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Abstract: Mimetic gravity is analysed in the framework of some extensions of general relativity (GR),
whereby a function of the Gauss–Bonnet invariant in four dimensions is considered. By assuming the
mimetic condition, the conformal degree of freedom is isolated, and a pressureless fluid naturally
arises. Then, the complete set of field equations for mimetic Gauss–Bonnet gravity is established,
and some inflationary models are analysed, for which the corresponding gravitational action is
reconstructed. The spectral index and tensor-to-scalar ratio are obtained and compared with
observational bounds from Planck and BICEP2/Keck array data. Full agreement with the above
data is achieved for several versions of the mimetic Gauss–Bonnet gravity. Finally, some extensions
of Gauss–Bonnet mimetic gravity are considered, and the possibility of reproducing inflation is
also explored.
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1. Introduction

Since the 1980s, inflation has been widely studied, as a certain epoch occurred during a very early
stage of the universe’s evolution, during which a very short but super-accelerating phase transformed
a microscopic universe into a macroscopic universe, solving some theoretical problems of the Big
Bang model concerning the initial conditions of the universe. In addition, inflation does not produce
a perfectly symmetric universe, because quantum fluctuations grow rapidly as a result of the effects
of the rapid expansion, becoming macroscopic perturbations. This is one of the main successes of
the inflationary scenario, as these quantum fluctuations formed the primordial seeds for all the large
structures created at later times in the universe, as well as the anisotropies observed in the cosmic
microwave background (CMB); for a review, see [1–5]. Some alternatives have been raised since then,
such as the ekpyrotic scenario, but all of them include a super-accelerating phase as inflation (see [6,7]
and references therein).

In addition, over the last decade, observations from missions such as the Wilkinson Microwave
Anisotropy Probe (WMAP) [8,9] and the recent Planck mission and BICEP2 [10,11] have provided a
way to measure the spectral index of the power spectrum of primordial perturbations produced during
inflation, as well as the ratio of the tensor and scalar perturbations, drawing much attention again to
the differences among the many existing inflationary models. Particularly, inflation is well described
by the “slow-roll” models, usually characterised by a single scalar field that mimics a cosmological
constant during the inflationary epoch, rolling down the step of its potential by the end of inflation,
when the field is assumed to decay into different particles that reheat the universe, recovering the
initial state of Big Bang theory [1,2]. In fact, the form of the potential for the scalar field can be related
to the spectral index of the power spectrum for the scalar perturbations generated during inflation, as
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well as to the tensor perturbations, such that the appropriate form of the scalar potential can be well
reconstructed departing from the observational data [12,13].

As an alternative to the usual scalar-field models for inflation, some extensions of general relativity
(GR) have been widely analysed not only to stage as an alternative to the dark energy problem, but also
as a realistic candidate for driving inflation (for a review, see [14–23]). In particular, f (R) gravities,
an extension of the Hilbert–Einstein action, have been considered as a serious candidate for the
inflationary epoch. Particularly, some of the most promising inflationary models are constructed
within the f (R) gravity scenario, as some of these models can easily reproduce slow-roll inflation by
mimicking an effective cosmological constant during the inflationary epoch and then decaying, leading
to the desirable behaviour and correct values for the spectral index of the power spectrum for scalar
perturbations and the tensor-to-scalar ratio [24]. In fact, one of the most popular inflationary models
within modifications of GR is R2 inflation, or the Starobinsky model [25], which assumes a quadratic
extra term in the the Hilbert–Einstein action, leading to a nearly scale-invariant power spectrum
and a negligible tensor-to-scalar ratio, as predicted by the latest data released from Planck [10,11].
In addition, any deviation from Starobinsky inflation should be small in order to avoid deviations
from its well-known results, as suggested by some recent analyses [26]. In fact, f (R) gravities can also
be extended to provide a successful description for the whole cosmological evolution (see [27–29]),
in particular, exponential gravity [30]. Some other extensions of GR also include other invariants
in the action, as powers of the Riemann and Ricci tensors or non-standard couplings to the matter
Lagrangian and the energy–momentum tensor [31–35]. Gauss–Bonnet gravities, for which a non-linear
function f (G) of the Gauss–Bonnet invariant is included in the action [36–42], are worthy of special
mention. Some cosmological solutions have been explored, including the exact Λ Cold Dark Matter
(ΛCDM) [43,44] and some inflationary models [45–52], as an accelerating expansion can be easily
achieved. Nevertheless, the presence of non-linear Gauss–Bonnet terms in the action may introduce
ghost instabilities in an empty anisotropic universe, that is, Kasner-type background, although such
instabilities are absent on Friedmann–Lemaître–Robertson–Walker (FLRW) cosmologies (see [53]).

