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This work investigated the feasibility of applying multivariate geos-
tatistics in evapotranspiration studies. The major goals of this study
were: 1) to analyze and model the spatial correlation between
evapotranspiration and elevation above sea level; and 2) to investigate
whether the use of cokriging improves the accuracy of the evapotran-
spiration estimates over a regular grid by including the effects of

topography.

A total of 11 study cases for each of four different climatic regions
“Within the state of Oregon were analyzed. The climatic regions were
labeled as Willamette Valley, North Central, South Central and East.
Long-term monthly averages of daily reference evapotranspiration (ET,)
were available at 199 locations within those regions for the months of
February to November as well as values of total annual (cumulative) FT .
Values of elevation above sea level were available at those locations and

at additional 8570 locations on a grid of approximately 5 km per side.

Application of the geostatistical concept of the direct-semivariogram
was required to describe the spatial variability of a single variable.
The description of the spatial correlation between ET, and elevation
required the application of the cross-semivariogram concept. Experimen-
tal direct-semivariograms for ET,. were fit with isotropic, spherical mod-
els with small nugget effects. Experimental direct-semivariograms for

elevation were fit with isotropic models with nugget effects and two



nested structures (spherical and gaussian) for the Willamette Valley
region, one nested structure (spherical) for the North Central region,
and two nested structures (spherical and linear) for the South Central
and East regions, The experimental crogs-semivariograms were fit with

spherical models.

The direct- and cross-semivariogram models were applied to inter—

polate monthly and cumulative FT, using the geostatistical tools of krig-
ing and cokriging at 8570 locations on a 5 km grid. Kriging and

cokriging estimation error standard deviations were computed for each
study case, ET, estimates and estimation error standard deviations
were plotted as contour maps. Maximum, minimum and average kriging
and cokriging estimates of ET, were in general agreement, although
minimum and average values tended to be lower for cokriging. However,
contour lines of cokriged ET, reflected more closely the elevation fea-
tures of the climatic regions. Maximum and average estimation error
standard deviations were lower for cokriging, while the minimum values
being very similar for both kriging and cokriging. Average cokriging
standard deviations decreased by about 20 to 30 % in the Willamette
Valley and North Central regions and by 5 to 13 % in the South Central
and Bast regions. The difference between regions was caused by the
lower correlation coefficient between ET, and elevation observed in the
latter two regions. Contour maps of standard deviations showed cokrig-
ing had a more uniform distribution of estimation errors than kriging,
for which errors tended to decrease in the vicinity of the sample ET,
points at the weather stations. Errors along regional borders increased
for both kriging and cokriging, although maximum estimation error val-

ues were lower for cokriging.
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Multivariate Geostatistical Analysis of Evapotranspiration
and Elevation for Various Climatic Regimes in Oregon

1 INTRODUCTION

1.1 Statement of the problem

The rate of evapotranspiration from land surfaces iz an important
component of the hydrological balance. Due to this phenomenon‘, a major
fraction of the total amount of water falling as precipitation on land
surfaces is returned to the atmosphere. On average, evapotranspiration
represents about two-thirds of the annual precipitation falling over the
land (Shukla and Mintz, 1982; Sharma, 1985). Substantial variations in
hydrological regimes have been reported in various parts of the world.
These changes have been attributed to alterations in evapotranspiration
rates caused by significant modifications of the surface vegetative cover
(Rose and Sharma, 1984; Eagleson, 1986).

Quantitative evaluation of evapotranspiration rates is required
within the context of many problems. Among others, these topics
include crop production, management of water resources for agricultural,
industrial and urban uses, and environmental assessments. In irrigated
areas of the world, an increasing competition for water use between
agriculture, industry, and human populations has stressed the need of
more accurate crop water use estimates. These estimates are critical for

improving the efficiency of irrigation systems and irrigation scheduling.



Unfortunately, evapotranspiration is still among the less understood
aspects of the hydrological cycle. It is still difficult to estimate this

quantity on a regional basis (Brutsaert, 1982; Jackson, 1985).

Evapotranspiration rates in a given region for a period of time may

be determined as the residual of the water balance equation (Brutsaert,
1982) when the other terms are known

P - ET + o - Q - = tH
where: P = precipitation rate
ET = evapotranspiration rate
Q, = water inflow rate
Q, = water outflow rate
dS/dt = rate of change in soil water storage

However, this method is not always practical. Large absolute errors
in the evapotranspiration rate may result from relatively small but inev-
itable errors in the determination of the various terms of equation [1]
(Brutsaert, 1982). Likewise, this method cannot be applied to predict
evapotranspiration in the design of planned water storage. Neither can
it be used when irrigation systems are designed to supply water
required for growing crops in a given region. In such situations, eva-
potranspiration is usually determined independently from the water bal-
ance equation. Generally for irrigation, evapotranspiration is estimated
on the basis of meteorological parameters recorded at a weather station

located at a site considered as representative of the project area.

The fields to be irrigated may be several times larger than the
supposedly representative weather station site. As a consequence, these
local evapotranspiration estimates must be extrapolated. The extrapola-

tion region may be several kilometers away from the weather station site



and hundreds of square kilometers in area. Errors incorporated in such
an approximation may lead to over irrigation or under irrigation of
crops and may cause to water storage reservoirs to be over-designed or

under-designed.

Increased concern in regional scale evapotranspiration studies has
also resulted from two other relatively recent developments. First is
the availability of remotely sensed data of surface conditions. The fre-
quency and the relatively dense grid at which these data are being
recorded make them particularly suitable for water resources planning
and management (Cuenca and Amegee, 1987). The second development ig
the worldwide increasing concern in the prediction of both short-term
and long-term climatic changes at a global scale. This concern has
focused the attention on global circulation models (Eagleson, 1986).
Regional evapotranspiration estimates are one of the input parameters of
these models which normally operate on a minimum grid size ranging
from 100 to 500 km (Cuenca and Amegee, 1987).

The considerations mentioned above justify efforts to improve the
accuracy of regional evapotranspiration estimates and to quantify the
error associated with the application of a local estimate to a region a
certain distance away. As proposed by Amegee (1985), such efforts must
rely on the modeling of the spatial variability of evapotranspiration, i.e.
the change in evapotranspiration with respect to the distance hetween
weather stations at which meteorological data are collected. It is cus-
tomary to represent such spatial variability with weekly, monthly or
annual isolines of evapotranspiration based on long-term meteorological

parameters (Cuenca et al, 1981).

In the hydrological sciences, the drawing of contour lines is gener-
ally expedited by the estimation of the values of the hydrological vari-
able under study at each node of a regular grid. This estimation is
done by interpolation of data available at other sites (Delhomme, 1978).
This interpolation should be based on the variation of the hydrological

variable as a function of the distance between measurement points. The



topographic characteristics of the region where the estimations are to be
made should also be taken into consideration. It is known that changes
in elevation above sea level within a region may significantly affect the

structure of the spatial variability of the hydrological variable of inter-
est (Cuenca et al, 1981; Nuss, 1989).

1.2 Alternative methods of approach

Several approaches have been suggested in the literature to study
and quantify evapotranspiration at regional scales. Recent progress in
remote sensing techniques has greatly encouraged this type of study
(André et al.,, 1986, 1988). In this approach, remotely sensed data (e.g.
the soil-plant canopy temperature and the surface incoming and
reflected radiation) can be used in combination with ground based
parameters measured at traditional weather stations. Subseguently, eva-
potranspiration is computed as a residual of the energy balance equa-
tion. Although the resulting formulas offer promising results, their
validity has not yet been fully verified over large regions. They also
need to be evaluated under conditions of partly cloudy skies and the
methodology is still subject to several constraints (Jackson, 1985; Hat-
field, 1988a). One of these constraints is the extension of the punctual

ground based parameters to a region.

Different empirical and physically based formulas have been devel-
oped to estimate evapotranspiration at locations where meteorological
parameters are recorded. Section 2.2 is devoted to a review of these
formulas. In all cases, the quantification of regional evapotranspiration
requires the extension of these local estimates to locations where meteo-

rological parameters are not available. If the objective is the contour-



ing of evapotranspiration, values of this variable must be estimated at
each node of a regular grid covering the study region. Various
computerized technigues have been used for distributing data to a grid.
Such technigques include distance weighting of the data, pelynomial
interpolation, least squares, and others. However, all of these methods
give arbitrary weights to the data, regardless of the physical aspects of
the problem, Another important disadvantage is that most of them can-
not provide any indication as to the precision of the results (Delhomme,
1978).

The need for a preliminary recognition of the spatial variability of a
variable for the optimization of a data weighting system and the quan-
tification of the estimation error was emphasized as early as the 1940°’s
by the Soviet school of hydrometeorology (Delhomme, 1978). At the
beginning of the 1960’s, Matheron (1963) built his Theory of Regionalized
Variables. Geostatistics, as this theory is usually known, uses the cor-
relation between neighboring measurements to construct a model which
characterizes the structure of the spatial variability of the parameter
under study, such as evapotranspiration (Journel and Huijbregts, 1978).
The model spatial variability can be applied to estimate the required
parameter by spatial interpolation at locations where no measurements
are available. The method also provides a tool to gquantify the error of
the estimation. These errors can be related to station density so that a
sampling design network can be optimized (Delhomme, 1978; Warrick et
al., 1986).

Geostatistics has been applied to a large variety of fields, including
mining (Journel and Huijbregts, 1978), agrometeorology (Vieira et al.,
1983), water resources (Delhomme, 1978), and scil science (Warrick et al.,
1986). Recently, the feasibility of applying geostatistics to evapotran-
spiration has been analyzed for the state of Oregon (Cuenca and Ame-
gee, 1987; Nuss, 1989). As a result of their analyses, contour maps of
evapotranspiration on a monthly basis have been developed. Cuenca and

Amegee (1987) analyzed the spatial variability of evapotranspiration for



the whole state of Oregon. Their research indicated the presence of a
bias in those estimates. This bias was due to the fact that the topo-
graphic characteristics of Oregon were not included in the model of spa~
tial variability, They suggested dividing the state into uniform climatic
regions and applying geostatistics within each region. This task was
performed by Nuss (1989) with an improvement over the original work,
but topographic characteristics were again excluded. His results also
supported the need of including topographic information to analyze the

spatial variability of evapotranspiration within each climatic region.

Elevation values are available at many more locations than evapo-
transpiration. In such situations, it has been pointed out that the esti-
mates of the under-sampled variable can be improved if the additional
information provided by the more frequently sampled wvariable is
included in the model spatial variability (McBratney and Webster, 1983;
Aboufirassi and Marifio, 1984). The magnitude of the improvement
depends, among other factors, on the degree of correlation between the
two variables (Ahmed and De Marsily, 1987; Hoeksema et al, 1989; Hevesi
et al.,, 1990). Because of the known influence of elevation on the spatial
variability of several meteorological parameters, such as air temperature,
a strong correlation between evapotranspiration and elevation is to be

expected.

1.3 Objectives and scope

The use of geostatistics to analyze and model the spatial variability
of evapotranspiration has proven to be feasible. However, the influence
of changes in topography on that spatial variability has not yet been

considered. In this thesis, the general objective was to analyze and



model the spatial correlation between local estimates of evapotranspira~
tion and values of elevation above sea level. The main goal of this work
wag to investigate the improvement in accuracy in the estimates of
evapotranspiration over a regular grid by including the effects of ele-
vation using a geostatistical interpolation technique termed cokriging.
The final product was the contour of these estimates of
evapotranspiration for those climatic regimes in Oregon in which the
analysis technique was feagible. The specific objectives of this work

were:

1. To analyze and model the spatial variability of evapotranspira-
tion within each climatic region when long-term meteorological
parameters were used to estimate evapotranspiration at weather

station sites.

2, To analyze and model the spatial correlation and variability of

evapotranspiration and elevation within each climatic region.

3. To estimate evapotransgpiration within each region at grid points
where weather data were not available. The model spatial vari-
ability developed in the first two objectives, in conjunction with

kriging and cokriging interpolation techniques, was used.

4. To quantify and compare of the errors associated with the esti-
mation of evapotranspiration with both kriging and cokriging

interpolation techniques.

5. To produce contour maps of evapotranspiration for each climatic

region.

The scope of this project was limited to the state of Oregon. Within
the state six climatic regions were identified. Four of these regions
were used in this work. A small number of weather stations and a lack

of significant correlation between evapotranspiration and elevation at the



other two regions precluded further analysis. Estimates of long-term
monthly averages of daily reference evapotranspiration (see section 2.1)
were available at 199 locations within these four climatic areas for the
months of February to November. In each of these locations, estimates
of total annual (cumulative) reference evapotranspiration were algo avail-
able. This study was not performed for January and December because
the majority of the estimates of reference evapotranspiration at the
weather stations were zero. Elevation data were available at the 199
weather station sites and at additional locations distributed on a grid

interval of approximately 5 km (section 3.3).



2 LITERATURE REVIEW

This chapter is divided into three sections. The first section pres-

ents some basgic definitions related to evapotranspiration. The second
section discusses several approaches used to estimate evapotranspiration

at both local and regional scales. The third section introduces princi-

ples of the theory of regionalized variables or geostatistics.

2.1 Basic definitions of evapotranspiration

Consistent definitions are extremely important in maintaining commu-
nication within the research community. For this reason, some basic

definitions related to evapotranspiration are given,

Evapotranspiration

Evapotranspiration is the loss of water from the ground surface to
the atmosphere through vaporization of liquid water (Sharma, 1985).
This process includes water evaporated directly from the soil surface
(evaporation) or from live and dead vegetation foliage, and water lost \
through plant surfaces, particularly leaves (transpiration). Evapotran-
spiration is expressed as the latent heat transfer per unit area or its
equivalent depth of water per unit area per unit time (Burmsan et al,

1983),



10

Potential evapotranspiration

Potential evapotranspiration is the maximum rate at which water, if
fully available, would be removed from the ground surface and tran-
spired by the plant. This definition is not restricted to a standard

surface. It is vague and offers various interpretations of its meaning
(Burman et al, 1983). Due to this ambiguity, the research community is

moving towards the use of the term reference evapotrangpiration.

Reference evapotranspiration

Two definitions of reference evapotranspiration (£ T,) are commonly

used. The first definition uses alfalfa (Medicago sativa L.) as the refer-
ence crop and is given as (Burman et al, 1983)
".. the upper limit or maximum evapotranspiration that
occurs under given climatic conditions with a field having a
well watered agricultural crop with an aerodynamically rough
surface, such as alfalfa, with 30 to 50 cm of top growth".
The second definition, the one employed in this thesis, expresses
ET, as (Burman et al., 1983)
" .. the rate of evapotranspiration from an extensive sur-
face of 8 to 15 cm, green grass cover of uniform height,

actively growing, completely shading the ground, and not short
of water".

Local and regional evapotranspiration

Local evapotranspiration represents the evapotranspiration rate of
gurfaces of about 1 kmZ It is the evapotranspiration rate computed
using meteorological parameters recorded at a single weather station.
The evapotranspiration rate representative of an area between 1 to 100

km? is generally considered as regional evapotranspiration (Sharma,
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1985). However, in the context of general circulation models (GCM),
regional evapotranspiration refers to grid sizes of about 100 to 500 km

per side (Cuenca and Amegee, 1987).

2.2 Evapotranspiration estimating methods

The complexity of the evapotranspiration process has long been rec-
ognized. In general terms, evapotranspiration research has two main
goals: 1) the quantification of water losses from a given area; and, 2)
an improved understanding of the various mechanisms involved in that
process (Sharma, 1985). In the context of the first purpose, time and
spatial scales are relatively large, and empirical and semi-empirical
approaches, with appropriate calibration, may be adequate. However, an
improved understanding of evapotranspiration requires smaller time and
spatial scales. Consequently physically based models which include soil
and plant parameters would be preferable (Sharma, 1985). A discussion
of all methods developed for evapotranspiration studies is beyond the
scope of this work. The reader is referred to several excellent reviews
of the subject (Jensen, 1974; Brutsaert, 1982; Sharma, 1985).

This section describes several methods in which the main input
parameters are meteorological data. The first subsection presents
approaches to estimate local ET, and focuses on the temperature-based
methods. The second subsection briefly reviews some approaches to
estimate regional evapotranspiration. The methods discussed in that
gection are, in general, within the scope of the first objective mentioned

in the previous paragraph.
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2.2.1 Local evapotranspiration estimating methods

Several methods are available to estimate local ET, from meteorologi-
cal parameters (Jensen, 1974; Sharma, 1985). Their degree of complexity
and accuracy and their time scales are diverse (Hatfield, 1985; Sharma,
1985), One of the first attempts to develop a function relating local ET .,
and several meteorological parameters was done by Penman (1948). His
approach combines two factors affecting evapotranspiration: the energy
available for the evaporation process and the action of the wind to
remove water vapor from the evaporating surfaces. Penman’s equation

is the following

FT. = Aﬁv Ko AIV B o
E, = f(u) (e,—e,) [2b]
where: ET . = reference evapotranspiration, mm d-!
YA = sglope of the saturation vapor pressure-temperature
curve, mb °C-!

v = psychrometric constant, mb °C-!

R, = net long-wave and short-wave radiation, mm d-!

f(u) = empirically derived aerodynamic wind function

e,—~e, = vapor pressure deficit, mb

The variable E, represents the drying power of the air or advec-

tion (mm d-). Although Penman’s approach is based on theory, some
empiricism exists to account for simplification needed for practical use.
The Penman equation has been calibrated in different climates and sev-
eral versions of this equation exist (Doorenbos and Pruitt, 1977; Wright,
1982)., This equation offers the advantage of being based on theory and

its accuracy allows estimates of daily values of ET, to be made (Dooren-
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bos and Pruitt, 1977). However, it requires the input of a number of
meteorological parameters, including incoming solar radiation and wind
apeed. Unfortunately, these variables are only recorded at a limited

number of weather stations.

Several other empirical or semi-empirical equations to estimate local
ET, have been formulated. These methods can be grouped according to
their main meteorological parameter input (Jensen, 1974; Sharma, 1985).
It is possible to distinguish between radiation methods, pan evaporation
methods, humidity methods and air temperature methods. The accuracy
of these methods is highly variable and most of them only perform rela-
tively well in climatic conditions very similar to the ones in which they
were developed (Burman et al., 1983). The temperature-based methods
have the most widespread use because air temperature is the wvariable
most frequently recorded at weather stations. Some methods use other
parameters (secondary weather data) for additional calibration. These
secondary weather parameters allow for adjustment (local calibration)
based on the general climatic conditions of the station site. Improved
ET, estimates have been made by applying local calibration or, at least,
an adjustment that considers the general climatic conditions (Doorenbos
and Pruitt, 1977; Burman et al, 1983).

Erpenbeck (1981) evaluated and compared seventeen empirical local
ET, estimating methods at fourteen meteorological sites in the state of
Washington. Seven of these methods used air temperature as the pri-
mary weather parameter. The other ten methods used most of the data
available at a relatively complete weather station, including solar
radiation, wind speed, and saturation deficit of the air. The Blaney-
Criddle method, as modified by the Food and Agriculture Organization
(FAO) of the United Nations (Doorenbos and Pruitt, 1977), was selected
as the best state-wide local ET, estimating method for Washington. The
selection was based on the weather data available throughout the state
and on statistical ranking using the coefficient of determination for each

estimating method compared to lysimeter measurements.
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Allen and Brockway (1982) compared eight local ET, estimating

methods using daily weather data from the U.S. Department of Agricul-
ture (USDA) Research Center at Kimberly, Idaho. Again, the FAO-
modified Blaney-Criddle method was selected as the best state-wide local
ET, estimating method for Idaho based on accuracy and the primary
data requirement of air temperat\ire only.

For the state of Oregon, Basketfield (1986) analyzed and contrasted
two temperature based local ET . estimating methods: the Soil Conserva-
tion Service (SCS) modified Blaney-Criddle and the FAO-modified Blaney-
Criddle methods. Results indicated that the SCS-modified Blaney-Criddle
method seriously under predicted ET, at relatively high altitude and
semiarid locations. The FAO-modified Blaney-Criddle method with addi-
tional adjustments recommended by the USDA (Doorenbos and Pruitt,
1977; Allen and Brockway, 1982) was chosen for this research because of
results previously indicated for Washington, Idaho and Oregon, and
because the air temperature is the most frequent meteorological parame-

ter recorded at weather stations throughout Oregon (Redmond, 1985),

FAO-modified Blaney-Criddle method

The method presented in this subsection is the result of work done
under the direction of the FAO (Doorenbos and Pruitt, 1977). Later
adjustments were introduced after research performed at the USDA
Research Center at Kimberly, Idaho (Allen and Brockway, 1982). In this
method, the following equation was used to estimate the monthly average
of local daily ET.

ET, = {a + b [p (046 T, + B8.13)]) R, [3]
where: ET, = monthly average of local ET,, mm d-?
P = monthly mean of daily percentage of annual daytime

hours



15

T« = monthly average of daily mean air temperature, °C,
adjusted to account for the aridity of the surroundings
of the station

a,b = climatic calibration coefficients

R; = reference ratio coefficient

The values of the variable p were estimated as a function of the
latitude of the station and month from a look-up table (Doorenbos and
Pruitt, 1977). The climatic calibration coefficients partially account for
local climatic conditions. They were developed by a step-wise regres—
sion analysis on meteorological and lysimeter data (Doorenbos and Pruitt,

1977). The authors presented the following equation for coefficient o

[4]

o = OlOO4‘3RHm(n - 1-41

Zl=

long-term monthly average of daily minimum relative

where: RH .,
humidity, %

n/N long-term monthly average of daily ratio of actual to

i

maximum possible sunshine hours, dimensionless

Frevert et al. (1983) publisheéd a regression equation for coefficient
b based on the original computerized look-up table produced by Dooren-
bos and Pruitt (1977). Further simplification of that regression equation

regsulted in the following expression (Cuenca, 1989)
b = 0.82—0.0041(RHm,,,)+1.07(%)+0.066(UM,)

—0-006(181-1.,...,)(%)— 0.0006(RH min) (U say) [5]

where: Ugz,y = long-term monthly average of daily daytime wind speed

at 2 m height above ground, m s-!
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The original tabulated values of coefficient b are always more accu-
rate than the regression equation which does not have a perfect fit for
every coefficient in the table. The tabulated values were used in this

study instead of equation [5].

For climatic conditions at Kimberly, Idaho, the ratio of £T, for an
alfalfa reference crop to ET, for a grass reference crop should be 1.15
(Doorenbos and Pruitt, 1977). However, the results of Allen and Brock-
way (1982) showed that the FAO-modified Blaney-Criddle method over-
predicted grass ET,. A set of reference ratio coefficients, R, , was
developed to correct this situation (Allen and Pruitt, 1986). Two sets of
these coefficients were given dependent upon whether or not equation
[3] is corrected to account for the site elevation above sea level.
Because of the objectives of this work, this latter correction was not
included. Thus, the reference ratio coefficients used (Table 1) were
those developed for the case in which equation [3] is not corrected for

elevation.

Reference evapotranspiration is supposed to be representative, by
definition, of moist, non—-arid sites. However, some weather stations were
located in completely arid environments. These stations tended to have
higher temperatures than adjacent stations exposed to the same meteoro-
logical conditions but in irrigated environments. Allen and Brockway
(1982) developed an additional calibration to adjust for the aridity of
the station surroundings. They proposed the following adjustment for

the mean air temperature
Tad = T e Aad [6]

monthly average of daily mean air temperature, °C, as

where: T
recorded at the station

Aga temperature adjustment aridity factor, °C
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The temperature adjustment aridity factor was given by the follow-

ing expression
A ad = A a A ¢ [7]

average monthly aridity effect, °C

where: A,

A, cumulative aridity of the station, dimensionless

The monthly aridity effects represent the departure of air tempera-
ture over arid areas from air temperature over irrigated areas. These
values were given by Allen and Pruitt (1986) for Southern Idaho. They
are listed in Table 1. These coefficients were used in this research

because of the proximity of Oregon to Idaho.

TABLE 1. Monthly reference ratios, R, with-
out elevation correction and monthly
aridity effects, A, (adapted from
Allen and Pruitt, 1986).

Month R; A,, °C
April 1.36 1.0
May 1.28 1.5
June 1.20 2.0
July 1.13 3.5
August 1.12 4.5
September 1.21 3.0
October 1.37 0.0

Cumulative aridity ratings were a constant for each station. These
ratings ranged from 0, for a completely irrigated environment, to 100
percent, for a completely unirrigated environment. They were computed

by the following equation (Allen and Pruitt, 1986)
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A, = 044, + 0854, + 0.14, (8]
where: A, = site aridity, %
A, = area aridity, %
A,. = regional aridity, %

Site aridity represents the aridity of the environment within a 50 m
radius of temperature sensor. Area aridity is the aridity of the envi-
ronment within a 1.5 km radius in the predominant upwind direction of
the temperature sensor. Regional aridity represents the aridity of the
environment within a 50 km radius in the predominant upwind direction

of the temperature sensor (Allen and Pruitt, 1986).

2.2.2 Regional evapotranspiration estimating methods

In the previous section, methods to estimate ET,. at a local scale

were discussed. Several approaches are available in the literature to
extend these local estimates to a regional scale. Most of these
approaches employ traditional weather data to estimate evapotranspira-
tion in regions of about 100 kmé while methods applying remote sensing
techniques estimate evapotranspiration at larger scales (Hatfield, 1985).
It must be kept in mind that as the spatial scale increases, input data
availability rather than model adequacy becomes the principal limitation
to estimate regional evapotranspiration (Rose and Sharma, 1984), Very
often regional evapotranspiration is called actual evapotranspiration, i.e.

the rate of evapotranspiration under non-reference conditions.



19

Two main criteria should be used to design techniques for estimat-
ing regional evapotranspiration (Amegee, 1985): 1) estimates must be
representative of the whole area and hence take into consideration the
heterogeneity of individual surfaces within the area; 2) techniques must
also be simple enough to be used routinely for practical purposes using

traditional weather station networks.

It is common practice to obtain estimates of evapotranspiration at
different locations and to use these values to draw contours of evapo-
transpiration over large areas (Hatfield, 1985). This approach has been
used recently in California where ET, values were available for 400 sites
(Pruitt et al, 1987). A question which arises using this approach is
how to interpolate the available estimates at points where evapotranspi-
ration information is not available. In general, a weighted average is
employed but the weights given to the known points are often arbitrary.
Thompson et al. (1981) used meteorological parameters recorded at one
or more weather stations within 40-km squared grids in Great Britain to
compute a weighted average meteorological data set. This data set was
subsequently used to estimate evapotranspiration within the grid area.
The geostatistical interpolation methods described in section 2.3 may

represent an improvement of these weighted average procedures.

Doorenbos and Pruitt (1977) proposed to estimate ET, at a location

consgidered representative of the area under study. Actual evapotran-
spiration for a particular crop (ET,.,) is computed by multiplying the
corresponding ET, values by a coefficient (X, specific for the crop.

The proposed formulation is the following

ET,., - ET, K, [91

This approach could work if a knowledge of the surface area occu~
pied by different crops is available for the area represented by the
weather station., Raymond and Owen-Joyce (1986) used satellite data to
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estimate vegetation types and areal extent. This information was used
to estimate regional evapotranspiration in the Palo Verde Valley, Califor-
nia.

It has also been proposed to incorporate concepts and relationships
of aerodynamic and canopy resistances to water vapor transfer into the
Penman method (Thom and Oliver, 1977; Thompson et al, 1981). In this
approach, known as the Penman-Monteith method, evapotranspiration is

estimated by the following equation

ET. - A (R,-G) + pc, (e,—ey)/r, [10]
r A+ y(l+r./r,)
where: G = soil heat flux, mm d-1
p = air density, g cm-?
c¢p, = specific heat of air, 0.24 cal g1 °C-1
r, = aerodynamic resgistance to water vapor transfer, s m-!
r. = canopy (bulk stomatal) resistance to water vapor transfer,

s m-1

Allen (1986) compared ten forms of the Penman equation, two of
which were Penman-Monteith formulations, with lysimeter measured eva-
potranspiration at three locations in the U.S. These three locations rep-
resented a wide range of climatic conditions. Results showed that the
Penman-Monteith equations best predicted daily lysimeter measurements
at the three locations based on the reliability and consistency of the
estimates. The Penman-Monteith method produces estimates of regional
evapotranspiration provided that aerodynamic and canopy resistance val-
ues and vegetative areal extents are known for the different crops of
an area.

Air which is in contact with a wet surface over a very long fetch

tends to become saturated with water vapor. In this situation F, (equa-

tion [2b]) tends to zero. In other words, the first term of the right-



21

hand side of eguation [2a] represents a lower limit to evaporation from
moist surfaces. This lower bound is called equilibrium evaporation
(Brutsaert, 1982). The second term of the right-hand side of equation
[2a] represents a measure of the departure from equilibrium in the
atmosphere. In the absence of cloud condensation or radiative diver-
gence, this departure would arise from large-scale or regional advection
effects involving horizontal variation of surface or atmospheric

conditions.

These arguments lead Bouchet (Brutsaert, 1982) to formulate the fol-

lowing expression which he termed the complementary relationship

ET = 2Z2ETW - ETP [11]

In this equation, ET is the regional (actual) evapotranspiration from
an area so large that the effects of upwind boundary transition are
negligible. ETP is the potential evapotranspiration as estimated from a
solution of the vapor transfer and energy-balance equations. It repre-
sents the evapotranspiration that would occur from a hypothetical moist
surface with radiation absorption and vapor transfer characteristics
gimilar to those of the area. The effects of evapotranspiration from this
moist surface on the overpassing air are agsumed negligible., ETVW is
the wet-environment actual evapotranspiration that would occur if the
soil-plant surfaces of the area were saturated and there were no limita-

tions on the availability of water.

Equation [11] is applied to estimate actual evapotranspiration rates
from large uniform surfaces of regional size (lengths on the order of 1
to 10 km). Several alternative formulations, with different time scales,
have been proposed to compute ETP and ETW (Brutsaert and Stricker,
1979; Morton, 1983, 1985), The main advantage of methods derived from
Bouchet’s complementary relationship is that only meteorological parame-
ters are required. In some procedures, calibration is required to deter-

mine additional parameters used to compute ETP and FTW (Morton, 1983,
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1985). This approach requires input from a meteorological station whose
surroundings are representative of the area of interest. Interpolation
to areas where weather stations are not available has not yet been
solved (Morton, 1983). Bouchet’s approach however requires further

analysis with different data sets (Brutsaert, 1982; Hatfield, 1985).

Brutsaert and Mawdsley (1976) proposed the extension of the Pen-
man’s equation to the planetary boundary layer (PBL). The PBL also is
known as the outer region layer and is situated from about 1 km to 2
km above the ground. According to McNaughton and Spriggs (1986), the
PBL is a well-mixed layer of air with specific thickness, potential tem-
perature and relative humidity. Above the PBL is the free atmosphere
with specified potential temperature and relative humidity profiles set
by larger-scale atmospheric processes. Between the bulk of the PBL
and the ground is a 'thin’ surface layer where the mixing is not perfect
and sizable temperature and humidity gradients may develop. The basic
assumption in this approach is that fluxes in the PBL layer are indepen-
dent of the nature of the surface and will better represent an average
of the elementary fluxes. These fluxes may therefore be more
representative of the regional evapotranspiration fluxes (Brutsaert and
Mawdsley, 1976; McNaughton and Spriggs, 1986) for surfaces larger than
5 to 10 km. This approach requires profiles of mean wind speed, tem-
perature and humidity in the lowest 2 km or so of the atmosphere.
These profiles are measured with devices known as rawinsondes.
Difficulties in using this method arise from the inadequacy of rawin-
sonde networks and inaccuracy of some published rawinsonde data.
Moreover, the vertical intervals between the profile measurements are
often larger than desirable (Brutsaert, 1982). However, this approach
shows potentials for the study of the effect of evapotranspiration on the
weather and may serve as a useful interface between the ground and

the atmosphere in GCMs (McNaughton and Spriggs, 1986).
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Several authors have demonstrated that remotely sensed data
together with some ground-based measurements can be used to estimate
or measure evapotranspiration at a regional scale (Price, 1982; Gurney
and Camillo, 1984; Jackson, 1985; Reginato et al., 1985; André et al,
1988). In all cases, the starting point is the energy balance equation.
This equation, with all terms expressed in units of energy per unitytime

per unit area (Jackson, 1985) can be written as

ET = R, - H - G [12]
where: ET = latent heat flux (evapotranspiration)
R, = net radiation absorbed at the surface
H = sensible heat flux from the surface to the atmosphere
G = soll heat flux

In a ground-based situation, net radiation, sensible heat flux, and
soil heat flux can be directly measured. In the remote sensing case,
this is not possible. It is necessary to identify which parameters can
be measured, which estimated, and which safely neglected so that the
latent heat flux may be determined with acceptable accuracy. In gen-
eral, the larger number of relevant parameters that can be measured by
remote means, the more accurate a regional evaporative flux measurement
will be, thereby reducing the need to replicate expensive ground-based

instrumentation to obtain the same information.

