaging (MRI)

All patients had an image study to exclude other causes of cognitive impairment. Because of practical reasons, in 18 cases only a CT brain scan could be performed. A 3-D structural MRI (1.5 T Magneton SP (Siemens Erlangen, Gr) was performed in the rest of patients and controls using a T1-weighted MPRAGE sequence, (TR/TE/TI/NEX 1900/3.93/1100/1, flip angle 15°), matrix size 256 × 192, yielding 144 coronal slices and a slice thickness of 1.5 mm with in-plane resolution of 0.9765625× 0.9765625 mm. FLAIR and T2-weighted sequences were also obtained. All MRI studies were undertaken
the same week that the neuropsychological and physical evaluation by the same
radiologist who was not aware of the cognitive status of the patients and the Hcy levels.
Brain vascular burden (white matter hyperintensities-WMH) was analyzed on FLAIR and
T2 weighted MRI sequences. WMH were defined as hyperintense lesions on both
sequences images. Only deep lesions of more than 5mm were counted. Caps and
periventricular lesions less than 10 mm thick were not taken into consideration. WMH
were semi-quantified using the ARWMC (age related WMH) scale of the European Task
Force for the study of leukoaraiosis (Wahlund scale) 38. This scale was blindly applied
by 2 neurologists.

Statistics

The normal distribution of all variables was assessed using the Kolmogorov-Smirnov test.
Distribution of the variables among the different groups (table 1) was assessed using
Kruskal Wallis, ANOVA and mid-p test depending on the distribution and characteristics
of the variable. A logarithmic transformation was applied as needed for the regression
models. For the primary end point, a multinomial logistic regression was used for analysis.
Secondary end points were assessed by linear multiple regression. Post-hoc Bonferroni’s
correction for multiple comparisons was applied. The statistics package SPSS 15.0 (SPSS
Inc. Chicago, Illinois) and WinPepi 1.66 (PEPI-for-Windows) was used.

RESULTS

Eighty-nine patients with PD classified as PD-CN (n=37), PD-MCI (n= 22) and PD-D
(n=30) and 30 controls were studied.
The general characteristics of the groups are shown in table 1. PD-D patients were older than all other groups and had a higher depression score (table 1). Patient groups were comparable regarding years of evolution, severity of the disease and daily levodopa dose. All patients were receiving treatment with levodopa and 53 received additional treatment with a dopamine agonist (25 pramipexol, 14 ropinirol, 10 cabergoline, 4 pergolide). Sex distribution and level of education were similar among groups.

Hcy plasma levels and biochemical data

A linear multiple regression model for possible variables influencing Hcy levels was undertaken. Sex, disease duration and levodopa daily dose were not associated with Hcy plasma levels. Age, was positively associated with Hcy plasma levels. Acid folic, Vit B12 and Vit B6 were inversely associated with the plasma concentration of Hcy (global model: p=0.00015, adjusted R square =0.305). Plasma levels of vitamins B12 and B6 and folate did not differ among patient groups.

Plasmatic Hcy levels were higher (table 1) in PD patients than in controls (p= 0.0001). Hcy levels did not predict cognitive status (p=0.403) in a multinomial logistic regression of PD patients adjusting for variables influencing Hcy plasma levels and cognitive decline (age, Vit B12, Vit B6 and folic acid). Results were similar when pooling together PD patients with any degree of cognitive impairment (i.e. PD-MCI plus PD-D). No correlation was found between Hcy plasma levels and performance on neuropsychological tests (table 2).

Genetic Study

The control population was in Hardy-Weinberg equilibrium for all polymorphisms analyzed except for the \(MTRR\text{-A66G} \). For this reason, this SNP was excluded from the
analysis. All three polymorphisms in the CBS gene were in complete linkage disequilibrium, and therefore only data for the c.844ins68 polymorphism is shown. Due to the low number of individuals homozygous for the mutant genotype in some polymorphisms, the analysis was performed grouping together those genotypes carrying at least one mutant, i.e. less frequent allele (TT plus CT for the c.C677T MTHFR; GG plus AG for the MTR c.A2756G; ins+/ins+ plus ins+/ins- for the c.844ins68 CBS).