On the other hand, several observational proofs suggest that besides the possible dark energy
content, the majority of the matter in our universe is composed of an unknown fluid that seems to
interact only gravitationally (or at least interacts very weakly with standard matter) and behaves
as a pressureless fluid in the universe’s expansion—the “cold dark matter”. Although there are
many descriptions of dark matter, its nature is still unknown. Some models describe dark matter as
a particle (for a review, see [54]), while some attempts are focused on modifications of Newtonian
dynamics at certain scales [55–59]. Nevertheless, other promising mechanics for dark matter are
encompassed under the name of mimetic gravity, which provides a geometric description for dark
matter. The original version of mimetic gravity is obtained by isolating the conformal degree of freedom
of GR by an auxiliary scalar field, leading to the same behaviour as a pressureless fluid after integrating
the equations [60,61]. Other equivalent formulations introduce a constraint directly in the gravitational
action through a Lagrange multiplier [62] or analyse the lack of invariance under “disformations” for
the mimetic case [63]. Some extensions of original mimetic gravity have been discussed, for which
the conformal degree of freedom is also isolated in theories as f (R) or f (G) gravities; this provides a
complete solution to the dark matter and dark energy problems, as shown in [64–69]. As commented
on above, some modified gravities have been shown to provide a consistent explanation for dark
energy and inflation, such that the mimetic version of such theories may also give a correct description
of dark matter (for a review on modified mimetic gravities, see [70]). Particularly, inflation and the
dynamics of the early universe have been analysed in some extensions of mimetic gravity [67,71,72] as
well as in the growth of cosmological perturbations [73]. Moreover, in [66], the mimetic version of f (G)
gravity was investigated, and bouncing cosmology was realised. In addition, other classical aspects of
mimetic gravities have been explored, such as the existence of spherically symmetric solutions: for
example, black holes [63,74].
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In this paper, we investigate the possibility of reproducing inflation in mimetic f (G) gravity.
Several inflationary models are studied, and the corresponding gravitational action is reconstructed.
Then, the viability of such models is analysed by confronting their predictions to the latest data of the
Planck and BICEP2/Keck Array. In addition, some extensions of mimetic gravity are also studied,
for which the auxiliary scalar field becomes dynamical by adding a kinetic term and a potential in its
Lagrangian. Different approaches are assumed to reconstruct the appropriate inflationary solutions
and their respective gravitational actions. To this aim, we assume several ansatzs for the scale factor,
and then the corresponding gravitational Lagrangian is reconstructed. Such a method has been widely
used in the literature as an alternative to find exact solutions in higher-order theories of gravity [75–84],
which is always a difficult task because of the complexity of the field equations. Then, generalisations
of GR are reconstructed, which contain some of the most important solutions in cosmology, such as,
for instance, exact ΛCDM in f (R) gravity [85] or in Gauss–Bonnet extensions [43,44].

This paper is organised as follows: In Section 2, we introduce mimetic f (G) gravity. Section 3 is
devoted to the analysis of inflation in the original mimetic gravity with a function of the Gauss–Bonnet
invariant. After that, Section 4 deals with some extensions of mimetic gravity for which the scalar field
acquires a dynamical behaviour. Finally, the conclusions of the paper are summarised in Section 5.

2. Mimetic f(G) Gravity

Mimetic gravity is constructed to isolate the conformal degree of freedom by expressing the
physical metric in terms of an auxiliary metric and a scalar field as follows [60]:

gµν = −ĝρσ∂ρφ∂σφĝµν . (1)

It is straightforward to show that the physical metric turns out to be invariant under the conformal
transformation ĝµν → Ω2 ĝµν, while from Equation (1), the following constraint on the scalar field
is obtained:

gµν∂µφ∂νφ = −1 . (2)

Then, in mimetic gravity, the Hilbert–Einstein action is assumed in terms of the physical
metric gµν:

S =
1

2κ2

∫
dx4√−gR(gµν) , (3)

while the field equations can be expressed by varying the action with respect to the metric and writing
such variation in terms of the variation of the auxiliary metric and the scalar field (Equation (1)),
leading to

(Gµν − Tµν) + (G− T)gµλgµγ∂λφ∂γφ = 0 ,

∇µ [(G− T)∂µφ] = 0 . (4)

Here the field equations are expressed solely in terms of the physical metric gµν and the scalar
field that accounts for the conformal degree of freedom. The key point here arises because the mimetic
field behaves as an effective pressureless fluid, such that it can be interpreted as a contribution to dark
matter [60,61]. The appearance of a new dynamical degree of freedom arises because the variation to
make the action stationary assumes fewer conditions [62]. Nevertheless, the action (Equation (3)) is
not unique and can be extended to also provide an explanation for dark energy, done by considering
f (R) gravity and isolating again the conformal degree of freedom [64].