Net radiation at the surface of the Earth is the sum of the incident
and reflected shortwave solar radiation and the incident sky and emitted
terrestrial long-wave radiation. By measuring or estimating these four
radiation terms, net radiation can be computed. Since remote sensing is
the detection of reflected and emitted energy, net radiation could be
reliably evaluated by combining ground-based measurements of the
incoming radiation terms with remotely measured outgoing terms (Jack-
son et al., 1985).
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Sensible heat flux is function of the temperature gradient between
the evaporative surface and the air above it (Price, 1982; Hatfield,
1988b). The surface temperature can be determined using remotely
sensed data. The air temperature must be measured by a traditional
meteorological station. 8till in this approach, the serodynamic resistance
for sensible heat flux transfer must be determined which requires quan-
tification of aerodynamic properties of the surface, stability of the atmo-
sphere and wind speed (Gurney and Camillo, 1984; Hatfield, 1988b).

Soil heat flux must be determined by means of ground-based mea-
surements. The soil heat flux is generally small in magnitude compared
to the other terms of equation [12]. Some authors neglect it (Price,
1982), while others employ empirical approaches to estimate soil heat flux
as function of crop height and net radiation (Reginato et al., 1985;
Choudhury et al, 1987).

The largest drawback of these techniques is the extrapolation of
ground-base measurements from single meteorological stations to a
regional scale (Hatfield, 1988a). Another main constraint of these tech-
niques is that it is necessary to devise ways to infer values that apply
to longer time periods, i.e. daily, from the essentially instantaneous
remotely sensed data (Jackson, 1985). The sinusoidal nature of solar
radiation under clear skies has been used to approach this problem
(Jackson et al, 1983; Seguin and Itier, 1983). However, further evalu-
ation is required under partly cloudy skies or over larger regional
scales (Hatfield, 1988a). Effects of the atmosphere on the amount of
radiation reaching the sensors, sensor calibration, and the determination
of aerodynamic resistance terms to sensible heat flux are the other main

constraints for application of remote sensing techniques (Jackson, 1985).



25

2.3 Fundamental concepts of geostatistics

This section describes elements of the theory of regionalized vari-
ables which are relevant to the main geostatistical tools used to charac-
terize spatial variability and to estimate regionalized variables. It is not
intended to present a comprehensive treatise of the subject. For an
introductioﬁ to the subject, the reader is referred to Rendu (1978),
Clark (1979) and Journel (1989). For a detailed discussion of the theo-
retical aspects behind geostatistics, it is recommended to consult David
(1977) and Journel and Huijbregts (1978). For an introduction of the
application of geostatistics to fields other than mining, the reader is
referred to Delhomme (1978), Vieira et al. (1983), Warrick et al. (1986)
and Cuenca and Amegee (1987).

2.3.1 Definition and applications of geostatistics

At the beginning of the 1960’s, Matheron (1963) developed his
Theory of Regionalized Variables, also termed Geostatistics. Geostatistics
is the application of the formalism of random functions to the reconnais~
sance and estimation of natural phenomena (Journel and Huijbregts,
1978). A natural phenomenon can often be characterized (Delhomme,
1978; Journel and Huijbregts, 1978) by the distribution in space and/or
time of one single variable (regionalization) or two or more inter-
correlated variables (coregionalization). These variables are known as
regionalized variables. Univariate geostatistics refers to the study of
regionalization processes and multivariate geostatistics applies to the

study of coregionalization processes. It should be noted that geostatis-
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tical methods are closely related to time series analysis, many of whose ’

methods can be viewed as one dimensional subsets of geostatistics

(Henley, 1981).

The application of geostatistics to the estimation of ore reserves in
mining is probably its most well known use. Nevertheless, it has been
emphasized frequently that geostatistics can be used wherever the wvalue
of a variable is expected to be affected by its position and its relation-
ship with neighboring values of the same variable (Clark, 1979). There-
fore, almost all variables encountered in the earth sciences, including

the hydrological ones such as ET,, can be regarded as regionalized

variables (Delhomme, 1978).

Geostatistics was developed as a new approach to the problem of
estimation of regionalized variables because of the failure of classical
statistical methods to solve them (Matheron, 1963). Classical statistical
methods are based on the assumption of the random distribution of val-
uves. Classical statistics interprets all sample values as independent
realizations of the same random variable., Consequently, it is unable to
take into account the spatial variability of the regionalized variables.
This spatial variability implies a structured aspect, which is precisely

its most important feature (Rendu, 1978; Clark, 1979).

Geostatistical methods offer several advantages over other elhpirical
interpolation techniques (Delhomme, 1978; Burguess and Webster, 1980;
Hevesi et al, 1990): 1) they provide unbiased estimates; 2) they pro-
vide an indication of the p}'ecision of the estimates; 3) they minimize
the estimation error variance; and, 4) additional, correlated variables can
be incorporated in the estimation equations. This latter property offers
the potential of significantly decreasing the calculated estimation error
variances. The main disadvantage of geostatistics is the complexity of
its application when compared to other interpolation techniques (Journel
and Huijbregts, 1978). Computational efforts in geostatistics are high

and the use of a powerful computer is a must. A more detailed discus-
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sion of the advantages and disadvantages of geostatistics and other
interpolation techniques can be found in Henley (1981) and

Mansur-Marques (1985).

It often happens in resource surveys that some variables are mea-
sured more intensively than others due to several reasons, Estimates of
sparsely sampled variables using univariate geostatistics are likely to
have large errors. If, however, such a variable is spatially correlated
with one or more others that have been or can be measured more inten-
sively, its estimates can be improved by using the additional information
with multivariate geostatistics (McBratney and Webster, 1983; Aboufirassi
and Marifio, 1984). In this thesis, the under sampled variable is ET,
and the more intensively sampled variable is elevation above sea level.
The magnitude of the improvement in the estimation variances depends
on several factors (Ahmed and De Marsily, 1987; Hoeksema et al, 1988;
Hevesi et al.,, 1990): 1) the number of additional data; 2) the degree of
correlation between the two variables; 3) the proximity of the additional
data to the point being estimated; and, 4) the arrangement of the addi-

tional data around the point to be estimated.

The most common application of geostatistical techniques is the esti-
mation of the value of a regionalized variable at a point in which no
data are available. This application is known as point or local estimation
and it is the one used in this work. However, geostatistical techniques
can be used for other purposes (Journel and Huijbregts, 1978). For
instance, they can be used to make estimates of global averages of the
regionalized variable for a certain area or volume within the study
region. This application is known as global or block estimation and it

has been used in numerous cases (Delhomme, 1978).

The potential of geostatistics for sampling network design has also
been indicated (Hughes and Lettenmaier, 1981). This design must define
the number, location, and sample pattern of sampling sites. Three
approaches have been pointed out to perform this task (Loaiciga, 1989):

1) optimization; 2) conditional simulation; and, 3) variance reduction.
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In the optimization approach, the minimization of the variance of the
estimation error is subject not only to the unbiasedness condition but to
resource constraints, e.g. economic restrictions (Loaiciga, 1989). In the
conditional simulation approach, other possible realizations of the same
regionalized variable are simulated (Delhomme, 1979; Journel, 1989).

These other realizations have the same spatial variability as the true
natural phenomenon. In the variance reduction approach, additional
samples are added until the maximum estimation error variance has been

reduced to an acceptable level (Rouhani, 1985; Smyth, 1988).

There are four main steps in a geostatistical point estimation proce-
dure (Journel and Huijbregts, 1978). 1) A model adequately describing
the spatial variability of the variables of interest must be proposed.
This model must also characterize the dependence between variables.
Direct-semivariograms (regionalization) and cross-semivariograms (core-
gionalization) are the appropriate tools for this task. 2) The unknown
parameters of the model must be determined. 3) The suitability of the
fit model must be checked by using cross-validation. 4) The variable of
interest is estimated at unknown locations. Kriging (univariate geostat-
istics) and cokriging (multivariate geostatistics) are the interpolation
techniques used. These interpolation methods allow computation of the
estimation error variance associated with each estimate of the variable of

interest. The following sections describe these four steps.

2.3.2 Regionalized variables and random functions

Let consider the value taken by a particular variable, z(x,), at

point x, (in one~, two- or three-dimensional space) as a particular real-

ization of a certain random variable (RV), Z(x,), at that point. The set
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of variables z(x) for all sample points s within the domain of interest,
i.e. the regionalized variable (ReV) z(x), can be considered as a partic-
ular realization of the set of RV’s, Z(x), for all points x within that
domain (Journel and Huijbregts, 1978). This set of RV’s is known as the
random function (RF) Z(x) . Any regionalized variable has two impor-
tant characteristice which are expressed by the definition of a RF

(Journel and Huijbregts, 1978; Delhomme, 1978):

a) A local, random, erratic aspect. Thus, at a point x, , Z(x,) is a

RV.

b) A general structured aspect. It is expressed by the (auto)
correlation that, in general, exists between the corresponding

RV’s Z(x,) and Z(x,+h) for each pair of points x, and x,+h .

This structured aspect of ReV's is the central point of geostatistics.
The autocorrelation depends on both the distance vector A (in modulus
and direction) which separates the two points, and on the particular

variable considered.

The probabilistic approach to coregionalization is similar to that of
the regionalization of a single variable. Therefore, the coregionalization
of K ReV’s {x,(x),...,2x(x)) is interpreted as a particular realization of
the set of K inter-correlated RF's {Z,(%x),..., Zx(x)) .

For a certain RF, Z(x), to have an operative sense, it is necessary

to infer all or part of the probability law defining this RF. However, it
is not possible to infer this probability law from a single realization,
z(x) , which is limited to a finite number of sample points, x,. In
order to resolve this gituation, certain assumptions, involving various
degrees of spatial homogeneity, are necessary. These assumptions are
introduced under the general heading of the hypothesis of stationarity
(David, 1977; Journel and Huijbregts, 1978; Myers, 1989).
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It is also necessary to note that the application of the theory of
regionalized variables regquires that each RV be normsally distributed.
Because only a single realization is available for each RV, the distribu-
tion of the sample points is used as an indication of this assumption of

normality. If the data are not normally distributed,; a transformation
into a normal distribution is usually applied (Henley, 1981; Myers, 1989).

2.3.3 Hypothesis of stationarity and the semivariogram

Both the role and meaning of stationarity are the source of some
confusion. 8tationarity refers to the RF and not to the data, although
the data are the only information available to test for stationarity or an
appropriate weak form. As indicated by Myers (1989), this interchange
is the source of some confusion in the litevature. The definitions and
consequences of different forms of stationarity, both in the univariate
and the multivariate cases, follow the discussion presented by David
(1977), Journel and Huijbregts (1978) and Myers (1989).

Strong stationarity

A RF, Z(x), is stationary if, for any finite number n of points,
{X1,:0s %) , and any vector distance h, the joint distribution of RV’s,
{Z(x1)ees Z(x,)) 5 i8 the same as the joint distribution of RV's,
{Z(xy*h),.... Z(x,*+h)} . In the multivariate case, this condition must
apply for each of the K inter-correlated RF’s defining the coregionaliza~

tion. Unfortunately, in nearly all instances, the data are represented as
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a nonrandom sample from one realization of the RF and, therefore, can
not be tested for stationarity. For this reason, weaker forms of station-

arity are introduced.

Stationarity of order 2
A RF, Z(x), is second-order stationary if the following conditions
are met,

a) The mean of the RF exists and does not depend on the support

point 2 .

b) The covariance of the RF exists and depends only on the vector

distance h .

The first condition implies that the mean is constant over the
domain of interest. The mean, m , of the RF is defined as its mathemat-

ical expectation value, symbolized by F[.]

E[Z(x)] = m [13]

In the multivariate case, the first condition implies that, for each

RF, Z,(x), the mathematical expectation is defined as

EfZ(x)] = m, (14}

The covariance, C(h), is defined as the expected value of the

product of deviations of two RV’s, Z(x+ h) and Z(x), separated by the

vector distance h , from the mean
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= Cov[Z(x+h), Z(x)]
= E{[Z(x+h)-m][Z(x)-m]} [15al
= E[Z(x+h) Z(x)] - m? ‘ [15b]

In the multivariate case, for each pair of RF's, Z,.(x), Z:-(x), the

cross—covariance, C,(h) , can be defined as

Ce(h) = E{Z(x+h) Zi(x)} - mpmy [16]

The stationarity of the covariance has two more implications.

a)

b)

The first one is the existence of a finite a priori variance.
From equation [15a], this variance is equal to the covariance at

h=0

Var[Z(x)] = E{[Z(x)-m}*) = C(0) [17}

The direct-semivariogram function, y(h), defined as one-half the
variance of the increment [Z(x+h)—- Z(x)], is also stationary.
From equations [13], [15] and [17], the direct-semivariogram

function can be written as

Y(R) = Ver[Z(x+h)=Z(x)]
- JEZ0xr )= 2001 18a]
= C(0) - C(h)
[18b]

In the multivariate case, for each pair of RF’s, Z,.(x), Z:-(x), the

cross—-semivariogram function, v,.,(h), can be defined as
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i

Vin(h) = SELIZ4 (0= 2 GONZaCx + h) = Z,()D) [19a]

= Ca(0) = SICka(h)* Car (] [19b]

When k° =k, equations [16] and [19a] yield the definitions of the
covariance and direct-semivariogram given in equations [15a] and [18a],
respectively. Equations [18b] and [19b] indicate that, under the
hypothesis of second-order stationarity, the covariance and the semiva-
riogram function are two equivalent tools for characterizing the spatial
variability and correlations between one or more ReV'’s. The
semivariogram function expresses how two RV's, Z(x) and Z(x + h), differ
in average according to the distance vector h separating them (David,
1977).

Intrinsic hypothesis

There are many physical phenomena and RF’s which have an infinity
capacity for dispersion. These RF’s have neither an a priori variance
nor a covariance, but a semivariogram function can be defined. As a
conseqguence, the second-order stationarity hypothesis can be slightly
reduced when assuming only the existence and stationarity of the semi-
variogram function. This condition is known as the intrinsic hypothesis.
Under the intrinsic hypothesis, equations [13] and [18a] apply for the
univariate case, and equations [14] and [19a] apply for the multivariate
cagse. Under this hypothesis, the expectation of the increment,
[Z(x~+h)~Z(x)] is zero. The hypothesis of second-order stationarity

implies the intrinsic hypothesis but the converse is not true.
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Quasi-stationarity

As has been mentioned previously, stationarity is defined by prop-
erties of the RF. This would suggest that stationarity is not scale
related. However, this is not the case and an example could illustrate it
(Myers, 1989). Elevation rapidly changes when proceeding from east to
west in the United States and, so, elevation could be assumed non sta-
tionary. However, if elevation is considered on a global scale, the
mountain ranges represent an insignificant part of the Earth’s surface.
Hence, in this case, a more reasonable view might be to consider eleva-

tion as stationary.

A common practice is to limit the hypothesis of second-order sta-
tionarity (or the intrinsic hypothesis if only the semivariogram function
is assumed) to only distances smaller than a limit b This corresponds
to an hypothesis of quasi-stationarity (or to a quasi~intrinsic hypoth-
esis). The distance within which the stationarity hypothesis can be
assumed is generally difficult to determine as the data are the only
information available to test for stationarity. In fact, the hypothesis of
quasi-stationarity is a compromise between the scale of homogeneity of

the phenomenon and the amount of available data.

When the assumptions are false

The assumptions of second-order stationarity (or intrinsic hypoth-
esis) and normality of the data distribution are not always met. Table 2
outlines different ways in which those assumptions are not satisfied.
Table 2 also shows the methods which have been developed to meet pro-
gressive breakdown of the stationarity and the normal distribution

assumptions (Henley, 1981).
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TABLE 2. Kriging (cokriging) methods available when stationarity
or distribution assumptions are not satisfied. Adapted
from Henley (1981).

STATIONARITY
Simple Local Severe
DISTRIBUTION Stationary drift trends anisotropy
Complex Disjunctive kriging ? ?
Simple known Lognormal
(e.g. lognormal) kriging ? ? ?
Ordinary
Normal kriging Universal | Generalized
(point or kriging | covariances ?
block)

The most usual of those methods is called universal kriging (David,
1977; Journel and Huijbregts, 1978), In this case, it is said that the RF,
Z(x) is weakly stationary with drift. This RF can be written as

Z(x) = Y(x) + m(x) [20]

where: Y (x) a RF which satisfies the intrinsic hypothesis

E[Z(x)], the drift

m(x)

The drift is the mean of the RF, but it is not independent of the
support point xx . The drift is a linear combination of known linearly
independent functions. The essential point when using this form of
stationarity is to remove m(x) and then to proceed with Y (x) using the
intrinsic hypothesis (David, 1977; Myers, 1989). An adequate modeling of
the drift is critical to reduce the estimation error variance and to avoid

biased estimators (Boufassa and Armstrong, 1989).

Because of difficulties resulting from simultaneous estimation and
modeling of the semivariogram and the drift, a second definition of weak

stationarity has been introduced: the generalized covariances approach
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(Myers, 1989). It is necessary to define linear combinations that filter
out polynomials up to order k—1. These generalized differences define

second-order stationary RF’s.

If the distribution of the data samples is not normal, a logarithm
transformation of the original values may lead to a normal distribution.
If this is the case, ordinary kriging (Table 2) can be used on the
transformed values (Henley, 1981). This method is known as lognormal
kriging. However, the estimates will be in terms of logarithms of the
original values. If the distribution of the original data is more complex,
disjunctive kriging may be employed (Journel and Huijbregts, 1978;
Henley, 1981). In this case, a ’best-fit’ approximate transformation, con-

sisting of a set of Hermite polynomial functions, is used.

Some authors have proposed the use of a non-parametric approach,
whereby the data are used through their rank order (Henley, 1981;
Journel, 1983, 1984). In this approach, the minimum of assumptions is
required. Usually continuity of the distribution is sufficient. In this
approach, the estimators of the unknown points will necessarily be sub-
optimal when all the conditions for the ordinary kriging (Table 2) are

satisfied (Henley, 1981).

2.3.4 Properties of the semivariograms

In this section, several properties of theoretical direct~ and cross-
semivariograms are discussed. Most of the material covered in this sec-
tion can be found in David (1977), Journel and Huijbregts (1978) and
Clark (1979).

The definition of the direct-semivariogram entails the following

properties
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V(o) = 0, v(h) = vy(-h) =z O [21]

In general, as the distance vector h increases (Figure 1), the semi-
variogram increases from its initial value. Very often in practice, the
semivariogram stops increasing beyond a certain distance. This distance
is known as the range, a. Beyond this distance, the semivariogram
becomes more or less stable around a limit value., This value is called
gill, C. Semivariograms characterized by a sill value and a range are
called transition semivariograms. They correspond to a RF which is not

only intringic but also second-order stationary.

SEMIVARIOGRAM

(=4

DISTANCE

FIGURE 1. Ideal shape for a direct-semivariogram with
a range o and a sill C.
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The range corresponds to the intuitive idea of a zone of influence
of a RV. For any distance h greater than the range, two RV’s, Z(x) and
Z(x+h), are no longer correlated. The sill is simply the a priori
variance of the RF, defined in equation [17]. It should be stressed that
the existence of a gill is not related to the existence of an experimental
variance (variance of the sample values). This experimental variance
can always be calculated even when a sill does not exist. There is no
reason to expect that a natural phenomenon exhibit the same behavior in
every direction. A semivariogram is considered to be anisotropic when

its range and sill vary for different directions in space.

The properties of cross—semivariograms are very similar to those of
direct-semivariograms. However, some differences do exist. For
instance, a cross-semivariogram may take negative values, whereas a
direct-semivariogram is always positive. A negative value of the cross-
semivariogram indicates that a positive increase in one of the variables,
k°, corresponds, on average, to a decrease in the other, X . In general,
the shape of an ideal semivariogram outlined in Figure 1 is still valid
for a cross—semivariogram. Nevertheless, because this cross-
semivariogram may take negative values, the cross-semivariogram may
" decrease from 0 at h =0 to negative values at distances greater than 0.
This decrease will flatten out at some distance which is equivalent to
the range of the direct-semivariogram. Beyond the range, the cross-

semivariogram becomes stable around a limit value, the sill.

Another important remark needs to be pointed out. The cross-
semivariogram is symmetric in (k°, k) and (h,~h) while thisz is not neces-

sarily so for the cross-—covariance

Ve (R) = Y- (R) and v, (h) =V, (—h) [22a]
Crie-(h)=C(—h) and Cu(~h)# Cy. (h) [22b]

Finally, the point to point correlation coefficient, p,.. , between two

RF's, Z,.(x) and Z,(x), located at the same point x , is defined as



39

Cr(0) 0 [23]
JCu(0)C i (0) *
where: Ci-(0)

Crc(0)
Cri(O)

Pro

]

cross~covariance at distance 0

11

variance of the RF Z,.(x)

variance of the RF Z,-(x)

2.3.6 Structural analysis: fitting models of semivariograms

Structural analysis of a regionalized phenomenon consists in con-
structing a semivariogram model which characterizes, in an operational
way, the main features of the regionalization or the coregionalization of
interest (Journel and Huijbregts, 1978). This modeling requires good
physical knowledge of the phenomenon under study as well as good
"craft" in the practice of fitting geostatistical models. Structural analy-
sis should be adapted to the proposed goal of the study. It is most
often a prelude to an intended estimation and, as such, should be
limited to the purpose of the estimation. Thus, it is not used to specify
structures at smaller scales than the ones at which the estimation is

intended (Journel and Huijbregts, 1978).

Before the computation of experimental semivariograms begins, a
preliminary statistical analysis must be performed. This statistical anal-
ysis must provide the arithmetic mean and the standard deviations of all
samples for the variable or variables under study (Journel and
Huijbregts, 1978). If more than one variable is analyzed, the correlation

coefficient for each pair of variables should also be estimated.
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2.3.5.1 Experimental semivariograms

The first step to fit a semivariogram model is to compute an exper-
imental semivariogram using the data available. The experimental semi-
variogram is based on sample data while the semivariogram model is the
underlying theoretical shape of the semivariogram function. The
following equation is used to compute an experimental direct-
semivariogram value, y (h), of the ReV z(x) for a specific distance vec-
tor h (David, 1977; Journel and Huijbregts, 1978; Rendu, 1978)

. 1 N [24]
OB o g[zcxnh)—zcxolz
where: N(h) = number of pairs of sample points separated by the
distance vector h
z(x,) = measured value at sample point x,
z(x,+h) = measured value at sample point x,+h

For a specific distance vector h , the following expression is used

to compute an experimental cross-semivariogram value, v, -(h), for each
pair of inter-correlated ReV's (David, 1977; Journel and Huijbregts, 1978)

. ] N [25]
Vir-(h) = 2N ) & {l=pCx+ h) =2, (x I 2 (%, + R) = 2 (% )]}
where: N(h) = number of pairs of sample points separated by
the distance vector h
z:(2¢y) = measured value of ReV z,(x) at sample point x,
Ze(ox,+h) = measured value of ReV z,(x) at sample point
x.+h
Z.-Ca,) = measured value of ReV z,.(x) at sample point x,
Zp-(x,+h) = measured value of ReV z,.(x) at sample point

x,+h
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In practice, the experimental cross-semivariogram is computed only
for pairs of sample points which have data for both ReV’s (Smyth, 1988).
It must be pointed out that it is necessary to estimate direct-
semivariograms for each of the ReV’s involved in the coregionalization in

addition to cross-semivariograms for each pair of variables (Journel and
Huijbregts, 1978).

Ideally, the sample points are spaced in a regular grid at regular
intervals. In that case, experimental semivariogram values are computed
for several distances (and/or several directions in space), these dis-
tances being multiples of the smaller distance between two sample
points. It is recommended to limit such computations to approximately
half the maximum distance between two sample points (Journel and Huij-
bregts, 1978; Clark, 1979). It is customary to plot the distance between
pairs of samples along the abscissa axis and the values of the

experimental semivariogram along the ordinate (Clark, 1979).

In general, sample pointg are not aligned in a regular manner. In
this case, assuming a two dimensional situation, data are grouped into
angle (direction) and distance classes (David, 1977; Journel and Huij-
bregts, 1978). To construct an experimental semivariogram in the direc-
tion r, each sample value is associated with every other sample value
located within the range defined by r=dr. Within this angle class, the
sample values can be grouped into distance classes. Every data pair
separated by a distance h=dh is used to estimate the value y'(h) (Fig-
ure 2), The size of the tolerances, dr and dh , depends on the struc-
ture of the variable(s) of interest. A good practice is to try several
tolerance values (David, 1977). The distance tolerance, dh , should
always be small relative to the sample spacing. One rule that should
not be forgotten is that the fewer pairs of sample points used to com-
pute a single experimental semivariogram value, the less reliable this
value is (Clark, 1979). Journel and Huijbregts (1978) recommend to use
distance tolerances such that at least 30 to 50 sample points are used to

compute each experimental semivariogram value. In general, the most
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reliable points on the semivariogram graph are those for small diastances
and the reliability drops off slowly and regularly as the distance
between sample points increase (Clark, 1979). Again, the experimental
semivariogram is computed for distances up to approximately half the

maximum distance between two sample points.

r - dv
/52
s4
81 dh 4 dh r
f
o]
r <+ dr

FIGURE 2. Grouping data into distance and angle classes. 81 to 54
are sample values. Adapted from Journel and Huij-
bregts (1978).

If the experimental semivariogram does not change with the direc-
tion in space, a single isotropic semivariogram can be estimated. In this
case, the two previous equations can be applied for all pairs of points
within the study area, regardless of the direction in space. However,
if the experimental semivariogram changes with the direction in space, it
is not possible to characterize the spatial variability of the phenomenon
under study with a single semivariogram. In this case, anisotropic

semivariograms are computed for each direction of the anisotropy.
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2.3.5.2 Models of semivariogroms

Fitting a theoretical model to the experimental semivariogram is one

of the most important aspects of geostatistics. A theoretical model for
the semivariogram must satisfy an important condition: it must be a con-
ditionally positive-definite function (Journel and Huijbregts, 1978; Arms-
trong and Jabin, 1981). This condition is necessary to assure that the
variance of any linear combination of RV’s is positive (Armstrong and
Jabin, 1981). It is time consuming and difficult to test the positive-de-
finiteness of particular models. It is much simpler and safer to adhere
to those models for which the conditionally positive-definite condition
has been shown (Armstrong and Jabin, 1981), The semivariogram models
of most common and widegspread use are classified according to whether
or not they haye a sill value (Journel and Huijbregts, 1978; Rendu,
1978). Table 3 lists the formulas, the slopes at the origin, the ranges

and the sills of these different models.

MODELS WITH A SILL. These are known as transition models. They

are divided according to their behavior at the origin.

a) Linear behavior at the origin. Two models are included in this

category.

- Spherical model (Figure 3a). This model behaves linearly up
to approximately one-third of the range. A line tangent to
the points near to the origin will reach the sill at a distance
about two-thirds of the range (Vieira et al., 1983).

- Exponential model (Figure 3b). This model rises more slowly
from the origin than the spherical model and never quite
reaches the sill (Journel and Huijbregts, 1978; Clark, 1979).
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TABLE 3. Models of semivariograms in widest use. Adapted from
Delhomme (1978), Journel and Huijbregts (1978) and
Rendu (1978).
Slope at
Type Formuls, the origin { Range| Sill
3n K®
T <
Sphevrical v(h)= {C(Z“ 2a3) h a> 3C/2a a c
C h>a
Exponential y(h)=C(l-e™™*) c/a 3a c
Gaussian y(h)=C(1-e "% 0 a3 C
O<i<] )
Models in h' |y(h)=wh! =1 w oo o
1<i<2 0
v(0) = O
oo C
Nugget effect <Y(h) - C, h>0 0 0

b) Parabolic behavior at the origin: gaussian model (Figure 3c¢).

This model reaches the sill only asymptotically (Journel and

Huijbregts, 1978).

MODELS WITHOUT A SILL.

In this case, the RF is only intrinsic.

The most common models included in this group are known as models in

h' (Figure 3d) with I being a value strictly greater than 0 and strictly

less than 2 (Vieira et al., 1983).

linear model.

If I=1, the semivariogram follows a
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g E 1= 0.5

0 1
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FIGURE 3. Graphs of semivariogram models in widest use: a)
spherical model; b) exponential model; c¢) gaussian
model; d) models in Y Adapted from Delhomme
(1978).

NUGGET EFFECT. This term has been kept to describe an initial
discontinuity of the semivariogram: the semivariogram does not tend to
zero when the distance tends to zero (Delhomme, 1978; Journel and Huij-
bregts, 1978). It is a semivariogram with a very small range of influ-
ence (Clark, 1979). The nugget effect may be due to a
microregionalization on a scale much smaller than the spacing of the
data points. It may also be caused by measurement errors (Journel and
Huijbregts, 1978; Delhomme, 1978). Table 3 lists the characteristics of a
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nugget effect. A pure nugget effect corresponds to the situation where
there is a total absence of spatial correlation between two RV’s, at least

for all available distances (Journel and Huijbregts, 1978).

In several occasions, an experimental semivariogram can be
described as a combination of two or more of the previous models. In
this case, it is necessary to speak of nested structures. Mathematically,
a nested structure can be conveniently represented as the sum of a
number of semivariograms, each characterizing the variability of the RF

at a particular scale (David, 1977; Journel and Huijbregts, 1978; Clark,
1979)

Y(R) = Yo(h) + w;(h) + wva(h) +..+ vy, (R) [26]

There is no reason for the components of a nested structure to
have the same directions of anisotropy. For instance, y,(h) may be
isotropic and y,(h) may be anisotropic (Journel and Huijbregts, 1978).
A so-called nested structure commonly found in natural phenomena is
composed of a nugget effect plus a structure of larger range and

defined by any of the models previously discussed.

Models of coregionalization

LINEAR MODEL OF COREGIONALIZATION. This model is fully dis-
cussed in Journel and Huijbregts (1978). The linear model of coregio-

nalization, in terms of semivariograms, is defined as a linear combination

of s basic direct-semivariograms {y,,(h). v=1 to s}

: v : ] v [27]
Ve (R) = ) bl v,(R)  with bl =b},
y=]
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where: [bi,-] = matrix of parameters of the direct- and cross-

semivariogram models

The models for the direct- and cross-semivariogram models must be
positive definite, a condition assured if any of the models described
previously in this section are chosen. It is also required that the
matrix of parameters [b}, -] be positive definite. For K =2 (the case of
two ReV’s), verification of the positive definite condition of this matrix
amounts to checking that, for all v, the two following inequalities

(Schwarz’s inequality) hold true

[28a]
[28b]

1,>0

[b3a] = oo | <Vb41b%

Schwarz’s inequality implies that every basic structure, v,(h) ,

appearing on the cross-—semivariogram, Y,,-(h) must also appear on the
two direct-semivariograms, v,,(h) and y..,.(h) . Thus, for example, if
Yre-(h) reveals two nested ranges, a, and o, these two ranges must also
appear on the two direct-semivariograms. On the other hand, a struc-
ture may appear on the direct-semivariograms without being present on

the cross-semivariograms. For this, it is sufficient that bY,.= 0O when
ke > O
Checking Schwarz’s inequality becomes progressively more compli-

cated as the number of nested structures in the semivariogram model

increases. Schwarz’s inequality can also be written as follows (Myers,

1982)

Wi ()] < y(R)  Yer(R) [29]
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Consequently, Hevesi et al. (1990) proposed a graphical test of the
Schwarz’s inequality based in the previous equation. This test is not a
strict measure of a positive definite model. However, it has proven to
be an invaluable device to select a valid cross-semivariogram model. In

this graphical test, a visual comparison of the curve

IPDCI = Jyu(h) Ve (R) £30]
with the selected cross-semivariogram model is performed. The model is
considered to be positive definite if two conditions are met: 1) the
absolute value of the model for any distance is smaller than the
corresponding absolute PDC value; and 2) the slope of the model does

not exceed the slope of the PDC curve.

INTRINSIC CORFEGIONALIZATION MODEL. This model is also fully dis-
cussed in Journel and Huijbregts (1978). This model is a particular
example of the linear model. It corresponds to the case in which all the
RF’s have the same direct-semivariogram, y,(h) . The model of intrinsic

coregionalization is then

Y- (R) =04 Y, (1) : [31]

where [b,,-]is the matrix of parameters and is positive definite.

OTHER MODELS. Myers (1982) and Hoeksema et al. (1989) suggest an
alternative to the linear model of coregionalization described previously.
In their approach, they suggest that rather than computing and plotting
sample cross-semivariograms, sample direct-semivariograms for paired
sums should be computed and plotted instead. According to these
authors, for any pair of RF's, Z,(x),Z,-(x), their sum, U,,-(x) =
Zw(x)+Z(x), is another RF. They define the cross-semivariogram for

each pair of RF’s as follows
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1. ’ 32
Yie-(R) = “2‘[Vk,k' - Yu(R) = Y (R)] [32)

where vy ;- is the direct-semivariogram for the RF U,,.(x), and y..(h)

and y,.,.(h) are the direct-semivariograms for the RF’s Z,(x) and Z,.(x),
respectively. Then, spherical, exponential, gaussian and/or linear models
can be used to fit these different direct-semivariograms. In general, it
will be necessary to verify that the Schwarz’s inequality (equation [29])

holds after the separate modelling of those direct-semivariograms.

