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INTRODUCTION

Knowledge about the diets of marine predators is
pivotal to understanding the potential for intra- and
inter-specific differences in habitat use (e.g. Papasta-
matiou et al. 2006, Barría et al. 2015, Navia et al.
2017). Among marine predators, some sharks and
batoids can be important top predators (i.e. meso-
predators) in marine ecosystems (Cortés 1999, Barría
et al. 2015, Navia et al. 2017). Though there have
been several studies on elasmobranchs in recent
decades (Field et al. 2009, Navia et al. 2017), few
have focused on interactions among sympatric spe-
cies, an important element for understanding how
species that appear to be ecologically similar might
coexist (e.g. Albo-Puigserver et al. 2015, Barría et al.
2015, Navia et al. 2017). The principle of competitive
exclusion predicts that predators that occupy similar
niches will diverge ecologically or perhaps be dis-

placed (Pianka 2000). Nonetheless, closely related
species do sometimes live together. Partitioning of
food resources has been proposed as one of the main
mechanisms explaining the coexistence of closely
related elasmobranchs (e.g. Heithaus et al. 2013,
Albo-Puigserver et al. 2015), owing to differences in
prey or micro-habitats (e.g. Platell et al. 1998, Papas-
tamatiou et al. 2006).

There has been relatively little research on elasmo-
branchs of the Gulf of Oman, in the northwestern
Indian Ocean, despite the diversity of species there
(e.g. Valinassab et al. 2006, Jabado et al. 2017, Rast-
goo & Navarro 2017). Indeed, 82 species of sharks
and more than 20 species of batoids have been de -
scribed for the Gulf of Oman and nearby areas
(Almojil et al. 2015), though several species appear to
be declining, evidently from degradation and dis -
appearance of habitats or the direct impacts of fish-
ing (Valinassab et al. 2006, Jabado et al. 2017). An
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ABSTRACT: Documenting the interactions and mechanisms of coexistence among predators is
important for understanding their ecological roles in food webs. Here, we examined the diet and
trophic relationships of 6 demersal batoids coexisting in the Gulf of Oman by analyzing stomach
contents. There were significant differences in diets among the batoid species, suggesting differ-
ential preferences. Diets of Gymnura poecilura and Torpedo sinuspersici were similar and con-
sisted mostly of teleost fishes. In contrast, Brevitrygon walga and Rhinobatos punctifer mostly ate
crustaceans. The diets of Maculabatis randalli and Pastinachus sephen were diverse and included
crustaceans, teleosts, polychaetes, bivalves and echinoderms. The differences in diet among these
batoids may be related to morphological differences in feeding structures and to differences in
behavior, which could explain their diversity and coexistence in the Gulf of Oman.
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understanding of diet of the various species is impor-
tant for determining whether differential vitality of
elasmobranchs in the Gulf of Oman might be due to
natural changes in ecosystems or is perhaps owing to
human activities.

In this study, we analyzed the stomach contents of
6 demersal species of batoid elasmobranchs (Gym-
nura poecilura, Brevitrygon walga, Maculabatis ran-
dalli, Pastinachus sephen, Rhinobatos punctifer, Tor-
pedo sinuspersici) that live in the Gulf of Oman to
characterize their diets, which are poorly known, in
an area of sympatry such as the Gulf of Oman. Our
goal was to use data on comparative diets to begin to
understand what might allow these species to coexist
and, apparently, thrive.

MATERIALS AND METHODS

Study area and sampling procedure

We conducted the study in Iranian waters of the
Gulf of Oman (Fig. 1), a marginal sea with an area of
94 000 km2 that lies between the Arabian Sea and the
Persian Gulf. It is a relatively deep body of water with
a narrow continental shelf. About 3⁄4 of the Gulf is
deeper than 1000 m (Reynolds 1993). It is highly pro-
ductive owing to the combined effects of monsoons,
seasonal upwelling, and cold water intrusion from
the Arabian Sea (Reynolds 1993). Although the dem-
ersal topography is flat and dominated by soft sedi-
ments, the northern coastline of the Gulf of Oman is
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Fig. 1. Study area and sampling locations where (A) Gymnura poecilura, (B) Brevitrygon walga, (C) Maculabatis randalli,
(D) Pastinachus sephen, (E) Rhinobatos punctifer, and (F) Torpedo sinuspersici were collected in the Gulf of Oman and 

Strait of Hormuz
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highly irregular with diverse habitats, including
rocky shores, estuaries, and mangroves.