Linear multiple regression analysis for variables influencing Hcy concentration (age, Vit B12, Vit B6 and folic acid) was applied to assess whether or not these polymorphisms influenced Hcy plasma levels. This revealed that Hcy levels are independent of the genetic variants (table 3). Moreover, we found no relation between the genetic variants and Hcy plasma levels in the control group.

A multinomial logistic regression model adjusting for age was applied to assess the effect of the genetic variants in the cognitive status of PD patients. There was no association between any polymorphisms and the cognitive status even when pooling together all patients with some degree of cognitive impairment (i.e. PD-MCI plus PDD patients) (table 4). None of the studied polymorphisms was associated with increased risk of PD.

White matter changes in MRI

In 3 patients the Flair sequences of the MRI were not suitable to evaluate the Wahlund scale, so sixty-eight patients were available for analysis. The scores on the Wahlund scale were 1.32 ± 1.96 in PD-CN; 1.57±2.14 in PD-MCI and 2.10±2.19 in PD-D patients. Adjusting for age, there were no differences among the groups of patients (p=0.958). Interestingly, age and Hcy plasmatic levels were independently associated with the Wahlund scores, but there was no association when both variables were included in a
multinomial logistical regression model. This could be due to the fact that silent vascular events and Hcy plasmatic levels increase with age.

Depression

Patients with PD-D (p<0.001) and with PD-MCI (p=0.007) were more depressed than PD-CN patients (GDS= 11.81±4.30 in PD-D; 10.60 ± 4.9 in PD-MCI and 5.85 ± 3.70 in PD-CN). There was no difference between PD-CN patients and controls (GDS= 4.5 ±3.7). No correlation between Hcy plasma levels and depression (r=0.154, p=0.233) was found. None of the variants of the polymorphisms studied was associated with depression.

DISCUSSION

Hcy plasma levels and dementia

We found no relationship between Hcy plasma levels and cognitive impairment in patients with PD. Our pilot study included an extensive analysis of a fairly large cohort of PD patients and a detailed neuropsychological evaluation that allowed appropriate classification according to the cognitive status. After adjusting for factors influencing Hcy plasma levels and cognitive decline in a multinomial logistic regression model, we found that Hcy plasma levels did not predict the cognitive status of PD patients. Although a ceiling effect in all PD groups due to the effect of levodopa on Hcy may be partially responsible for this negative finding, we failed to detect any association between levels of Hcy and cognitive status or neuropsychological performance. Previous studies investigating this subject yielded contradictory results. Higher Hcy plasma levels in patients with cognitive decline than in non-demented patients were reported in a
Rodriguez-Oroz

A retrospective study conducted in a reduced number of patients in whom the MMSE was the only test used for evaluation. Religa et al.10 found a correlation between high Hcy plasma levels and low MMSE scores. However, the PD group had low vitamin B12 levels, which might be a confounding factor affecting these results. High levels of Hcy have also been associated with poorer performance in frontal and memory tests22 in PD.

On the other hand, one prospective study in early PD patients showed no difference in motor, mood and cognitive deterioration between patients with and without high Hcy levels after levodopa treatment was initiated,23 suggesting that disease progression is not associated with Hcy plasma concentration. Similar negative findings were reported in a cross-sectional study of 72 PD patients in whom there was no association between Hcy and depression, cognitive performance and psychosis24. A recent study of demented PD patients showed a similar degree of cognitive impairment in patients with low and high Hcy levels40. In our study, patients were evaluated thoroughly from a neuropsychological point of view and the patient population was sufficiently old and had suffered PD for long enough to be at risk of developing dementia1. This makes it very unlikely that our negative findings could be explained by a population bias. Moreover, our statistical analysis was corrected for age and disease duration, and no significant correlation was found. We also took care to differentiate PD patients with MCI and dementia under the hypothesis that MCI could be the earliest phase of cognitive decline in PD41, so our patient population was more accurately classified than in previous studies. While the appropriateness of Petersen’s criteria to evaluate MCI in PD may be questioned42, the fact is that by analyzing (separately or together) PD patients with dementia and with MCI, we should have increased the sensitivity to detect any possible
Rodriguez-Oroz

association between plasma Hcy levels and cognitive impairment. Moreover, we found no correlation between the scores on the neuropsychological tests and Hcy plasma levels. We also assessed the role of ischemia as a factor associated with dementia. Hyperhomocysteinemia is a risk factor for ischemia and vascular dementia, and there is an association between WMH and cognitive impairment and dementia. The incidence of WMH in all groups of patients was not statistically different. We excluded from the study patients with severe vascular risk factors and recognized vascular diseases, but the possibility of mild vascular pathology can not be entirely ruled out.