2.3.56.3 Testing the models: cross-validation

In previous sections, the computation of experimental semivariograms
and the different models available to fit them were discussed. The
question remains of how to choose the appropriate model to fit to the
experimental values and how to determine the parameters of that model.
This question is critical and the validity of the geostatistical estimation
techniques discussed in section 2.3.6 depends on its answer. Fortu-
nately, it has been pointed out that the estimation error variance is
robust to most errors likely to be made in semivariogram model selection

and parameterization (Brooker, 1986).

The selection and fitting of a model by visual inspection of the
experimental semivariogram is usually sufficient (David, 1977). Automatic
curve fitting procedures, such as least squares techniques, are not rec-
ommended, unless some modifications are included to allow for the flexi-
bility of giving more weight to semivariogram values that result from

more pairs of sample points (Vieira et al, 1983).
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The adequacy of the chosen model and ite parameters may, to some
extent, be judged by a technique called cross-validation (Delhomme,
1978). This technique can be used to evaluate alternative semivariograin
models (Warrick et al., 1986; Hevesi et al, 1990). The procedure
involves deleting a sample from the data set of one ReV. Then kriging
or cokriging (section 2.3.6) are used to estimate the value of that ReV at
the location of the deleted sample, using the remaining samples and the
chosen semivariogram model and parameters. Differences between esti-
mated and measured values are summarized using the cross-validation
statistics (Aboufirassi and Marifio, 1984; Cooper and Istok, 1988; Hevesi
et al., 1990): average kriging (or cokriging) error (AKE), mean squared

error (MSE), and standardized error variance (SMSE).

A model is considered to ensure unbiased estimates if the AKE is

close to zero

1 &, |
AKE = — ;zkcx‘%zk(xt) [33]

k

estimated value of ReV z,(x) at location i,

where: z3(x,)

measured value of ReV z,(x) at location x,

Ze ()

n number of estimated values

A model is considered accurate if its calculated MSE is minimum

Ry

1 .
MSE = — ) [zi(x)-2:(x)T [34]

k tm}

As a practical rule, the MSE should be less than the variance of
the sample values (Cooper and Istok, 1988), If the MSF is less than the
sample variance, the kriging (or cokriging) estimate is better than the

estimate provided by the mean of all sample values.
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The SMSE indicates the consistency of the calculated estimation

error variances with the observed MSE Model validity is satisfied if
the SMSE result is within the interval 1+ 2y2/n (Delhomme, 1978)

1 & [z () = 24 (5,012

SMSE =
ne—=1 £ 0¥y [35]
where: 02, = calculated kriging or cokriging estimation error variance
for z;(x,)

Recently, a maximum likelihood approach, which treats the cross-
validation errors as gaussian, has been proposed to automatically fit the
model parameters (Samper and Neuman, 1989). This approach still

requires further analysis and testing before it is fully operational.

2.3.6 Kriging and cokriging

Kriging and cokriging are local estimation techniques which provide
the best linear estimator of a particular ReV at a point where it is
unknown (Journel and Huijbregts, 1978). This limitation to the class of
linear estimators is quite natural since it means that only a knowledge
of the second-order moments of the RF, the covariance or the semivario-
gram, is required. A review of kriging followed by a review of cokrig-
ing is presented in this section. This section only deals with ordinary
point kriging and cokriging, the ones applied for point estimation under
the assumptions of second order stationarity and the intrinsic hypoth-

esis.
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Kriging

Let z(x) be a certain ReV unknown at a point xq, Let this ReV be
available at n sample points, {x,...,%,), around that point x, . A linear
estimator z2°(x,) of the unknown and true value 2(x,)is a linear combi-

nation of the n sample values (David, 1977; Journel and Huijbregts, 1978)

. n [36]
z°(%0) = ). NE(%)
(=]
where: A\, = weight assigned to a measured value of the ReV at

sample point x,

measured value of the ReV at sample point x,

i

z(%.)

In kriging, the weights take account of the known spatial depen-
dence expressed in the semivariogram and the geometric relationship
among the sample points (Warrick et al., 1986). The n weights A, are
calculated to ensure that the estimator is unbiased and that the kriging
estimation error variance is minimal (Journel and Huijbregts, 1978;
Rendu, 1978). The estimator z°(x,) is then said to be optimal. The
non-bias condition means that the expected value of estimation errors is
zero. The estimation error is the difference between the estimator and

the true but unknown value of the ReV at location x,

E[z(xo)-% (x,)] = © [37]

To assure this condition, it is enough to impose the following con-
gtraint (David, 1977; Journel and Huijbregts, 1978)

n (38]

YA o= 1

t=1
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The kriging estimation error variance, 05,(x.), is the expected
value of the square of the difference between the estimator and the

true but unknown value of the ReV at location x,

02,(x0) = E{[2(xe)— 2z (%4)1°) [39]

This equation can be shown (Burguess and Webster, 1980; Cuenca

and Amegee, 1987; Cooper and Istok, 1988) to be
R n n [40]
0%c(x0) = =) Y MAY(R) + 20 MR
j-

=1 =1

model semivariogram value for distance vector h,, which

where: y(h,,)

separates two sample points, x,and x,

model semivariogram value for distance vector hg,

Y(hoy)
which separates a sample point, x, , from the unknown

point, x,

The problem now is to find those weights A, which minimize the

kriging estimation error variance under the constraint imposed by equa~
tion [38]. To minimize a function of these weights, the derivatives of
the function with respect to the weights should set equal to zero.
However, when there is a constraint (equation [38]), the Lagrange prin-

ciple states that the following expression should be minimized

n [41]
M = 0Z(xo) *+ 2p (le - 1)

where: i = a new unknown, the Lagrange multiplier
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Therefore, to minimize equation [40], it is necessary to take the
derivatives of expression [41] with respect to all unknowns (the weights
A, and p) and set them equal to zero (David, 1977; Journel and Huij-
bregts, 1978; Cuenca and Amegee, 1987)

aM n

—— = 2vy(he) - 2) AN(h,) - 2u = O
N, =1

— = A, - 1 =0

op tzl ‘

Rearrangement of this set of equations provides a system of n+1
linear equations with n+ 1 unknowns, the n weights A, and the Lagrange

multiplier . This system is known as the kriging system of equations

n
Y AR v op = y(hoy) i=l,an
=1

n [43]

YA, = 1

t=1

The minimized kriging estimation error variance, also known as the

kriging variance, is written as

. [44]
02(x0) = tletv(hw) + op

The kriging standard deviation is the square root of the kriging
variance. Equation [44] shows that the accuracy of the kriging estima-
tion depends on the semivariogram model fit to the experimental semiva-
riogram. Brrors in this model may lead to serious errors in the kriging
variance. Fortunately, as pointed out in the previous section, the
kriging variance is robust to most errors likely to be made in semiva-

riogram model selection and parameterization (Brooker, 1986). Finally, it
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is necessary to note that the kriging system of equations has an unique
solution if and only if the semivariogram models are strictly positive
definite (David, 1977; Journel and Huijbregts, 1978).

Cokriging

One of the most complete derivations of the cokriging system of
equations is done by Journel and Huijbregts (1978) and, in matrix form,
by Myers (1982) for a generic number of variables defined in a three-
dimensional space. However, most practical applications only deal with
one- or two-dimensional samples and two cross-correlated variables.
Consequently, this section is limited to this situation which is fully dis-
cussed by Vieira et al. (1983).

Let z,(x) and z,(x) be two ReV’s., Let n, and n, be the number of

sample points in which those ReV have been measured, respectively. It
is assumed that the ReV z,(x)is under-sampled with respect to the
other ReV, 2,(x), i.e. the ReV z,(x) has been measured at the same
sample points where ReV z,(x) has been measured plus at a set of addi-
tional sample points. Finally, it is necessary to restate that the applica-
tion of cokriging requires the modeling of direct-semivariograms for
each variable separately as well as the modeling of cross-semivariograms
(Warrick et al., 1986).

Let x, be a point at which the ReV z,(x) is to be estimated. A

linear estimator z}(x,) of the true value z,(x,) is given by the follow-

ing expression (Smyth, 1988)

i e}
2i0x0) = MR ) Mg alx)) [45]
(= J=
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weight assigned to a measured value of ReV z,(x) at

i

where: A,
sample point x,
Ny, = weight assigned to a measured value of ReV z,(x) at

sample point x,

As in kriging, in cokriging the weights take account of the known
spatial dependence expressed in the direct- and cross—-semivariograms
and the geometric relationship among the sample points (Warrick et al,
1986). The n, weights A, and the n, weights A,, are calculated to
ensure that the estimator is unbiased and that the cokriging estimation
error variance is minimal (Journel and Huijbregts, 1978; Vieira et al.,
1983). The estimator zi(x,)is then said to be optimal. The non-bias
condition means that the expected wvalue of estimation errors is zero.
The estimation error is the difference between the estimator and the

true but unknown value of the ReV z,(x) at location x,

E[z,(x¢)~21(%x¢)] = O [46]

To assure this cendition, it is enough to impose the following con-

straints (Vieira et al., 1983; Aboufirassi and Marifio, 1984)

il
YAy o= 1
t=]

"y [47]

The cokriging estimation error variance, 62,(x,), is the expected

value of the square of the difference between the estimator and the

true but unknown value of the ReV z,(x) at location ix,

02:(x0) = E{[z,(x¢)~21(x0)1%)> [48]
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The problem now is to find those weights A, and A,, which minimize

the cokriging estimation error variance under the constraint imposed by
equation [47]. As done for kriging, Lagrangian multiplier techniques are
used (Vieira et al., 1983). The result is a linear system of n,+n,+2

linear equations with n, +n;+ 2 unknowns, the n, weights A,, the n,
weights A;, and the Lagrange multipliers p, and p, (David, 1977; Aboufi-

rassi and Marifio, 1984; Smyth, 1988). This system is known as the

cokriging system of equations

y Ry
le“vn(hm)— lez,vm(hm,)—ul =vulhom) m=1,..,n
{= 1=

"l nz
- Zl AMuYiz(hg) - Z; 7\21Yzz(hq1) 2= Y 12(Nog) g=1,..,n
{= 1=
[49]

direct-semivariogram model value for ReV z,(x) for

where: v,;(Rm)

distance vector h,, which separates sample points,

x., and i,

i

Yii(Rom) direct-semivariogram model value for ReV z,(x) for
distance vector h,, which separates the unknown
point x4 from sample point x,,

direct-semivariogram model value for ReV z,(x) for

V22(hq)
distance vector h, which separates sample points, x,

and x,

cross—gemivariogram model value for distance vector

Vlz(hm/)
hn, which separates sample points, x, and x,

cross-semivariogram model value for distance vector

Yiz(hog)
ho, which separates the unknown point x, from

sample point x,
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The minimized cokriging estimation error variance, also known as
the cokriging wvariance, is then defined (Smyth, 1988) as

ny fy [50]
02c(%0) = - ZlKuYu(hm)*' Z Aoy Viz(ho) 1y
i= j=1

The cokriging standard deviation is the square root of the cokrig-
ing variance. Equation [50] shows that the accuracy of the cokriging
estimation depends on the semivariogram models fit to the experimental
direct- and cross-semivariograms. Errors in these models may lead to
serious errors in the cokriging variance. Finally, it is necessary to
note that the kriging system of equations has an unique solution if and
only if the semivariogram models are strictly positive definite (David,
1977; Journel and Huijbregts, 1978).
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3 MATERIAL AND METHODS

This chapter describes the procedures followed to perform this
study. This chapter is divided in four sections. The first section
presents a brief description of the general climatic characteristics of

Oregon. The second and third sections discuss the two main data bases
used in this study, the meteorological data base and the elevation data
base. The last section presents the geostatistical procedures used in
this study.

3.1 General description of Oregon

The state of Oregon is located on the Pacific Coast of the United
States. It is approximately rectangular in shape with dimensions of
about 650 km by 450 km. The north-south Coast and Cascade mountain
ranges located in the western half of the state determine the main cli-
matic characteristics. In this study, the nine major climatic regions
recognized in Oregon (Redmond, 1985) were grouped into six regions
(Figure 4) in an attempt to have enough weather stations within each

region for the geostatistical analysis.

The six regions included in this study were denominated as: 1)
Coast; 2) Willamette Valley; 3) Southern Valleys; 4) North Central; 5)
South Central; and 6) East. West of the Cascade Mountains, i.e. in
regions 1, 2 and 3, the climate is generally humid with an annual total
precipitation of about 1000 mm (Cuenca and Amegee, 1987). East of the
Cascade Mountains, in regions 4, 5 and 6, the general climatic conditions
range from semiarid to arid with annual precipitation of about 250 mm or

less. Two of the six climatic regions, regions 1 and 3, were excluded
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from further analysis due to the lack of enough stations to perform an

adequate geostatistical analysis and significant correlation between ele—

vation and local ETr. Section 4.1 discusses these reasons in more detail,
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Distribution of primary weather stations within the six
climatic regions of Oregon: 1) Coast: 27 stations; 2)
Willamette Valley: 57 stations; 3) Southern Valleys: 25
stations; 4) North Central: 41 stations; 5) South Cen-
tral: 52 stations; 6) East: 49 stations.

FIGURE 4.
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3.2 Computation of local estimates of ET,

Estimates of local ET,. were computed at each of the weather sta-
tions available at this study using the FAO Blaney-Criddle method with
USDA adjustments described in section 2.2.1. The choice of this method
is discussed in that section. Application of the method required three
types of data: 1) primary weather data, constituted by air temperature
values; 2) secondary weather data, constituted by additional meteoro-
logical parameters; and 3) aridity factors to account for the aridity of

the station surroundings.

. Primary weather data

The primary weather data base was made up of monthly averages of
maximum and minimum daily air temperature values recorded at 251 pri-
mary weather stations throughout Oregon for a period of 10 to 88 years.
This data base was provided by the State Climatologist (Climatic
Research Institute, Oregon State University). Long-term monthly aver-
ages of daily mean air temperature were computed from this data base
and used as input into equation [3] (section 2.2.1). Appendix A lists all
primary weather stations within the six climatic regions, including infor-
mation about their longitude and latitude coordinates, the elevation of
the station site and the number of years of record. Information on
longitude, latitude and elevation of the weather stations was taken from
Redmond (1985). Figure 4 shows the distribution of these stations
within the different climatic regions. The number of primary weather

stations was 27, 57, 25, 41, 52 and 49, respectively, for regions 1 to 6.
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Secondary weather data

The additional meteorological parameters required to compute local
values of ET,. (section 2.2.1) were the following: a) long-term monthly
average of daily minimum air relative humidity (RH i), % b) long-term
monthly average of daily ratio of actual to maximum possible sunshine
hours (n/N), dimensionless; and c) long-term monthly average of daily
daytime wind speed at 2 m height (U..,), m sL These parameters were
available from a number of different sources for a limited number of
weather stations. The selection of the data source was based on the
length of recorded data and ease of obtaining and processing the infor-
mation. Appendix B shows a list of the secondary data stations, the
original units in which they recorded the secondary weather parameters,

and the years of record.

For RH ., s 21 weather stations were identified. Some of them pro-

vided dew point temperature. In this case, the following empirical rela-
tionship was used to estimate RH ., from dew point and air temperature

values (Cuenca, 1989)

RE 00 | 12 - 01T max + Tap|° [51]
min 112 + 0.9T7 pax
where: T = long-term monthly average of daily maximum air tempera-
ture, °C.
Tap = long-term monthly average of daily dew point

temperature, °C.

For n/N, 25 weather stations were identified. With the exception of
the station at Portland Airport, values of n/N were derived from either
values of daytime cloud cover or values of incoming short-wave solar
radiation. In those stations recording cloud cover, the following rela-

tionship (Doorenbos and Pruitt, 1977) was utilized to estimate n/N
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Daytime
cloudiness 0 1 2 3 4 5 6 7 8 9 10
(tenths)
n/N |0.95 0.85 0.80 0.75 0.65 0.55 0.50 0.40 0.30 0.15 0.00

In those stations recording incoming short-wave solar radiation, the
following equation (Doorenbos and Pruitt, 1977) was used to estimate
n/N

R, [62]

n
N 05 R, 0.5

where: R, long~term monthly average of daily total incoming short-

wave solar radiation in equivalent depth of evaporation,
mm d-i

R, = long-term monthly average of atmospheric solar radiation
in equivalent depth of evaporation, mm d-4 published in
Doorenbos and Pruitt (1977).

For U 4.y 32 weather stations were identified. Some of them

recorded total daily wind run values. These values were transformed to
daytime wind speed under the assumption of daytime wind speed being
two times nighttime wind speed (Doorenbos and Pruitt, 1977). Some of
the stations recorded wind values at a height other than 2 m. In these
cases, the log-wind law was used to adjust the wind speed values to a 2
m height (Doorenbos and Pruitt, 1977)

2.0\%2 (53]
Uday = Uzd (?)
where: U,;, = long-term monthly averages of daily daytime wind speed

at height 2z, m s-%
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Once RH yy, s /N and Uy, were determined at the 21, 256, and 32

weather stations, respectively, it was required to extrapolate these val-
ues to the 251 primary weather stations. For this procedure, Oregon
was divided in three zones: 1) Coast; 2) Willamette and Southern
Valleys; 3) East of the Cascades. Stations with secondary data in each
of these zones were used to extrapolate the secondary parameters to the
primary weather stations in the same zone. The inverse squared dis-
tance technique was employed. The formula used is given by the fol-

lowing expression (Isaaks and Srivastava, 1989)

{=¢

D (y/he)
=0 [541]
Y = [543
Y (1/h®)
(=0
where Y = extrapolated secondary weather parameter at a desired

location (primary weather station)

h, = distance from the extrapolation point to a point where the
secondary weather parameter is known

¥, = value of the known secondary weather parameter

w = weighting power factor, in this case, set to 2

¢ = number of secondary weather stations used in the extrapo-

lation

Aridity factors

Descriptive information of the primary weather station locations and
theirs surroundings was obtained through a personal visit with Clint
Jensen (National Weather Service, Portland). This information included
type of ground under the temperature sensor, obstructions near the
station location, area characteristics and other general remarks. Aridity

factors, in percent, were subjectively determined for the site, area and
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region, based on that information. Cumulative aridity rates were com-
puted using equation [8], described in section 2.2.1. Site, area, region
and cumulative aridity factors for each primary weather station are

listed in Appendix C.

Local estimates of ET,

The meteorological and aridity data bases previously described were
used as input to equation [3] (section 2.2.1) to compute local values of
long-term monthly averages of daily ET, (mm d-f) for each month of the
year and for each primary weather station. In addition, for each sta-
tion, these monthly wvalues were multiplied by the number of days in the
month and the resulting values were summed to produce values of total
annual or cumulative ET, (mm). The monthly and cumulative values of

local ET, for each primary weather station are listed in Appendix D.

For each primary weather station, longitude and latitude coordinates
were transformed to horizontal (easting) and vertical (northing) dis-
tances (km) from an arbitrary reference point located at 126.00° W lon-
gitude and 42.00° N latitude. Universal Transverse Mercator (UTM)
coordinates were computed for each station and subtracted from the
UTM coordinates for that reference point. The subroutine GSCUTM of
the STATPAC package (Grundy and Miesch, 1988) was used to perform

these computations.
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3.3 Elevation date

In this study, elevation values were available from two different

data sources. The first data source (Redmond, 1985) provided the ele-
vation of the sites at which the primary weather stations were located.

Those values, in m above sea level, are listed in Appendix A.

The second data source was the digital elevation model (DEM) pro-
duced by the Defense Mapping Agency and distributed by the U.S. Geo-
logical Survey. In this data base, elevation V;alues, in m above sea
level, are given at points separated by 3 arc-seconds, i.e. approximately
by 100 m in the North-Scuth direction and 70 m in the East-West direc~
tion. Each 1° longitude x 1° latitude block contains 1,442,401 data
points. Oregon is covered by 35 of those blocks. In this work, points
were selected every 156 arc-seconds (every 159 arc-seconds for each
fourth point) in the North-South direction. In the East-West direction,
points were selected every 225 arc-seconds. In this manner, additional
elevation values were available on a grid of approximately 5 km per
side. The total number of elevation points provided by these two data

sources within each region is listed below.

Region Weather stns. b-km grid Total

1 27 948 975
2 57 1360 1417
3 25 898 923
4 41 1604 1546
5 52 3181 3233
6 49 2525 25674

Longitude and latitude coordinates for each elevation point were
transformed to UTM coordinates using the subroutine GSCUTM. Later,

these UTM coordinates were subtracted from those of the arbitrary ref-



67

erence point located at 125.00° W longitude and 42.00° N latitude. In
this manner, easting and northing distances (km) to that reference point

were available for each elevation point.

Contour maps of elevation were developed for regions 2, 4, 5 and 6

(Figure 5) using the commercial package SURFER v. 4.0. The mapping
scale was 1:2,700,000. The chosen interval width was 200 m as a com-

promise between constraints of that mapping scale and map accuracy.
The main features of elevation within those climatic regions can be
observed in those maps. In region 2, note the main floor of the Willa-
mette Valley in the West and the Cascade Mountains ranging from North
to South in the Fast. In region 4, a gradual increase in elevation is
observed from the Columbia River to the Blue Mountains. In region 5,
the central plateau and a series of ridges in the South can be noticed.
In region 6, the main features of elevation are the Wallowa Mountains in
the North and the Eastern side of the Blue Mountains in the West.
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3.4 Geostatistical analysis

The geostatistical analysis performed in this work involved several
steps. First a brief outline of these steps is provided. Next these

steps are described in detail.

3.4.1 Outline of geostatistical analysis

In this project, each combination of region and month constituted a
study case. For each of the cases, the geostatistical analysis performed

involved several steps which are described bhelow.

1. Preliminary analysis of the data sets. Some classical statistics
were computed for both data sets, ET,. and elevation. Section

3.4.2 describes this step.

2. Semivariogram modeling. Three experimental semivariograms
were computed for each case: direct-semivariogram for ET,,
direct-semivariogram for elevation and cross-semivariogram.
These experimental semivariograms were plotted against dis-
tance and model semivariograms were fit. Semivariogram mod-

eling is discussed in section 3.4.3.

3. Cross—validation. The fit models were tested using the proce-
dure described in section 2.3.5.3. Section 3.4.4 deals with this

cross—-validation procedure.

4, Kriging and cokriging. The interpolation techniques of krig-
ing and cokriging were used in conjunction with the pre-

viously fit semivariogram models to estimate ET, at locations
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where it is unknown. Kriging and cokriging standard
deviations were computed at each of those locations. Kriging
and cokriging results are compared for each case study. This

step is described in section 3.4.5.

5. Mapping of FT. and errors. Contour maps of cokriged ET.
estimates and cokriging standard deviations were performed.

Section 3.4.6 discusses this last step.

3.4.2 Preliminary analysis

In this preliminary analysis and in the following geostatistical anal-
ysis, units for elevation were dam (decameters) and units for cumulative
ET, were mm (100)-4 These units were chosen to avoid dealing with

large numbers in the computations performed.

Several classical statistics were computed for the values of monthly
and cumulative ET, and elevation. These statistics included sample max-
ima, minima, averages, variances and coefficients of variation. Computa-
tion of these statistics provided the opportunity to get acquainted with
the data set and anticipate some possible problems in the geostatistical

analysis.

One of the assumptions of the geostatistical theory presented in
gection 2.3 is the normality of the distributions of the sample data val-
ues. To check this assumption normal, probability plots were computed
for each case for both variables. A normal probability plot is a
cumulative frequency plot scaled so that a normal distribution plots as a
straight line (Devore and Peck, 1986).
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Likewise, sample covariances and correlation coefficients between
the values of ET, and elevation of the station sites were computed for
each case. Under the second-order stationary hypothesis, a sample
covariance is equal to the value of the cross-covariance function (equa-
tion [16], section 2.3.3) at distance 0. As pointed out in section 2.3, the
gain in accuracy due to cokriging depends, among other factors, upon
the degree of correlation between the two variables involved {Ahmed and
De Marsily, 1987; Hoeksema et al, 1989). The statistical significahce of
the respective sample correlation coefficients was tested using a t-test
(Neter et al., 1983). In this test, the following null hypothesis, H, , is

tested against an alternative hypothesis, H,
H,: P =0 [65]
H,t pur # 0

where p,,- = point to point correlation coefficient between two RF’s, as

defined in equation [23] (section 2.3.4), and estimated by

the sample correlation coefficient, r,;-.

In the test, the following statistic, t°, is computed (Nester et al,
1983).

] T \}n""z [56]
‘\Jl—rﬁk'

where n = sample size.

This statistic is checked against the value of the ¢ distribution
(Neter et al., 1983) with n—2 degrees of freedom and 1 - a/2 probability
level, where a is the significance level (usually taken as 0.05), If ¢° is
less than or equal to the ¢ value, the null hypothesis is not rejected,

otherwise the alternative hypothesis is accepted.
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After this preliminary analysis of the data sets, regions 1 and 3
were excluded from further analysis. Section 4.1 explains the reasons
for this decision. These preliminary analyses also motivated the exclu-
gion of January and December in all regions. Therefore, the geostatisti-
cal analysis described in the next sections was performed for a total of
44 study cases, 11 cases per each one of the regions (2, 4, 5 and 6)
remaining in the study. These 11 cases included the months of Febru-

ary to November and the cumulative ET, case,

3.4.3 Semivariogram modeling

For each of the 44 study cases analyzed in this project, it was
required to model a direct-semivariogram for ET, a direct-semivariogram
for elevation, and a cross-semivariogram. For the 11 cases studied
within a single region, the same model of direct-semivariogram for eleva-
tion was used. Therefore, a total of 44 direct-semivariograms for ET,. 4
direct-semivariograms for elevation, and 44 cross-semivariograms were

modeled.

The first step to model semivariograms was the computation of
experimental semivariograms. The experimental direct-semivariogram val-
ves for both ET, and elevation were computed using equation [24]. The
experimental cross-semivariogram values were computed using equation
[25]. Experimental direct-semivariograms for ET, were computed using
the local ET, values available at the weather stations. Experimental
direct-semivariograms for elevation were computed using the values of
elevation available at the weather stations and the 65-km grid. Exper-
imental cross-semivariograms were computed using the values of ET, and

elevation available at the weather stations.
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The relatively small sample size for FT,. within each region pre-

cluded the computation of anisotropic experimental direct-gsemivariograms
for ET, and experimental cross-semivariograms unless very wide angle
and distance classes were used. A loss of directional resolution could

result from this situation. Therefore, isotropy wasg assumed and iso-
tropic experimental direct-semivariograms for ET, and cross~

semivariograms were computed.

Likewise, the ET, values were not aligned in a regular manner.

Therefore, it was necessary to group these data into several distance
intervals (Journel and Huijbregts, 1978). Three factors (Journel and
Huijbregts, 1978; Clark, 1979) were considered to select an appropriate
distance interval width for each experimental direct-semivariogram for
ET, and experimental cross-semivariogram. These factors were: 1)
experimental semivariogram values, in general, are not valid for dis-
tances greater than half the maximum distance between sample pairs; 2)
each experimental semivariogram value should be computed using at least
30 to 50 sample pairs in order to be statistically reliable; and 3) the
higher the number of points in the semivariogram graph, the easier it is
to characterize the underlying shape of the theoretical semivariogram
function. Based on these factors, experimental semivariogram values
were computed for 20, 15, 156 and 20 different distance intervals for
regions 2, 4, 5 and 6, respectively up to a distance equal to one-half

the maximum distance between sample pairs within each region.

The experimental direct-semivariograms for ET,. were computed

using the package Geo-EAS, a geostatistical software developed by the
Environmental Protection Agency (EPA), in cooperation with the Applied
Earth Sciences Department at Stanford University and the Computer
Sciences Corporation (Englund and Sparks, 1988). This package is a
collection of interactive software tools for performing univariate two-
dimensional geostatistical analyses of regionalized variables. The exper~

imental cross—semivariograms were computed using the program VARIO
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(Cooper et al, 1988). This program is part of the Geostatietical Analysis
Package (GAP), which is being developed by the Civil Engineering
Department at Oregon State University and the Water Resources Division
of the U.8. Geological Survey at Mercury, Nevada. The GAP package

allows uni-, two—-, and three~dimensional geostatistical analysis of one or
more regionalized variables.

In the cage of experimental direct-semivariograms for elevation, the
large sample size allowed the computation of valid anisotropic semivario-
grams. For each region, five possible directions were considered: no
direction (isotropic case), 0° (E-W direction), 456° (NE-SW direction), 90°
(N-8 direction), and 135° (NW-SE direction). For each of these direc-
tions, a tolerance angle of 22.5° was used, except for the isotropic case
(180° tolerance angle). Because most of the sample values of elevation
were aligned in a regular grid of about 5 km, this value was taken as
the width of the distance intervals. Experimental semivariogram values
were computed up to a distance approximately equal to one-half the

maximum distance between sample pairs within each region.

The large sample sizes for elevation prevented the use of the two
geostatistical packages mentioned previously to compute experimental
semivariograms. For this reason, the Water Resources Engineering Team
of the Agricultural Engineering Department at Oregon State University
developed its own subroutine, VARIOWRT, in Quick BASIC v. 4.5. This
subroutine was written to analyze the specific elevation data set and it
has not yet been tested for any other data sets. The source code of

this subroutine is listed in Appendix E.

Once the experimental semivariograms were computed, theoretical
models were fit visually., The shape of the experimental semivariograms
was checked against the models described in section 2.3.5.2. The appro-
priate model was selected based on that shape and the parameters of
the model were estimated visually. In general, for a given
semivariogram the corresponding sample variance (or covariance in the

cage of cross—-semivariograms) was used as initial guess of the sum of
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the nugget effect and the sill (or sills if nested structures were
selected) of the model (Clark, 1979). A cross-validation procedure (sec-
tions 2.3.5.3 and 3.4.4) was performed to check the validity of the model.
The estimated parameters of the model were then modified in a
"trial-and-error" procedure until adequate cross-validation statistics
were obtained. In the case of cross-semivariograms, PDC curves (equa-
tion [30], section 2.3.5.2) were also required to check the positive defi-
nite condition of the models. PDC curves were computed using the

cross—validated models for direct-semivariograms of ET, and elevation.

3.4.4 Cross—validation

Cross~validation is a technique used to test the validity of the
parameters of the model semivariogram fit to the experimental values.
In this technique, a sample is deleted from the data set of one ReV and
kriging or cokriging are used to estimate the value of that ReV at the
location of the deleted sample. This estimation is done using the
remaining samples and the selected semivariogram model and parameters.
Differences between estimated and measured values are summarized

using the cross-validation statistics described in section 2.3.5.3.

Those cross-validation statistics must meet several criteria in order
to accept a particular semivariogram model as adequate. The cross-
validation criteria for the direct-semivariograms for ET, and the cross-
semivariograms are listed in Table 4. The cross-validation criteria for
the direct-semivariograms for elevation are listed in Table 5. In the
case of the cross-semivariograms, it was also required to check the pos-
itive definiteness of the models. For this, PDC curves (equation [30],

section 2.3.5.2) were computed in each case using the
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direct-semivariogram models for ET, and elevation. The values and
slopes of the cross-semivariogram models were compared with the values

and slopes of these PDC curves as indicated in section 2.3.5.2.

TABLE 4. Cross-validation criteria for the direct-semivariograms for
ET, and the cross-semivariograms.

Region n AKE MSE! SMSE
2 b7 0 MSFE <sfp 1 % 0.3746
4 41 0 MSE <s2, 1+ 0.4417
b 52 0 MSE <sfp 1 % 0.3922
6 49 0 MSE<sfp 1 £ 0.4041

1 sfp represents the sample variance of ET, values for each of the
44 study cases.

TABLE 5. Cross-validation criteria for the direct-semivariograms for

elevation.
Region n AKE MSE?! SMSE
2 1417 0 MSE <2200.37 1 % 0.0761
4 1545 0 MSE <1482.78 1 % 0.0720
5 3233 0 MSE < 3523.37 1 % 0.0497
6 2574 0 MSE <1057.75 1 * 0.0557

1 Values given in this column correspond to the sample variances
(dam? of elevation in each of the four regions under study.

In any local estimation technique, such as kriging and cokriging, an
important consideration is the choice of a search strategy. This search

strategy can be defined during the cross-validation step. The search
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strategy controls the sample points that are included in the estimation
procedure. Two reasons exist to limit the size of the search neighbor-
hood in practice (Isaaks and Srivastava, 1989). First, the amount of
computations required to solve for the ordinary kriging and cokriging
weights (section 2.3.6) is proportional to the cube of the number of
sample points retained. If this number is doubled, the number of calcu-
lations is increased eight fold. Second, the aptness of a stationary
random function model becomes more questionable as the distance
between the sample points and the point being estimated increases.
Unfortunately, there is not yet a definite rule applicable to all situations
(Burguess and Webster, 1980; Vieira et al., 1983) and common sense
combined with a great deal of arbitrariness is usually involved in

selecting the size of the search neighborhood.

