Study of β-delayed proton decays at IDS: the cases of 33Ar and

Autor(es): Irene Marroquin Alonso¹

Coautor(es): Maria Jose Garcia Borge ²; Hans Fynbo ³; Alan Michael Howard ³; Oliver Soelund Kirsebom ³; Morten Vinther Lund ³ ; Michael Kulmback Munch ; Enrique Nacher Gonzalez ¹ ; Angel Perea Martinez ¹ ; Jonas Refsgaard ⁴ ; Karsten Riisager ³ ; Olof Tengblad ¹

- ¹ Consejo Superior de Investigaciones Cientificas (CSIC) (ES)
- ² CERN
- ³ Aarhus University (DK)
- ⁴ Aarhus University

Autor(es) correspondiente(s): i.m.alonso@cern.ch

 ^{31}Ar isotope is one of the most exotic β -delayed particle precursors, near the proton drip-line, with high Q-value and low proton separation energy. Due to these two factors, many channels are opened and β -delayed protons are emitted in the decay of this nucleus (one-proton, two-proton and even three-proton emission) 1.

Taking advance of the ISOLDE Decay Station (IDS) [2], the decay of ^{31}Ar was measured in the IS577 experiment, becoming the first of its kind (multi-particle emission) performed successfully at this installation. The aims of this experiment were the study of $\beta 2p$ and $\beta 3p$ channels, the identification of the $\beta3p\gamma$ -decay, as well as to provide important information on the resonances of 30S and 29P (proton daughters), important for the astrophysical rp-process [3].

The set-up used consisted of 5 Double Sided Si Strip Detectors (DSSSD) backed by un-segmented Si-pad detectors in ΔE -E telescope configuration (Fig. 1). This Si-array is located inside the new MAGISOL Si-Plugin Chamber, installed by our collaboration at the permanent station IDS, devoted to β -decay measurements. In addition, there are 4 HPGe clover-detectors surrounding the chamber

for gamma detection.

This set-up is very compact with both high efficiency (47% of 4π) and good energy resolution (25 keV) over a wide energy range for particle emission.

The decay of ^{33}Ar was also measured in the experiment, since this isotope is well suited for the energy calibration of the silicon detectors; it emitts β -delayed protons and their energies are well known. However, new low energy proton peaks are seen for the first time in this kind of β -decay works [4]. Thanks to the possibility of detecting p-Y coincidences with this set-up, the identification of these new peaks in the level scheme has been done.

Finally, new results in ^{31}Ar will be presented here too, such us the identification of proton emission from levels near the threshold in ^{30}S (β 2p channel). These levels show competition between gamma and proton emission and their study is really important to understand some astrophysical processes.

- 1 Proposal to the ISOLDE and Neutron ToF Committee, INTC-P-386, September 2013
- [2] http://isolde-ids.web.cern.ch/isolde-ids/
- [3] G.T. Koldste et al. Phys. Letters B 737 (2014) 383-387.
- [4] N. Adimi et al. Phys. Review C 81, 024311 (2010)

Session 5 / 53

Closing Remarks

Autor(es) correspondiente(s): gerda.neyens@cern.ch