Hcy metabolism, genes and dementia

Hcy plasma levels may also be influenced by genetic factors that determine a less efficient metabolism of Hcy. These include the following (figure 1): 1. excessive production of S-adenosyl homocysteine when levodopa is metabolized by COMT; 2. reduced remethylation of Hcy due to exhaustion of the pool of methyl donors, as in folate and/or vitamin B12 deficiency states or in individuals with genetically determined inefficiency of MTR or MTHFR; 3. deficient transulfuration pathway which can be genetically determined or result from vitamin B6 deficiency. Thus, hyperhomocysteinemia can arise from the effect of several polymorphisms on genes involved in Hcy metabolism. In the general population, possession of the T allele in *MTHFR* c.C677T, the C allele in *MTHFR* c.A1298C, the A allele in *MTR* c.A2756G or the c.844ins68 allele in *CBS* all caused hyperhomocysteinemia. However, only the *MTHFR* c.C667T polymorphism has been studied in PD patients. The TT variant of this polymorphism has been associated with higher Hcy plasma levels in PD patients treated with levodopa. Other studies have shown that this variant does not influence Hcy plasma levels in levodopa-treated PD patients or in patients not receiving
Considering a possible interaction between genetic variants and levodopa intake in Hcy levels, we performed an extensive genetic assessment in this study. Plasma levels of Hcy were independent of genetic variations for every one of the polymorphisms and no association was found between the different polymorphisms studied and the cognitive status in PD patients. Admittedly, it could be argued that the influence of levodopa on Hcy levels is so overt that it makes it unlikely that any influence of these polymorphisms could be observed.

In conclusion, we studied a patient population representative of advanced PD, and failed to find any evidence indicating that high Hcy plasma levels are a risk factor for cognitive decline. No association between Hcy plasma levels or polymorphisms of genes implicated in its metabolisms and cognitive impairment or dementia was found in PD patients. However, the putative role of high Hcy levels in PD dementia cannot be entirely discarded given the pivotal role of Hcy in cellular metabolism. A prospective, large scale study with unselected PD patients is required for definitive ascertainment.

Acknowledgment

The principal author MCR had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

This study was partially funded by a grant from the Government of Navarra (49/2004) Spain, a research grant from Novartis Pharma (Basel, Switzerland) and by the agreement between FIMA and the ‘UTE project FIMA’. Work performed at JP-T laboratory has been funded by the Ministerio de Educación y Ciencia, Spain (SAF2006-00724). The authors are grateful to Dr I. Gaston, E. Erro and I. Jerico from the Neurology Service, Hospital of Navarra, Pamplona, Spain, for referring patients for the study.
Author Roles

Rodriguez-Oroz MC. Conception, general organization, coordination and supervision of the study, statistical analysis and interpretation of the results and writing of the article, as well as selection and motor evaluation of patients. The principal author MCR had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Martínez Lage P. Cognitive studies of patients and controls, and evaluation of silent vascular events on MRI. Review of the manuscript.

Sanchez-Mut J. Genetic studies and critical review of the manuscript.

Lamet J.MS. Neuropsychological tests evaluations.

Pagonabarraga J. MD. Neuropsychological tests evaluation and review of the manuscript.

Toledo JB, MD. Statistical assistance in design and execution of the analysis

García-Garcia D. MRI Studies and statistical analysis

Clavero P. MD. Motor evaluation of Parkinsonian patients and critique of the manuscript

Samarach L, PhD. Biochemical analysis

Irurzun C. MD. Assistance in coordination of study and in statistical analysis

Matsubara JM. Evaluation of silent vascular events on MRI.

Irigoien J. Assistance in coordination of the study

Bescos E. Assistance in cognitive studies

Kulisevsky J. Selection and motor evaluation of patients and cognitive studies. Review of the manuscript
Pérez-Tur J. Genetic study, statistical analysis of data and interpretation of results. Review of the manuscript.