Likewise, some sample points may cluster in certain directions
around the point being estimated. This clustering may have adverse
effects on the estimation results. These effects may be reduced if the
search neighborhood is divided into quadrants and the number of sam-
ple points is limited in each quadrant (Isaaks and Srivastava, 1989).
This study adhered to this quadrant search neighborhood approach. In
a previous study on the application of geostatistics to estimate ET,,
Cuenca and Amegee (1987) suggested that eight was an optimum search
neighborhood size. A closer look to the spatial configuration of the
sample points for ET, within each region showed that a search neigh-
borhood including a maximum of 16 sample points could ensure most of
the estimates be computed using a minimum of eight sample values.
Consequently, a quadrant search neighborhood approach with a maximum
of four sample points per quadrant was used during the cross-validation
of direct-semivariogram models for ET,. A search neighborhood radius
equal to the semivariogram range of the model being cross-validated was
also defined. In this way, sample points located at a larger distance
from the point being estimated than the range were not included in the

estimation,
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In the case of elevation, the number of sample pointe within the
search neighborhocod became more critical. Preliminary cross-validation
tests in region 2 showed that a maximum of 16 sample points per quad-
rant search would be appropriate. It was assumed that this search

strategy could be applied in the other three regions analyzed (4, 5 and
6) since the sample density of the elevation data was similar in the four

regions. In the case of cross-semivariograms, it was necessary to
define two search strategies, one for each of the two variables. The

search strategies previously described were used.

The cross-validation for the direct-semivariograms for ET, was per—

formed using the Geo-EAS package. The cross—validation for the dirvect-
semivariograms for elevation and the cross-semivariograms was carried
out with the aid of the subroutine XVAL-6 included in the GAP package.

3.4.5 Kriging and cokriging

Once the different semivariogram models were cross-validated, they
were used to estimate values of ET,. by applying the kriging and cok-
riging interpolation technigues described in section 2.3.6. In all 44
study cases, both kriging and cokriging estimates were computed at a
grid interval of about 5 km, at exactly the same points where elevation
values were available. The search strategies used are described in the
previous section. Kriging and cokriging variances were determined for
each estimation point as indicated in section 2.3.6 and the square roots
of these variances computed. Maxima, minima and averages for the cor-
responding kriging and cokriging standard deviations were determined
and compared for each case. Kriging and cokriging computations were

performed using the program COKRIGS included in the GAP package.
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3.4.6 Mapping of ET, estimates and errors

The last step performed in this project was the mapping of ET,
estimates and standard deviations of the estimation errors. The commer-
cial computer program SURFER v. 4.0 was used. Two groups of maps

were made.

First, maps of kriged and cokriged cumulative ET . estimates and

kriging and cokriging standard deviations of cumulative FT, were pro-
duced for each of the four regions analyzed at a scale of 1:2,700,000.
These maps allowed a graphical comparison of kriging and cokriging,
Cumulative ET, was selected for this comparison because of the higher
signal-to-noise ratio of this variable compared with monthly ET, values.
Second, maps of cokriged monthly ET, estimates for all months and maps
of cokriging standard deviations for the months of July and October
were produced at the same scale as the first group of maps. Maps of
cokriging standard deviations for July and October allowed the compari-
son of the errors obtained in a warm and a cold month with those
obtained for the whole year (cumulative ET,). The geographic
coordinates of these maps were the easting and northing distances (km)
to an arbitrary reference point located at 125.00° W longitude and 42.00°
N latitude.

The contour interval widths of the cumulative and monthly ET,

maps were selected according two criteria: 1) the chosen interval
width was higher than the corresponding average kriging or cokriging
standard deviations; and 2) a number of about 10 to 12 contour inter-
vals was considered the maximum possible under the constraints imposed
by the selected mapping scale. This second criteria was used to select
appropriate contour interval widths for the maps of kriging and cokrig-

ing standard deviations,
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4 RESULTS AND DISCUSSION

This section discusses the results of the geostatistical analysis per-

formed in this project. The first section presents the preliminary anal-
ysis results. The second section deals with the semivariogram modeling.

The third and last section presents the kriged and cokriged estimates of

ET,. and the errors agsociated with those estimates.

4.1 Preliminary analysis

Table 6 shows the sample maximum, minimum, mean, variance and
coefficient of variation values for ET, for the six climatic regions of
Oregon. Note that most of the values of ET, for the months of January
and December were zero, particularly in the three regions east of the
Cascades. This situation lead to the exclusion of these two months from

the geostatistical analysis.
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TABLE 6. Statistics for monthly and cumulative ET,. sample values.
Region 1 (sample size = 27).

Minimum! | Maximum! Mean? Variance? | Coefficient of

Month mm d-! mm d-1 mm d-1 mm? d-2 | variation %
January 0.21 0.57 0.41 0.009 23.75
February 0.65 0.92 0.79 0.003 7.44
March 1.28 1.58 1.44 0.006 5.24
April 2.21 2.70 2.42 0.015 5.10
May 2.77 3.62 3.21 0.045 6.62
June 3.09 4,08 3.63 0.048 6.23
July 3.06 4.40 3.68 0.077 7.56
August 2.60 3.72 3.11 0.066 7.60
September 2.36 3.17 2,74 0.028 6.06
October 1.70 2.05 1.90 0.011 5.50
November 0.56 0.88 0.73 0.006 10.46
December 0.20 0.53 0.37 0.006 21.53
Cumulative 6.66 8.31 7.42 0.117 4.60

! For cumulative ET,, mm (100)-1 2 For cumulative FT,, mm? (100)-2

TABLE 6. (continued). Region 2 (sample size = 57).

Minimum! | Maximum! Mean! Variance? | Coefficient of

Month mm d-1 mm d-2 mm d-1 mm? d-2 variation %
January 0.00 0.43 0.23 0.008 39.24
February 0.14 1.12 0.77 0.027 21.58
March 0.68 2.03 1.52 0.070 17.42
April 1.41 3.46 2.84 0.137 13.04
May 2.44 4,66 3.92 0.168 10.16
June 3.40 5,14 4,66 0.117 7.34
July 4,33 6.11 5,28 0.134 6.94
August 3.40 5.07 4,46 0.104 7.23
September 2.38 3.83 3.46 0.073 7.79
October 1.24 2.37 2.04 0.036 9.22
November 0.10 0.82 0.59 0.014 20.26
December 0.00 0.39 0.18 0.007 47.01
Cumulative 5,94 10.53 9.14 0.681 9.03

! For cumulative ET,. , mm (100)-! 2 For cumulative ET, , mm? (100)-2
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TABLE 6. (continued). Region 3 (sample size = 25).

Minimum! | Maximum?! Mean! Variance? | Coefficient of
Month mm d-! mm d-1 mm d-1 mm? d-2 | variation %

January 0.00 0.41 0.23 0.014 51.29
February 0.25 1.04 0.80 0.051 28.42
March 0.80 1.95 1.50 0.113 22.44
April 1.92 3.82 2.98 0.321 19.03
May 3.08 5,19 4,18 0.418 15.46
June 4,04 6.34 5.16 0.500 13.72
July 5.10 7.19 6.14 0.399 10.30
August 4,23 6.09 5.13 0.328 11.17
September 2.98 4.48 3.88 0.1567 10.21
October 1.79 2.81 2.32 0.071 11.51
November 0.23 0.80 0.61 0.021 23.86
December 0.00 0.29 0.14 0.007 62.21
Cumulative 7.64 12.07 10.10 1.735 13.06
1 For cumulative ET, , mm (100)-1 2 For cumulative ET, , mm? (100)-2

TABLE 6. (continued). Region 4 (sample size = 41).

Minimum! | Maximum? Mean?! Variance? | Coefficient of

Month mm d-1 mm d-? mm d-? mmé d-2 | variation %
January 0.00 0.21 0.02 0.002 192.40
February 0.00 0.94 0.60 0.024 26.17
March 0.58 2,17 1.55 0.069 16.93
April 1.81 4,38 3.24 0.213 14.23
May 3.07 6.22 4,59 0.356 13.01
June 3.65 7.28 5.50 0.406 11.59
July 5.32 7.92 6.46 0.373 9.45
August 4.51 7.21 5.38 0.365 11.22
September 3.19 4,72 3.88 0.146 9.84
October 1.39 2.79 2.27 0.059 10.73
November 0.12 0.78 0.51 0.014 22.69
December 0.00 0.16 0.03 0.002 128.58
Cumulative 7.26 13.51 10.40 1.328 11,08

! For cumulative ET, , mm (100)-! 2 For cumulative ET, , mm? (100)-2
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TABLE 6. (continued). Region 5 (sample size = 52).

Minimum! | Maximum?! Mean? Variance? | Coefficient of
Month mm d-! mm d-1 mm d-1 mm? d-? | variation %
January 0.00 0.12 0.01 0.001 288.89
February 0.00 0.76 0.40 0.027 40.80
March 0.49 1.50 1.12 0.043 18.40
April 1.47 3.11 2.46 0.107 13.33
May 2.49 4.29 3.66 0.127 9.74
June 3.50 5.30 4.61 0.138 8.06
July 4,75 6.32 5.49 0.166 7.43
August 3.68 5.12 4.41 0.131 8.21
September 2.78 4.00 3.29 0.094 9.28
October 1.61 2.47 2.09 0.049 10.61
November 0.22 0.72 0.44 0.012 256,23
December 0.00 0.15 0.01 0.001 374.15
Cumulative 6.57 10.14 8.56 0.639 9.34
1 For cumulative ET, , mm (100)-1 2 For cumulative ET, , mm? (100)-2

TABLE 6. (continued). Region 6 (sample size = 49).

Minimum! | Maximum! Mean! Variance? | Coefficient of
Month mm d-1 mm d-~1 mm d-1 mm? d-¢2 | variation %
January 0.00 0.00 0.00
February 0.00 0.68 0.35 0.037 54.72
March 0.46 1.86 1.28 0.111 26.09
April 1.73 4.24 3.00 0.313 18.63
May 3.00 5.64 4,19 0.391 14,93
June 3.83 7.02 5.23 0.590 14.70
July 4.83 7.73 6.29 0.461 10.80
August 3.75 6.11 5.08 0.247 9.77
September 2.569 4.56 3.70 0.180 11.49
October 1.43 3.00 2,22 0.145 17.11
November 0.10 0.75 0.43 0.027 37.96
December 0.00 0.03 0.00 0.000 404.15
Cumulative 6.95 12.28 2.71 1.812 13.86

1 For cumulative ET,. , mm (100)-2 2 For cumulative ET, , mm? (100)-2
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Figure 6 shows the normal probability plots for the values of ET,

for August (region 2) and cumulative ET, (region 5). These normal
probability plots are typical examples of the normal probability plots for
all cases analyzed in this study. These plots showed an approximate fit

to a normal distribution. These results agree with previous research
which indicated a normal probability distribution for ET, (Nixon et al.,

1972; Cuenca, 1989). Normal probability plots for region 3, in general,
did not support the hypothesis of normality of the distribution. Devore
and Peck (1986) commented that with small sample sizes (region 3 has
only 25 stations), the sampling variability can be so much that substan-
tial departures from linearity can be observed even when the distribu-

tion is normal.
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FIGURE 6. Normal probability plots for ET,. A) August ET,, mm d-
region 2, B) Cumulative ET,, mm (100)-} vregion 5.
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Table 7 shows the sample statistics for the elevation values at the
weather stations and for all elevation values. Figure 7 shows the
normal probability plot of elevation data for region 4. The shape of
these plots was very similar for all regions. It can be noticed that
there is some departure from linearity for low valueé of elevation.
However, there was an overall fit to a normal distribution. Conse-
quently, no transformations of the original sample values of both vari-
ables, ET, and elevation, were performed due to the apparent normality

of their respective distributions for all study cases.

TABLE 7. Statistics for weather station elevations and all elevation sam-
ple values.

Sample | Minimum | Maximum| Mean | Variance | Coeff,

Region size dam dam dam dam? var. %

i 27 0.30 35.40 5.83 71.45 144.99

2 57 0.60 144,80 23.83 783.34 117.45

Station 3 25 8.80 141.40 58.861 1630.76 68.50
elevation 4 41 3.00 181,10 56.21 1 1298.68 64.11
5 52 86.60 197.50 | 131.71 390.97 15.01

6 49 61.00 150.60 99.24 566.38 23.77

1 975 0.00 141.10 28.84 562.80 82.26

2 1417 0.60 210.20 62.70 | 2200.37 89.01

All 3 923 5.70 208.30 77.20 | 1646.72 52.57
elevations 4 1545 2,20 219.80 80.23 | 1482.78 48.00
5 3233 82.70 260.80 | 148.71 525.37 15.41

6 2574 43.70 257,00 | 133.39 ] 1057.75 24,38
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FIGURE 7. Normal probability plot for elevation, dam, at region 4.

Table 8 shows the results of the cross-statistics for ET, and

weather station elevation values. This table also indicates whether the
respective correlation coefficients were statistically significant. For
region 1, in no case were the correlation coefficients significant, with
the exception of February. This situation lead to the exclusion of
region 1 from further analyses. Two reasons may be presented to
explain this situation. First is that most of the weather stations in this
region were located at sites with an elevation lower than 50-70 m. The
second reason is that, in the coastal areas, the influence of maritime
conditions is especially important. It has been pointed out that evapo-
transpiration rates during summertime are greatly reduced by advective
cooling from the ocean which is greatly influenced by the distance from
the ocean (Nixon et al, 1972).
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TABLE 8. Cross-—statistics of ET, and elevation at the weather stations.
Regions 1 and 2 (sample sizes are 27 and 57, respectively).

Region 1 Region 2
Covar.l! Covar.l
dam Correl. dain Correl.

Month mm d-1 coeff. Signif, mm d-1 coeff. Bignif.
January =0.249 -0,3064 No ~2.009 -0,7924 Yes
February ~0.274 -0.5494 Yes -4,202 -0.9083 Yes
March -0.243 -0.3806 No -6.708 -0.8039 Yes
April -0.193 -0,1848 No -9.602 -0.9176 Yes
May 0.026 0.0143 No -9.873 ~-0.8863 Yes
June 0.461 0.2483 No -8.386 -0.8772 Yes
July 0.699 0.2971 No -6.596 -0.6434 Yes
August 0.435 0.2177 No ~6.974 -0.7725 Yes
September 0.148 0.1065 No -6.450 -0.8553 Yes
October ~0,027 -0.0304 No -4,498 -0.85256 Yes
November -0.228 -0.3514 No -2.958 -0.8908 Yes
December -0.243 -0.3639 No -1.737 ~0.7496 Yes
Cumulative 0.104 0.0360 No -21.269 -0.9207 Yes
1 For cumulative ET,, dam mm (100)-1

TABLE 8. (continued).

Regions 3 and 4 (sample sizes

are 25 and 41,

respectively).
Region 3 Region 4
Covar,! Covar.!
dam Correl. dam Correl.

Month mm d-1 coeff, Signif, mm d-1 coeff, Signif.
January -3.978 -0.8425 Yes -0.093 -0.0601 No
February -7,933 -0.8683 Yes =3.204 =0.5707 Yes
March -9.682 -0.7148 Yes -8.216 -0.8664 Yes
April ~13.136 -0.5737 Yes -15.578 -0.9369 Yes
May -11.016 -0.4220 Yes -19.797 -0.9211 Yes
June -10,305 -0.3609 No -20.474 ~-0.8920 Yes
July -9.108 -0,3569 No -17.936 -0.8154 Yes
August -6.361 =0,2750 No ~16.425 -0.7547 Yes
September -5.852 ~0.3661 No -11.505 -0.8369 Yes
October -5.170 -0.4801 Yes -6.351 -0.7242 Yes
November -4,665 ~0,7890 Yes ~-1.761 ~0,4188 Yes
December -2.664 -0.7617 Yes -0,560 -0,3512 Yes
Cumulative] -27.278 -0.5128 Yes -37.203 -0.8960 Yes
1 For cumulative ET,, dam mm (100)-!
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TABLE 8. (continued). Regions 5 and 6 (sample sizes are 52 and 49,

respectively).
Region b5 Region 6
Covar.! Covar.!l
dam Correl. dam Correl.
Month mm d-2 coeff. Signif, mm d-? coeff, Signif.
January -0.291 -0,56754 Yes N.A. N.A.. No
February -1.906 -0,5860 Yes -2.600 -0.5746 Yes
March -2.984 =0,7303 Yes -5.640 -0,7187 Yes
April -4.689 -0.7243 Yes -9.620 -0.7290 Yes
May -4.662 ~0,6602 Yes -10.536 -0,7141 Yes
June -4,882 ~0.6644 Yes -11.924 -0.6580 Yes
July ~4,706 -0.5835 Yes -11.630 -0,7261 Yes
August -3.746 -0.5229 Yes -9,028 -0,7708 Yes
September -2.7T17 -0.4493 Yes -6.973 -0.6968 Yes
October -2.090 -0.4760 Yes -4.674 -0.6211 Yes
November -1.145 -0.6233 Yes -2.051 -0,56288 Yes
December -0.245 -0.4915 Yes -0.020 -0.1486 No
Cumnmulative] -10.366 ~0.6559 Yes -22.774 -0.7173 Yes

1 For cumulative ET,, dam mm (100)-1

In the other five regions, the correlation coefficients between ET,

and elevation were negative which indicate an inverese correlation
between both variables. In regions 2, 4, b and 6, these correlation
coefficients were significant for all cases. The highest correlation coef-

ficients were obtained in region 2.

In region 3, this correlation was not statistically significant for the
months of June to September. The correlation for the cumulative ET,
case was significant. However, this correlation was not strong and it
was the lowest of all regions. In region 3, an experimental isotropic
direct-semivariogram for cumulative FT, was computed for ten distance
intervals up to half the maximum distance between sample pairs. In
none of these distance intervals were more than 30 sample pairs avail-

able (Table 9). This same situation would have happened for the
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monthly ET, direct-semivariograms and for the cross-semivariograms as
the same stations (i.e. same sample points) were used. As discussed in
section 2.3.5.1, the less the number of sample pairs used to compute a
gingle experimental semivariogram value, the less reliable this value is
(Clark, 1979). Journel and Huijbregts (1978) indicated that a minimum of
30 to 50 sample pairs should be used to compute an experimental semi-
variogram value. In the previous work of Nuss (1989) on the application
of geostatistics to estimate ET, for various climates in Oregon, he also
commented on the difficulty of modeling valid semivariograms within this
region due to the lack of enough sample pairs. Difficult modeling of
direct—-semivariograms for EFT, and cross-semivariograms could be antici-
pated in addition to a likely lack of improveinent in the cokriged esti~
mates due to no significant or poor correlation between ET, and
elevation. Consequently, region 3 was also excluded from further

analysis.

TABLE 9. Experimental semivariogram values for
cumulative ET ., region 3.

Average Semivariogram
distance Number values
Interval km of pairs mm?2 (100)-2

1 7.4 8 0.262

2 15.1 12 0.5610

3 23.8 17 0.883

4 33.7 20 1.464

5 42.5 25 2.614

6 52.1 28 2.547

7 60.6 23 1.438

8 70.9 27 1.434

9 80.5 18 0.803

10 90.3 19 0.897
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4.2 Semivariogram modeling and cross-validation

4.2,1 Direct-semivariograms for ET,

Appendix F lists the experimental values of the isotropic direct~
semivariograms for ET, for all study cases. Almost all experimental val-
ues were computed using a minimum of 30 sample pairs. Note that in all
regions the first three points were computed with less than 30 sample
pairs. This situation may be the consequence of the average distance

between weather stations which is approximately between 25 and 40 km.

In general, the experimental isotropic direct-semivariograms for the
different regions and months progressively increased with the distance
and exhibited a more or less random fluctuation around a constant value
beyond a certain distance (Figure 8). Due to the relatively high amount
of scatter exhibited by the experimental semivariograms, in general, no
obvious theoretical models seemed to fit the sample values in a straight-
forward manner. At this point, the application of geostatistics becomes
somewhat a subjective procedure where the experience, the knowledge
and the biases of the modeler are factors to be considered. Fortu-
nately, it has been indicated that the kriging and cokriging variances
are robust to most errors likely to be made in semivariogram model

selection and parameterization (Brooker, 1986).
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One of the most common semivariogram models used in hydrology
(an other disciplines) is the spherical model. This model has been
guccessfully applied to study the spatial variability of FT,. (Cuenca and
Amegee, 1987; Nuss, 1989). Therefore, it was decided to use this theo-

retical model to characterize the spatial variability of FT,. Cross-
validation results (Table 10) indicated the aptness of this model. No

nested structures other than nugget effects were evident in the

experimental semivariograms.

TABLE 10. Spherical models for direct-semivariograms for ET, and
cross-validation statistics. Region 2.

Samp.

Nugget!| Sill Range | AKE? MSE! var.l } SMSE!
Month mm? d2\mm? d-4§ km mm d-1| mm2 d-2| mm? d-2} mm? d-2
February 0.000 0.034 100 0.005 0.008 0.027 0.988
March 0.001 0.077 100 0.004 0.024 0.070 0.972
April 0.005 0.136 80 0.005 0.064 0.137 0.992
May 0.005 0.145 80 0.004 0.070 0.158 0.992
June 0.015 0.109 80 0.002 0.068 0,117 0.976
July 0.015 0.120 85 -0.003 0.065 0.134 0.976
August 0.016 0.089 70 -0,004 0.063 0.104 0.988
September 0.010 0.065 80 0.001 0.041 0.073 0.988
October 0.008 0.028 105 0.003 0.020 0.036 0.984
November 0.001 0.013 115 0.003 0.005 0.014 0.998
Cumulative 0.020 0.670 80 0.007 0.323 0.681 0.988

! Por cumulative ET,, mm2 (100)-2 2 For cumulative FT,, mm ‘(100)’1
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TABLE 10. (continued). Region 4.
Samp.

Nugget!| Sil! | Range | AKE2 | MSE! | varl |SMSE!
Month mm?2 d-2| mm? d- km mm d-1 | mm? d-?| mm?2 d-2} mm? d-2
February 0,005 0.021 65 -0.003 0.019 0.024 0.990
March 0.007 0.066 75 -0.009 0.048 0.069 1.032
April 0.010 0.205 80 =0.014 0.118 0.213 1.024
May 0.018 0.301 100 -0.011 0.148 0.356 1.022
June 0.065 0.325 95 -0.012 0.217 0.406 0.978
July 0.040 0.334 100 -0.013 0.176 0.373 0.990
August 0.048 0.306 105 -(3,009 0.162 0.365 0.914
September 0.025 0.114 100 -0,012 0.073 0.146 0.860
October - 0,006 0.063 80 -0.014 0.036 0.059 1.030
November 0.002 0.010 80 -0.007 0.008 0.014 1.030
Cumulative 0.202 1.228 105 -0,022 0,738 1.328 1.012

! For cumulative FT,., mm? (100)-2

2 For cumulative ET,, mm (100)-1

TABLE 10. (continued). Region 5.
Samp.

Nugget!] Sill! | Range | AKE 2 MSE1L var.l | SMSE!
Month mm? d-2{mm? d-4 km mm d-1} mm? d-2| mm? d-2} mm? d-2
February 0.001 0.028 925 -0.002 0.013 0.027 1.000
March 0.001 0.044 90 -0.002 0.024 0.043 1.014
April 0.019 0.088 100 0.000 0.065 0.107 1.008
May 0.010 0.111 100 0.001 0.062 0.127 0.990
June 0.005 0.132 100 -0,005 0.082 0.138 0.962
July 0.008 0.152 105 0.004 0.065 0.166 0.980
August 0.010 0.121 100 0.002 0.059 0.131 1.012
September 0.004 0.088 105 0.004 0.032 0.094 1.010
October 0.001 0.048 115 0.004 0.015 0.049 0.931
November 0.001 0.011 115 0.000 0.006 0.012 1.018
Cumulative 0.007 0.625 100 0.008 0.239 0.638 0.931

1 For cumulative ET,., mm? (100)-2

2 For cumulative ET,, mm (100)-1
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TABLE 10. (continued). Region 6.

Samp,

Month Nuggetl| Sill! | Range | AKE2 | MSE! var.! | SMSE!

mm? d-2\ mm? d-4 km mm d-1 | mm? d-2| mm? d-?} mm? d-2
February 0.000 0.037 85 0.013 0.018 0.037 0.984
March 0.009 0.100 115 0.008 0.052 0.111 0.941
April 0.019 0.294 125 0.021 0.119 0.313 0.943
May 0.003 0.405 135 0.018 0.122 0.391 0.925
June 0.000 0.590 160 0.014 0.138 0.590 0.780
July 0.024 0.466 135 0.017 0.176 0.461 0.982
August 0.023 0.257 120 0.014 0.138 0.247 1.111
September 0.038 0.159 130 0.015 0.098 0.180 0.958
October 0.019 0.115 140 0.015 0.059 0.145 0.970
November 0.003 0.023 90 0.011 0.014 0.027 0.962
Cumulative 0.100 1.840 135 0.045 0.704 1.812 0.947

1 For cumulative ET,, mm? (100)-2 2 For cumulative ET,, mm (100)-!

The nugget effect accounts for the variation of ET, within the

smallest sampling intervals and for the error of "measurement" or esti-
mation of this variable at the sample points. It is known there are
errors related to the estimation method used to compute local values of
ET,. As a consequence, it was not surprising there was evidence of
nugget effect in most of the experimental semivariograms. However, in
some cases a nugget effect equal to zero was assumed based on the

cross-validation statistics.

Figure 8 shows the experimental and model semivariograms for
cumulative ET, for the four regions analyzed. Table 10 lists the param-
eters of the different spherical models fit to the experimental semivario-
grams and the cross-validation statistics for each of the 44 study cases.
All models presented here showed adequate cross-validation statistics
(Table 10) meeting the criteria outlined in Table 4. These cross-
validation statistics results were used as the main criteria to accept a

particular model as adequate.
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Note that the nugget effect, in general, is higher for the warmer
months of the year. However, this result may be artificial due to the
fact that the relative magnitude of the ET, values during those months
is higher than during winter months. In general, the nugget effects

shown in Table 10 are lower than those reported by Nuss (1989) in a
previous study of the application of geostatistics on evapotranspiration

analyses. He performed the study for similar climatic regions in Oregon,
using three-year averages of local ET,. This factor possibly lead to
higher "measurement” errors in the sample values of ET, and, therefore,

to higher nugget effects.

The ranges of the semivariogram models also show some variation
during the year (Table 10). For region 2, the ranges are smaller for
the warmer months. In regions 4 and 6, the ranges are larger in the
winter months. In region 5 the relative variation in range is smaller
than in the other three regions, although the warmer months show
slightly larger ranges. In the case of the cumulative ET, the ranges
are similar to those for the warmer months. Recall that ET, rates dur-
ing the warmer months are the highest and have the greatest influence
on the cumulative ET, rates. Ranges of regions 2, 4 and 5 are, in
general, relatively similar while region 6 shows higher range values.
Ranges shown in Table 10 are, in general, similar to those from Nuss

(1989) with the exception of region 2 in which ranges are higher.

4.2.2 Direct—semivariograms for elevation

Appendix G lists the experimental values of the isotropic direct-
semivariograms for elevation. In region 5, some of the experimental val-

ues were computed using more than 100,000 sample pairs. In regions 2
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and 4, the number of sample pairs use to compute the experimental
values was lower than in regions 5 and 6. Still, more than 20,000 sam-
ple pairs were used for most of the experimental values. Figure 9
shows the experimental semivariograms for elevation computed for
several directions for region 4. Anisotropy is evident. This phenome-
non was also noticed in the other three regions, 2, 5 and 6, under
study. The direction of the maximum spatial variability changed from
region to region. Thus, for example, in region 2 the direction of maxi-
mum variability was W-E with N-S as the direction of minimum spatial
variability. In the W-E direction, the elevation changes from the
altitude of the Coastal Range down to the Valley floor and up again to
the elevations of the Cascade Range (Figure 5). In region 4, however,
the maximum spatial variability occurred in the N-8 direction and the
minimum in the W-E direction. In this region going N-8, the elevation
changes from the elevation of the Columbia Gorge to the Blue Mountains

(Figure 5).
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FIGURE 9. Anisotropic direct-semivariogram for elevation. Region 4.

In some cases, for example in the N-S direction in region 4 (Figure
9), a parabolic growth of the semivariogram was noticed. This is gener-
ally interpreted as an evidence of drift or non-stationarity (Myers,
1989). However, for distances shorter than approximately the maximum
range modeled for the direct-semivariograms for ET, within a particular
region, stationarity of elevation could be reasonably assumed at least for
the isotropic semivariogram. No drift was evident for the isotropic
semivariograms, with the exception of region 5 (Figure 10). Two reasons
may be used to justify semivariogram isotropy and the quasi-stationarity
hypothesis (section 2.3.3) for those distances (Hevesi et al, 1990).
First, the convenience of a simplified semivariogram model. This simpli-
fication becomes critical during cross-validation because the identifica-
tion of the large number of parameters required for the more

sophisticated models is particularly difficult. Second, a model
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consistency should be maintained between the two ReV’s under study.
The linear model of coregionalization (section 2.3.5.2) implies the exis-
tence of anisotropic structures for both correlated ReV’s if one of them
shows evidence of anisotropy. The small sample size did not allow
development of evidence for anisotropy for ET,. As a consequence, the
use of an isotropic semivariogram model for elevation within the dis-
tances previously mentioned seemed more reasonable that proposing an

unobservable anisotropic structure for ET ..
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FIGURE 10. Model isotropic direct-semivariogram for elevation. Region 2.
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Table 11 lists the parameters of the fit isotropic direct-
semivariogram models for elevation and the corresponding cross-
validation statistice for the four regions under study. Figure 10 shows
the experimental and fit semivariogram models for these four regions.
With the exception of region 4, models with nested structures were fit.
Nugget effects were also evident in these models. The elevation semiva-
riogram in region 2 was fit by a model with two nested structures, a
gaussian structure with a range of 85 km and a spherical structure with
a range of 125 km. The range of the gaussian structure was very
similar to the one observed for the direct-semivariogram for cumulative
ET,. In regions 5 and 6, the semivariogram model was made up of two
nested structures, a spherical structure and a linear structure. Note
the small range of the spherical structures, 30 and 60 km, for regions 8§

and 6, respectively, compared with the range of the direct-



105

semivariograms for ET, within the two regions. For region 4, the semi-
variogram was fit by a model with a spherical structure with a

particularly large range of 175 km.

TABLE 11. Models of direct-semivariograms for elevation and cross-
validation statistics.

Gaussian Spherical | Linear

Slope Samp.
Nugget] Sill |Range| Sill | Range| dam? | AKE | MSE | var. |SMSEF
Reg| dam? | dam?| km | dam?] km km-1 | dam | dam? | dam? | dam?

2 200 }12000] 85 830} 125 0.073] 260.41 | 2200.37| 0.978
4 85 1976} 175 0.014} 156.47 | 1482.78| 0.936
5 19 363 30 0.77 | 0.021] 92.56) 525.37} 0.973
6 150 755 60 2.45 1-0.033}249.47 § 1057.75] 0.976

4.2,3 Cross-semivariograms

Appendix H lists the experimental values of the cross~
semivariograms for each of the study cases. The number of sample
pairs used to compute each experimental value was the same as in the
case of direct-semivariograms for ET, since the same sample points were
used in the computations. Figure 11 shows the experimental and model
cross~semivariograms for cumulative ET,. and elevation. This Figure also
shows the PDC curve computed to check the positive definite condition.
Most of the cases analyzed, with the exception of region 4, showed abso-
lute experimental values for the cross-semivariogram smaller than the

absolute values of the PDC curve for most of the distances computed.
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As in the case of the direct-semivariograms for ET,, the experimen-

tal cross-semivariograms showed a high amount of scatter and, in gen-
eral, no obvious theoretical models were evident. Recall that the linear
model of coregionalization implies that any structure present in a

cross—-semivariogram must also appear in both direct-semivariograms.
Spherical models were fit to both direct-semivariograms as discussed

previously. For this reason, spherical models were selected to fit the
experimental cross-semivariograms. In region 4, the modeling of cross-
semivariograms was somewhat more difficult because of the problems
related to the positive definite condition mentioned previously. In this
case, the experimental values meeting the positive definite condition
were considered more representative of the underlying theoretical cross-
semivariogram. Validity of the selected models and parameters was

based mainly on the cross-validation statistics.