We obtained specimens of the 6 species of batoid
elasmobranchs (see Table 1) as bycatch from com-
mercial bottom trawlers and during 2 bottom-trawling
cruises (with the R/V ‘Ferdows-1’) from May through
December 2014 (see Table S1 in the Supplement at
www.int-res.com/articles/suppl/b027p035_supp.pdf
for sampling days by species). The mesh size of the
cod end net was 80 mm and the headline net mesh
was 72 mm. Batoids were collected from bottom
depths between 10 and 110 m during 256 hauls
(Fig. 1). The duration of each haul varied from 60 to
90 min, depending on the sampling station. Speci-
mens were identified onboard the ships, and the sex,
body weight (nearest 10 g), disk width (for Gymnura
poecilura, Brevitrygon walga, Maculabatis randalli
and Pastinachus sephen) and the total body length
(for Rhinobatos punctifer and Torpedo sinuspersici)
were recorded.

Stomach content analyses

We weighed the stomachs and then recovered
the stomach contents of the batoids during dissec-
tions in the laboratory. All prey parts recovered
were separated, identified to the lowest possible
taxon, counted, and weighed to the nearest 0.1 g.
The number of individuals of each prey type was
determined as the least number that these frag-
ments could have originated from, to avoid overes-
timation of the occurrence of a particular prey
item. We combined data from the stomach contents
into 7 functional groups (teleosts, crustaceans, poly -
chaetes, cephalopods, gas tropods, bivalves, and
echinoderms) and calculated the vacuity index
for each batoid species as the percentage of empty
stomachs (Hyslop 1980).

We used the combined index of relative impor-
tance (IRI; Pinkas et al. 1971) to estimate the relative
importance of each prey group in the diet of each
batoid species and to allow interspecific comparison
as:

IRIi = (Ni + Wi) × FOi (1)

where FOi is the frequency of occurrence of a par -
ticular functional prey group (i) in relation to the
total number of stomachs, Ni is the contribution by
 number of a type of prey group i in relation to the
whole content of the stomach, and Wi is the weight
of a prey group i in relation to the entire contents of
the stomach.

All calculations were based on the number of non-
empty stomachs. IRI values were expressed as a per-
centage to allow comparisons between prey groups
and species (Cortés 1997):

%IRIi = 100 × IRIi �Σn
i =1

IRIi (2)

We also estimated the diet diversity for each batoid
species using the Shannon-Wiener diversity index
(H) (Ludwig & Reynolds 1988) as:

H = –Σn
i =1pi ln × pi (3)

where pi is the proportion of prey group i in the diet.
We graphically described the diets for each species

by plotting the prey-specific quantity of the prey
groups against %FO (Amundsen et al. 1996). Prey-
specific abundance was estimated as the number of
prey i divided by the total number of prey in the
stomachs that included prey i, expressed as a per-
centage. The vertical axis suggests either specializa-
tion or generalization of the predator; points located
in the upper part of the graph suggest specialization,
whereas points in the lower part indicate that those
prey were eaten less often.

We categorically estimated the trophic level (TL)
that each batoid preyed upon using %W with
TrophLab software (Pauly et al. 2000). TrophLab esti-
mates TL considering the diet composition and the
trophic level of the different prey present in the diet,
according to %W (Pauly et al. 2000) as:

TLj = 1 + ΣG
i 

TLi × DCij (4)

where TLi is the fractional trophic level of prey i, DCij

represents the fraction of i in the diet of consumer j
and G is the number of prey categories. The trophic
level of each prey category was extracted from the
FishBase dataset (Froese & Pauly 2000).

In order to examine effect of sample size in estimat-
ing the diet of the batoid species, we constructed
cumulative prey curves (Ferry & Caillet 1996) using
the Shannon-Wiener method to evaluate if the num-
ber of sampled stomachs was enough to describe the
diversity of the diet of each batoid species. We ran-
domized the samples 50 times with the computer rou-
tine ‘sample-based rarefaction’ using EstimateS v.9.1
software (Colwell 2013). We considered sample size
to be sufficient if the curves visually reached an
asymptote (Magurran 2004).