Obeso JA. Conception of the study, selection and motor evaluation of patients. Critical discussion of draft.
REFERENCES

35. Parkin. Exploraciones en Neuropsicologia cognitiva. 1999
Tables and figure legends:

Table 1 General characteristics of patients and controls and plasma levels of Homocysteine and cofactors in its metabolism

Table 2. Summary of the scores on neuropsychological tests in every group and correlation of scores in the whole population of PD patients with Hcy plasma levels.

Table 3. Plasmatic levels of homocysteine corresponding to the different variants of the genetic polymorphisms in PD patients.

Table 4. Genotype distribution at the polymorphisms analyzed stratified by population.

Figure 1. Diagram showing the effect of levodopa on the metabolism of homocysteine. Note: the reaction involving BHMT is absent in from the brain.
Table 1 General characteristics of the patients and controls and plasma levels of homocysteine and cofactors in its metabolism

<table>
<thead>
<tr>
<th></th>
<th>Control (n=30)</th>
<th>PD-CN (n=37)</th>
<th>PD-MCI (n=22)</th>
<th>PD-D (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>68.48 ± 2.98</td>
<td>69.97 ± 6.5</td>
<td>70.23 ± 5.2</td>
<td>74.87 ± 6.15**</td>
</tr>
<tr>
<td>Sex (% male)</td>
<td>51.72</td>
<td>54.55</td>
<td>63.64</td>
<td>60.00</td>
</tr>
<tr>
<td>Years Evol</td>
<td>-----</td>
<td>14.68 ± 4.62</td>
<td>13.05 ± 3.69</td>
<td>14.73 ± 4.45</td>
</tr>
<tr>
<td>Educ (%Pri)</td>
<td>68.97</td>
<td>65.00</td>
<td>91.67</td>
<td>81.25</td>
</tr>
<tr>
<td>UPDRS OFF</td>
<td>-----</td>
<td>41.88 ± 9.54</td>
<td>43.75 ± 4.76</td>
<td>48.11 ± 7.16</td>
</tr>
<tr>
<td>Hoehn and Yahr</td>
<td>-----</td>
<td>3.35 ± 0.91</td>
<td>3.43 ± 0.62</td>
<td>3.94 ± 0.52</td>
</tr>
<tr>
<td>Depression (GDS)</td>
<td>4.4 ± 3.3</td>
<td>6.53 ± 5.02</td>
<td>9.41 ± 5.17*</td>
<td>12.13 ± 4.73 *</td>
</tr>
<tr>
<td>Ldopa(mg/day)</td>
<td>-----</td>
<td>786.11 ± 262.68</td>
<td>825.04 ± 331.16</td>
<td>811.32 ± 338.09</td>
</tr>
<tr>
<td>DA agonists (%)</td>
<td>66.66</td>
<td>63.63</td>
<td>56.66&</td>
<td></td>
</tr>
<tr>
<td>Hcy (µmol/l)</td>
<td>8.55 ± 1.95***</td>
<td>14.9 ± 4.7</td>
<td>15.1 ± 4.3</td>
<td>15.4 ± 5.4</td>
</tr>
<tr>
<td>Vit B12 (pg/ml)</td>
<td>-----</td>
<td>400.1 ± 222.2</td>
<td>353.2 ± 205.6</td>
<td>380.2 ± 156.5</td>
</tr>
<tr>
<td>Vit B6 (nmol/l)</td>
<td>-----</td>
<td>49.5 ± 31.6</td>
<td>65.7 ± 56.0</td>
<td>49.7 ± 63.3</td>
</tr>
<tr>
<td>Folate (ng/ml)</td>
<td>-----</td>
<td>10.2 ± 5.6</td>
<td>11.6 ± 6.5</td>
<td>10.4 ± 4.6</td>
</tr>
</tbody>
</table>

Educ (%Pri): Educational level (% of primary school)

DA agonist (%) Percentage of patients taking dopamine agonists
** P <0.0001 vs control and PD-CN; p=0.02 vs PD-MCI

* P <0.001 vs PD-CN

θ p= 0.04 vs PD-CN

& p= 0.04 vs PD-CN

*** P =0.0001 between groups
Table 2. Summary of the scores of the neuropsychological tests in every group and correlation of the scores in the whole population of PD patients with Hcy plasma levels.