In this manuscript, we are interested in extending mimetic gravity by considering a non-linear
function of the Gauss–Bonnet topological invariant through different approaches as well as studying
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the viability of reproducing inflation in this framework and studying its predictions. Hence, we start
by recalling the general gravitational action for the f (G) gravity:

S =
∫

d4x
√
−g
[

R
2κ2 + f (G)

]
+ Sm, (5)

where

G = R2 − 4RµνRµν + RµνλσRµνλσ (6)

is the Gauss–Bonnet term, a topological invariant in four dimensions. Here it follows that Rµν and
Rµνλσ are the Ricci and Riemann tensors, respectively. For simplicity, in the following, we assume
natural units κ2 = 8πG/c4 = 1. Then, by parametrising gµν in terms of the auxiliary scalar field
φ, as in Equation (1), the field equations can be obtained by using the auxiliary metric ĝµν as in the
original mimetic case (Equation (3)), leading to the following field equations:

Rµν −
1
2

Rgµν + ( fGG − f (G)) gµν +

8
[

Rµρνσ + Rρνgσµ − Rρσgνµ − Rµνgσρ + Rµσgνρ +
R
2
(

gµνgσρ − gµσgνρ

) ]
∇ρ∇σ fG (7)

+∂µφ∂νφ

(
−R + 8

(
−Rρσ +

1
2

Rgρσ

)
∇ρ∇σ fG + 4( fGG − f (G))

)
= Tµν + ∂µφ∂νφT,

∇µ

(
∂µφ

(
−R + 8

(
−Rρσ +

1
2

Rgρσ

)
∇ρ∇σ fG + 4( fGG − f (G)

)
− T)

)
= 0. (8)

As in the original action for mimetic gravity (Equation (4)), the field equations do not depend
on the auxiliary metric but on the physical metric gµν and on the scalar field φ, which encompasses
the conformal degree of freedom as above. Because we are interested in studying spatially flat
Friedmann–Robertson–Walker (FRW) spacetimes, we assume the following form for the metric:

ds2 = −dt2 + a(t)2δijdxidxj, (9)

while the the scalar curvature R and the Gauss–Bonnet terms are

R = 6
(

ä
a
+

ȧ2

a2

)
= 6(Ḣ + 2H2), G = −24

äȧ2

a3 = −24H2(Ḣ + H2). (10)

Hence, the FLRW equation (Equation (7)) leads to

8H2 ∂2 fG
∂t2 + 16H

(
Ḣ + H2

) ∂ fG
∂t
− ( fGG − f ) + 2Ḣ + 3H2 = −p , (11)

whereas by integrating the equation for the scalar field (Equation (8)), we obtain

4H2 ∂2 fG
∂t2 + 4H

(
2Ḣ + 3H2

) ∂ fG
∂t

+
2
3
( fGG − f ) + Ḣ + 2H2 = − C

a3 −
ρ

6
+

p
2

, (12)

where C is an integration constant. Here we have assumed a perfect fluid for the energy–momentum
tensor Tµν = (ρ + p)uµuν + pgµν. The first term on the right hand side of Equation (12) arises naturally
after integrating Equation (8), representing the same behaviour as a pressureless perfect fluid, or in
other words, representing the mimetic dark matter. Then, by combining Equations (11) and (12),
the following equation is obtained:

4H2 dg(t)
dt

+ 4H(2Ḣ − H2)g(t) = B(t) , (13)
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where B(t) = −Ḣ− 1
2 (ρ + p)− C

a3 , and g(t) is defined as g(t) ≡ d fG
dt . Hence, for a particular ansatz for

the Hubble parameter, Equation (13) can be solved for g(t), and, using Equation (10), the corresponding
mimetic Gauss–Bonnet action can be reconstructed. For instance, whether or not we consider a universe
filled with only dust and mimetic dark matter, this implies p = 0 and ρ = ρ0a(t)−3, and therefore B(t)
is reduced to B(t) = −Ḣ − C̃a(t)−3 and C̃ ≡ C + ρ0

2 , such that the general solution for g(t) is

g(t) =
[

H0

H(t)

]2
exp

(∫ t

0
H(t1)dt1

)[
g0 +

1
4H2

0

∫ t

0
exp

(
−
∫ t2

0
H(t1)dt1

)
B(t2)dt2

]
. (14)

For the appropriate Hubble parameter, the gravitational action is obtained. In the following,
we consider several inflationary scenarios, and the corresponding f (G) is reconstructed.

3. Inflation in Mimetic Gauss–Bonnet Gravity

We are interested in studying slow-roll inflation within the framework of mimetic Gauss–Bonnet
gravities, expressed by the action given by Equation (5). In common slow-roll inflationary models,
responsible for the super-acceleration phase is a scalar field, which can be characterised by the
following Lagrangian:

Sφ =
∫

d4x
√
−g
[
−1

2
∂µφ∂µφ−V(φ)

]
. (15)

The corresponding FLRW equations for such an action are

3
κ2 H2 =

1
2

φ̇2 + V(φ) ,

− 1
κ2

(
3H2 + 2Ḣ

)
=

1
2

φ̇2 −V(φ) , (16)

whereas the scalar-field equation is given by

φ̈ + 3Hφ̇ +
∂V(φ)

∂φ
= 0. (17)

For convenience, we use the number of e-folds N = ln( a(t)
a(0) ) as the independent variable instead

of the cosmic time t. Moreover, the scalar field can be redefined as φ = N, such that Equation (16)
above can be rewritten as follows:

ω(φ) = − 2H′(φ)
κ2H(φ)

,

V(φ) =
1
κ2

[
3 (H(φ))2 + H(φ)H′(φ)