Statistical analysis

We tested for differences among the 6 batoids in
their stomach contents (based on %W) with the semi-
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parametric permutation multivariate analyses of
variance (PERMANOVA) tests on the Bray-Curtis
distance matrix. PERMANOVA allows for the analy-
sis of complex designs (multiple factors and their
interaction) without the constraints of multivariate
normality, homoscedasticity, and when there are a
greater number of variables than in traditional
ANOVA tests. The method calculates a pseudo-F
statistic analogous to the traditional F-statistic for
multifactorial univariate ANOVA models, using per-
mutation procedures to obtain p-values for each
term in the model. When results were significant,
we conducted pairwise tests. We evaluated similari-
ties in diets using the Bray-Curtis similarity coeffi-
cient and then applied non-metric multidimensional
scaling (nMDS) analysis. All statistical tests were
performed using PRIMER v.6 software (Clarke &
Gorley 2006).

RESULTS

We examined 424 stomachs of batoids. About
68.9% of Gymnura poecilura, 12.5% of Brevitrygon
walga, 16.2% of Maculabatis randalli, 23.9% of Pas -
tinachus sephen, 13.1% of Rhinobatos punctifer and
53.7% of Torpedo sinuspersici were empty (Table 1
and Table S2 in the Supplement). The cumulative
prey curves based on diversity of prey indicated that

sample sizes were adequate to suggest their trophic
habits for all species but G. poecilura (Fig. 2).

We found 7 prey types (teleosts, crustaceans, ce -
phalo pods, bivalves, gastropods, and echinoderms)
among the 6 batoids. A total of 10 lower taxa groups
occurred in the teleost group, 5 in the crustacean
group, and 2 in the echinoderm group (Tables 1 &
S2). Based on the %W, diet differed among the
6 batoid species (PERMANOVA tests; pseudo-F =
45.67, p < 0.0001; Table 1). Although we found
 marginal overlaps among several species by nMDS
analysis (Fig. 3), pairwise tests revealed that diet dif-
fered among all batoids species (Table 2). Specifi-
cally, we found that the diet of 2 batoids (G. poecilura
and T. sinuspersici) consisted mostly of teleosts
(Table 1, Figs. 3 & 4), showing low diet diversity and
high TL values (Table 1). In contrast, the diets of B.
walga and R. punctifer contained mostly crustaceans
(Table 1, Figs. 3 & 4), also with a low diet diversity
(Table 1). The diets of Maculabatis randalli and P.
sephen were more di verse (Table 1). The diet of P.
sephen in cluded bivalves, followed by echinoderms
and then polychaetes, whereas the diet of M. randalli
included crustaceans, followed by polychaetes and
teleosts (Table 1, Figs. 3 & 4).

Teleosts appeared to be important prey for G. poe-
cilura and T. sinuspersici. In contrast, B. walga and R.
punctifer mostly ate crustaceans (Fig. 4), whereas the
diets of M. randalli and P. sephen were broader (Fig. 4).
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Gymnura Brevitrygon Maculabatis Pastinachus Rhinobatos Torpedo 
poecilura walga randalli sephen punctifer sinuspersici

N 58 72 80 39 69 108
Weight (g)
mean ± SD 3785.6 ± 2859 401.9 ± 122.4 3071.2 ± 3228.3 3771.5 ± 2332.4 884.4 ± 496.0 1407.1 ± 786.1

Weight (g)
min. − max. 310−12370 140−750 110−16170 470−12080 160−1940 340−3820

Length (cm)
mean ± SD 68.6 ± 19.7 22.0 ± 2.2 40.6 ± 15.1 45.1 ± 9.8 60.1 ± 11.0 40.4 ± 6.8

Length (cm)
min. − max 33.5−107.5 15.2−27.5 18−80 24−71 38−80 27.5−56.1

V (%) 68.9 12.5 16.2 23.9 13.1 53.7
Trophic level 4.5 3.5 3.7 3.2 3.6 4.5
H 0 0.28 0.93 1.54 0.25 0.1
Teleosts 100 0 7.16 6.94 0.43 99.96
Crustaceans 0 98.70 80.67 10.56 99.34 0
Cephalopods 0 0 0.01 0 0 0.04
Bivalves 0 0 1.69 31.55 0 0
Echinoderms 0 0 0.02 24.65 0 0
Gastropods 0 0.02 0.02 0.77 0 0
Polychaetes 0 1.28 10.42 25.52 0.23 0

