

Identification and characterization of a novel isoform of β-chimaerins with nuclear localization

Laura Barrio-Real¹, Victoria Casado-Medrano¹, Eladio Velasco², María José Caloca² ¹Department of Pharmacology, University of Pennsylvania, Philadelphia, US, ²Instituto de Biología y Genética Molecular, CSIC, Valladolid, ES

INTRODUCTION

Chimaerins are a family of GTPase-activating proteins (GAPs) composed of four members: a_1 - a_2 - β_1 -and β_2 -chimaerin. All chimaerin isoforms have a catalytic GAP domain, with selectivity for the Rac GTPase, and a C1 domain with structural homology to those of protein kinase C isoforms (PKCs) that binds DAG and phorbol esters. a_2 - and β_2 -chimaerin also have an N-terminal SH2 domain involved in heteromolecular interactions with phosphotyrosine proteins. Chimaerins are generated by alternative transcription of two different genes; the *CHN1* gene which encodes a_1 - and a_2 -chimaerin, and the *CHN2* gene which encodes β_1 - and β_2 - chimaerin. The *CHN2* gene consists of 13 exons and has two start sites; one in exon 1 that renders β_2 -chimaerin, and one in intron 6 that renders the β_1 -chimaerin isoform. In addition, we have identified a new isoform generated by alternative splicing, that we named β_1 - Δ_7 p chimaerin. The functional characterization of this isoform suggests a role for this protein in the regulation of nuclear Rac.