]
. (18)

Here ω(φ) is the kinetic term for the scalar field that arises when redefining the scalar field.
In slow-roll inflationary models with a scalar field, the field behaves effectively as a cosmological
constant during inflation, while the Hubble parameter is approximately constant, such that Hφ̇� φ̈

and V � φ̇2. At the end of inflation, the field rolls down, decaying in particles, and reheating the
universe. Nevertheless, during inflation, fluctuations of the scalar field produce a fast growth of the
curvature and tensor perturbations, whose characteristic amplitudes and scale dependence are related
to the scalar-field Lagrangian through the scalar potential V(φ). By defining the slow-roll parameters
as follows:

ε =
1

2κ2

(
V′(φ)
V(φ)

)2

, η =
1
κ2

V′′(φ)
V(φ)

, λ2 =
1
κ4

V′(φ)V′′′(φ)

(V(φ))2 , (19)

the spectral index ns of the curvature perturbations and the tensor-to-scalar ratio r can be expressed in
terms of the slow-roll parameters (Equation (19)) below:
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ns − 1 = −6ε + 2η , r = 16ε , αs =
dns

d log k
∼ 16εη − 24ε2 − 2ξ2 . (20)

Then, by using Equation (18), the slow-roll parameters ε and η can be expressed in terms of the
Hubble parameter [24]:

ε = − H(N)

4H′(N)

[
H′′(N)H(N) + 6H′(N)H(N) + H′2(N)

3H2(N) + H′(N)H(N)

]2

(21)

η = −

(
9 H′(N)

H(N)
+ 3 H′′(N)

H(N)
+ 1

2

(
H′(N)
H(N)

)2
− 1

2

(
H′′(N)
H′(N)

)2
+ 3 H′′(N)

H′(N)
+ H′′′(N)

H′(N)

)
2
(

3 + H′(N)
H(N)

) , (22)

where the primes denote derivatives with respect to the number of e-folds N. Hence, by using the
above expressions, we can calculate the corresponding predictions for a particular inflationary model
and compare these to the recent constraints provided by the Planck collaboration (see [10,11]):

ns = 0.968± 0.006 , r < 0.07 . (23)

We note that here we assume that our model (Equation (5)) mimics slow-roll inflation well, as the
extra terms in the action can be considered to model a perfect fluid, and the mimetic field enters
the equations through a pressureless fluid. Other approaches in which the curvature perturbation
is directly obtained from the Gauss–Bonnet field equations have been previously considered in [52].
Finally, by using the tools from Section 2, the corresponding mimetic action is obtained. In the following,
we study some examples in which inflation occurs and the gravitational action is reconstructed.

3.1. Example 1

Firstly we study a power-law inflation model, whose cosmological evolution is given by

a(t) = a0tn . (24)

The Hubble parameter is given by H(t) = n
t , which can be equivalently expressed in terms of the

number of e-folds as

H(N) = ne−
N
n . (25)

We note that the Hubble parameter H(t) = n
t is divergent at t = 0, when the initial singularity

occurs. By using Equation (14), we obtain

g(t) = tn+1

g1 −
−1 + t−n + C̃(−1+t2−4n)

2−4n
4n2

 . (26)

Recalling that g(t) = fG(t), the above expression yields

fG(t) =
∫

g(t)dt

= − t2

8n2 −
C̃− 2(2n− 1)(1 + 4g1n2)

8n2(2 + n)(2n− 1)
tn+2 +

C̃
8n2(4− 3n)(2n− 1)

t4−3n . (27)

By using the expression for the Gauss–Bonnet term (Equation (10)), we can express fG as a function
of the Gauss–Bonnet invariant G:

fG (G) = f1G−
1
2 + f2G−

n+2
4 + f3G

3n
4 −1 , (28)
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where

f1 = −1
2

√
3(1− n)

2n
,

f2 =
2

3
4 (n−2)3

2+n
4 [n3(1− n)]

2+n
4 [−C̃ + 2(2n− 1)(1 + 4g1n2)]

n2(2 + n)(2n− 1)
,

f3 =
2−

9n
4 31− 3n

4 C̃n(n− 1)[n3(1− n)]−
3n
4

4− 11n + 6n2 .

Finally, the corresponding action f (G) is obtained:

f (G) = 2 f1G
1
2 +

4
2− n

f2G
−n+2

4 +
4

3n
f3G

3n
4 . (29)

For this model, the slow-roll parameters given by Equations (21) and (22) read

ε =
1
n

, η =
2
n

. (30)

Therefore the spectral index of primordial curvature perturbations ns and the scalar-to-tensor
ratio r are

ns ' 1− 2
n

, r =
16
n

. (31)

Then, by using the latest constraints provided by Planck and BICEP2 (Equation (23)), the following
constraint on the parameter n is obtained:

n >
16

0.07
, (32)

which leads to a spectral index given by ns > 0.9916, outside of the 1σ confidence region from the
joint analysis of Planck and BICEP2. Keeping only the constraint on the tensor-to-scalar ratio provided
by the Planck collaboration, r < 0.12, the spectral index is restricted to be ns > 0.985, still away from
the error bars of the spectral index given in Equation (23). Hence, we may conclude that the mimetic
gravity described by the action given by Equation (5) and Equation (29) cannot support a power-law
inflation, which is not in full agreement with the Planck and BICEP2/Keck Array data.