<table>
<thead>
<tr>
<th>Test</th>
<th>Cut-off scores</th>
<th>Controls</th>
<th>PD -CN</th>
<th>PD-MCI</th>
<th>PD-D</th>
<th>Pearson Correlation coefficient (r) in PD patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE*</td>
<td>≤24</td>
<td>28.93 (1.28)</td>
<td>29.0 (2.25)</td>
<td>25.0 (5.50)</td>
<td>19.0 (5.0)</td>
<td>-0.176</td>
</tr>
<tr>
<td>IDDD</td>
<td>>35</td>
<td>33</td>
<td>35 (2.31)</td>
<td>35.4 (3.2)</td>
<td>54.8 (14)</td>
<td></td>
</tr>
<tr>
<td>Digit span</td>
<td>≤10</td>
<td>10.32 (2.11)</td>
<td>12.57 (3.27)</td>
<td>8.38 (3.58)</td>
<td>6.14 (3.08)</td>
<td>-0.056</td>
</tr>
<tr>
<td>Figure copy*</td>
<td>≤8</td>
<td>10.0 (0.0)</td>
<td>10.0 (0.0)</td>
<td>10.0 (0.0)</td>
<td>8.0 (4.0)</td>
<td>0.032</td>
</tr>
<tr>
<td>Figure recall*</td>
<td>≤6</td>
<td>6.48 (4.0)</td>
<td>8.0 (4.0)</td>
<td>2.0 (10.0)</td>
<td>0.0 (0.5)</td>
<td>0.051</td>
</tr>
<tr>
<td>Phonemic fluency</td>
<td>≤10</td>
<td>13.86 (5.60)</td>
<td>13.79 (6.34)</td>
<td>10.13 (6.47)</td>
<td>7.43 (3.55)</td>
<td>-0.060</td>
</tr>
<tr>
<td>Semantic fluency</td>
<td>≤15</td>
<td>18.07 (4.83)</td>
<td>18.64 (4.75)</td>
<td>10.50 (2.72)</td>
<td>8.0 (3.11)</td>
<td>-0.021</td>
</tr>
<tr>
<td>FCSRT*</td>
<td>≤44</td>
<td>47.41 (0.8)</td>
<td>48.0 (1.0)</td>
<td>47.0 (7.75)</td>
<td>28.29 (24)</td>
<td>-0.136</td>
</tr>
<tr>
<td>Boston*</td>
<td>≤49</td>
<td>49.21 (5.52)</td>
<td>53.50 (6.25)</td>
<td>40.5 (14.25)</td>
<td>30.0 (5)</td>
<td>0.015</td>
</tr>
<tr>
<td>Raven</td>
<td>≤26</td>
<td>26.93 (3.67)</td>
<td>26.0 (3.68)</td>
<td>17.75 (6.25)</td>
<td>13.57 (3.73)</td>
<td>0.038</td>
</tr>
<tr>
<td>Trail A</td>
<td>≥70 sec</td>
<td>65.69 (29.42)</td>
<td>56.0 (24.10)</td>
<td>115.75 (47.36)</td>
<td>233.58 (77.35)</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>(60-69 y.o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥100 sec</td>
<td>65.69 (29.42)</td>
<td>56.0 (24.10)</td>
<td>115.75 (47.36)</td>
<td>233.58 (77.35)</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>(70-79 y.o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trail B*</td>
<td>≥170 sec</td>
<td>137.31 (55.63)</td>
<td>140.0 (145)</td>
<td>245.0 (125.0)</td>
<td>301.0 (0.50)</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>(60-69 y.o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥280 sec</td>
<td>137.31 (55.63)</td>
<td>140.0 (145)</td>
<td>245.0 (125.0)</td>
<td>301.0 (0.50)</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>(70-79 y.o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroop words</td>
<td>≤40</td>
<td>48.37 (6.27)</td>
<td>40.79 (11.01)</td>
<td>31.0 (8.70)</td>
<td>29.29 (6.16)</td>
<td>-0.102</td>
</tr>
<tr>
<td>Stroop color-word</td>
<td>≤40</td>
<td>43.93 (6.03)</td>
<td>43.78 (8.65)</td>
<td>37.92 (6.68)</td>
<td>28.56 (13.5)</td>
<td>-0.154</td>
</tr>
</tbody>
</table>

Mean and standard deviation, except tests with *, where median and interquartile range is shown. FCSRT (Free and cued selective reminding test).
Table 3. Plasmatic levels of homocysteine corresponding to the different variants of the genetic polymorphisms in PD patients.