Table 12 lists the parameters of the model semivariograms and the
cross-validation statistics for all 44 study cases. There was no clear
evidence of nugget effects. These were assumed equal to zero in all
cases and this assumption was supported by the cross-validation statis-
tics. In general, the ranges defined for the direct~semivariograms for
ET, seemed appropriate for the spherical models in the
cross-semivariograms. However, in region 4 it was usually necessary to
define larger ranges than those used for direct-semivariograms for ET ..
Notice that most of the experimental values of the cross-semivariograms
in region 4 (Figure 11) meeting the positive definite condition are at
distances close to or greater than the ranges of the direct—
semivariograms for ET,. Cross-validation results were used to support

the selected ranges.
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validation statistics. Region 2.
Nugget! Silt Samp.

dam dam Range| AKE 2 MSES3 var.d SMSES3
Month mm d-1 § mm d-I km | mm d-1 | mm2 d2} mm? d-? | mm2 d-2
February 0.000 -5.04 100 0.007 0.003 0.027 0.999
March 0.000 -7.24 100 0.008 0.010 0.070 1.002
April 0.000 -8.46 80 0.011 0.030 0.137 1.027
May 0.000 -9.01 80 0.010 0.031 0.158 1.053
June 0.000 ~8.61 80 0.008 0.030 0.117 0.992
July 0.000 ~8.50 85 0.007 0.034 0.134 0.967
August 0.000 -6.89 70 0.007 0.035 0.104 1.072
September 0.000 -6.39 80 0.006 0.022 0.073 1.056
October 0.000 -4.85 105 0.006 0.012 0.036 0.968
November 0.000 -3.18 115 0.004 0.003 0.014 0.934
Cumulative 0.000 -19.40 80 0.019 0.138 0.681 1.052

1 Cumulative ET,, dam mm (100)-1
3 Cumulative ET,, mm? (100)-2

2 Cumulative ET,, mm (100)-1

TABLE 12. (continued). Region 4.
Nugget! sint Samp.

dam dam |Range] AKE2 | MSES3 var.3 SMSE?3
Month mm d-l}| mmdl}| km | mm d-!| mm? d2} mm? d-2 | mm? d-2
February 0.000 -3.45 65 -0.029 0.009 0.024 1.030
March 0.000 -7.65 90 -0.052 0.019 0.069 0.978
April 0.000 -14.35 100 -0.085 0.048 0.213 0.979
May 0.000 -19,20 120 -0,083 0.060 0.356 0.947
June 0.000 -20.50 115 -0.110 0.104 0.406 0.921
July 0.000 -19.30 120 -0.084 0,108 0.373 1.067
August 0,000 -17.89 125 =0.071 0.127 0.365 1.125
September 0.000 ~12.55 125 -0.063 0.047 0.146 1.088
October 0.000 =6.35 90 -0.047 0.017 0.059 0.940
November 0.000 -1.76 80 -0.016 0.004 0.014 0.680
Cunulative 0.000 ~37.90 115 -0(,202 0.345 1.328 0.969

! Cumulative ET,, dam mm (100)-1
3 Cumulative ET,, mm? (100)-2

2 Cumulative ET,, mm (100)-1
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TABLE 12. (continued). Region 5.
Nugget! Sint Samp.

dam dam |Range| AKE2 | MSE?3 var.? | SMSE?3
Month mm d1 | mmd?l| km | mm d1| mm2 d2] mm? d-2 | mm? d-2
February 0.000 -1.58 95 -0.034 0.013 0.027 1.161
March 0.000 -2.47 90 -0.059 0.020 0.043 1.107
April 0.000 -3.92 100 -0.116 0.057 0,107 1.186
May 0.000 -4,09 100 -0.101 0.053 0.127 1.119
June 0.000 -4.06 100 -0.094 0.057 0.138 1.137
July 0.000 ~4,29 105 -0.086 0.060 0.166 1.101
August 0.000 -3.18 100 -0,064 0.060 0.131 1.133
September 0.000 -2.62 105 -0.045 0.032 0.094 1.111
October 0.000 =2.10 116 -0.033 0.014 0.049 1.000
November 0.000 -1.04 1i5 -(.020 0.006 0.012 1.110
Cumulative 0.000 -9.34 100 =0.200 0.227 0.638 1.170

1 Cumulative ET,, dam mm (100)-1
3 Cumulative ET,, mm? (100)-2

2 Cumulative ET,, mm (100)-1

TABLE 12. (continued). Region 6.
Nuggetl! sim Samp.

dam dam |Range| AKE?2 | MSE?3 var.? SMSE?3
Month mm d-1 | mmdl| km | mm d1| mm? d2] mm? d-2 | mm2 d-2?
February 0.000 -3.26 85 -0.009 0.013 0.037 1.063
March 0.000 -6.93 115 -0.036 0.037 0.111 0.939
April 0.000 -11.65 125 -0.044 0.086 0.313 0.929
May 0.000 -13.20 135 -0.040 0.088 0.391 0.966
June 0.000 -17.85 160 -0.052 0.100 0.590 0.838
July 0,000 -14.80 135 -0,059 0.126 0.461 0.970
August 0.000 -10.30 120 -0.049 0.102 0.247 1.084
September 0.000 -10.35 130 =0.070 0.070 0.180 0.916
October 0.000 =7.06 140 -0.026 0.045 0.145 0.904
November 0.000 -2.60 90 -0.010 0.011 0.027 0.942
Cumulative 0.000 -31.55 135 =0.125 0.487 1.812 0.940

! Cumulative ET,, dam mm (100)-!
3 Cumulative ET,., mm? (100)-2

2 Cumulative ET,, mm (100)-1
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4.3 Results of kriging and cokriging

In this section the results of applying the kriging and cokriging
interpolation techniques to estimate ET. at a grid interval of approxi-
mately 5 km are presented. Before commenting on these results, two
clarifications are required. First, the resulte for cumulative ET, are
given in mm rather than in mm (100)-! because the first unit is more
consistent with the standard units used in the scientific community.
Second, despite the fact that the computer program used in this analy-
sis provided kriging and cokriging variances, this section presents
these results in terms of standard deviations in order to use the same

units as for the estimates of ET,.

Table 13 lists the maximum, minimum and average values of the
kriged and cokriged estimates of ET, for the four regions under study.
The percent difference between kriged and cokriged estimates, based on
the kriged estimates, is also provided. Minimum values for February ave
negative in regions 4 and 6. This may indicate some failure of the
kriging and cokriging interpolation techniques when the values of the
variable under study are very small. Recall that zerb wag the minimum

experimental value of ET, for that month in those regions (Table 6).

In general, no differences between kriging and cokriging were not-
iced for the maxima of the estimated values, with the exception of region
4 where a slight difference was observed. The minima and averages of
the estimated values were consistently smaller for cokriging than krig-
ing in all regions. This decrease was particularly noticeable for the
minima of the estimated values in region 4, where a decrease of
approximately 15 to 20 % was observed. For all regions, the decrease of
the minima of the estimated values was larger than the decrease of the
averages of the estimated values. In general, decreases in the average

are small and within the accuracy of the Blaney-Criddle method used to
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compute the local estimates of ET,. These changes are higher for the

cumulative ET, values due to the additive effect of small but consistent

errors.

"TABLE 13. Comparison of kriged and cokriged ET, estimates. Region 2.

Maximum! mm d-!| Minimum! mm d-! | Average! mm d-!
Diff, Diff. Diff.
Month Krig.| Cokg. % Krig.} Cokg. % Krig.} Cokg. %

Februsary 1.07 | 1.05 -2.562 | 0.16 | 0.00 | ~100.14} 0.74 §} 0.66 | -10.02
March 2.00 1 1.98 -1.10 } 0.63 | 0.41 -35.17] 1.47 § 1.37 -7.28
April 3.40 § 3.37 -0.94 | 1,63} 1.30 ~-14.94§ 2.79 | 2.63 -5, 77
May 4,565 § 4.62 -0.55 | 2.68 | 2.38 -7.571 3.856 | 3.68 -4.48
June 5.06 | 5.09 0.67 | 3.68 | 3.34 -9.27}1 4.63 | 4.46 -3.60
July 5.98 | 5.96 -0.37 | 4.62 | 4.20 ~7.18§ 5.28 | 5.14 -2.76
August 5,011 4.97 -0.74 | 3.64 1 3.30 -9.421 4.43 | 4.29 -3.21
September | 3.77 | 3.81 1.01 | 2,60} 2.35 -9.,581 3.43 | 3.32 -3.45
October 2.26 | 2.23 -1.11 § 1.471 1.31 -11.281 2.02 } 1.95 -3.33
November | 0.77 } 0.74 -2.77 | 0.16 | 0.08 -51.03}1 0.56 | 0.52 -7.15
Cumulativei 1031 ] 1021 -0,97 621§ 571 -8.08] 9041 867 -4,07

1 For cumulative ET,., mm

TABLE 13. (continued). Region 4.

Maximum! mm d-! | Minimum! mm d-? | Averagel mm d-!

Diff. Diff, Diff.
Month Krig.] Cokg. % Krig.| Cokg. % Krig.| Coksg. %

February | 0.84 | 0.82 -2.65 | 0,13 | -0.09 | -167.39} 0.61 } 0.54 | -12.568

March 2.12 } 2.04 -3.50 | 0.73} 0.50 | =-31.73}| 1.56 | 1.43 -8.00
April 4,33 | 4.24 -2,03 | 1.95} 1.65| -15.55} 3.22 |} 3.03 =577
May 6.11 ] 5.94 -2.83 | 3.28 ] 2.86) -12.95] 4.54 | 4.34 -4.41
June 6.98 | 6.66 -4,49 | 4,18 3.31; -20.85 5.46 | 5.19 -4.94
July 7.71 | 7.56 -2.00 | 5,568 | 4.69] -15.99} 6.39 § 6.18 -3.20
August 6.89 | 6.69 ~2.92 | 4.58 | 3.64] -20.48] 5.33 | 5.15 =-3.41

September } 4.60 | 4.49 -2.28 | 3.39} 2.82} -16.95} 3.84 | 3.70 -3.69
October 2,74 | 2.69 -2.11 | 1.62 } 1.31} -13.72} 2.28 | 2.19 -4,31
November | 0.70 | 0.70 -0.45 | 0.20 | 0.12} -36.92} 0.52 | 0.49 -5.29
Cumulative | 1299 | 1245 | -4.16 808) 650 | -19.56| 1032} 983 | -4.74

1 For cumulative ET,, mm
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TABLE 13. (continued). Region 5.
Maximum! mm d-!| Minimum! mm d-!| Averagel mm d-!
Diff, Diff. Diff.
Month Krig.! Cokg. % Krig.! Cokg. % Krig.| Cokg. %
February 0.74 | 0.76 .91 |} 005§ 0.02 | ~48.05 | 0.39 | 0.34 | -13.91
March 1.49 1 1.50 0.54 | 0.53 1 0.49 -6.89 | 1.11 § 1.01 -8.83
April 2.991 2.96 -1.01 | 1.69] 1.48 | -11.99 | 2.43 § 2.25 -7.47
May 4.24 | 4.23 -0.26 | 2.64 | 2.4 -3.68 | 3.64 ] 3.48 -4.44
June 5.26 { 5.29 0.44 { 3.67 ] 3.48 -2.44 | 4.59 | 4.45 -3.18
July 6.20 | 6.24 0.52 | 4.76 | 4.44 -6.66 | 5.43 | 5.28 -2,63
August 4,98 | 4.97 -0.34 | 3.69 ) 3.b1 -4.96 | 4.37 | 4.26 -2.43
September | 3.91 1 3.90 -0.38 | 2.74 | 2.58 -5.56 | 3.24 ] 3.16 -2.44
October 2.46 | 2.47 0.57 § 1.63 ) 1.51 -7.569 | 2.08 | 2.02 -2.87
November | 0.67 ! 0.68 0.92 § 0.26 1 0.20 { -18.71 | 0.43 | 0.40 ~7.55
Cumulative] 999§ 1003 0.43 662 622 -6.06 846 814 -3.87
1 For cumulative ET,, mm
TABLE 13, (continued). Region 6.
Maximum! mm d-!| Minimum! mm d-!| Average! mm d-!
Diff. Diff., ' Diff,
Month Krig.| Cokg. % Krig.| Cokg. % Krig.l Cokg. %
February 0.67 | 0.67 0.45 |-0.03] -0.14 | -426.59} 0.34 | 0.29 | -13.92
April 4.08 | 4.09 0.27 1.91] 1.62}) -15.07{ 2.85 | 2.72 ~4,50
May 5.47 1 5.49 0.29 3.05] 2.66] -12.87] 4.01 | 3.89 -3.12
June 6.83 | 6.85 0.28 3.87] 3.46} -10.74] 5.04 )} 4.84 -3.91
July 7.63 | 7.62 -0.08 5,02} 4.58 -8.90| 6.09 | 5.94 ~2.45
Auvgust 5.98 1 5.98 0.00 3.99] 3.74 -6.22] 4.956 | 4.83 -2.43
September | 4.36 | 4.37 0.21 2.98] 2.64] -11.28] 3.58 § 3.45 -3.66
October 2.84 1 2.84 0.00 1.59] 1.44 -9.461 2.16 | 2.08 -3.53
November | 0.70 | 0.70 ~0.04 0.13F 0.03} -79.75] 0.41 | 0.37 -9,60
Cumulative | 1208 ] 1211 0.25 718 624 -13.12] 936 904 -3.47

1 For cumulative ET,., mm
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Figure 12 shows the contour maps of kriged cumulative ET, esti-

mates. Figure 13 shows the contour maps of cokriged cumulative ET,.
In general, the kriged contours are very smooth as compared with the
cokriged contours. The kriged contours follow roughly the main fea-
tures of elevation of the different regions. However, the cokriged con-
tours follow these elevation changes much more closely. The kriged and
cokriged contours are relatively similar in areas of low elevation, for
example, in the West and North areas of region 2 and the North area of
region 4 (Figures 12 and 13). However, in areas of high elevation, the
cokriged contours provided finer detail of the changes of ET, as the
elevation changes. Notice, for example, in region 5 the general trend of
cokriged contours in the South Central area (Figure 13) which resembles
closer the trend in elevation (Figure 5) while kriged contours do not
follow it at all. Another example is in the North area of region 6, close
to the mountainous group observed in Figure 5. Figures 14 to 17 show
the cokriged contours of monthly ET, for regions 2, 4, 5 and 6. In
general, the cokriged contours of monthly ET, follow the same pattern
as cokriged contours of cumulative ET,. In all cases ET, decreases as
elevation increases as expected due to the negative correlation between
both variables.
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FIGURE 17. (continued). July.
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FIGURE 17. (continued). September.
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Table 14 lists the maximum, minimum and average values of the
kriging and cokriging standard deviations for the four regions under
study. The percent difference between kriging and cokriging standard
deviations, based on the kriging standard deviation, is also provided.
In all regions, a consistent decrease in the maxima and averages of the
estimation error standard deviations was noticed for cokriging in all
study cases. No differences were observed for the minimum values.
The minimum estimation errors could be expected in locations at lower
elevation where the influence of elevation is less significant. In those
locations, less differences could be expected between kriging and
cokriging and maximum values of ET, should be expected due to the
inverse correlation between ET, and elevation. This could also explain
why no differences were observed for the maximum values of the kriged

and cokriged ET, estimates.

TABLE 14. Comparison of kriging and cokriging standard deviations.
Region 2.

Maximum! mm d-1 ]| Minimum! mm d-! | Average! mm d-l

Diff. Diff. Diff.
Month Krig.{ Cokg. % Krig.{ Cokg. % Krig.| Cokg. %

February |0.179] 0.133 ] ~26.00 ] 0.019} 0.019| -1.77 ]10.092} 0.060 } -34.71

March 0.273} 0.211 | -22.48 | 0,048] 0.048] -1.11 {0,143} 0.103 | -28.39
April 0.400} 0.319 | -20.18 | 0.097} 0.095| -1.29 |0.222] 0.166 | -25.49
May 0.412} 0.322 | -21.84 {0.097} 0.096| -1.46 |0.229f 0.165 ] -27.82
June 0.378] 0.290 | -23.27 | 0.152] 0.143} -6.31 }0.234] 0.173 | -26.08
July 0.389} 0.314 | -19.19 {0.153} 0.147 | -3.74 ]0.236} 0.188 | -20.59

August 0.369] 0.301 | -18.25 {0.156{ 0.148} -5.11 |0.232} 0.181 | -22.13
September { 0.295] 0.234 | -20.69 | 0.124} 0.117} -5.28 10.184} 0.143 | -22.53
October 0.192{ 0.158 | -17.563 }0.104| 0.099] -5.09 |0.131] 0.111} -15.10
November |0.111] 0.090 | -19.51 | 0.040{ 0.039| -2.60 |0.065) 0.052 } -20.08
Cumulative| 88 69 | -22.13 20 20 -1.39 49 35 | -28.48

1 For cumulative ET,, mm
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TABLE 14. (continued). Region 4.
Maximum! mm d-!| Minimum! mm d-!{ Averagel mm d-l
Diff. Diff. Diff,
Month Krig.} Cokg. % Krig.| Cokg. % Krig.| Cokg. %
February |0.191] 0,137 | -27.93 | 0,090} 0.084 )] -7.16 }0.130} 0.095] -26.77
March 0.308] 0.197 | -36.08 }0.116} 0.109] -6.20 }0.191} 0.137} -28.16
April 0.5186] 0.317 { -38.54 10,150} 0.143 ) -4.57 | 0.301{ 0.209 | -30.41
May 0.581) 0.347 | -40.28 [ 0.194] 0.180} ~6.84 10.337] 0.237 | -29.48
June 0.669] 0.412 | -38.37 §0.319] 0.298] -6.68 |0.436] 0.329 | -24.43
July 0.636] 0.428 | -32.78 {0.262} 0.249| -5.15 ]0.392} 0.306 | -21.85
August 0.613] 0.444 { -27.59 §0.278] 0.266 | -4.22 |0.389] 0.321 § -17.42
September | 0.394| 0.254 | -35.39 §0.195} 0.184¢§ -5.83 |0.260} 0.205 } -21.08
October 0.2721 0.188 | -30.77 {0.105} 0.100} -5.31 }0.168] 0.128 | -23.99
November }|0.123] 0.108 | -12.34 §0.057] 0.056 | -2.07 }0.081] 0.073§ -9.61
Cumulative| 123 77 -37.95 B7 53 -6,84 79 59 | -25.34
1 For cumulative ET,., mm
TABLE 14. (continued). Region 5.
Maximum! mm d-1| Minimum! mm d-!| Averagel mm d-!
Diff. Diff. Diff.
Month Krig.} Cokg. % Krig.] Cokg. % Krig.| Cokg. %
February |{0.191} 0.171 | -10.46 | 0.045} 0.044] -0.40 }0.112] 0.104| -6.75
March 0.249] 0.211 | -15.14 {0.0471 0.047] -0.74 |0.141] 0.123} -12.62
April 0.366) 0.299 | -18.21 {0.169] 0.167} -1.21 }0.243] 0.213} ~12.36
May 0.386} 0.319 ] -17.29 10.130] 0.129} -0.78 [0.236] 0.209 | ~11.39
June 0.409{ 0,349 | -14.68 | 0.098] 0.098 ¢ -0.57 |0.237} 0.214§ -9.59
July 0.4361 0.377 { -13.56 {0.120] 0.120} -0.55 |0.255] 0.233| -8.47
August 0.401} 0.365 -9,08 §0.130} 0.130} -0.41 [0.243} 0.230] -5.46
September | 0.330} 0.302 -8,45 10,086} 0.086 | -0.32 §0.192} 0.182] -5.08
October 0.233} 0.210 -9,65 {0.046f 0.046 | -0.35 {0.129{ 0.122] -5.81
November §0.116] 0.105 -9.73 10,0411 0.040} -0.43 {0.0707 0.066 } -5.48
Cumulative 87 73 -17.11 14 14 -0.75 49 43 | -11.77

1 For cumulative ET,, mm
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TABLE 14. (cqntinued). Region 6.

Maximum! mm d-1| Minimum! mm d-I| Averagel mm d-!

Diff, Diff. ; Diff.
Month Krig.] Cokg. % Krig.} Cokg. % Krig.j Cokg. %

February | 0.271} 0.232 | -14.54 }0.026} 0.026 } -1.31 }0.130} 0.115 ] -10.97
March 0.393] 0.295 § -24.91 10,127} 0.126} -1.66 }0.215{ 0,191 | -11.23
April 0.655] 0,502 | -23.32 }0.191] 0.188} -1.40 | 0.342{ 0.307 | -10.41
May 0.730{ 0.573 | -21.57 | 0,103} 0,102} -0.75 |0.345} 0.308 | -10.80
June 0.827f 0.621 | -24.94 {0.077} 0.076 | -1.29 |0.375} 0.330 | -12.21
July 0.802} 0.618 | -22.94 {0.219] 0.216 | -1.35 }0.408} 0.367 | -10.13

August 0.625§ 0,497 | -20.47 | 0,203} 0.200| -1,23 |0.339{ 0.308| -9.01
September | 0.515 0.356 | -30.97 [ 0.237} 0.232] -1.88 |0.313} 0.278 | -11.21
October 0.417} 0.341 | -18.33 § 0,171} 0.169 |} -1.01 }0.240} 0.224 | -6.70
November |0.226| 0.197 | -12.86 | 0,072} 0.072| -1.16 |0.119} 0.109| -7.84
Cumulative| 160 | 116 | -27.12 44 44 -1.67 82 72 | -11.81

! For cumulative ET,, mm

The differences between kriging and cokriging standard deviations
were larger for regions 2 and 4, where higher correlation coefficients
between the two analyzed variables were noticed. In these two regions,
averages of cokriging standard deviations generally were between 20 to
30 % lower than kriging standard deviations. In region 2, the highest
decrease in the average was observed in February (35 %) and the lowest
decrease was observed in October (15 %). The decrease for cumulative
ET,. was 28 % 1In region 4, the highest decreasge in the average was
observed in April (30 %) and the lowest decrease was observed in
November (10 %). The decrease for cumulative FT, was 25 % In
regions 5 and 6, the decrease due to cokriging was between 5 to 13 %
in region 5 and between 7 to 12 % in region 6 for the average standard
deviations. In region 5, the decrease in average ranged from 13 % for
March to 5 % for September. The decrease for cumulative ET,. was 12 %
In region 6, the decrease in average ranged from 12 % for June and

cumulative ET,. to 7 % in October.
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These improvements due to cokriging are relatively low compared to
those observed in a similar study performed in Nevada with total annual
precipitation and elevation (Hevesi et al, 1990). This may be due to the
fact that evapotranspiration is modified by various factors, including

biological ones, and has shorter spatial scale variations than precipita~
tion. However, the original values of ET,. used in this project were

themselves estimates. Thus, a higher "measurement" error may be
expected in these values as compared with precipitation which was

actually measured.

Figure 18 shows the contour maps of the kriging standard devi-
ations of cumulative ET,.. Figure 19 shows the contour maps of the
cokriging standard deviations of cumulative ET,. For regions 2 and 4,
there are important differences between kriging and cokriging. As indi-
cated previously, the average cokriging standard deviation of cumulative
ET,. decreased by about 25 to 28 % (Table 14) as compared with the
average kriging standard deviation. Note in the maps the dense con-
touring of the kriging standard deviations and the large decrease of the
contours in the vicinity of the weather stations. In cokriging, the
standard deviations are very uniform and lower over each region, with
the exception of the borders The decrease of the estimation errors in
the vicinity of the weather stations was not as large as for kriging.
This is particularly evident in region 4. Estimation errors increase at
the borders for both kriging and cokriging, although these increases

and the absolute values are still higher in kriging.
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In regions 5 and 6, the average cokriging standard deviation of
cumulative ET, decreased by 12 % (Table 14) as compared with kriging
standard deviations. Again, progressive increases in the estimation
errors as the estimation points move away from the weather stations is
observed for kriging. In cokriging, this effect is also noticed although
not as pronounced. The gradual increase of the estimation errors in the
borders is very similar for kriging and cokriging although the maximum
values are smaller for cokriging. It can be concluded that cokriging
did not perform in regions 5 and 6 as well as it did in regions 2 and 4.
Recall that the correlation coefficient between ET,. and elevation was
higher in these latter two regions than in regions 5 and 6 (Table 8).
The fact that the correlation coefficients were higher in regions 2 and 4
may have be occurred simply because the spatial distribution of the
weather stations was not totally random. Weather stations tend to be
located close to populated areas and the population density in regions 5
and 6 is lower and more irregularly distributed. Likewise, the density
of secondary weather stations (Appendix B) in >these two regions was
particularly low when compared with regions 2 and 4. Consequently, the
values of the secondary weather parameters extrapolated to the primary
weather stations (section 3.2) in regions 5 and 6 may not represent

adequately their general climatic conditions.

Figures 20 to 23 show the contour maps of the cokriging standard
deviations of July and October ET, in regions 2, 4, 5 and 6., The shape
of the contour lines is very similar to those observed for cumulative
ET, (Figure 19), with the exception of region 4. In this region, the
contours appear to be intermediate to those observed for kriging and
cokriging (Figure 19). Likely, this is due to the contour interval width
selected to plot those maps. No alternative selection of contour interval
width was done in order to be consistent with the criteria followed to
select that width (section 3.4.6). In any case, the cokriging standard
deviations were 22 to 24 % lower that kriging standard deviations (Table

14) for region 4.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Weather data were collected at 199 weather stations over four dif-
ferent climatic regions in the state of Oregon for a period of 10 to 88
years. Two other climatic regions were recognized in Oregon but they
were not included in this project because of the small number of sta-
tions and the lack of significant correlation between ET. and elevation
in those regions. The four regions analyzed were labeled Willamette
Valley, North Cenftral, South Central and East. Long-term monthly aver-
ages of daily FT, and long-term averages of total annual (cumulative)
ET, rates were computed at the 199 weather stations using the FAO
Blaney-Criddle method with USDA adjustments. This method was
gelected because of its compatibility with the weather data available
throughout the climatic regions. Values of elevation above sea level at
the weather station locations and at 5 km grid corners were algo avail-
able.

For each region, a multivariate geostatistical analysis was performed
for each month of the year and for the cumulative ET, values. For
each study case, direct-semivariograms were computed and modeled. In
all cases, the model semivariogram was fit with a nugget effect and a
spherical structure with diverse ranges depending on the month and
region. Likewise, direct-semivariograms were computed and modeled for
elevation. Different nested structures were fit to these semivariogram
models. A nugget effect and a gaussian and spherical structures were
fit to the Willamette Valley region, A nugget effect and a spherical
structure was fit to the North Central region. A nugget effect and a
spherical and linear structures were fit to the other two regions.

Finally, cross-semivariograms for ET, and elevation at the weather sta-
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tions were computed and modeled for each case study. Spherical struc-
tures were fit to these models. Nugget effects were assumed to be zero
for the cross-semivariograms. These models were tested by the
cross-validation procedure. Cross-validation statistics, including the
average kriging error, the mean squared error and the standardized
mean squared error, were used to test for the validity of the models.
Isotropy was assumed for all semivariograms in order to preserve model

consistency although anisotropy was evident for elevation values.

The fit semivariogram values were used to estimate monthly and
cumulative ET, values on a 5 km grid by use of kriging and cokriging
interpolation techniques. Comparisons of kriged and cokriged ET, esti-
mates shown relatively small but consistent differences between the
methods in terms of maxima, minima and averages of the estimates.
However, the contouring of the respective estimates for cumulative ET,
showed cokriging to be superior to kriging. Cokriging contours pro-
vided more detail of the changes of ET, and followed closer the main
changes in elevation of the different climatic regions. Contours of

monthly ET, were very similar to those for cumulative ET .

Comparisons of the kriging and cokriging estimation error standard
deviations in terms of maximum, minimum and average values showed
cokriging to be superior to kriging. The average cokriging estimation
error standard deviation decreased by about 20 to 30 % in the Willamette
Valley and North Central regions, while it decreased by 5 to 13 % in the
other two regions. This difference between regions may be due to the
lower correlation between ET, and elevation observed in the South Cen-
tral and East regions as compared with the other two regions. Contours
of the kriging and cokriging standard deviations showed that cokriging
reduced the estimation error around the weather stations and more uni-
form and constant errors were observed over each region. This reduc-
tion was more noticeable in the Willamette Valley and North Central
regions. Errors at the region borders were higher for both kriging and

cokriging although the maximum wvalues were still lower for cokriging.
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5.2 Conclusions

A general conclusion of this project was that multivariate geostatis-
tics has proven to be successful in modeling the spatial variability of
ET,. by including the effects of elevation. It was previously indicated

that one of the appeals of geostatistics is its robustness which allows
acceptable results even when some of the theoretical assumptions are
not strictly enforced (David, 1977). Results of this project lead to simi-
lar conclusion: Geostatistical methods applied to the analysis of hydro-

logical variables can be considered as robust operational tools.

One of the important aspects of hydrology which have traditionally
received little attention is topography (Burges, 1986). This research
showed that multivariate geostatistics can be an useful tool to predict
changes in hydrological variables, such as evapotranspiration, as a
function of altitude. Thus, more accurate estimates of ET, have been
computed and contoured by application of the multivariate spatial vari-
ability of £T, in conjunction with elevation using cokriging interpolation
techniques. The potential of a multivariate geostatistical approach to
analyze the spatial variability of other hydrological variables, such as
precipitation, as function of altitude has also been reported (Hevesi et
al., 1990). The usefulness of multivariate geostatistics for ET, analysis
varies between thev different climatic regions analyzed. In regions with
a high statistical correlation between available ET, data and elevation,
the benefits will be maximized. In other regions, the use of a multivari-
ate geostatistical approach may be too costly due to the high computa-
tional requirements and low potential for improvement in accuracy of the

FT, estimates.

The results of this project indicated several further possible appli-
cations of multivariate geostatistics. In section 2.3.1, the potential of
geostatistics for sampling network design was discussed. Errors

associated with the estimation of ET,. using univariate geostatistice may
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be used to optimize sample network design. Zones within a region in
which more sampling sites (i.e. weather stations) are needed to further
reduce the estimation errors can be identified. This research showed
the improvement in the estimation errors using a multivariate geostatis—
tical approach. The benefit of this approach in economical terms is
evident compared with univariate geostatistics. The cost of using
elevation data, which is readily available in digital form for most of the
United States, is almost negligible compared with the costs of the instal-
lation, maintenance and operation of new weather stations. Because the
most important decrease in the estimation errors due to multivariate
geostatistics was observed for the maximum cokriging standard deviation
values, this approach may allow a better identification of the locations

where the installation of new weather stations is most critical.

In the analysis and design of water resource systems, the amount
of ET, to be expected on a probability basis is useful information. His-
torical records of meteorological parameters could be used to develop
these different probability levels of evapotranspiration, assuming a
normal distribution for this variable (Nixon et al, 1972; Cuenca, 1989),
for different locations on a monthly or cumulative basis. Application of
the multivariate geostatistical tools described in section 2.3 (direct- and
cross—-semivariograms and the cokriging system of equations) in conjunc—
tion with elevation data would result in regional plots of monthly or

cumulative ET, for different probability levels.

Other possible applications of multivariate geostatistics for irrigation
scheduling purposes over large geographic areas can be envisioned.
Both direct- and cross-semivariogram functions could be developed for
each month of the growing season. These functions could be used with
the cokriging system of equations together with elevation and ET, val-
ues corresponding to a previousg irrigation period, e.g. seven days.
Thus, contour maps of ET, could be developed for that pI:evious
irrigation period. These maps could be used to predict crop water

requirements if information on the crop of interest is available. This
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scenario again raises the gquestion about whether the semivariogram
functions developed using long-term average values can be applied for

shorter time periods.

Evapotranspiration is one of the components of the hydrological bal-
ance equation (section 1.1). The long-term estimates of evapotranspira-
tion computed in this research could be used ag input in the
hydrological balance equation for various long-term regional studies,
such as management of water resources and environmental assessments.
Because of the reduced errors in the cokriged estimates of ET,, an
improvement in the uncertainty involved in this type of studies is to be
expected. The importance of the reduced errors in ET, is more clearly
perceived when the additive nature of errors in successive years is
considered. Better and more accurate predictions of hydrological

events, such as runoff, could result from this type of analysis.

It is known that the phenomenon of evapotranspiration affects the
thermodynamic and dynamic state of the atmosphere (André et al, 1986).
Global circulation models (GCMs) of the atmosphere have made possible
an initial examination of these effects. 'However, the parameterization of
evapotranspiration in the present GCM models is in general too simple
and further improvements are required (André et al., 1986; Eagleson,
1986). Multivariate geostatistics is a relatively simple method which can
be applied with relatively readily available meteorological data. This
approach could allow a better understanding of the spatial variability of
evapotranspiration as affected by elevation. The more accurate cokriged
estimates of evapotranspiration offer the potential to allow a spatial

integration of evapotranspiration to GCM grids.
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5.3 Recommendations

Several specific recommendations for future research can be made

from the results of this project.

1‘

4,

One of the problems to develop a valid and adequate spatial
variability model of ET, is the "measurement" error inherent in
the local estimates of ET, computed by using the FAO Blaney-
Criddle method. The uncertainty of this method should be
included in the modeling of semivariograms for ET, and
cross-semivariograms., Further research should be focused on

this problem,

The accuracy of the cokriged estimates of ET, at the edges of

the different climatic regions is relatively questionable. The
problem of the border effect has not been addressed correctly.
It would be beneficial to develop a procedure which would sys-
tematically correct this problem. One alternative could be the
use of locations from other regions situated in the neighborhood

of the region being studied.

The direct-semivariograms for ET, modeled and cross-validated

in this project have been developed using longéterm averages of
ET,. The feagibility of applying these models in different years
should be tested. Previous work by Nuss (1989) showed a high
variability between succesgive years in the model parameters.

However, he used only three years of data in his analysis.

One of the main disadvantages of cokriging is the high computa-
tional efforts required. Other interpolation methods which
combine geostatistical analysis with linear regression techniques
should be tested and compared with cokrigihg. Assuming the

cokriging estimates are the most accurate, this comparison could
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be used to identify simpler regression techniques which can
give estimates nearly as accurate as cokriging. The result
would be the reduction of the cost of computer time in a routine

procedure to contour ET, at a regional scale,

The study of the spatial variability of several meteorological
parameters, including relative humidity, wind speed, solar radi-

ation and pan evaporation is recommended. At the present the
weather data bases available preclude this research. The need
to install more weather stations which record parameters of this
type is stressed. The inclusion of the spatial variability and
correlation of these parameters with ET,. in a geostatistical anal-

ysis could improve the accuracy of the estimates of ET..
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List of the primary weather stations used in this study.