3.2. Example 2

We now consider another inflationary model in which the cosmological evolution is described by
the Hubble rate:

H2(N) = (G0N + G1)
b . (33)

Here {G0, G1, b} are constants, where G0 < 0 and G1 > 0. During the inflationary period, we
have |Ḣ| � H2, which yields G1

G0
� N, such that the Hubble parameter is approximately constant

(de Sitter) along inflation. After inflation ends, the first term in Equation (69) becomes important, and
the Hubble rate decays, because G0 < 0. In order to proceed to reconstruct the corresponding mimetic
Gauss–Bonnet Lagrangian, we rewrite Equation (13) in terms of the number of e-folds:

4H(N)3∂N [H(N)g(N)] + 4H(N)3[2H′(N)− H(N)]g(N) = B(N) . (34)

Here B(N) = −H(N)H′(N)− C̃
a(N)

. For simplicity, we define h = G1
G0

+ N, such that the solution
for g(h) is given by
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g(h) = g1(h)
(

g0 +
∫ g2(h)

g1(h)
dh
)

, (35)

where

g1(h) = e
∫
(1− 3b

h ) , (36)

g2(h) = −
(G0h)−4b

[
C̃ehh + b(G0h)2b

]
4h

, (37)

while the Gauss–Bonnet term leads to

G = −12G2b
0 h (b + 2h) . (38)

By integrating Equation (35), the function g(h) yields

g(h) =
∂ f (G)

∂t
= (G0h)b/2 ∂h

∂N
∂ f (G)

∂h
= G−2b

0 h−3beh

[
g0G2b

0 −
C̃G−2b

0 h1−b

4(1− b)
+

b
4

Γ(b; h)

]
. (39)

Here Γ is the gamma function. However, the explicit form for f (G) cannot be obtained exactly, as
the above expression (Equation (39)) has to be integrated. However, we can analyse the predictions of
the model by combining Equations (21), (22), and (69); the slow-roll parameters read

ε = − b(−1 + b + 6h)2

2h(b + 6h)2 , (40)

η = −3− b(5− 2b− 12h)− 6h
2h(b + 6h)

. (41)

Thus the spectrum index ns and the scalar-to-tensor ratio r become

ns = 1 +
b− 1

h
− 18

(b + 6h)2 +
12

b + 6h
, (42)

r = −8b(b + 6h− 1)2

h(b + 6h)2 . (43)

Here the inflationary parameters for the scalar and tensor fluctuations depend on the number
of e-folds as well as on the value of the free parameters, particularly on b and on the combination
h = G1/G0 + N; thus in order to obtain some constrains for the values of b and h, we use the Planck
and BICEP2/Keck Array data as above. The allowed region for the free parameters is shown in
Figure 1, which shows the 1σ region for the spectral index, while the values for the tensor-to-scalar
ratio satisfy the constraint given by Equation (23) within the blue region of Figure 1. In addition, the
values for the free parameters within the 1σ region are able to have a tensor-to-scalar ratio as small as
required; for instance, when considering h = −40 and b = 0.0001, this leads to r ∼ 10−5.
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Figure 1. Confidence region for the parameter values of h = G1
G0

+ N and b to be consistent with the
Planck data and Background Imaging of Cosmic Extragalactic Polarisation (BICEP2)/Keck Array;
h and b are constrained inside the blue region.

3.3. Example 3

Finally, we consider the case in which the Hubble rate is given by the following function of the
number of e-folds:

H2(N) = G2eβN + G3 , (44)

where the constants G2 > 0 and G3 > 0. Following the same procedure as in the previous cases,
the equation for g(N) is obtained by inserting Equation (44) into Equation (14), which results in

C̃e3−3N + eNβG2β(eNβG2 + G3)

+4(eNβG2 + G3)
3(G3 + eNβG2(−1 + 3β))g(N)

+4(eNβG2 + G3)
4g′(N) = 0. (45)

Before solving this equation, we constrain the parameters G2, G3, and β. We note that the slow-roll
parameters now read

ε = − βG2eβN(G2eβN + G3)

2(G2eβN + 6G3
6+β )

2
, (46)

η = − β(2G2eβN + G3)

2(G2eβN + 6G3
6+β )

. (47)

Here, the spectral index ns and the tensor-to-scalar ratio r (Equation (20)) depend on the number of
e-folds, the parameter β, and the ratio G2/G3; thus in order to obtain some information about the value
of the free parameters by using the Planck data and BICEP2/Keck Array data as before, we consider
two samples, depending on the number of e-folds during inflation. In Figure 2, we consider the cases
N = 50 and N = 60.
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Figure 2. Constraints for the parameters G2
G3

and β. We have assumed N = 50 (blue) and N = 60 (red).
To be consistent with the Planck data and Background Imaging of Cosmic Extragalactic Polarisation
(BICEP2)/Keck Array, G2

G3
and β are constrained inside the coloured areas.