<table>
<thead>
<tr>
<th>GENE</th>
<th>VARIANT</th>
<th>Hcy</th>
<th>*p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHFRC677T</td>
<td>CC (n=33)</td>
<td>15.75 ± 4.19</td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>CT (n=41)</td>
<td>14.45 ± 5.50</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>TT (n=3)</td>
<td>13.76 ± 3.80</td>
<td></td>
</tr>
<tr>
<td>MTHFRA1298C</td>
<td>AA (n=33)</td>
<td>15.07 ± 4.69</td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>AC (n=39)</td>
<td>14.59 ± 5.32</td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td>CC (n=10)</td>
<td>16.06 ± 3.47</td>
<td>0.181</td>
</tr>
<tr>
<td>MTRA2756G</td>
<td>AA (n=59)</td>
<td>15.53 ± 5.01</td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>AG (n=21)</td>
<td>13.79 ± 4.27</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>GG (n=2)</td>
<td>10.49 ± 0.55</td>
<td></td>
</tr>
<tr>
<td>CBS 844ins68</td>
<td>I/I (n=68)</td>
<td>14.84 ± 4.95</td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>I/D (n=11)</td>
<td>14.19 ± 3.12</td>
<td>0.299</td>
</tr>
<tr>
<td></td>
<td>D/D (n=3)</td>
<td>20.44 ± 5.76</td>
<td></td>
</tr>
</tbody>
</table>

*p value for the polymorphism included in the multiple regression model adjusted for age, Vit B12, Vit B6 and folic acid.
Table 4. Genotype distribution at the polymorphisms analyzed stratified by population.

<table>
<thead>
<tr>
<th>Gene</th>
<th>cDNA (Protein)</th>
<th>Control group</th>
<th>Whole PD group (%)</th>
<th>Cognitive normal PD (%)</th>
<th>PD-MCI (%)</th>
<th>PD-D(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C/C</td>
<td>C/T</td>
<td>T/T</td>
<td>C/C</td>
<td>C/T</td>
</tr>
<tr>
<td>MTHFR</td>
<td>C677T</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>(A222V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(32.1)</td>
<td>(46.5)</td>
<td>(21.4)</td>
<td>(42.9)</td>
<td>(53.2)</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.0239*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1298C</td>
<td>15</td>
<td>9</td>
<td>2</td>
<td>33</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>(E429A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(57.7)</td>
<td>(34.6)</td>
<td>(7.7)</td>
<td>(40.2)</td>
<td>(47.6)</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.3277*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTR A2756G</td>
<td>19</td>
<td>9</td>
<td>1</td>
<td>59</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(D919G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.05 & p < 0.01
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>3</td>
<td>0</td>
<td>68</td>
<td>11</td>
<td>3</td>
<td>33</td>
<td>2</td>
<td>1</td>
<td>18</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

| | | (89.7) | (10.3) | (0.0) | (82.9) | (13.4) | (91.6) | (5.6) | (2.8) | (4.5) | (81.8) | (13.6) | (4.5) | (70.8) | (25.0) | (4.2) |

| p | 0.6580* | 0.021&

*: P-values obtained comparing the genotype distribution at each SNP between cases and controls. All analysis was performed with 2 degrees of freedom. Corrected α value due to multiple comparisons: 0.0125

&: p-values obtained comparing the different groups of PD patients. Likelihood-ratio test p-value when the genetic polymorphism is added to the model adjusted for age. Corrected α value due to multiple comparisons: 0.0125
Figure 1. Diagram showing the effect of levodopa on the metabolism of homocysteine.

Note: the reaction involving BHMT is absent in from the brain