APPENDIX A. Primary weather stations
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Listed are

the longitude and latitude, the elevation above sea level and the number
Years of record vary for different
months and they are listed ags a range.

of years of record for each station.

Lat. Long. Elev | Years of
Reg | Stn ID Station name (deg) (deg) (m) record

1 318 Astoria Exp. Stn. 46.15 123.82 16 33-36
1 324 Astoria 46.18 123.83 61 28-30
1 328 Astoria AP 46,15 123.88 3 34-35
1 471 Bandon 43.15 124.40 6 42-47
1 10565 Brookings 42.05 124.28 21 56-67
1 1324 Canary 43.92 124.03 24 38-39
i 1360 Cape Blanco 42.83 124.57 58 2628
1 1682 Cloverdale 45.22 123.90 24 45-47
1 1836 Coquille City 43.18 124.20 6 16

1 2370 Dora 43.17 124.00 274 17-19
1 2633 Elkton 43.60 123.58 37 43-50
1 3356 Gold Beach R. Stn. 42.40 124.42 15 50-54
1 3995 Honeyman St. Park 43,93 124.10 37 16-17
1 4133 Illahe 42.63 124.05 107 41-46
1 53756 Mc Kinley 43.18 124.03 43 12-14
1 6032 Newport 44,58 124.05 43 52-56
1 6073 North Bend AP 43.42 124.25 3 55-57
i 6366 Otis 45,03 123.93 46 38-40
1 6779 Port Orford 42.73 124,52 88 27-32
1 6784 Port Orford 2 42.75 124.50 15 21-25
1 6820 Powers 42.88 124.07 70 54-56
1 7082 Reedsport 43.70 124.12 18 42-45
1 7641 Seagide 45,98 123.92 3 55-57
1 7866 Sitkum 43,15 123.83 186 18-22
1 8481 Tidewater 44,42 123.90 15 43~-46
1 8494 Tillamook 45,45 123.87 3 50-55
1 8833 Valsetz 44.85 123.67 354 42-48
2 78 Albany 1 44.65 123.10 64 32-33
2 82 Albany 2 44.62 123.12 67 11-13
2 595 Beaverton 45,50 122.82 67 14-16
2 652 Belknap Springs 44.30 122.03 655 256-28
2 897 Bonneville Dam 45,63 121.95 18 49-51
2 1433 Cascadia 44.40 122.48 262 47-54
2 1552 Cherry Grove 45,42 123.25 238 45-46
2 1643 Clatskanie 46.10 123.28 27 52-53
2 1862 Corvallis 0.8.U. 44,63 123.20 70 56-57
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Lat. Long. Elev | Years of
Reg | Stn ID Station name (deg) (deg) (m) record

2 1877 Corvallis W. B. 44,52 123.45 180 24~25
2 1897 Cottage Grove 43,78 123.07 198 56-57
2 1902 Cottage Grove Dam 43.72 123.06 253 46

2 2112 Dallas 44,95 123.28 88 48-51
2 2277 Detroit 44,73 122.15 485 35-37
2 2292 Detroit Dam 44,72 122.25 372 33-34
2 2374 Dorena Dam 43.78 122.97 250 36-38
2 2693 Estacada 45,27 122.32 125 55-67
2 2707 Eugene 44,07 123.08 137 14-15
2 2709 Bugene AP 44,12 123.22 110 40-42
2 2800 Falls City 44.85 123.45 183 27-30
2 2805 Falls City 2 44,85 123.43 134 26--27
2 2867 Fernridge Dam 44,12 123.30 149 43-45
2 2997 Forest Grove 45.63 123.10 56 55-57
2 3047 Foster Dam 44,42 122.67 168 18-19
2 3402 Government Camp 45,30 121.75 1213 36-37
2 3770 Hwks. Portland W.B. | 45.45 122.15 229 56-57
2 3908 Hillsboro 45,52 122.98 49 55-57
2 4603 La Comb 1 44,58 122.75 204 29-31
2 4606 La Comb 3 44.62 122.72 158 12-15
2 4811 Leaburg 44,10 122.68 207 52~54
2 5050 Lookout P. Dam 43.92 122.77 216 32-33
2 5221 Marion Forks 44,60 121.95 756 38-40
2 5362 Mc Kenzie Bridge 44,18 122.12 451 42-55
2 5384 Mc Minnville 46,23 123.18 46 50-563
2 5677 Molalla 45,13 122.57 122 27-28
2 6151 N. Willamette E.S. 45,28 122.756 46 24-25
2 6173 Noti 44,07 123.47 137 23-24
2 6213 Qakridge 43.76 122.45 390 50-56
2 6334 Oregon City 45.35 122.60 52 38-40
2 6749 Portland KGW-TV 45,52 122.68 49 13-15
2 6751 Portland AP 45,60 122.60 6 40-42
2 6761 Portland W.B. 45.53 122,67 9 25

2 7466 Saint Helens 45.87 122.82 30 11-12
2 7500 Salem 44,92 123.02 61 40-42
2 7569 Santiam Pass 44,42 121.87 1448 18-29
2 7586 Scogginns Dam 45,48 123.20 110 11-13
2 7631 Scotts Mills 44,95 122.53 707 31-32
2 7809 Silver Creek F. 44.87 122.656 411 45-49
2 7823 Silverton 45.00 122.77 125 23-26
2 7827 Silverton 4 44,97 122.73 311 1i-12
2 8095 Stayton 44,78 122.82 131 34-36
2 8221 Sundown Ranch 44.95 122.60 732 22-24
2 8466 Three Lynx 45,12 122.07 341 56-56
2 8634 Troutdale 45,55 122.40 9 30-33
2 8879 Vernonia. 45,87 123.20 256 26-28
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Lat, Long. Flev | Years of
Reg | Stn ID Station name (deg) (deg) (m) record

2 8884 Vernonia 2 45.87 123.18 192 20-21
2 9051 Warren 45,82 122.86 24 24-26
3 304 Ashland 42.22 122.72 543 87-88
3 1448 Cave Junction 42,17 123.67 390 25-26
3 2406 Drain 43.67 123.32 88 49-52
3 2928 Fish Lake 42.38 122.35 1414 23~30
3 3445 Grants Pass 42,43 123.32 283 85-88
3 4060 Howard P. Dam 42,22 122.37 1393 27-28
3 4126 Idleyld Park 43,37 122.97 329 26-28
3 4216 Jacksonville 42.30 122.98 500 21-30
3 4420 Kerby 42,22 123.65 387 10-11
3 4635 Lake Creek 42.37 122.53 533 30-35
3 4835 Lemolo Lake 43.37 122,22 1244 10

3 5055 Lost Creek Dam 42.67 122.68 482 17-18
3 5424 Medford Exp. Stn. 42,30 122.87 445 48-51
3 5429 Medford AP 42,37 122.87 399 60-63
3 5656 Modoc Orchard 42,45 122.88 372 49-561
3 6907 Prosgpect 42.73 122.52 756 77-81
3 7169 Riddle 42.95 123.35 207 68-74
3 7326 Roseburg AP 43.23 123.37 155 17-18
3 7331 Roseburg 43,20 123.35 143 21-23
3 7391 Ruch 42.23 123.03 472 24-25
3 7698 Sexton Summit 42.62 123.37 1170 39-41
3 7850 Siskiyou Summit 42.05 122.60 1369 12-13
3 8338 Talent 42,25 122.80 472 42-44
3 8536 Toketee Falls 43,28 122.45 628 34-35
3 8588 Trail 42.78 122.67 564 15-18
4 197 Antelope 44,92 120.72 817 55-67
4 265 Arlington 45,72 120.20 88 53-57
4 753 Big Eddy 45,62 121.12 40 25-27
4 858 Boardman 45.83 118.70 91 15-17
4 1407 Cascade Locks 45,68 121.88 30 22-23
4 1765 Condon 45,23 120.18 863 5456
4 2168 Dayville 44,47 119.53 719 39-44
4 2440 Dufur 45.45 121,13 406 54-57
4 2564 Echo 45,75 119.18 201 38-40
4 3038 Fossil 45.00 120.22 808 37-45
4 3121 Friend 45,35 121.27 744 33-35
4 3542 Grizzly 44.52 120.93 1109 37-40
4 3644 Hardman 45,17 119.68 1091 12-13
4 3737 Hay Creek 44,95 120.90 896 | 13-15
4 3827 Heppner 45.37 119.55 576 58-67
4 3847 Hermiston 45.82 119.28 189 5657
4 4003 Hood River E.S 45,68 121.52 152 56-57
4 4411 Kent 45.20 120.70 829 49-57
4 4479 Kinzua 45,03 119.92 1052 10-12
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Lat, Long. Elev § Years of
Reg | Stn ID Station name (deg) (deg) (m) record

4 5139 Madras 44.63 121.13 680 52-57
4 5142 Madras 2 44.67 121.15 744 18--20
4 5515 Metolius 44,58 121.18 762 39-42
4 5545 Mikkalo 45.47 120.35 472 33-37
4 5593 Milton Freewater 45,95 118.42 296 67-T1
4 5641 Mitchell 44.58 120.18 808 46-50
4 5707 Montgomery Ranch | 44.62 121.48 579 17-19
4 5734 Moro 45.48 120.72 570 55-87
4 6464 Parkdale 45.52 121.58 521 36-38
4 6468 Parkdale 2 45,50 121.58 576 11-13
4 6632 Pelton Dam 44.73 121.23 430 27-30
4 6540 Pendleton Exp. Stn. | 45.72 118.63 454 39-41
4 6541 Pendleton R. Park 45,67 118.80 321 20-22
4 6546 Pendleton AP 45.68 118.85 454 39-40
4 6634 Pilot Rock 45.48 118.82 524 72-76
4 6655 Pine Grove 45,12 121.37 6717 17-19
4 8009 Spray 44,83 119.78 530 19-20
4 8407 The Dalles 45.60 121.20 30 47-50
4 8530 Timberline Lodge 45,35 121.70 1811 11-13
4 8734 Umatilla 45,92 119.35 82 32-34
4 9068 Wasco 45.58 120.70 384 23

4 9216 Wegton 45,80 118.40 640 50-52
5 36 Adel 42.18 119.90 1396 20-27
5 118 Alkali Lake 42,97 120.00 1320 25-27
5 188 Andrews 42.45 118.60 1268 10-12
5 189 Andrews Weston M. 42.55 118.55 1457 17-19
5 501 Barnes Station 43.95 120.22 1210 26

5 694 Bend 44.07 121.32 1113 57

5 1067 Brothers 43,80 120.60 1414 28-29
5 1176 Burns 43.58 119.05 1262 34-35
5 1415 Cascade Summit 43.58 122.03 14756 16-17
5 1546 Chemult 43.23 121.78 1451 44-50
5 1571 Chiloquin 42.58 121.87 1277 55-62
5 1946 Crater Lake 42,90 122.13 1975 53-55
5 2415 Drewsey 43.80 118.38 1073 15-18
5 3022 Forth Klamath 42.62 122.08 1268 11-13
5 3095 Fremont 43.33 121.17 1375 47-53
5 3659 Harney B. E.S 43.58 118.93 1262 23-24
5 3692 Hart Mountain Ref. 42.55 119.65 1713 45-49
5 4506 Klamath Falls 42.20 121.78 1250 83-87
5 4511 Klamath F. Agr. Stn.| 42.17 121.75 1247 2224
5 4632 Lake 43.27 120.63 1314 27-29
5 4670 Lakeview 42.22 120.37 1457 53-57
5 5162 Malheur Ref. Hdq. 43.28 118.83 1253 24-28
5 5170 Malin 42,02 121.42 1234 15-16
5 5174 Malin 5 42.00 121.32 1411 19-20
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Lat. Long. Elev { Years of
Reg | Stn ID Station name (deg) (deg) (m) record

5 5605 Merrill 42.06 121.63 1244 15-19
5 6243 Ochoco 44.40 120.43 1213 47-61
5 62561 Odell Lake 43.58 122.03 1460 24-28
5 6302 00 Ranch 43.28 119.32 1262 20-28
5 6426 Paisley 42,70 120.53 1329 53-56
5 6500 Paulina 44,13 119.97 1122 26

5 6662 Pine Mountain 43.78 120.95 1902 10-13
5 6717 Plush 42,42 119.90 1376 16-19
b 6853 P Ranch Refuge 42.82 118.88 1280 29-32
5 6883 Prineville 44,35 120.90 866 55-57
5 6982 Rager 44,23 119.73 1219 11-13
5 7052 Redmond 44.27 121.22 917 47-49
5 7062 Redmond AP 44,27 121.15 933 36-39
5 7364 Round Grove 42,33 120.88 1490 50-564
5 7533 Sand Creek 42.85 121.90 1426 16-17
5 7817 Silver Lake 43.12 121.07 1335 17-19
5 7857 Sisters 44.30 121.55 969 24-29
5 8007 Sprague River 42.45 121.50 1329 26-32
5 8029 Squaw Butte E.S 43.48 119.72 1420 43-49
5 8173 Summer Lake 42.95 120.78 1277 30-31
5 8250 Suntex 43.60 119.63 1314 24-26
5 8420 The Poplars 43.27 120.93 1317 23-27
5 8812 Valley Falls 42,48 120.28 1320 32-35
5 8818 Valley Falls 3 42.45 120.25 1396 12-17
5 8924 Voltage 43.28 118.97 1253 19-21
5 8948 Wagontire 43.25 119.88 1442 21-24
5 9316 Wickiup Dam 43.68 121.68 1329 44-47
5 9604 Yonna 42,30 121.48 1274 15-18
6 41 Adrian 43.73 117.07 680 40-42
6 356 Austin 44.58 118.50 1283 53-64
6 412 Baker AP 44,83 117.82 1027 44~-45
6 417 Baker KBKR 44.77 117.83 1049 32-34
6 723 Beulah 43.92 118.17 997 31-46
6 1174 Burns Junction 42.78 117.85 1198 14-16
6 1352 Canyon City 44.40 118.95 972 13-15
6 1926 Cove 1 45,30 117.80 951 54-56
6 2135 Danner 42,93 117.33 1289 46-56
6 2482 Durkee 44.62 117.48 847 25-28
6 2597 Elgin 45,57 117.92 811 41-49
6 2672 Enterprise 45.43 117.27 1155 47-50
6 2678 Enterprise 20 45.70 117.15 1000 18-19
6 3430 Granite 44.80 118.50 1506 18-20
6 3604 Halfway 44.88 117.12 814 43-46
6 3666 Harper 43.87 117.62 765 33-34
6 4098 Huntington 44.35 117.27 649 53-57
6 41756 Ironside 44.32 117.98 1196 22-29
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Lat, Long. Blev | Years of
Reg | Stn ID Station name {deg) (deg) (m) record
6 4291 John Day 44,43 118.95 933 34-35
6 4329 Joseph 45,35 117.26 1280 21-23
6 4357 Juntura 43.80 117.93 863 21-23
6 4615 La Grande 45,33 118.12 856 63-65
6 4622 La Grande KTVR 45,32 118.08 841 20-23
6 5020 Long Creek 44,72 119.10 1134 27-31
6 5160 Malheur B. E.S 43.98 117.02 680 |  44-46
6 5258 Mason Dam 44,67 118.00 1189 18-19
6 5335 Mc Dermitt 42,42 117.87 1359 29-32
6 5396 Meacham 45,50 118.40 1234 28-31
6 5610 Minam 45,68 117.60 . 1100 20-30
6 5711 Monument 44,82 119.42 610 25-27
6 6179 Nyssa 43.87 117.00 664 48-50
6 6294 Ontario 44.05 116.97 655 39-43
6 6405 Owyhee Dam 43.65 117.25 732 50-53
6 6845 Prairie City 44,45 118.72 1079 10-12
6 7160 Richland 44,77 117.17 677 33-39
6 7208 Riverside 43.50 118.07 914 30-34
6 72717 Rocksville 43,37 117.12 1119 20-25
6 7310 Rome 42.87 117.65 1039 31-36
6 76756 Seneca 44.13 118.97 1420 45-52
6 7736 Sheaville 43,12 117.03 1408 36-40
6 8726 Ukiah 45.13 118.93 1024 57-62
6 8746 Union Exp. Stn. 45,22 117.88 844 73-74
6 8780 Unity 44.43 118.23 1228 33-49
6 8797 Vale 43,98 117.25 683 51-54
6 8985 Walla Walla 46.00 118.05 732 33-36
6 8997 Wallowa, 45,56 117.53 890 79-84
6 9046 Warm Springs Res. 43.57 118.20 1018 34-44
6 9176 Westfall 44,05 117.75 957 19-25
6 9290 Whitehorse Ranch 42.33 118.23 1280 16-22




List of secondary weather stations.

APPENDIX B.

Secondary weather stations

parameter, the data source, the original variable and the years of
record are listed.

for different months.
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For each secondary weather

Years of record are given as a range as they vary
Data sources are listed at the end of the table.

All stations but Coos Bay, Boise and Mountain Home also were primary
weather stations.

Kin., rel, husidity Sunghine Windspeed
§tn ID§Station name] Data Orig, Years | Data Orig, Yeaes | Data §Orig. varish, | Years
gource | variah, record | source variab, record | source record
328 Astoria APL | ODD | Hin, rel. 1§ PHSR | Solar rad, | 5-10 DEA | Avg. windsp, | 31
hug, £ : cal cu-4d-! knots x 10
Coos Bay! ASSR | Solar rad, 1
ki ha?
6073  fforth Bend DEA Avg. rel. i MEA & Avg. windsp, 3
AR hue, % knots x 10
1862 JCorvallis PHSR | Solar rad, § 5-10 §RPE § Hon, windrun | 3-B1
0.8.0.2 cal co-id-! ui
1982 Cottage WRPE | Hon. windrun § 12-13
Grove Dagt 8i
2292 IDetroit Das? WRPE | Hon. windrun | 3-22
Bi
2709 [Bugene AP o0 Hin, rel, | 10-12 | ASBR || Solar rad, 9 MA | Avg, windsp, 36
hug, £ kit b g2 knots x 10
5050  3Lookout P, WRPE | Hon, windran | 8-22
Dag? Bl
5429 JHedford AP 0Dp Hin, rel. | 20-21 } PHSR 1§ Solar rad, | 5-10 DHA | Avg. windsp, 36
hug, ¥ cal cnid-! knots x 10
6151 38, ®ille- WRPE § Hon. windrun § 15-22
gette .52 Bi
6761 fPortland APZ | ODD Hin, rel, | 20-21 00d Sunghine 4] DA | Avg. windsp, 3
hug, % ratio knots x 10
7326  JRoseburg APZ | DHA Avg, rel, 17 Dk | Hourly cloud] 17 DA ] Avg. windsp. 17
hap, ¥ cover knots x 10
7500 }Salen 00D Hin, rel, | 20-21 DD Daytine X DEA | Avg. windsp, 1

hoa, %

cloud cover

knots x 10
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Kin. rel, humidity Sunshine #indspeed
8tn ID{Station name] Data Orig. Years | Data Orig. Years ¢ Data JOrig, variab, | Years
gource f§ variah record { source variah, record § source record
7698 §Sexton Sue- DHA Avg, rvel, ki 0D Dagtiee 20-23 DA | Avg. windsp, ki
pit hue, % ¢cloud cover knots x 10
412 [Baker AP} DA Avg, rel, 17 DAA | Hourly elowdy 17 DA | Avg. windsp, 17
hug, £ cover knots x 10
694 fhend® S8R | Solar rad, 7
ki b g
858  Boardaan? CHDD | Dewp, temp, | 2-5 CHID ¢ Solar rad, 5 CHDD [ Daily windrun} 2-§
' cal cn-id-! #i
Boise, ID? i) Avg. rel, 36 DA § Hourly cloud] 36 DEA | Avg. windsp, 36
hus, cover knotg x 10
1176 {Burnsd DitA Avg. rel, 3 00b Daytine 7-8 DEA | Avg. windsp. 33
hua, % cloud cover knots x 10
3847  {Heraistond CHDD  § Dewp, temp, § 1-9 Cibd | Solar rved. 9 CADD  fDaily windran§ 8-9
° cal cg-2d-1 Bi
4511 JKlamath B, DA Avg, rel. 23 DA | Hourly clowd] 23 DHA ] Avg. windsp, 2
Age. Stn.’ hue, cover knots x 10
4615 {La Grande? PREE @ Min. eel, ] ASSR { Solar rad, 7 PREE | Avg. windsp. b
hug, & kbt aph
5142 QMadras 2 WRPR | Hon. windrun | 4-14
ai
5162 Ralheur Bef, URPE | Hon. wmindrun | 4-17
fdg.? Bi
5396 |Heachas® PRER | Hin, rel, 10 PHSR I Solar rad, [ 5-10 § PURE § Avg. windsp, 10
hua, % cal cp~2d-1 aph
5734 |Horo} ¥RPE | Hon. windrun § 17-22
i
Hountain PHSE | Solar rad, § 5-10
flone, 1D} cal ca-2d-!
62904 jOntariod PHER § Hin. rel. { PHSR | Solar ead, § §-10 PREE | Avg. windsp, T
hue, ¢ cal cu~2d-1 #ph
§546  {Pendleton ] Hin, rel, | 20-21 0nd Daytine 23 DAA | Avg. windsp, {6
AP hue, cloud cover knots x 10
7062 {Reduond AP} ilif hvg. rel, k1 DA | Hourly cloud} 36 MA | Avg. windsp. k)
hug, § cover knots x 10
8173 |Summer Lake? HREE 21-22

Hon. windrun
Bl
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Hin. rel, humidity Sunshine Hindspeed
§tn 1D Station nase] Data frig, Years | Data Orig. Years | Data JOrig, vaviab, | Years
gource | variab, record | source variab. record | source record
8407 |the Dalles? i Avg., rel, 17 DA § fourly cloud| 17 DA | Avg. windsp, 17
hue, % cover knots x 10
8985 {¥alla Walla® ] DA Avg. rel, 18 DA | Hourly clond] 18 DA { Avg. windsp, 14
hus, % cover knots x 10
9046 f[Rara Springs WRPE | Mom. windemn | -9
Res.d Bi
4290 [#hitehorse ASSR | Solar ead, 7
Ranch? Wbt
9316 IWickiup Dand WRPE | Hon. windrun | 9-22
pi

1 Comast region
3 East of the Cascades regions

2 gillamette valley and Southern Valleys regions

Code

Data source

Provided by

(1))
DHA
CHDD

PNHH
PHNSR

ASSR

WRPE

Digital daily data base
Digital hourly airport data base

Hermiston digital daily data base

Pacific NW published data base
Pacific NW published solar radiation
data base

Atmospheric Sciences solar radiation
data hase

Windrun (pan evaporimeter height) data
base

gity

State Climatologist
State Climatologist
Mr. Chaur-Fong Chen, Agr. Engr., Oregon
State University

State Climatologist

Pacific NW River Basins Commission (1968)
satterlund and Means (1979)

Dr. Rao, Atm. Sci., Oregon State Univer-
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Aridity factors
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List of the aridity factors used to compute local estimates of ET .,
for each primary weather station.

Aridity (%)

Reg Stn ID Station name Site Area | Region | Cumulative
1 318 Astoria Exp. Stn. 30 30 0 27
1 324 Astoria 30 30 0 27
1 328 Astoria AP 30 30 0 27
1 471 Bandon 90 10 10 42
1 1055 Brookings 10 10 0 9
1 1324 Canary 50 10 0 25
1 1360 Cape Blanco 30 10 10 18
1 1682 Cloverdale 10 10 10 10
1 1836 Coquille City 10 10 10 10
1 2370 Dora 20 30 20 25
1 2633 Elkton 20 30 20 25
1 3356 Gold Beach R. Stn. 20 30 20 25
1 3995 Honeyman St. Park 20 20 20 20
1 4133 INahe 20 30 20 25
1 5375 Mc Kinley 50 40 30 43
1 6032 Newport 50 10 20 27
1 6073 North Bend AP 20 20 20 20
1 6366 Otis 20 30 20 25
1 6779 Port Orford 50 20 10 31
1 6784 Port Orford 2 20 20 10 19
1 6820 Powers 20 40 30 31
1 7082 Reedsport 50 10 10 26
1 7641 Seagide 60 10 10 30
1 7866 Sitkum 50 10 10 26
1 8481 Tidewater 20 30 20 25
1 8494 Tillamook 20 40 30 31
1 8833 Valsetz 60 40 10 45
2 78 Albany 1 10 10 10 10
2 82 Albany 2 10 10 10 10
2 595 Beaverton 30 20 20 24
2 652 Belknap Springs 70 10 60 39
2 897 Bonneville Dam 10 10 10 10
2 1433 Cascadia 0 0 0 0
2 1552 Cherry Grove 40 20 20 28
2 1643 Clatskanie 10 0 0 4
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Aridity (%)

Reg Stn ID Station name Site Area | Region | Cumulative
2 1862 Corvallis 0.8.U. 10 10 10 10
2 1877 Corvallis W.B. 10 10 10 10
2 1897 Cottage Grove 10 20 20 16
2 1902 Cottage Grove Dam 90 20 20 48
2 2112 Dallas 80 20 30 45
2 22717 Detroit 50 30 20 37
2 2292 Detroit Dam 80 30 20 49
2 2374 Dorena Dam 20 40 20 30
2 2693 Estacada 80 40 30 55
2 2707 Eugene 10 10 10 10
2 2709 Eugene AP 10 10 10 10
2 2800 Falls City 10 40 30 27
2 28056 Falls City 2 i0 40 30 27
2 2867 Fernridge Dam 80 10 10 38
2 2997 Forest Grove 20 40 30 31
2 3047 Foster Dam 80 40 30 55
2 3402 Government Camp 20 10 10 14
2 3770 Hwks. Portland W.B. a0 10 40 45
2 3908 Hillsboro 80 30 20 49
2 4603 La Comb 1 20 50 40 37
2 4606 La Comb 3 20 50 40 37
2 4811 Leaburg 70 50 30 56
2 5050 Lookout P. Dam 20 40 30 31
2 5221 Marion Forks 20 30 30 26
2 5362 Mc Kengzie Bridge 90 50 40 65
2 5384 Mc Minnville 20 30 20 25
2 5677 Molalla 50 30 20 37
2 6151 N, Willamette E.S 80 40 20 54
2 6173 Noti 20 30 10 24
2 6213 Oakridge 20 50 40 37
2 6334 Oregon City 50 20 20 32
2 6749 Portland KGW-TV 70 60 30 61
2 6751 Portland AP 80 60 30 65
2 6761 Portland W.B. 50 60 30 53
2 7466 Saint Helens 20 40 20 30
2 7500 Salem 20 10 10 14
2 76569 Santiam Pass 80 40 50 57
2 75686 Scogginns Dam 80 30 20 49
2 7631 Scotts Mills 20 40 30 31
2 7809 Silver Creek F, 20 30 20 25
2 7823 Silverton 80 50 40 61
2 7827 Bilverton 4 50 50 40 49
2 8095 Stayton 20 30 20 25
2 8221 Sundown Ranch 50 30 20 37
2 8466 Three Lynx 60 20 30 37
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Aridity (%)

Reg Stn ID Station name Site Area | Region | Cumulative
2 8634 Troutdale 80 20 20 44
2 8879 Vernonia 60 40 20 46
2 8884 Vernonia 2 50 40 20 42
2 9051 Warren 50 40 30 43
3 304 Ashland 30 50 50 42
3 1448 Cave Junction 10 30 30 22
3 2406 Drain 20 40 30 31
3 2928 Fish Lake 50 20 30 33
3 3445 Grants Pass 80 50 60 63
3 4060 Howard P. Dam 80 20 30 45
3 4126 Idleyld Park 20 40 30 31
3 4216 Jacksonville 50 50 40 49
3 4420 Kerby 80 80 70 79
3 4635 Lake Creek 50 50 40 49
3 4835 Lemolo Lake 80 10 10 42
3 50565 Lost Creek Dam 80 40 30 56
3 5424 Medford Exp. Stn. 20 30 40 27
3 5429 Medford AP 90 40 40 60
3 5656 Modoc Orchard 50 50 40 49
3 6907 Prospect 920 40 60 62
3 7169 Riddle 20 40 30 31
3 7326 Roseburg AP 50 60 70 57
3 7331 Roseburg 60 60 70 61
3 7391 Ruch 20 30 40 27
3 7698 Sexton Summit 20 50 60 39
3 7850 Siskiyou Summit 50 40 60 46
3 8338 Talent 50 40 40 44
3 8536 Toketee Falls 80 30 40 51
3 8588 Trail 50 50 60 51
4 197 Antelope 100 50 50 70
4 265 Arlington 30 50 30 40
4 753 Big Eddy 50 50 50 50
4 858 Boardman 10 20 20 16
4 1407 Cascade Locks 50 30 30 38
4 1765 Condon 10 70 80 47
4 2168 Dayville 80 80 70 79
4 2440 Dufur 80 30 20 49
4 2564 Echo 50 20 20 32
4 3038 Fossil 20 40 30 31
4 3121 Friend 50 50 60 51
4 3542 Grizzly 20 30 20 25
4 3644 Hardman 50 50 40 49
4 3737 Hay Creek 50 70 60 61
4 3827 Heppner 80 20 80 85
4 3847 Hermiston 10 40 30 27
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Aridity (%)

Reg Stn ID Station name Site Area | Region | Cumulative
4 4003 Hood River E.SB 70 20 30 41
4 4411 Kent 60 70 60 65
4 4479 Kinzua 50 90 80 73
4 5139 Madras 60 50 50 54
4 5142 Madras 2 80 50 50 62
4 5515 Metolius 20 70 90 52
4 5645 Mikkalo 60 50 30 52
4 5593 Milton Freewater 80 50 40 61
4 5641 Mitchell 90 80 70 83
4 5707 Montgomery Ranch 50 70 70 62
4 5734 Moro 80 70 80 75
4 6464 Parkdale 20 30 30 26
4 6468 Parkdale 2 50 30 30 38
4 6532 Pelton Dam 80 30 40 51
4 6540 Pendleton Exp. Stn. 60 80 70 71
4 6541 Pendleton R. Park 20 80 70 55
4 6546 Pendleton AP 20 80 70 55
4 6634 Pilot Rock 60 80 70 71
4 6655 Pine Grove 60 70 60 65
4 8009 Spray 50 70 70 62
4 8407 The Dalles 60 50 40 53
4 8530 Timberline Lodge 20 10 10 14
4 8734 Umatilla 50 40 50 45
4 9068 Wasco 50 70 80 63
4 9216 Weston 50 50 60 51
5 36 Adel 100 80 100 90
5 118 Alkali Lake 100 50 80 73
5 188 Andrews 100 100 100 100
5 189 Andrews Weston M. 100 100 100 100
5 501 Barnes Station 20 80 80 84
5 694 Bend 70 70 90 72
5 1067 Brothers 90 20 90 90
5 1176 Burns 70 70 80 71
5 1415 Cascade Summit 50 30 30 38
5 1546 Chemult 80 60 60 68
5 1571 Chiloguin 10 50 50 34
5 1946 Crater Lake 10 20 30 17
5 2415 Drewsey 80 40 30 55
5 3022 Forth Klamath 10 50 50 34
5 3095 Fremont 80 50 60 63
5 3659 Harney B. E.S 50 70 60 61
5 3692 Hart Mountain Ref. 80 80 70 79
5 4506 Klamath Falls 50 60 50 55
5 4511 Klamath F. Agr. Stn. 70 60 50 63
5 4632 Lake 50 80 80 68
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Aridity (%)

Reg Stn ID Station name Site Area | Region | Cumulative
5 4670 Lakeview 60 80 100 74
5 5162 Malheur Ref. Hdq. 80 30 40 51
5 5170 Malin 80 40 50 57
5 5174 Malin 5 50 40 50 45
5 5508 Merrill 50 80 70 67
5 6243 Ochoco 20 40 50 33
5 6251 Odell Lake 20 30 50 28
5 6302 00 Ranch 60 50 70 56
5 6426 Paisley 20 60 70 45
5 6500 Paulina 60 50 60 55
5 6662 Pine Mountain 90 70 80 79
5 6717 Plush 50 80 80 68
5 68563 P Ranch Refuge 20 80 70 55
5 6883 Prineville 60 50 50 54
5 6982 Rager 50 50 60 51
5 70562 Redmond 20 60 70 45
5 7062 Redmond AP 70 60 70 65
5 73564 Round Grove 60 50 60 55
5 7633 Sand Creek 50 40 40 44
5 7817 Silver Lake 50 30 60 41
5 7857 Sisters 80 60 60 68
5 8007 Sprague River 80 20 50 47

. b 8029 Sqguaw Butte E.8 80 80 80 80
5 8173 Summer Lake 60 30 80 47
5 8250 Suntex 20 70 80 51
5 8420 The Poplars 20 40 60’ 34
5 8812 Valley Falls 60 80 100 74
5 8818 Valley Falls 3 50 80 100 70
5 8924 Voltage 50 80 90 69
5 8948 Wagontire 60 50 80 57
5 9316 Wickiup Dam 80 30 60 53
5 9604 Yonna 50 20 50 35
6 41 Adrian 80 70 60 73
6 356 Austin 30 30 20 29
6 412 Baker AP 30 10 20 19
6 417 Baker KBKR 30 10 20 19
6 723 Beulah 10 50 90 38
6 1174 Burns Junction 90 100 100 96
6 1352 Canyon City 30 10 10 18
6 1926 Cove 1 50 20 10 31
6 2135 Danner 80 60 60 68
6 2482 Durkee 50 50 50 50
6 2597 Elgin 20 20 20 20
6 2672 Enterprise 20 30 20 25
6 2678 Enterprise 20 20 40 20 30
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Aridity (%)

Reg | Stn ID Station name Site Area | Region | Cumulative
6 3430 Granite 50 50 90 54
6 3604 Halfway 20 40 30 31
6 3666 Harper 50 70 60 61
6 4098 Huntington 80 60 70 69
6 4175 Ironside 20 40 30 31
6 4291 John Day 80 40 30 55
6 4329 Joseph 50 30 20 37
6 4357 Juntura 70 60 50 63
6 4615 La Grande 60 40 30 47
6 4622 La Grande KTVR 50 40 30 43
6 5020 Long Creek 20 50 30 36
6 5160 Malheur B. E.S 70 30 40 47
6 5268 Mason Dam 390 40 40 60
6 5335 Mc Dermitt 80 90 20 86
6 5396 Meacham 50 30 30 38
6 5610 Minam 50 50 40 49
6 5711 Monument 50 70 70 62
6 6179 Nyssa, 20 60 70 45
6 6294 Ontario 80 50 40 61
6 64056 Owyhee Dam 60 30 70 46
6 6845 Prairie City 50 40 30 43
6 7160 Richland 60 40 30 47
6 7208 Riverside 90 50 90 70
6 7277 Rocksville 20 60 80 46
6 7310 Rome 80 40 80 60
6 7675 Seneca 70 50 30 56
6 7736 Sheaville 50 70 80 63
6 8726 Ukiah 20 40 40 32
6 8746 Union Exp. Stn. 20 20 20 20
6 8780 Unity : 90 40 20 58
6 8797 Vale 80 40 50 57
6 8985 Walla Walla 20 40 40 32
6 8997 Wallowa 50 40 20 42
6 9046 Warm Springs Res. 50 70 80 63
6 9176 Westfall 60 70 80 67
6 9290 Whitehorse Ranch 20 70 80 51




Values of local estimates of long-term monthly averages of daily

APPENDIX D.