As shown in the figure, the parameters are well constrained, particularly the value of the
exponent β.

In order to reconstruct the gravitational action analytically, we assume some approximations
that can simplify the equations. Otherwise, it is not possible to obtain the mimetic Gauss–Bonnet
Lagrangian exactly for this case as above. Thus, as β ∼ 0.03 seems to be natural, and, combined with

the slow-roll condition |Ḣ| � H2, we obtain G2eβN

G3
� 1, such that the Hubble parameter (Equation (44))

can be approximated as follows:

H2(N) ' G2eβN . (48)

The Gauss–Bonnet invariant is given by

G(N) ' −24(1 + β)G4
2e4Nβ . (49)

Then, Equation (45) takes the form

C̃e3−3N + enβG2βeNβG2 + 4e4NβG4
2(−1 + 3β)g(N) + 4eNβG4

2 g′(N) ' 0 . (50)

By following the same procedure as above, the approximate form for f (G) leads to

f (G(N)) ∼ 24G3
2 β(1− β) [

eNβ

3G2
2 β(β− 1)

+
C̃e3−3N−Nβ

G4
2(3 + β)(4 + β)(3 + 5β)

+
c1eN

1− 4β
] , (51)
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which in terms of the Gauss–Bonnet invariant leads to

f (G(N)) = 24G3
2 β(1− β)

 [−G/24(1 + β)]1/4

3G3
2 β(β− 1)

+ C̃e3

[
−G/24G4

2(1 + β)
]−(3+β)/4β

G4
2(3 + β)(4 + β)(3 + 5β)

+
c1
[
−G/24G4

2(1 + β)
]1/4β

1− 4β

 .

(52)

The explicit form for the mimetic Gauss–Bonnet Lagrangian is thus obtained.

4. Extensions of Mimetic f(G) Gravity

We now consider some extensions of mimetic f(G) gravity and the reconstruction of inflationary
models within such extensions. An alternative way of representing mimetic gravity relies on the use of
a constraint equation that can be expressed through a Lagrange multiplier in the action [62,66]:

S =
∫

d4x
√
−g
[

R
2κ2 + f (G) + λ(gµν∂µφ∂νφ + 1)

]
. (53)

The variation with respect to the Lagrange multiplier λ recovers Equation (2). Then, it is
straightforward to show that the field equations for mimetic f (G) gravity (Equation (7)) are recovered.
Nevertheless, here we are interested in analysing some extensions for the mimetic action (Equation (53))
by adding a kinetic term and a potential for the scalar field to make it dynamical:

S =
∫

d4x
√
−g
[

R
2κ2 + f (G)− εgµν∂µφ∂νφ−V(φ) + λ(gµν∂µφ∂νφ + 1)

]
, (54)

By assuming again the spatially flat FLRW metric (Equation (9)), the variation of the action given
by Equation (54) with respect to the metric gµν gives rise to the following equations of motion:

3H2 + 24H3 d fG(G)
dt

+ f (G)− fG(G)G = εφ̇2 + V(φ)− λ(φ̇2 + 1), (55)

−2Ḣ − 3H2 − 8H2 d2 fG(G)
dt2 − 16H(Ḣ + H2)

d fG(G)
dt

+ fG(G)G − f (G) = εφ̇2 +−V(φ)− λ(φ̇2 − 1), (56)

while the variation with respect to the Lagrange multiplier λ yields the constraint for the scalar field φ:

φ̇2 − 1 = 0. (57)

By redefining the mimetic scalar field as cosmic time φ = t, and by combining
Equations (55) and (56), the scalar potential and the Lagrange multiplier can be expressed as functions
of cosmological time t in terms of the Hubble parameter:

V(t) = 2Ḣ + 3H2 + εφ̇2 + 8H2 d2 fG(G)
dt2 + 16H(Ḣ + H2)

d fG(G)
dt

− fG(G)G + f (G) , (58)

λ(t) = φ̇−2
(

ρ

2
+ Ḣ + 4H(2Ḣ − H2)

d fG(G)
dt

+ 4H2 d2 fG(G)
dt2

)
+ ε . (59)

Hence, the particular action (Equation (54)) can be easily reconstructed for any cosmological model
once the Hubble parameter is provided, as shown below for the examples studied in the previous
section. Nevertheless, it is more convenient to express the potential V and the Lagrange multiplier λ in
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terms of the e-folding number N instead of the cosmological time t, such that Equations (58) and (59)
can be written as follows:

V(N) = 2H(N)H′(N) + 3H(N)2 + εH(N)2φ̇2 + 8H(N)2

[
H(N)2 d2

dN2 + H(N)H′(N)
d

dN

]
fG(G)

+16H(N)3 [H′(N) + H(N)]
d fG(G)

dN
− fG(G)G + f (G) ,

(60)

λ(N) =
ρ

2
+ 4H(N)H′(N) + H(N)3 [2H′(N)− H(N)]

d fG(G)
dN

+4H(N)2

[
H(N)2 d2

dN2 + H(N)H′(N) d
dN

]
fG(G) + ε .