Table 1. General information and diet composition (standardized index of relative importance, IRI) of 6 batoid species from
the Gulf of Oman. N: sample size; V: vacuity index; H: Shannon-Wiener diversity in number. See Table S2 in the Supplement
for more accurate diet description. Disc width is reported for G. poecilura, B. walga, M. randalli, and P. sephen and total body 

length for R. punctifer and T. sinuspersici
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DISCUSSION

In this study, we presented new information on the
seasonal diets of 6 demersal batoid species that  co-
occur in the northern Gulf of Oman. Though the use of
stomach contents to describe diets is limited to indica-
ting what individuals ate within a few days before

capture, we suggest that it can still pro-
vide general baseline information, par-
ticularly for species whose diets are not
well known (Barría et al. 2015). We also
maintain that the data we collected pro-
vide useful information about the main
trophic levels at which all the batoids
 except Gymnura poecilura forage (Cortés
1999), and that this information en-
hances our knowledge about the forag-
ing of  batoids in the Gulf of Oman.

Our results reveal that there are dif-
ferences among the 6 batoid species
with respect to the habitats that they
feed in. The stomach contents of G. poe-
cilura in cluded mostly teleosts, similar
to other Gymnura spp. (Jacobsen et al.
2009, Yokota et al. 2013, Barría et al.
2015, Yemişken et al. 2018). Teleosts
were also the most common prey in the
diet of Torpedo sinuspersici, consistent
with previous studies conducted on
other Torpedo species conducted in
other areas (Bray & Hixon 1978, Barría
et al. 2015, Espinoza et al. 2015). On the
other hand, the diet of Rhinobatos punc-
tifer consisted mostly of crustaceans,

 especially shrimp species. Similar results have been
reported in other guitarfish  species (Harris et al. 1988,
Blanco-Parra et al. 2012, Navarro-González et al.
2012, Espinoza et al. 2013, Lara-Mendoza et al. 2015).
Brevitrygon walga, Maculabatis randalli, and Pasti-
nachus sephen preyed on epibenthic organisms like
crustaceans, polychaetes, bivalves, and echinoderms,
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Fig. 2. Cumulative average (solid line) and standard deviation of Shannon-
Wiener diversity index for samples of studied batoid species in the Gulf of
Oman: (A) Gymnura poecilura, (B) Brevitrygon walga, (C) Maculabatis
 randalli, (D) Pastinachus sephen, (E) Rhinobatos punctifer, and (F) Torpedo 

sinuspersici

Fig. 3. Non-metric multidimensional scaling (nMDS) analy-
sis of the stomach contents of 6 batoids (see Fig. 2 for full 

species names) sampled in the Gulf of Oman

Species × Species R p

G. poecilura × B. walga 0.995 0.001
G. poecilura × M. randalli 0.641 0.001
G. poecilura × P. sephen 0.661 0.001
G. poecilura × R. punctifer 0.869 0.001
G. poecilura × T. sinuspersici 0.391 0.001
B. walga × M. randalli 0.083 0.001
B. walga × P. sephen 0.671 0.001
B. walga × R. punctifer 0.192 0.001
B. walga × T. sinuspersici 0.970 0.001
M. randalli × P. sephen 0.400 0.001
M. randalli × R. punctifer 0.084 0.001
M. randalli × T. sinuspersici 0.765 0.001
P. sephen × R. punctifer 0.675 0.001
P. sephen × T. sinuspersici 0.884 0.001
R. punctifer × T. sinuspersici 0.927 0.001

Table 2. ANOSIM pairwise tests to compare the diet of 
6 batoid species from the Gulf of Oman
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as previously reported for other dasyatids (Jacobsen &
Bennett 2012, O’Shea et al. 2013), suggesting that
those groups are the most important prey for this
 family.

Our results also showed that the stomachs of G.
poecilura and T. sinuspersici were mostly empty
when collected, which suggests that they had not
eaten for one to several days (Vaudo & Heithaus
2011b). The stomachs of some marine predators, like
elasmobranchs, are often found to be empty or con-
tain highly  digested prey remains that are difficult to
identify (e.g. Jacobsen et al. 2009, Yokota et al. 2013). 

In conclusion, we found that the diets of 6 batoid
elasmobranchs in the Gulf of Oman differed during
the sampling period. We cannot yet judge whether
those differences were due to differences in the sea-
sonal timing of capture or differences in the areas
where they were captured. We recommend more
intensive systematic sampling and observation of
batoid elasmobranchs in the Gulf of Oman to address
these questions and to help develop adequate con-
servation and management plans for the commercial
fisheries that operate there.
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