Local values of ET,
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ET,, mm d-4 and cumulative ET, mm, for each primary weather station.

RegjStn ID] Jan Feb Mar Apr May Jun Jul Aug S5ep Oct Nov Dec Cum
1 318 1 0.25 10,79 ] 1.4712.53 0§ 3.49[3.40 | 3.68)3.2212.79;1.75) 0.63 ]0.30 742
1 324 1 0,270,778 1,512,702 3.62)3.47]3.75§3.2872.81}§1.81}0.631}0.34 762
1 328 1 0.30710.81] 1.60}2.48} 3.433.38) 3.6673.22§2.73§1.71¢ 0.63§0.31 731
1 471 j0.50f0,80] 1.36}2.26] 2.89§3.33}3.3012.70] 2.44)11.86} 0.80}0.42 692
1 1055 1 0.57 [ 0.86 | 1.49}2.48 )} 3.18}3.,52} 3.583(3.01]2.79}2,02 0.88§0.53 758
1 1324 | 0.40f0.73 | 1.33 §2.30 3.01]3.59]3.69)3.05§2.7211.92]0.75]0.34 121
1 1360 § 0,524 0.80 ) 1.34 §2.21 1 2,773,089 3.06}2.60}) 2,36 1.81) 0,81L]0.46 666
1 1682 10,381 0.92] 1.58)2.5813.4913.44§3.753.26§2.87[1.88] 0,73 ]0.38 771
1 1836 | 0.45 §0.80 | 1.442.36] 3,10 |3.60 | 3.78 {3,119 2.78 1 1.95 | 0.75 § 0.36 750
1 2370 | 0.45£{0.81 | 1.48})2.4313.24(3.82§ 3,99§3.35}2.,932.05) 0.75}30.36 783
1 2633 1 0.35} 0,740 1.45}12,55] 3,39 14,04} 4.30}3.55} 3.01}2.00 0.70]0.28 808
1 3356 | 0.56 ] 0.85 ] 1.45 32,38} 3.05{3.41L¢ 3.45§2.91] 2.65)1.96 | 0.85}0.52 733
1 3905 { 0.42]0.76 ] 1.39§2.31 ] 3.04 (3,564} 3.6573.00{2,70f1.,90¢ 0.71¢0.29 724
1 4133 § 0.35}0.74 4 1.50§2.64 ) 3.54 {4.08 4,4013.72 3.17}72.05}%0.72}0.32 831
1 5375 1 0.40 | 0.74 | 1.47 | 2.49} 3,13 |3.61 | 3.69}§3.07 1 2.742.01] 0.7410.36 746
1 6032 § 0.42 §0.80 ) 1.4112,3213.05}13.31}3.40§2.83}2.54}11.81}0.73}0.36 701
1 6073 } 0.4910.80§ 1.41}2.36§ 3.07 §3.54}3.5812.99] 2.65}1.95} 0.82]0.42 735
1 6366 1 0.31§0.79f 1,442,394 3.2413,39§3.6113.10f 2,71 }11.77} 0.641}§0.28 722
1 6779 1 0.5530.82 ) 1.44§2.43] 3,06 )3.43 ) 3.4612.892.590}31.94§ 0.840.51 731
1 6784 1 0.53/0.8401.44}2,3303.,03}3,49f3.58§3.032.72}1.95] 0.82]0.46 739
i 6820 | 0.42 10,76 | 1.402.45 | 3.2113.73 ] 3.90]3.26 | 2.84)1.99]0.75 ] 0,37 765
1 7082 } 0,41 §0.76] 1.36 12.33} 3.06]3.561 3.66}§3.03]2.72§1.96§ 0.75] 0.36 731
1 7641 { 0.3740.89] 1.5832.58] 3.51}§3.36)3.58)3,17}2.,77}11.82]0.70]0.39 754
1 7866 | 0.33]0.69} 1.28 12.35] 3.16 {3.70} 3.873.22} 2,79}1.90)} 0.68 }J0.32 741
1 8481 1 0.3710.80] 1.47§2.49)3.32 §3.723.96}3,32¢2,93}1.98¢0.73}0.30 795
1 8494 1 0.3510.87§ 1.52}12.48}3.34(3.26] 3.442.98}2.,6371.75] 0.68]0.36 722
1 8833 1 0.21§0.65}1.30}12.24}3.19)3.,44 ] 3.75}3.11} 2.61}§1.70} 0.56 § 0.20 701
2 78 1 0.2310,84}1.56]3.16 § 4,18}5.01 6,115,061 3.8212.,10} 0.63}0.21 1005
2 62 10.,25{0.87}1.51§2.85¢4.0204.92%5.95}§5.,00}) 3.7312,02] 0.66 0,17 976
2 595 1 0.31§0.93 7 1.83}3.17§4.3004.90]5.30}4.69) 3.61}2.080.65}0.25 978
2 652 10.01L50.61§1.,1602.33)3.4404.47}5.2114.27]3.23§1.841} 0.39]0.00 821
2 897 { 0.1900.791 1.7113.25] 4.46 ] 5.06 | 5.66[4.96§ 3.82§2.19} 0.65 ) 0.22 § 1007
2 1433 | 0.18 ] 0.73 | 1.44)2.85 | 3.87}14.76 ] 5.53§4.65} 3.5211.99} 0.55}0.12 922
2 1652 | 0.18§0.73 ] 1.49§2.81§3.95 4,53} 5.134.46] 3.54}2.05]0.58}0.18 905
2 1643 | 0.24 ] 0.81 ] 1.66 [ 3.08 | 4,23 | 4.73§5.21 §4.68] 3.62}2.01} 0.590.24 950
2 1862 | 0.22 [ 0.84§ 1,51 12,98} 4.04{4.90) 6.00§5.07) 3.81}2.0700.62}0.18 985
2 1877 1 0,1970.76 ) 1.48}2.79 ) 3.84 | 4.80] 5.7414.83 ) 3.66]2.02] 0.56]0.10 940
2 1897 1 0.27§0.791 1.40}2.66}§ 3.61]4.46) 5.244.32]3.3531.98} 0.610.16 881
2 1902 } 0.2310.76] 1.31}2.52§3.4814.33) 5,03 ]4.123.24}11.93] 0.59}0.14 845
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Reg]Stn ID) Jan Feb Mar Apr May [ Jun Jul Aug Sep | Oct Nov Dec Cum
2 2112 1 0.25 1 0.78 ¢ 1.567}2.88| 4.0284.75 ) 5.27|4.45} 3.54 12,21 0.63 §0.20 933
2 2277 lo.0440.55] 1,18 12,49 3.63§4.41§5.104.24|3.20]1.85] 0.45]0.02 830
2 2292 1 0.1810.690§ 1.32)2.51]3.6114.47165,13}14.34] 3.35]2.07)0.56]0.11 866
2 2374 1 0.2510.796 | 1.32 ) 2.53 ) 3.46§4.385.0904.18} 3.28 }1.92} 0.58|0.14 853
2 2693 1 0.30 ) 0.86 } 1.70 | 3.03 ] 4.08 14.61}5,00}4.243.,32}12,040.6470.25 918
2 2707 { 0.26 1 0.72 § 1.60{3.16 ] 4.15 | 5.06 | 5.87 [ 4.73 | 3.78 ] 2.22 | 0.56 | 0.17 986
2 a709 | 0.24 10,74 1.56]3.00]4.06 5,06} 5.,94(4.80]3.83]2.10] 0.55 0.14 978
2 2800 1 0.2210.72 1 1.4812.901]3,97}14.63|5.44]4.61] 3.63]}2.15 0.60f0.19 933
2 2805 } 0.2210.78 ) 1.50}2.753.81}4.69)5.4204.66j3,54]2.08 0.60 § 0,14 922
2 2867 1 0.23 10,721 1.51 [ 2,91} 3,9614.90] 5.64|4.54]3.70]2.14 0.55§0.12 944
2 2007 1 0.2710.8¢4 ] 1.73 3,16 4.3414.90] 5.37]4.69} 3.62]2.10 06.63 10,24 974
2 3047  0.2710.854 21.58 }2.78} 3.7914.61]5.26 } 4,30 3.32}2.09 0.6310.17 905
2 3402 1 0.00}0.271 0.76 } 1,754 2.86 | 3.64 | 4,40} 3.79 ) 2,78 §1.46 ] 0.20 0.00 670
2 a770 { 0.2700.821 1.65§3.03] 4,16 14.66 ] 5.07}4.37] 3.43}2.,10} 0.64 0.24 929
2 4008 | 0.28 10.87f 1.7413.15] 4.27}4.79]5.19{4.43 ] 3.45]2.07} 0.63 0.26 950
2 4603 1 0.2330.79} 1,471 2.81 | 3.86}4.64 ] 5,47 ] 4,54} 3,542,080/ 0.63 0.17 924
2 4606 § 0.2410.80 ] 1.57 | 2.81§3.8014.64]5.26 §4.43} 3.40 72,07 0.89 0.17 909
2 4811 { 0.2810.80 ] 1.52 f2.82 ] 3.78}4.59}65.27}4.22]3.3912.106]0.61 0,16 202
2 5050 | 0.30]0.851) 1.52 12,75 3.6714.56] 5.2914.34] 3.45]2.15] 0.66 0.20 908
2 5221 | 0.00] 0.40] 0.99]2.19] 3.35 |4.33}5.10)4.18} 3,02 )1.64} 0,30} 0.00 780
2 5362 1 0.1000.63} 1.38§2.73}3.7814.61}5.25]4.19§ 3,281,971 0.47}0.03 868
2 5384 { 0.2610.81 ] 1.65}3.04]4.16]4.80]5.35 4,60 3.56}2,14] 0,63]0.22 953
2 5677 1 0.3110.85 1 1.50)2.93}4.02{4.67]5.11§4.40]3.47]2.06] 0.66]0.24 925
2 6151 1 0.27710.84} 1.65§2.86] 3.92]4.56] 4.85) 4,17 3.25 {1.96} 0.61 0.21 890
2 6173 1 0.26 f0.76 | 1.55 §2.87§ 3.90{4.86} 5.59 §4.83} 3.56 }2.08} 0.560.12 936
2 6213 1 0.2200.76 | 1.45 }2.79} 3.80 J4.68 | 5.52 | 4.51 § 3.5812.15] 0.59 0.12 921
2 6334 | 0.35 1 0.96 | 1.81 13.25} 4.40{4.98] 5.34}4.64] 3.64 2,156} 0.70}0.29 992
2 6749 1 0.4111.05) 2,03} 3.41]4.50}|5.08]5.3614.68] 3,712,320 0.76]0.32 1026
2 6751 1 0.3¢ Jo.991 1.9113.30] 4.47 }5.01§ 5.39{4.65]} 3.60 2,217 0.73 §0.31 1005
2 6761 1 0,430 1.12f 1.0813.,46 ] 4.66|5.12 ) 5.56 [4.81§ 3.79]2.37 0.82§0.391 1053
2 7466 | 0.30 { 0.98 | 2.0013.38] 4.52]5.14 ] 5.50]4.96) 3.74}2.20 0.66 f0.25 | 1027
2 7500 | 0.31{0.80] 1.64]2.97] 4,104,909} 5,54}14.82]3.71}2.28) 0.66 0.23 979
2 7550 1 0.00}0.14 ) 0.58 | 1.41§ 2.44§3.40} 4.33 [3.40;2.3871.24} 0.10 0.00 594
2 9586 [ 0.26 1 0.78 ] 1.65(2.93]4.00[4.64 ] 5.07 § 4.43 ] 3.5112.09] 0.63 0.22 923
2 7631 |1 0.22]0.651 1.23]2.29} 3.3314.09]4.63}3.,97}3.07]1.90} 0.50 0.13 794
2 7809 | 0.19{0.67] 1.36}2.61] 3.69{4.38] 4,97 4,18} 3.24 11,94 0.5210.13 852
2 7823 bo.2710.82 ) 1.6542.82 1 3.91}4.69 ) 5.10}4.39] 3.43 2,23} 0.6550.18 920
2.1 7827 Y 0.25 0,71} 1.41]2.80] 3.80{4.60§ 5.1914.37} 3.46 2,19} 0.580.21 903
2 8095 | 0.3010.80a) 1.63}2.95} 4.04]2.86]5.46 14.67] 3.5912.22] 0.67}0.21 960
2 8221 1 0.16}0.56) 1.18]2.3513.37}3.92}4.58}3.,91}3.10}1.90} 0.58}0.15 787
2 8466 | 0.1500.66 ) 1.4302.80F 3.90}4.55}5.084§4.32}3.34[1.,99] 0.53)0.12 882
2 8634 1 0.33 00,99} 1.80§3.33) 4.44{5.08)5.4714.75(3.6612.,21]0.7510,30] 1013
2 8879 | 0.19{0.71] 1.48§2.83] 3.90]4,31]4,7414.10] 3.25}1.88] 0.54}0.19 859
2 8884 { 0.171 0,74l 1.58 2,721 3.83|4.38] 4.71 §4.15] 3.14 | 1,82 ] 0.51}0.14 852
2 9051 f 0.28}0.88) 1.71§3.08}) 4.3514.82]5.30]4.63 3.60§2.08} 0.65}0.27 966
3 304 1 0.25410.97] 1.87]3.61)4.9216,05{6.88§5.81{4.29]2.54}0.69]0.13] 1161
3 1448 | 0.36 ] 0.93] 1.58|2.9714.34]|5.32] 6.40|5.46 ] 4.17}2.48] 0,74 ]0.24 ] 1069
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Regj{stn ID] Jan Feb Mar Apr May Jun Jul Aug Sep Ooct Nov Dec Cumn
3 2406 { 0,32 )0.87 1.51 72,83 3.80)4.67) 5.51 4,51} 3.5472.13} 0.660.20 933
3 2928 } 0.00 {0.25 | 0.89 §12.27] 3.85 4.5 §5.58}14.72]3.5671.914§ 0.38}0.00 845
3 3445 1 0.41 (0,91} 1.59]3.06| 4.26}5.1216,18§5.13 | 4.01L}2.55]0.79]0.29 | 1048
3 4060 } 0.0010.37§ 0.95 12,17 3.54 }4.72 ] 5.56 4,71 ) 3.37§1.91} 0.270.00 843
3 4126 § 0,24 £ 0.81 ) 1,42 }2.65% 3.65 |4.57} 5.4904.52 §3.4872.031) 0.58}0.12 903
3 4216 f 0,18 1,01 § 1.44)3.52 4,84 §5.1216.38}5.14§3.95§2.81} 0.71}0.251} 1080
3 4420 {1 0.37}10.,851 1.52 12,96 )] 3.8014.80)5.7614.78]3.6412.49] 0.80}0.24 980
3 4635 § 0,24 [ 0,91 1.75 | 3.48] 4.60 05,57 6.50)5.454.16 2,48 0,69 }0.13 | 1098
3 4835 § 0.04 | 0.39(0.,9901,99§3.08§4.,16 5.10 (14,23} 2.98§1.79¢ 0,23 0,00 764
3 5055 § 0.27 0,887 1.60 | 3.03 | 4.3415.4476.385.39§3.99(12.441 0.64 0,14 { 1055
3 5424 1 0,23 11,000 1,94 §3.81J5.1916.34] 7.1416.0974.48§2.51] 0.66]0.13 | 1207
3 5429 1 0.23§1.02¢ 1.9593.76}5,1216,34}7.,1916,031 4.4312.,59} 0.68 10,11 ] 1205
3 5656 § 0,250,994 1,903,754 4.96 $6.0086.98:5.86)]4.3702.59f0.68§0.14 } 1178
3 6907 § 0.18§0.73 § 1.41 /2,78 3.95 (4.86 | 5.85}:4.83 ) 3.66}§2.24 ) 0.60¢%0.09 953
3 7169 § 0,390,900 1.54}2.90( 3.94]4.84}5.9514.95[3.8412.34]0.761]0.27 296
3 7326 § 0.29§0,83} 1.44 {12,811 3.69}14.52)5,73}4.62}3.61}2.09} 0.61}0.22 930
3 7331 0.3000.85} 1.50)12.70§ 3.7314.6895.69§4.70] 3.60§72.14} 0.631}0.18 938
3 7391 1 0.30 { 1,04 | 1.90)3.58)5.11 16,271 7.04}6.05) 4.47}]2.62}0.70 §0.16j 1198
3 7698 1 0.27 j0.50)1 0,8011.92] 3.10}4.0415.28]4.47]3.59]2.18§ 0.61)0.17 823
3 7850 | 0.00 1 0.46} 1.21 12.6413.9314.73}5.99}5.11 | 3.97}2.25} 0.45}0.00 940
3 8338 { 0,22 70.95§ 1.93§3.82)5.16(16.30§7.14}6,00 ) 4,35 §2.510.6610.13§ 1196
3 8536 | 0,14 }0.67§ 1.3012.62713.,7814.82}5.7774.6873.53]1.99] 0.48(00.03 211
3 8588 [ 0.22]0.81| 1.44)2,85}14.0914,98§5.99]4.96] 3.93]2.32] 0.64 0,11 988
4 197 1] 0.00]0.59) 1.43f2.,98}4.2415.16}6.17}5.07 % 3.68]2.29| 0.540.00 982
4 265 1 0,01 J0.79% 1.95§4.0335.7306,.75) 7.6316.70} 4.67}12.74 ) 0.61]0.05 7 1273
4 753 § 0,00 10,55} 1.74 13.92§5.53§6.35}7.5616.,29} 4,672,487 0.53§0.07 | 1213
4 858 1 0,00} 0.8712.17)4.38}6,22|7,28} 7.92§17.21]4.72}2.79}0.63}0.01] 1351
4 1407 | 0.0810.6731.7613,7815.11}5.80 6.88}5.804.35]12.,45810.63]0.16 ) 1146
4 1765 § 0,00 } 0.48 1 1.37 §12.94§ 4,30 15.24£6.28§5.3393.7572.20¢ 0.42} 0.00 988
4 2168 | 0,07 30,71 ¢ 1,50 | 3.1114.24 5,17 {6,0314.84)3,61)2.42}10.661}0.06 990
4 2440 1 0.00 § 0.51} 1,51 §3.29)4.8015.68]6.75]15.6174.06(2.13]0,401]0.00 ) 1062
4 2564 § 0,001 0.65§ 1.71 13.62§ 5,11 }5.96 } 6.62]5.60) 3.9902.34}0.4940.03] 1104
4 3038  0.00§0.62 ) 1.31)12.88)4.,25 5,10 6.09§5.16 }§ 3.56§2.,12] 0.56 ) 0.00 969
4 3121 1 0,0050,30} 1,21 }2.81}4,1905.10§6.36}§5.21} 3,78 }11.95 0.30¢(0.00 987
4 3542 ] 0.00§0.59]1.25}2.63] 3.76 14,76 5.744.77) 3.47}2.07]0.53]0.01 904
4 3644 1 0.00}0.49] 1.11}12.34 ) 3.7244.80§ 5.54]14.73}3.31§1.9910.4310.00 870
4 3737 ] 0.01 §0.54 9 1.60(3.21)4.25 §5.06)6.03}4,86§ 3.61}2,28} 0.52}0.02 978
4 3827 1 6,.09}§0.66 1 1.58 13.12]4.30 }5.14§5.74§4,70{ 3.87 §12.34] 0.57}0.01 981
4 3847 § 0,00} 0.57] 1.68 13.51} 4,985,868 6.44]15.51}13.84]2.18]0.4310.001] 1070
4 4003 } 0,00 J 0.59 | 1.61 §3.45 ] 4,96 §5.77} 6,795 15.65 §4,07]2,19} 0.47}]0.02 | 1086
4 4411 § 0,00 0,48} 1.39§2.98)4.38§5,32)6.3715.36)3.79}12.26) 0,42.}0.00 ) 1001
4 4479 {1 0,00 [ 0,41} 1,28 f2.74 ) 3.82 }14.69| 5.56 [4.51)3.27 (2,17 0.49]0.00 885
4 5139 J 0.07 {0,721 1.56 {1 3.08 ) 4.1014.96)5.80]4.63 ) 3.45}2.08 0.6170.08 951
4 5142 } 0.06 ] 0.69 § 1.53 }3.02) 4,04 14,91 ] 5.72|4.64) 3.,48}2.12}4 0.5710.06 942
4 5815 § 0.05§0,72 % 1,50 j2.96 ] 4,01 }4.87 } 5.70}4.60) 3.44 })2.07 1§ 0.611]10.07 935
4 5845 ¥ 0,00 1 0.73}§ 1,70 §13,44) 4,97 |6.04 ¢ 7.01 16,101} 4.2412.56] 0.52§0.00 ] 1140
4 55903 § 0.00 J0.61 ] 1.79}3.56]4.925.93§7.1315.86} 4,14}12.42} 0.5410.03 ] 1129
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RegiStn ID} Jan Feb Mar Apr May § Jun Jul Aug Sep | Oct Nov Dec Cum
4 5641 | 0.05 [ 0.64 ] 1,47 083.00 ] 4,12 5,12 6.01L §J4.84 ) 3.57}2.34] 0.57 }0.03 971
4 5707 | 6,07 §0.70 ] 1.71 | 3.29) 4.27 14,97 5.86][4.65] 3.53}12.31} 0.67]0.12 982
4 6734 {1 0,00 ] 0.50{ 1.493.18] 4.65 | 5.49 %8 6.43]5.43 | 3.8212.26 ] 0.42 | 0.00j 1030
4 6464 } 0,00 (0,421 1.36 [3.18] 4,57 15.37 ) 6.45 | 5.36 ] 3.88}2.01 ) 0,37 0.00] 1008
4 6468 | 0.0010.44 § 1.33 12,90} 4.37 §5.27§ 6.30}5.17 ) 3.66 § 1,92} 0.330.00 969
4 6532 1 0.21 10,94} 1.80]3.55{4.6705.73,6.60§6.3814.0192.44] 0,78} 0.16 ) 1110
4 6540 { 0,01} 0.650 1.7513.35} 4.7515.91§6.685.54)3.04]2.36} 0.55]0.07] 1087
4 6541 1 0,00l o0.58] 1.70}a.53} 4.80}5.75} 6.66)5.44 ] 4.07 12,42} 0.55]0,11 ¢ 1091
4 6546 | 0,00 1 0.68 1 1.70 | 3.39 ] 4.87}5.97 ) 6.96[5.84)4.17)2.,41) 0.56 | 0.05} 1119
4 6634 | 0.00§0.56§ 1.5513.16} 4.45 §5.42]6.5315.37]3.85 12,29} 0.5410.01} 1031
4 6655 | 0,00} o0.58 ] 1.52|3.083] 4.40]5.33]6.34|5.27] 3.60}2.07] 0.43]0.00 996
4 8009 | 0.1110.82] 1.6013.3714.695.90 ] 6.89[5.66]4.,15}2,57]0.69}0.08} 1119
4 8407 1 0.0310.67§1.8303.93}5.5916.53] 7.67§6.33)4.59)2.48 0.560.07} 1231
4 8530 | 0.00f0.00f 0.5801.81]3.07013.65]5.32§4.5703.19}1.3910.12]0.00 726
4 8734 1 0,0010.62{1.7513.71|5.2216,05]6.70{5.72] 4.,00]2.34}0.49}0.02¢ 1119
4 o068 1 0.00]0.5311.6313.50]4.9715.74}6.82]15.77]4.13}2.44] 0.47 }j0.01} 1101
4 9216 ) 0,00 f0.44} 1.54 13,26} 4.5515.40} 6.73}5.61 4,02 2,29} 0.510.00 1050
5 36 1 0,01 10.56] 1.2012.65] 4.13§4.96 ] 5.71 14,60 3,48 }2.40| 0.5940.00 923
5 118 1 0.00 1 0.52 ] 1.18 | 2.49 ] 3.81 {4.81 | 5.51 [ 4.49 ] 3.26 [ 2.14 0.49 | 0.00 8717
5 188 10.06000.32] 1.4113.,11{4.20}5.16] 5.9074.67] 3.422.43] 0.50]0.00 954
5 i8e 1 0.0010.49¢ 1.30]2.81}4.1215.30} 5.9514.92 ] 3.55 }2.47 ] 0.54{0.00 961
5 501 1 0.00§0,49] 1.16 | 2.40 } 3.61 | 4.62 | 5.33 (4.24 | 3.10 2,10} 0.44}0.00 840
5 694 1 0,08 10.6711.50]|2.85]3.944.86|5.59]4.43)3.36)2.40} 0.64}0.07 928
5 1067 1 0.00 ] 0.42 ] 1.052.180 3.30{4.31] 5.00]3.87}2,8411.96} 0.37]0.00 773
5 1176 1 0.0016.21 J 0.88{2.300 3.563}4.58]}5.35}4.34] 3,14 §2.05} 0.320.00 817
5 1415 } 0.0010.24 | 0,92} 2.00{ 3.06 [ 3.88]4.833.82]2.798]1.70} 0.38)0.00 722
5.1 i546 { 0.00 10,271 0,04} 2.024]3.20{4.09] 4.81]3.68}2.78]1,75] 0.34]0.00 731
5 1571 1 0,001 0.34 ) 1,092,381 3.55]4.40 ] 5.54 |4.45}3.38]11.99} 0.40]0.00 844
5 1946 | 0,00l 0.06 ] 0.4911.47] 2.49}3.50)4.75)3.92}2.9211.62} 0.240.00 657
5 2415 { 0.00§0.29 ] 1.21}2.75} 3.94}5.06 ] 5.87}4.74 3.26)2.,02] 0.30:0.00 900
5 3022 | 0.000.20] 1.01}2.31]3.41§4.33]5.36]4.21]3.35)2.00) 0.44]0.00 817
5 3095 1 0.00]0.35} 1.09]2.213.31 14,18 4.93]3.82}2.82]1.81]} 0.37}0.00 761
5 3659 } 0,00 0.00} 0.85082.45%3.5414.,33}5.,17}4.15}2.99}1.90} 0.22)0.00 784
5 3692 | 0.00§0.24} 0.79[2.06§ 3.2414.08} 4.84]3,93}§2.94{1.981 0.35]0.00 748
5 4506 { 0,000 0.501 1.3312.81§4.0815.09|6.32]5.12§4.00)2.45]} 0.56]0.00 986
5 4511 L 0,000,521 1.25}2.66] 3.824.81}6.01]4.82]3.81]2.37) 0.49]0.00 934
5 4632 § 0,00 0.39 ] 1.08§2.32 ] 3.5314.43§5.3114.1313.02}1.96) 0.42}0.00 813
5 4670 10,00 0.33 ) 1.1282.52] 3.7414.62)5.54 (4,44} 3.38]2.18]) 0.46]0.00 866
5 5162 | 0,00 §0.35} 1.02]2.43]3.86814.83| 5.43]4.46}3.22{1.98) 0.34]0.00 854
5 5170 } 0.00 { 0.41 ] 1.36]2.82 )] 3.99[4.80) 5.88}4.55]3.51]2.,25( 0.46]0.00 918
5 5174 § 0.00 J0.56 } 1,22 }2.51] 3,89 1 4.97}6.02 4,98} 3.8202.34} 0.51}0.00 942
5 5505 1 0,00} 0,42} 1,172,561 3.66 [ 4.54 1 5.52 4,30 3.59(2.25]0.53})0.00 871
5 6243 1 0,00 ] 0.29) 1.04§2.48] 3.65 | 4.58] 5.50]4.54]3.3331.92] 0.3010.00 845
5 6251 10.0000.30] 0.83}1.80} 2.9113.93}4.83]13.82}2.8231.61]0,38}0.00 710
5 6302 § 0.00§0.33]0.99§2.3903.7884.76§ 5.33 §4.42} 3.16§2.00} 0.370.00 842
5 6426 {0,000 0.59) 1.33§2.82] 4.03}4.92]5.90}4.83} 3.65{2.34} 0.570.00 947
5 6500 §{ 0,00 0.48 ) 1,20 12.54]3.76]4.79]5.62}4.53}3.24}2,04] 0.44]0.00 875
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Reg|Stn ID] Jan Feb Mar Apr May Jun Jul Aug Sep oct Nov Dec Cum
5 6662 | 0,00£0.22 4 0.76 j1.68 ] 2,97 14.01§5.08103.90) 2,95} 1.80] 0.30 ] 0.00 723
5 6717 | 0,00 0.44 | 1.21 }12.89§ 3,96 14.75{5.72}04.57( 3.50 2,251 0.50¢0.00 911
5 6853 | 0.00  0.52 § 1.24 } 2,72 | 4.03 {4.96 | 5.49 [4.50§ 3.37[2.19] 0.52]0.00 903
5 6883 § 0.0710.70 § 1.47 12.9314.0514.95} 5.8414.62 ) 3.45}12.220.62)0.06 946
5 6982 1 0.00 1 0.46 § 1.09§2.37 ] 3.72}4.81§5.72]4.76¢ 3.45}02.1517 0.48)0.00 887
5 7052 § 0,12 £0.76 | 1.4912.99]4.12 5,13 §6.32]5.05§ 3.802.46 ) 0.72)0,15[ 1014
5 7062 § 0.08 10.71§1.3912.75¢ 3.90}5.02 6.1714.92§ 3.69(2.35] 0.63)0.06 968
5 7354 [ 0.00}§0.36 | 1,02 §2.25 | 3.35 §14.26 J5.2914.26} 3.24}2.04] 0.43{0.00 810
5 7633 § 0.00 }0.16 1 0.94 § 2,17 § 3.31 }4.16§ 5.14 §j4.01} 3.06 }1.84§ 0.30 } 0.00 768
5 7817 1 0,00 | 0.53 § 1.22}12.40§ 3.68 {14.69 | 5.42}14.53§3.2802,05} 0.47 §0.00 864
5 7857 | 0.06 } 0.66 | 1,40 | 2,587 ] 3.67 §4.79 ] 5.57§4.46 | 3.29}12.17§ 0.53§0.00 891
5 8007 } 0,00}0.40 ) 1.,12)12.36} 3.58§4.68}5.7114.80) 3.432.08} 0.4110.00 8617
5 8029 £ 0.00}0.21 1 0.89¢2.25)3.48 (4,45} 5,224,299 3,17§2.13} 0.33]0.00 808
5 8173 { 0.04 10,65 Y 1.36 §2.70} 3.99§5.03¢§5.91§4.81§ 3,.55(2.,29) 0.58 0,01 945
5 8250 § 0.00§0.21 7 0,91 §2.31§3.50¢84.51§5.20(4.30] 3.0911.93] 0.27¢0.00 802
5 8420 § 0.00§j0.47} 1.1412.48 ) 3.65 14.515.37]4.34}3.16)1.92] 0.431]0.00 840
5 8812 § 0.00¢0.451 1.2222.65 ) 3.79 §4.57 ) 5.36§4.30] 3.22}2.18] 0.48 ;0.00 863
5 8818 y 0.00 § 0.54 | 1.18)12.52 | 3.78}4.73}15.69)4.57 | 3.5112.28{ 0.50{0.00 895
5 8924 | 0,00f0.25} 1.01 [2.58)3,93]4.57§5.32§4.290} 3.23§2.071] 0.37]0.00 845
5 8948 § 0.00}0.30 ) 0.94 12,17 § 3.46}14.51 ] 5.26 14.313.151.99§ 0.28¢§0.00 807
5 9316 § 0.00}0.38 L 1,06 }2.16 | 3.31 }4.21 § 4.89)3.83 ) 2,80 1,77 ] 0.44 | 0,00 760
5 9604 | 0,00 0.36 ) 1.24 2.7 ] 3.87{4.86] 6.26(5.09] 3.89(2.30] 0.45]0.00 949
6 41 ] 0.0040.60¢ 1.78]3.85(5.22[6.40} 7.5105.83] 4.36}2.84] 0.67 §0.00} 1194
6 356 1 0,0080.00; 0.74 2.3 ] 3.37}14.325.48§4.39{ 3.10}1.67f 0.15}0.00 782
6 412 1 0.00F0.20 § 1.07 ;2.78 ) 3.97 14.89(6.25 5,071 3.77(2.030 0,361} 0.00 930
6 417 1 0.00 1 0,29 ] 1.12 §12,90 ) 4.05 15,02 | 6.48 [ 5.26 ] 4.05 {2,251 0.47 | 0.00 975
6 723 1 0.00§0.35] 1.20}3.12]4.2785.36)6.52]5.27] 3.89]12.40] 0.47 [0.00 ¢} 1007
6 1174 { 0,00} 0.55 § 1,50 13.22}4.37)5.6936,18]14.94]3.641[2,50] 0.50)0.,00] 1011
6 1352 § 0,00} 0.52 ¢ 1.37 §3.26 ¢ 4.32)5.16 ] 6.58 15.42 ) 4.11}§2.47{ 0.6370.02} 1035
6 1926 | 0.00 J0.40 | 1.23}2.86§ 3.92§4.71 86,01 §4.96] 3.5872,09{ 0.50(0.00 925
6 2135 1 0.00]0.36] 1.3413.06 (4,21 15.33)6.2214.98] 3.62§2.403 0.47]0.00 978
6 2482 § 0,003 0.3411.22}12.9434.19}5.14 | 6.52}15.,19f 3.87§2.20} 0.44 | 0,00 980
6 2597 § 0.00 §0.39§ 1.21}12.87 % 4.05 74.87  6.21}15.22) 3.65 §1.96§ 0.390.00 943
6 2672 § 0.00 §0.11§0.9492.5513.7334.53[5.72[4.67]3.3¢4 {1,771 0.21140.,00 844
6 2678 1 0,001 0,26} 1.1212.61§3,83¢§4.79§5.80}4.93]3.31181.70¢ 0.22]0.00 874
6 3430 } 0.00 1 0.00} 0,46 ;1.89} 3.00 {3.88 | 4,91 3.92}2.9211.61} 0.10]0.00 695
6 3604 } 0.00 70,149 1.16 13.04 ] 4.22:5.15 [ 6.375.19 ] 3,79 }2.11 ] 0.37 }0.00 965
6 3666 § 0.00§0.38§ 1.5213.48 ) 4.655.85§6.7715.23]3.8212.46} 0.480.00 | 1059
6 4098 1 0.0070.48 ) 1,703,901 5,306,591 7.7316.11§4.53}12.82]0.58J0.001] 1215
6 4175 § 0,001 0.18 § 1.1312.83 | 4.04}5.18 | 6,59 75.39]3.8412,17) 0.321}0.00 969
6 4291 § 0.00 1 0.53}11.31}2.84[4,01§5.,12}6.104.95§ 3.6502.28 0.551} 0,00 958
6 4329 1 0.0000.04 § 0.8972,58]3.7114.39]5.72(4.68] 3.447§1.93]0.27}0.00 846
6 4357 § 0,00 §0.55 7 1.53 §13.334.,53§5.74]6.73)5.42¢4 3,952,551 0.58]0.00]} 1067
6 4615 § 0.00 f 0.47 § 1.35 1 3.12 | 4.04 14.80) 6.04 } 4.97 | 3.66)2.26} 0.590.03 988
6 4622 | 0.0090.54 ] 1.38 $2.95)4,00}4,90f 5,92 15.02} 3.60¢2.15) 0.54}0.00 947
6 5020 § 0.00§0.49§ 1.16 }2.53 f 3.66 {4.71 § 5.68 }[4.78} 3,35 [2.04 ] 0.42{0.00 881
6 5160 § 0.00 J0.46 f 1.7914.18 | 5.53 16,88 7.46 §}5.84 ] 4.34 2,71 0,5010.00]) 1213
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6 5258 | 0,00 § 6,05 § 0,89 [2.40 } 3,54 {4.47 § 5,48 14.44 ] 3.24 ;1.90§ 0.27 § 0.00 817
6 5335 | 0,00 ] 0.54 | 1.40 1 2.95] 4.20 | 5.31 ] 5.88 §4.72 ] 3.5512.46 | 0.55}0.00 964
6 5396 §{ 0.00}0.05] 0.48 ] 1.73§3.00}3.83)5.61}4.65} 3.15]1.43f0.1100.00 736
6 5610 f 0,00} 0.071 06.792.20} 3.33§4.22}5.26 4,41} 3.00}1.51}0.1170.00 762
6 5711 } 0,001 0.66 ] 1.51 13.09)4.33 §5.43§6.32]6.29} 3.73}2.28} 0.57 } 0.00] 1015
6 6179 } o.0o0Jo.52 0 1,791 4,00 5.45 16.79 ] 7.59}6.02} 4.40 }2.76} 0.59 } 0.00 | 1223
6 6204 | 0.00[0.491 1.86 }4.24}5.64}7.02]7.57}5.,84}4.30|2.71] 0.5140.00] 1228
6 6405 1 0,001 0.68] 1.8413,85)5,14]16.35 7.32|5.90§ 4.56¢3.00 0.75 1 0.02 | 1204
6 6845 ) 0.00l0.361 1.38}3.190] 4.27}5.28] 6.56 §5.27} 3.84}2.,49 % 0.59 §0.00 } 1016
6 7160 | 0.00{0.511 1.54 13.5214.7515.76 | 6,95 | 5.64 | 4.26 | 2,52 § 0.61 § 0.00 § 1102
6 7208 | 0.00{0.40} 1.39 1 3.08) 4,12 |5.29 | 6.11§4.95] 3.51 [ 2,30} 0.48 | 0,00 967
6 7277 1 0,00} 0.471 1.41]3.03] 4.3385.58}6.555.26§ 3.79]2.27 ] 0.52}0.00} 1015
6 7310 | 0,00 0.56 § 1.47 1 3.21 ] 4.55]5.69] 6.,49}5.19) 3.78}2.46 } 0.55 | 0.00 § 1038
6 7675 | 0.00§0.001 0.662.10] 3.1314.10| 4.833.75 ] 2.59 11,565} 0,14 §0.00 699
6 7736 | 0.000.20) 1.20}2.83] 4.09}{5.29]6.385.08} 3.70]2.37] 0,45 }0.00 969
6 8726 1 0.0010.17]0.98}2.46] 3.54}4.,45]5.49}14.5013.13}1.77}0.27]0.00 819
6 8746 1 0.0010.43§1.2912.95] 3.9614.75} 6.00}4.98 ) 3.60}2.08} 0.53]0.00 935
6 8780 | 0.00]0.09] 0.96)2.50[ 3.64]4.53] 5.684.48 ] 3.29{1.95] 0.25]0.00 838
6 8797 | 0.00 f0.46 | 1.77|3.99}5.31]6.66 ] 7.38 {5.71 ] 4.19 2,69 0.53 | 0.00 } 1183
6 8985 1 0.0030.321 1.28}2.75} 4.04}5.08]} 6,34 ]5.22] 3.571.77]0.20]0.00 935
6 8997  0.00]o0.16 | 1.13}2.75} 3.8714.71}15.86}4.79} 3.38}]1.85] 0.280.00 881
6 0046 | 0.0010.33 1.32{3.13 ] 4.07§5.1116,07}15.03§3.7312.50/] 0.49]0.00 975
6 0176 | 0.00J0.41 | 1,46 {3.22 | 4.54{5.70}6.70 5.35 | 3.99]2.51)0.52)]0.00} 1052
6 0290 1 0.0010.53] 1.3812.9114.21¢5.23]5.95)4,90] 3.65}2.37] 0.58 | 0.00 969