(61)

Alternatively, the function f (G) in the action given by Equation (54) can be expressed in terms of
an extra auxiliary field by rewriting the action as follows:

S =
∫

d4x
√
−g
[

R
2κ2 + ϕG −U(ϕ)−V(φ) + λ(gµν∂µφ∂νφ + 1)

]
, (62)

where ϕ = f ′(G) and we have omitted the kinetic term for φ for simplicity. The variation of the action
with respect to gµν gives the following field equations:

Rµν −
1
2

Rgµν + U(ϕ)gµν + 2Hµν −
[
λ(gµν∂µφ∂νφ + 1)−V(φ)

]
gµν + 2λ∂µφ∂νφ = 0 . (63)

Here the term Hµν is the variation of ϕG:

Hµν ≡ 1√−g
δ(
√−gϕG)

δgµν

= 2R(gµν�−∇µ∇ν)ϕ + 4Rα
µ∇α∇ν ϕ + 4Rα

ν∇α∇µ ϕ (64)

−4Rµν�ϕ− 4gµνRαβ∇α∇β ϕ + 4Rαµβν∇α∇β ϕ,

whereas the constraint of the mimetic scalar is given by Equation (57). The FLRW equations for the
action given by Equation (63) turn out to be

3H(t)2(1 + 8H(t)ϕ′(t)) + λ(t)(1 + φ′(t)2)−V(φ(t))−U(ϕ(t)) = 0 (65)

H(t)
[
16H(t)2 ϕ′(t) + 16Ḣ(t)ϕ′(t) + H(t)(3 + 8ϕ′′(t))

]
+λ(t)

[
1− φ′(t)2

]
+ 2Ḣ(t)−V(φ(t))−U(ϕ(t)) = 0 . (66)

It is straightforward to obtain the Hubble parameter from Equation (65), leading to the
following solution:

H(N) =

√
±
√

9− 96ϕ′(N)(2λ(N)−U(ϕ(N))−V(φ(N)))

48ϕ′(N)
− 1

16ϕ′(N)
. (67)

In the following, the full action (Equation (54)) is reconstructed for some inflationary models.
Because the action (Equation (54)) retains more degrees of freedom, we assume a particular ansazt for
the function f (G), the simplest possible choice, which is given by

f (G) = AG2. (68)

Then, by Equations (60) and (61), the corresponding action is recovered.
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We first consider a simple example, a subclass of the first case studied above, for which the
cosmological evolution is described by the following Hubble parameter:

H2(N) = G0N + G1. (69)

Substituting Equation (69) into Equations (60) and (61) and recalling that φ = t, we obtain the
potential for the scalar field in terms of the number of e-folds:

V(N) = −768AG2
0(G0N + G1)

2 − 12AG2
0(4G0N + G0 + 4G1)

−192AG0(G0N + G1)(2G0N + G0 + 2G1)(4G0N + G0 + 4G1)

−288A(G0N + G1)
2(2G0N + G0 + 2G1)

2 − 24A(G0N + G1)(2G0N + G0 + 2G1)r
+3(G0N + G1) + G0 + ε ,

(70)

while the configuration of the Lagrange multiplier yields

λ(N) = 1
2 G0(1 + 96A(G1 + G0N)(8G2

1 + 2G0G1(−9 + 8N)

+G2
0(−3 + 2N(−9 + 4N)))) + ε .

(71)

The scalar field as a function of N is obtained by using dN
dt = H(N) and φ = t, leading to

φ(N) = −2(
√

G0 + G1 −
√

G1 + G0N)

G0
. (72)

Hence, by combining Equations (70) and (72), we obtain the potential V(φ):

V(φ) = −768AG2
0

(
G2

0φ2

4
+ G0φ

√
G0 + G1 + G0 + G1

)2

−12AG2
0
(
G0
(
4φ
√

G0 + G1 + G0φ2 + 5
)
+ 4G1

)
−24AG0

(
G0
(
4φ
√

G0 + G1 + G0φ2 + 4
)
+ 4G1

) (
G0
(
4φ
√

G0 + G1 + G0φ2 + 5
)
+ 4G1

)
×
(
G0
(
4φ
√

G0 + G1 + G0φ2 + 6
)
+ 4G1

)
−

9
2

A
(
G0
(
4φ
√

G0 + G1 + G0φ2 + 4
)
+ 4G1

)2 (G0
(
4φ
√

G0 + G1 + G0φ2 + 6
)
+ 4G1

)2

−3A
(
G0
(
4φ
√

G0 + G1 + G0φ2 + 4
)
+ 4G1

) (
G0
(
4φ
√

G0 + G1 + G0φ2 + 6
)
+ 4G1

)
+3
(

G2
0 φ2

4 + G0φ
√

G0 + G1 + G0 + G1

)
+ G0 + ε.

