The conserved cysteine residue of type III intermediate filaments serves as a structural
element and redox sensor.

Sofia Duarte¹, Álvaro Viedma-Poyatos¹, Andreia Mónico¹, Dolores Pérez-Sala¹

¹Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Consejo
Superior de Investigaciones Científicas (C.S.I.C.), Ramiro de Maeztu, 9, 28040 Madrid, Spain

Glial fibrillary acidic protein (GFAP) along with vimentin, desmin and peripherin constitutes the
type III class of intermediate filament proteins, which are expressed in a cell type-dependent
manner. GFAP and vimentin play a role in organelle positioning, cell migration and mechanical
resistance and possess a conserved cysteine residue (cys328 in vimentin and cys294 in GFAP).
We previously showed that cys328 of vimentin is critical for stress sensing, since mutants
lacking this residue are resistant to vimentin reorganization induced by oxidants and
electrophilic lipids. We have recently observed that cys294 of GFAP is also a target for
lipoxidation, which induces a drastic filament rearrangement in cells. Importantly, the
cys294ser mutant is resistant to these effects, thus implying its critical role in the cellular
response to oxidative damage. However, this mutant displays defective assembly and
copolymerization with vimentin, showing that the single cysteine residue is important for the
structure of the intermediate filament network. This strengthens the hypothesis that
modifications of cysteine residues of intermediate filaments may contribute to cellular
dysfunction under pathophysiological conditions.

Funding: H2020 grant 675132(Masstrplan); MINECO/FEDER SAF2015-68590-R
The conserved cysteine residue of type III intermediate filaments serves as a structural element and redox sensor.

Sofia Duarte1, Álvaro Viedma-Poyatos1, Andreia Mónico1, Dolores Pérez-Sala1

1Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), Ramiro de Maeztu, 9, 28040 Madrid, Spain

Glial fibrillary acidic protein (GFAP) along with vimentin, desmin and peripherin constitutes the type III class of intermediate filament proteins, which are expressed in a cell type-dependent manner. GFAP and vimentin play a role in organelle positioning, cell migration and mechanical resistance and possess a conserved cysteine residue (cys328 in vimentin and cys294 in GFAP). We previously showed that cys328 of vimentin is critical for stress sensing, since mutants lacking this residue are resistant to vimentin reorganization induced by oxidants and electrophilic lipids. We have observed that GFAP cys294 is also a target for lipoxidation, which induces a drastic filament rearrangement in cells. Therefore, the conserved cysteine residues of type III intermediate filaments emerge as important players in cellular responses to oxidative damage. Interestingly, cysteine to serine mutations compromise assembly and copolymerization of GFAP and vimentin, showing that these residues are important for the structure of the intermediate filament network. This raises the hypothesis that modifications of cysteine residues of intermediate filaments may contribute to cellular dysfunction under pathophysiological conditions.

Funding: H2020 grant 675132(Masstrplan); MINECO/FEDER SAF2015-68590-R
Glial fibrillary acidic protein (GFAP) along with vimentin, desmin and peripherin constitutes the type III class of intermediate filament proteins, which are expressed in a cell type-dependent manner. GFAP and vimentin play a role in organelle positioning, cell migration and mechanical resistance and possess a conserved cysteine residue (cys328 in vimentin and cys294 in GFAP). We previously showed that cys328 of vimentin is critical for stress sensing, since mutants lacking this residue are resistant to vimentin reorganization induced by oxidants and electrophilic lipids. We have observed that GFAP cys294 is also a target for lipoxidation, which induces a drastic filament rearrangement in cells. Therefore, the conserved cysteine residues of type III intermediate filaments emerge as important players in cellular responses to oxidative damage. Interestingly, cysteine to serine mutations compromise assembly and copolymerization of GFAP and vimentin, showing that these residues are important for the structure of the intermediate filament network. This raises the hypothesis that modifications of cysteine residues of intermediate filaments may contribute to cellular dysfunction under pathophysiological conditions.

Funding: H2020 grant 675132(Masstrplan); MINECO/FEDER SAF2015-68590-R