APPENDIX E. Listing of VARIOWRT

Listing of the computer program VARIOWRT used to compute the

experimental semivariograms for elevation.

s EEE Y Bk REA AR A R R
4 R R
’ R Program VARIOWRT R
’ T EEE
: R Program to compute experimental direct HRK
! aHRw semivariogrems for a single regionalized e
! L] variable with a maximum of 3240 sample values LR
’ "R ETT
! kK Author: Antonio Martinez-Cob HRR
! RRR Water Resources Engineering Team LR
! Wik Department of Agricultural Engineering %%
s Rk Oregon State University i
’ ET T HER

REM $INCLUDE: ‘c:\agb45\wret_lib\wret,icl’
DIM PAIRLG(125), ADST(125), GAMMA(125)
DIM EAST(3240), NORT(3240), ELEV(3240)
CONST PI = 3.1415926534%

40 CLS
INPUT "Maximum distance? ", MYDST
NLGS = MXDST / §
INPUT "Direction? ', DANG
INPUT “Tolerance? ", ANGTOL
INPUT "Input file name? Y, INPF$
INPUT "Output file name? ", OUTF$

IF DANG = 0 THEN ALP = 1

IF DANG = 45 THEN ALP = 2

IF DANG = 90 THEN ALP = 3

IF DANG = 135 THEN ALP = 4

TANTOL1 = TAN(ANGTOL * PI / 180)
TANTOL2Z = TAN((ANGTOL + 45) % PI / 180)
TANTOL3 = TANTOL1 * (-1)

TANTOL4 = TANTOLZ #* (-1)

J=0

FOR B = 1 TO NLGS
PAIRLG(B) = 0
ADST(B) = 0
GAMMA(B) = 0

NEXT B
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OPEN "I, #1, INPF$
WHILE NOT EOF(1)
J=J4+ 1
INPUT #1, EAST(J), NORT(J), ELEV(J)
WEND
CLOSE #1

FOR H = 1 70 J
LEAT = 0
LNORT = 0

COLOR 31: LOCATE 12, 30: PRINT "Please, wait!"
LOCATE 14, 30: PRINT "I am working very hard": COLOR 7
LOCATE 17, 30: PRINT "Sample § "; H

FOR 8 = 1 70 J
IF H » § THEN 20
IF LEAT 0 AND LNORT = 0 THEN
LEAT EAST(S)
LNORT = NORT(S)
LELV = ELEV(S)
GOTO 20
ELSE
END IF
PIST = ((BAST(S) - LEAT) "~ 2 ¢+ (NORT(S) - LNORT) ~ 2) " .5
IF ANGTOL = 180 THEN 50
XDIV = BAST(S) -~ LEAT
IF XDIV = 0 THEN XDIV = .00001
ANGTAN = (NORT(8) ~ LNORT) / XDIV
SELECT CASE ALP
CASE 1: IF ABS(ANGTAN) > TANTOL1 THEN 20
CASE 2: IF ANGTAN > TANTOLZ OR ANGTAN < TANTOLl THEN 20
CASE 3: IF ABS(ANGTAN) < TANTOL2 THEN 20
CASE 4: IF ANGTAN < TANTOL4 OR ANGTAN > TANTOL3 THEW 20
END SELECT
LG = INT(DIST / 5) + 1
PAIRLG(LG) = PAIRLG(LG) + 1
ADST(LG) = ADST(LG) + DIST
GAMMA(LG) = GAMMA(LG) + (ELEV(S) - LELV) - 2
NEXT S

]

NEXT H

OPEN "O", #2, OUTF$
PRINT $2, DANG; ANGTOL
FOR A = 1 TO NLGS
IF PAIRLG(A) = 0 THEN AVDST = 0: EXPGMA = 0: GOTO 30
AVDST = ADST(A) / PAIRLG(A)
EXPGMA = GAMMA(A) / (2 * PAIRLG(A))
PRINT {2, USING “HE4444 #84. 4 G4484.884"; PAIRLG(A); AVDST; EXPGMA

NEXT A
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CLOSE #2
BEEP: BEEP
INPUT "Other run? ", RP$

IF UCASE$(RP$) = "Y" THEN 40
END



APPENDIX F.

Experimental direct-semivariogram for ET,

Experimental isotropic direct-semivariogram values for ET .
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Region 2

Avg, Feb ! Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Cum
dist. | # | mm?| mm?| mm2} mm?2| mm2| mm? | mm?| mm?| mm?| mm? | mm?

Int] km lpair| d2| d2| d2) d2| d2| d?) d2| d2}| d2| d-?}100°2
1 3,91 10{0.002{0.009{0.013}0.007[0.009{0.013} 0.011§0.005§ 0.002{0.00110.036
21 10.1] 16{0.003{0.006/0.015{0.01710.012}0.015{0.013}0.009]0.010}0.002{0.078
31 17.3] 21 10.009]0.028]0.06810.077]0.085]0.069] 0.059{0.043}0.023{0.005}0.369
4% 23.01 4110.008]0.01710.034}0.045]0.051}0,055}0.053}0.030}0.012}0.00310.235
51 30.6| 49]0.013;0,032]0.07910.088]0.097]0.122] 0.08810.052¢ 0.028]0.007(0.469
6] 37.0f 64§0.012{0.031}0.07110.079]0.078]0.108]0.077}0.041}0.019{0.006{0.379
71 43.8] 87 10.016}0.040]0.083]0.09710.09710.112}0.085]0.051]0.021}0.00710.463
8{ 50.5{ 66 1{0.015]0.03110.059]0.063}0.061}0.088]0.072}0.043{0.018}0.007]0.338
91 57.5| 79}0.02010,042]0.079]0.088}0.085]0.114}0.079}0.044]0.02510.01040.457
10| 64.0] 84 }0.030{0.071{0.139]0.156]0.140{0.141]0,115}0.066}0,028]0.012{0.717
111 71.0] 83]0.026{0,060}0.119{0.131]0.105]0.125]0.10410.066}0.034]0.013}0.623
121 77.61 87 10.034}0.083[0.153)0.163§0,125}0.128}0.105}0.074}0.041}0.018}0.754
13} 84.4] 67}0.024}0.060[0.12210.13310.111;0.123§0.093(0.062}0.034}0.013]0.599
141 91.5] 61 }0.02210.046}0.105}0.109}0.097{0.169]0.126}0.07310.031}0.013[0.601
151 97.911090.030{0.07610.14710.16510.112{0.166] 0.130{0.084]0.034}0.015{0,733
161104.4} 82]0.033]0.09410.183}0.20110.167]0.188]0.138}0,103{0.0620.0170.943
171111.5} 55 ]0.040{0.10800.219]0.232]0.208}0.21710.161}0.130§0.058;0.023(1.156
181117.9] 66 }0.043}0.10710.200§0.210]0.133{0.126]0.104]0.101}0.057}0.023]0.912
191124.9] 63]0.036}0.082}10.15110.17010.116]0.120]0.091}0.079]0.049}0.020(0.735
201 131.9] 490.04510.11110.239}0.27010.197}0.198} 0.165{0.135]0.067}0.026}1.213
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Region 4
Avg. Feb | Mar | Apr { May | Jun | Jul | Aug | Sep | Oct | Nov | Cum
dist. | # | mm?2] mm?2| mm?| mm? | mm?| mm?| mm?| mm? | mm? | mm?| mm?
Int] km (pair] d<2| d2] d2}] d? | d<2}| d2| d2| d2} d?| d-2|100-2
1 5.6] 6 70.007}0.01210.033}0.03810.064{0.076] 0.062]0.029] 0.002]0.004{0.261
2 | 15,56 § 16 10.014§0.04110.101{0.141:0.197]0.146[ 0.098]0.058{ 0.03010.006{0.628
3 26.0 § 26 ]0.01810.04610.13510.18310.230}0.19410.17710.090{0.041]0.008]0.826
4 134.6 1 30 §0.032}0.10210.296]0.37570.447]0.366}0.26610.166{0.091}0.017§1.643
5 1 44.2 { 33 [0.023]0.069[0.18710.26310.326}0.240{ 0.199]0.102}0.04710.010{1.078
6 | 55.2 | 34 [0.017]0.05000.184/0.307}0.35810.351[0.327{0.126§0.04810.011§1.177
7 § 656.2 | 46 10.013}0.036§0.11810.20210.232]0.286]0.280§0.085]0.028{0.008{0.793
8 | 76.4 | 41 }0.030}0.103}0,340}0.510§0.535]0.489} 0.504]0.203] 0.076[0.015]1.966
9 ] 85.9 | 32 [0.041}0.095{0.251}0.345}0.3760.374]0.35810.1390.06070.026(1.331
10} 96.6 | 52 }0.031]0.068(0.184]0.29510.316§0.307{0.319§0.117§0.05510.017711.032
11}1105.8] 53 {0.028{0.071}0.213]0.40810.464]0.424]0,431}0.155{0.058]0.01411.440
12§115.9] 50 10.019]0.044}0.16910,350}0.363}0.394]0.37410.169] 0.04500.01211.179
131125.4f 46 10,019]0.050}0.185]0.34410.362}0.405} 0.428]0.181f 0.045]0.01071.290
14 1 135.5] 33 ]0.025{0.069{0.22510.415}{0.50510.469] 0.489{0.2041 0.088]0.012}1.694
15} 146.6} 39 0.020] 0.07110.238]0.407]0.436§0.400]0.428]0.16410.04710.012{1.435
Region 5

Avg, Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct } Nov | Cum
dist. | # | mm?) mm2| mm?| mm?| mm? | mm?} mm?| mm? | mm? | mm?} mm?

Int] km |pair] d<? | d=2§ d2| d<2 | d2| d2| d-2} d2] d?| d-2100-2
1 5.6 6 10.00710.004]0.021}0.012}0.017;0.023] 0.033]0,023] 0.006{0.00240.065
21 18.0 1 11 10.00310.014{0.046]0.05210.048}0.0691 0.067]0.024]0.010]0.001}0.180
3§ 28.8 §{ 31 10.00910,013§0.04630.04610.047}0.085}0.077§0.044]0.012{0.004}0.237
4 1 39.0 § 33 {0.012]0.016}0.038]0.059]0.057}0.05910.047{0.0356 0.02040.005 0.245
5 | 50.3 } 41 }0.01810.03380.069]0.08410.099{0.113}0.092]0.055; 0.03040.00710.435
6 | 61.4 | 41 10.024]0.04070.116{0.105]0.09710.11910.110]0.059}0.028}0.011§0.537
7 § 73.4 1 41 [0.024}0.042{0.093§0.112]0.13110.178}0.139{0.097{0.041[0.010}0.647
8 | 83.4 | 57 10.032]0.05810.142}0.162}0.173}0.191]0.14710.096} 0.058{0.015{0.831
91 94.6 | 53 }0.031)0.053§0.109]0.123]0.143}0.146{0,131}0.074}0.04610.013;0.638
10 §105.5] 85 10.024]10.034}0.087{0.093}0.114]0.171§0.13370.092{0.042§0.011}0.594
111117.6F 79 0.028]0.042§0.098]0.12110.138]0.181§0.143]0.105{0.050{0.012{0,673
121128.7} 80 }0.022] 0.032{0.085(0.08810.10110.162]0.128}0.094]0.0470.011]0.560
131139.0f 62 {0.02710.042]0.10810.124{0.130}0,15710.130}0.088] 0.049]0.01110.610
14 1150.7) 72 }0.020}0.04110.1120.130]0.132}0.207{0.162]0.130§0.061§0.011}0.715
15[ 162.1] 84 }0.04210.058]0.125(0.14110.146{0.184§0.142(0.111£0.061}0.01810.777
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Region 6

Avg, Feb { Mar | Apr { May | Jun | Jul | Aug | Sep | Oct | Nov | Cum
dist. | # | mm?2| mm?| mm?| mm? | mm?| mm?} mm? | mm? | mm? )| mm?| mm?

Int] km [pair| d2| d2| d2| d2 | d2?| d2] d?| d-2| d2| d-? {1002
1 6.2 5 10.002{ 0.00110.022]0.012{0.007]0.031}0.026}0.031]0.012]0.002]0.084
2 116.4 | 14 10.010{0.012{0.037]0.039]0.046]0.074]0.048{0.046] 0.019}0.006{0.231
31 26.01{ 24 10.022]0.052]0.128/0.11910.125]0,170] 0.141}0.098] 0.061}0.020§0.716
4 1 35.4 | 41 10.02210.05210.12110.1320.169{0.171}0.123}0.094] 0.068{0.018§0.720
5 | 46,0 | 38 10.028{0.057]0.122}0.140]0.181}0.216} 0.148}0.096} 0.058]0.021{0.772
6 | 56.01 56 [0.036}0.081{0,195(0.20510.258}0.243{0.167]0.121]0.07910.029]1.069
7 166.5 | 51 10.040]0.108]0.268]0.298}0.380(0.37410.242|0.157§ 0.091]0.026}1.474
8| 7711 58 {0.040]0.08430.22310.275(0.397}0.326]0.200}0.136] 0.088{0.027§1.312
9 186,91 60 10.031}0.07910.211{0.265]0.356{0.316]0.191}0.141]0.088]0.02211.210
10] 96.8 | 73 10.036]0.105]0.300]0.376]0.532{0.413]0.236]0,.16710.102]0.022]1.653
111106.81 72 10.034}0.13210.393/0.502]0.732{0.561} 0.300{0.200} 0.128}0.023}2.168
121117.81 60 }0.031}0.116[0.334]0.430}0.62630.531}0.307{0.204}0.129}0.023}1.978
131127.4% 57 {0.03310.090{0.242{0.29910.427]0.380]0.192]0,147{0.10210.019]1.386
14 1137.21 47 10.032]0.13410.37210.485]0.706]0.617] 0.344]0.227]0.154}0.020{2.254
151147.7} 51 10.045(0.18610.55110.74011.118j0.887]0.472]0.33710.217}0.033}3.339
16{157.91 61 10.043]0.16910.534]/0.70911.067}0.884|0.482{0.333}0.208§0.03313.223
171167.97 53 [0.039}0.10210.308]0.441]0.746(0.546]0.258}0.168]0.128]0.02271.883
18] 178.31 44 10.055]0.128]0.374]0.488]0.807]0.676] 0.345}0.24210.19510.034]2.452
191188.61 48 10.035{0.180]0.629]0.772}1.222]0.824]0.348]0.298] 0.28810.03713.354
201198.8] 50 10.030}0.126}0.446{0.5569{0.86600.610; 0,266]10.223]0.19410.025;2.389




APPENDIX G.

Experimental direct-semivariogram for elevation
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Experimental isotropic direct-semivariogram values for elevation.

Region 2 Region 4 Region 5 Region 6

Avg # Exp Avg -3 Exp Avg & Exp Avg # Exp

dist | pairs | semveg | dist | pairs { semvg | dist | pairs | semvg] dist | pairs | semvg
int| km dam? |  km dam? | km dam? | km dan?
1 4.8 2420 § 230.8 4.8 3015 | 158.5 4.8 3435 93.4 4.8 3954 | 280.9
2 8.0 5635 § 322.0 8.3 5960 | 250.6 7.3} 12786 ] 159.7 7.8} 10035 ¢ 348.7
3 12.44 10617 | 417.8] 12.6 § 11792 | 346.3] 12.2] 25149 249.9§ 12.5 ] 20048 | 459.3
4 17.5] 15356 | 488.4] 17.6 | 16327 | 446.0f 17.2] 32681§ 314.0f 17.5§ 26532 | 578.9
5 22.8) 19718 ) 586.0] 22,7 | 19976 | 543.7§ 22.4] 451480 355.7| 22.4 ] 31395 | 636.3
6 27.7) 19134 § 688.4] 27.8 | 22846 | 629.3] 27.5] 504111 381.5|] 27.5 1 42172 } 727.9
7 32,57 23114 | 772.2f 32,7 25208 } 711.0f 32.4§ 56336 387.8}| 32.7 ) 45215 1 790.2
8 37.6§ 28979 §f 874.2f 37.7 | 29491 | 809.1)y 37.4] 67832§408.,1§ 37.7 | 47205 § 890.2
9 42.8| 26246 }1020,9] 42.8 | 30316 | 861.4] 42,51 172058{401.8] 42.6 ] 56534 } 923.9
i0 47,6 § 30539 31154,9} 47.8 } 32413 | 926.0) 47.5} 79057]412.7}% 47.6 | 55152 } 984.3
i1 52.5§ 30049 $1294.8; 52.7 | 33384 § 994.5} 52.5| 86076§412.7}F 52.6 | 64861 [1004.9
12 57.6§ 36337 j1444.5] 57.7 { 37565 }1019.8f 57.6] 91073 419.0j 57.7 § 62180 §1030.1
13 62.6] 32061 11642.7{ 62.7 | 35165 J1115.5] 62.5] 95058 424.9] 62.6 | 68474 }1047.3
14 67.6[ 36251 §1776.7} 67.6 | 38631 §1158.6} 67.5) 99810}1425.1] 67.6 | 69153 }1065.7
15 72.5) 34452 §1974.0f 72.6 | 37824 [1234.7} 72.5} 106867 §428.5§ 72.6 § 70231 §1074.5
16 77.5] 36631 12089.3} 77.7 | 39851 {1300.7] 77.5] 107262]432.3§ 77.6 | 74021 §1094.6
17 82.6] 36539 12251,4] 82.7 { 38823 j1354,1] 82.5)] 114659}435.87 82.6 ] 73192 {11060.2
18 87.5}) 34311 }2402,0f 87.6 § 39019 11418,7{ 87.5] 1154213 439.9} 87.6 | 73990 §1118.¢
19 92.4| 35906 §2565.9} 92.6 | 38831 §1441.0f 92.5} 118396 | 443.2] 92.5 ] 74826 §1136.3
20 97.5] 34263 §2588.5] 97.6 | 38798 [1482.8] 97.5) 122148 447.4] 97.5{ 71936 {1128.6
21 §102.51 35087 ]2818.7] 102.6 | 38182 ]1535.4] 102.5} 122636 | 453.1 ] 102.4 | 73834 j1155.3
22 §107.4§ 31015 {2859.6} 107.5 § 37074 11600.2§ 107.5§ 127840 449.2 ) 107.5 | 74652 §1138.0
23 1 112,33} 32136 §2938.9) 112.5 § 37276 §1646.7] 112,4 ] 123154 | 452.8) 112.5 ] 70089 {1162.8
24 1 117.3| 30816 §2935.9] 117.5 ] 35766 [1761.6] 117.4) 130455 § 464.9] 117.4 | 70126 [1187.2
25 §122.4 ) 28199 [3029.2] 122,5 | 34783 §1802,.5] 122.4] 127971 ] 468.6 | 122,3 | 68367 |1196.1
26 | 127.2 4 25903 $3030,9] 127.5 § 33129 11906.1f 127.4 ] 1287741 483.1}§127,3 | 68645 }1229.2
27 §132.21 25883 §2889.6] 132,.5 | 32958 §2012.1§ 132.4 ] 129550 § 489.1 ) 132.3 | 62107 §1247.5
28 §137.2| 24066 §2975.1§ 137.5 § 30532 J2089.0§ 137.4} 130791 § 509.7 | 137.4 | 66392 }1271.9
29 ] 142.2] 21485 J2757.3} 142.5 | 28807 [2078,3] 142.5} 130397 ] 506.1 | 142,4 | 66008 §1306.0
30 }147.3§ 21374 [2774.4} 147.5 ] 27892 j2121.1] 147.5} 127211} 520.4 } 147.5 § 64702 }1300.9
31 §152.5) 20167 §2636.4) 152.5 | 25238 12046.2] 152.5 | 123487 § 527.1 ) 152.5 j 63164 11293.0
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Region 2 Region 4 Region 5 Region 6

Avg # Exp Avg ] Exp Avg ¢ Exp Avg # Exp

dist | pairs | semvg | digt | pairs | semvg | dist { pairs | semvg| dist | pairs | semvg
Int km dam? ki dam? km dam? km dam?
32 {157.6§ 17830 J2721.3} 157.5 | 24188 J2050.8] 157.6} 127037 § 528.9}§ 157.6 | 62271 }1277.6
33 | 162.61 16731 12640.0] 162.4 | 22384 [2032.3) 162.5] 123169 | 534.7 § 162.6 | 58685 11283.2
34 b167.5] 15553 §2718.9] 167.4 § 20919 §2016.6] 167.5] 120976 { 537.3] 167.6 | 59047 §1256.1
35 172.4 1 19203 {1943.1] 172.5[ 119963 § 552.4 | 172.6 | 65627 §1234.5
36 177.4 | 17911 (1946.2] 177.6] 118852 ] 559.5 ] 177.6 | 55539 [1215.4
37 182.4 ] 16286 11876.9) 182.5] 112634} 572.2] 182.7 } 54565 [1201.2
38 187.4 | 15087 }1900.3} 187.5) 111543} 586,5 | 187.7 } 51024 $1184.8
39 192.4 | 13712 |1871.2] 192.5] 108272 ] 604.2 | 192.6 | 50956 {1164.7
40 197.4 1 12480 [1865.61 197,57 104829 607.1] 197.6 | 48625 {1120.3
41 202,51 100335 §610.3
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Experimental cross-semivariogram

APPENDIX H.

Experimental isotropic cross-semivariogram values.

Region 2
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Region 4
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Region 6
Feb | Mar | Apr | May { Jun | Jul | Aug | Sep | Oct | Nov | Cum
Avg dam| dam} dam| dam| dam| dam| dam| dam| dam| dam | dam
dist| # mm | mm) mm| mm{| mm | mm| mmji{ mm{| mm)j mm{| mn
Int]{ km |pair| d1 | d1| d2 | d-2| dl}| dl| dl] d1] d-2| d-1}100
1y 6.2y 51{-0.1] -0.1] 0.2y 0.1} -0.21 0.21 0.2] 0.4} 0.3] 0.1 0.4
2] 16.4} 14 | -0.6 { -0.5] -0.8] -1.0{ -0.9] -1.2] -0.9] -0.9} -0.4{ -0.4] -2.3
3] 26.0} 24 | -1.8] -3.1] -4.7} -4.7} ~4.7} -5.0| —-4.3] -3.6} -2.7] -1.6 (-11.0
447 35.41 41 | -1.7] -2.9] -4.2] -4.5] -5.01 4.4y -3.7] -3.1} -2.7{ -1.3 [-10.2
51 46.0} 38 { -1.8| -3.2{ 4.3} ~-4.4] -4.9] -5.1] -4.3] -2.9] -2.4] ~1.5 1~10.6
6] 56.0; 56 }{ ~3.56} -5.5{ -8.2] -8.5} -9.3} -8.3}| -6.8} -5.5] ~4.6] -2.9 |-19.2
7] 66.5} 51 | -4.4] -8.0}-12.3|-12.6{-13.8}-12.9}-10.5] -8.2| -6.6] -3.4 }|-28.3
8| 77.1} 58 | -3.4} -5.6} -8.5] -9.4]-10.9]-10.2} -8.3] -6.5] ~4.9] -2.5 |-21.4
9] 86.9] 60 | -2.9| -5.3] -8.1} -9.0]-10.0] -9.4| -7.4] -6.0] -4.6] -2.3 {~19.8
10} 96.8} 73 | -3.6 -6.8}-11.3}-12.3}-14.0{-12.1} -9.4f -7.4} -5.6] -2.6 |~26.0
11§106.8} 72 | -4.1} -8.8]-15.2}-16.71~-19.3|~17.01-12.8{-10.0] -7.7| -3.2 {~35.0
121117.8f 60 | -3.3 | ~-7.3}~12.21-13.9]-16.2]-15.0|~11.6] -8.8] —6.3] -2.6 |-29.7
13§127.4y 57 | -2.6 | -5.5] -9.1{-10.1}-11.5{-10.8] -8.0{ -6.2} -4.6} -2.0 {-21.5
14§137.2) 47 | -3.0| -8.1}~13.6}-15,7}-18.0]-16.9}-13.0] -9.6} -6.61 -2.3 [-32.5
151147.7} 51 { -5.0 |-11.8{-20.0|-22.8{-27.0}-24.8]-18.6|-15.0}~11.1} —4.1 |]-48.8
16{157.9] 61 | -3.8 |-10.0|-17.9}~20.7{-24.4|-23.4{-17.6]~13.9] -9.6] -3.2 |-44.1
171168.0f 53 | -2.2| -5.4] -9.4{-11.0}-13.5}-12.5] -9.1] -6.9] -4.8] -1.7 |-23.3
181178.3} 44 | -3.5| -6.7}-11.1}-12.8}-16.3}{-16.0}-12.0} -8.9] -6.4| -2.5 |-29.3
191188.6] 48 | -2.7 -7.8]-14.6{-16.3{-19.6}-16.3]-10.6] -9.5] -8.0} -2.6 |-32.9
201198.8] 50 | -1.7{ -5.4{-11.0|-12.0}~-13.6{-13.0f -9.0} =7.9] -5.5! -1.9 |-24.7