(73)

Finally, we consider the third example studied above, where we recall that the cosmological
evolution is given by H2(N) = −G2eβN + G3. Similarly to the previous case, the scalar potential and
the Lagrange multiplier in terms of the number of e-folds N are obtained:

V(N) = −96A(β + 2) (β(12β + 11) + 6) G4
2e4βN)

−24AG3
2

(
(β + 2)β2 + 8(β(β(12β + 41) + 42) + 24)G3

)
e3βN)

−12AG2
2

(
2(β + 2) + 8(β(β(14β + 59) + 84) + 72)G2

3 + β2(β + 4)G3

)
e2βN) (74)

−G2eβN
(

24A(β + 4)G3

(
8(β(β + 2) + 6)G2

3 + 1
)
− β− 3

)
)

−3G3

(
16A

(
24G3

3 + G3

)
− 1
)
+ ε ,
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λ(N) = −96A(β + 2)(β(12β + 11) + 6)G4
2e4βN)

−24AG3
2

(
(β + 2)β2 + 8(β(β(12β + 41) + 42) + 24)G3

)
e3βN)

−12AG2
2

(
2(β + 2) + 8(β(β(14β + 59) + 84) + 72)G2

3 + β2(β + 4)G3

)
e2βN) (75)

−G2eβN
(

24A(β + 4)G3

(
8(β(β + 2) + 6)G2

3 + 1
)
− β− 3

)
)

−3G3

(
16A

(
24G3

3 + G3

)
− 1
)
+ ε ,

whereas the scalar field yields

φ(N) =

2 arctanh
(√

eβG2+G3√
G3

)
− 2 arctanh

(√
eβN G2+G3√

G3

)
β
√

G3
. (76)

Finally, the potential V(φ) can be expressed as a function of φ, as follows:

V(φ) = −96AG4
3(W(φ)− 1)

((
12β3 + 35β2 + 28β + 12

)
W(φ)3

−
(
12β3 + 47β2 + 56β + 36

)
W(φ)2 + 2

(
β3 + 6β2 + 14β + 18

)
W(φ)− 12

)
+12Aβ2G3

3W(φ)2(−β + 2(β + 2)W(φ)− 4)
−24AG2

3(W(φ)− 1)((β + 2)W − 2)− G3((β + 3)W(φ)− 3) + ε,

(77)

where W(φ) = sech
(

1
2
√

G3βφ− arctanh
(√

eβG2+G3√
G3

))2
. Hence, we have shown that any inflationary

model can be easily obtained from the mimetic action (Equation (54)).

5. Conclusions

As shown previously in the literature, Gauss–Bonnet gravity can easily reproduce any model of
inflation by assuming the appropriate gravitational action. Here we have extended such an analysis
by assuming the mimetic condition, which isolates the conformal degree of freedom through an
auxiliary scalar field that behaves as a pressureless fluid in homogeneous and isotropic cosmologies.
Then, we have assumed the Hilbert–Einstein action with a correction in the form of a function of the
Gauss–Bonnet invariant. By some analytical techniques, we have reconstructed the appropriate f (G)
actions for some inflationary models, which reproduce slow-roll inflation. The predictions of such
models have also been analysed by obtaining the values for the spectral index and the tensor-to-scalar
ratio. As shown by the results, model 1 provides a spectral index slightly higher than that provided by
Planck, while models 2 and 3 correctly fit the observational constraints, despite that it is not possible
for the analytical form of the gravitational action to be obtained for the former, although it is for the
latter. In comparison to standard Gauss–Bonnet gravities, mimetic gravity introduces an additional
degree of freedom that behaves as a pressureless fluid, leading to greater complexity of the equations,
which allows us to avoid reconstructing the exact gravitational action for some cases. Nevertheless,
we have shown that even with the presence of such a fluid, inflation can be realised in mimetic
Gauss–Bonnet gravity.

We have also explored some analytical extensions of mimetic Gauss–Bonnet gravity by adding
a kinetic term and a potential to the auxiliary scalar field. For this aim, we have used the approach
of the Lagrange multiplier, equivalent to the mimetic condition. We note that as the auxiliary field
becomes dynamical and the f (G) action can be expressed in terms of another scalar field, inflation
becomes equivalent to a multifield model, for which isocurvature (non-adiabatic) perturbations may
not be null [86–88]; this is an aspect that requires a further and exclusive analysis in a future work.
Nevertheless, by analysing the same inflationary models, the corresponding scalar potential has been
reconstructed, whereby we have assumed f (G) ∝ G2 for simplicity.
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Finally, an interesting point to be considered would be the analysis of loop quantum cosmology
corrections within mimetic modified gravities. As shown in [89,90] for classical extensions of GR,
such corrections may discard some inflationary/bouncing models, providing some more accurate
gravitational actions for the corresponding cosmological solutions.

Hence, we have shown that inflation can be realised in Gauss–Bonnet gravity when incorporating
the mimetic condition, and viable inflationary models that satisfy the latest observational constraints
can be reconstructed, which opens up new means to explore the early universe in the framework of
this type of theory.
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