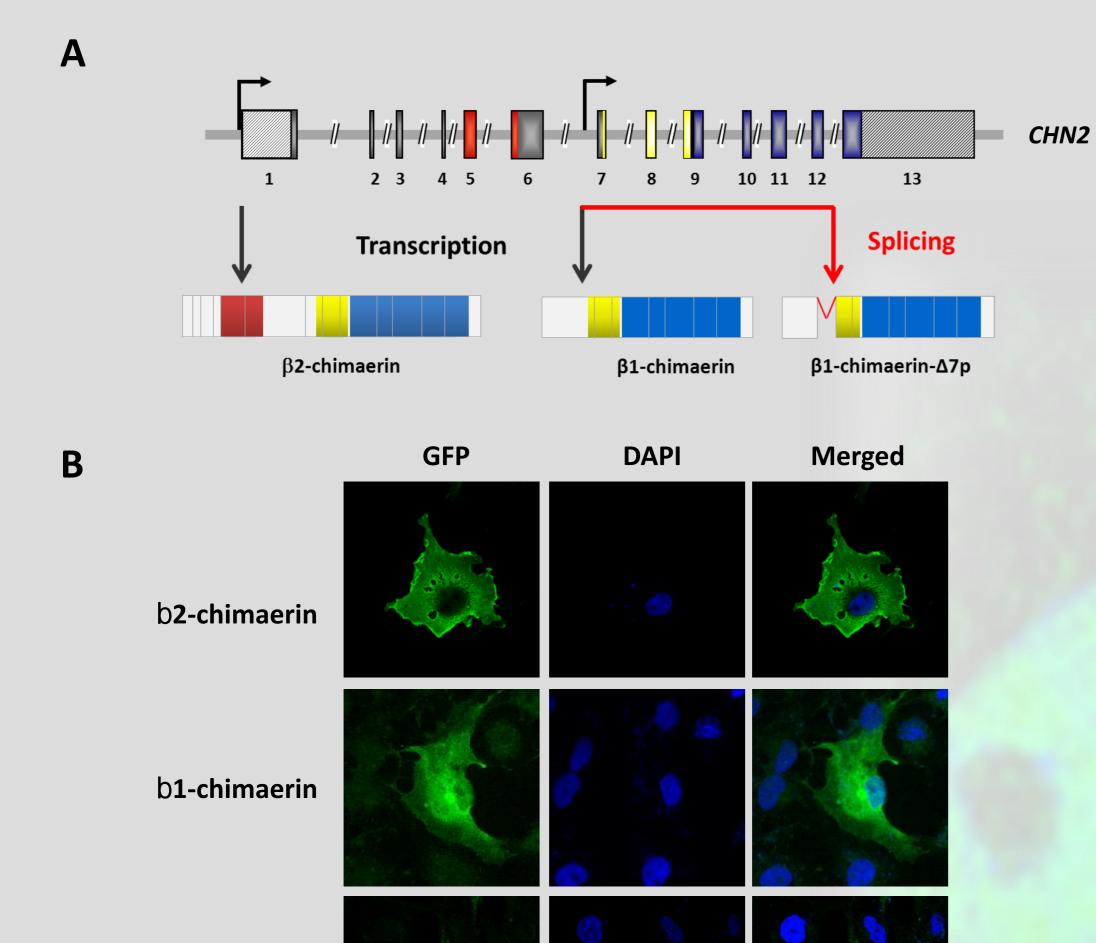
METHODS

Immunofluorescence studies. COS1 cells were grown on glass coverslips, transfected with FuGene6 and fixed with 3.7% formaldehyde after 24-48 hours. For nuclear staining, cells were incubated with DAPI. Localization of chimaerins was analyzed using a laser scanning confocal microscope (Leica TCS SP5).

Mutational analysis. Point mutants were generated using the QuickChange Site-Directed mutagenesis kit using as template the plasmid encoding the EGFP-tagged version of β 1-chimaerin.

Rac activation assay. Total COS cell lysates or nuclear fractions were lysed with buffer containing 10 µg of a GST fusion protein with the Rac binding domain of PAK1 (GST-PBD), followed by incubation with glutathione-sepharose beads (GE Healthcare) for 1 h at 4 C. The bound (Rac-GTP) was detected by immunoblotting using anti-Rac antibodies.

RESULTS


В

β1-FL

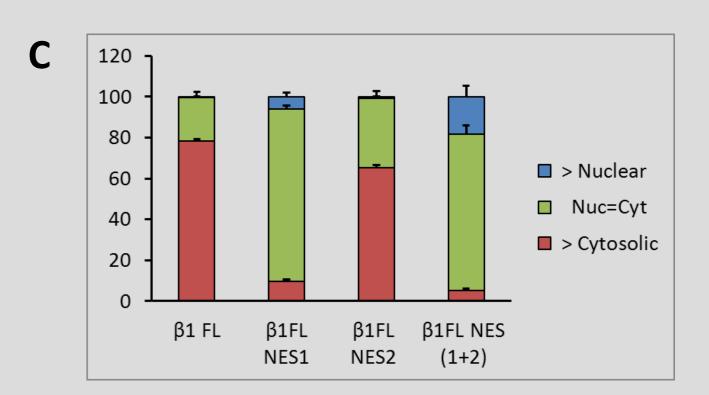
Α

β1-NES1

Identification of a novel β-chimaerin isoform with nuclear localization

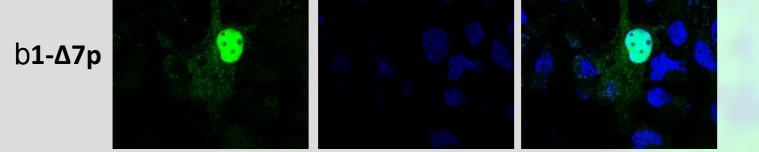
3

4


5

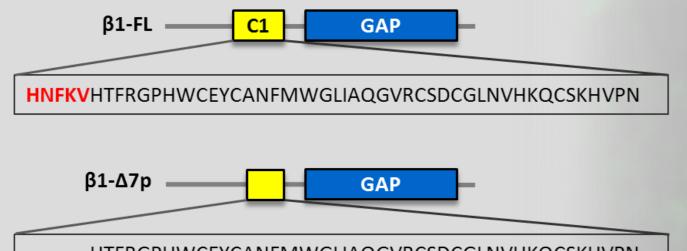
B

Loss of a Nuclear Export Signal (NES) results in nuclear accumulation of β 1-chimaerin- Δ 7p


β1-NES (1+2)

 β 1-chimaerin has a functional NES that is lost in β 1-chimaerin- Δ 7p.

β1-NES2


A) Computational analysis predicts one NES in β 1-chimaerin that is lost in the β 1- Δ 7p isoform. Highlighted are the residues important for NES function. Point mutants generated on the β 1-chimaerin potential NES are shown on the right. **B)** Representative confocal immunofluorescence images of COS-1 cells transfected with the EGFP-tagged mutants indicated. **C)** Subcellular distribution of each mutant was analyzed in ~100 cells scored in three different experiments. The result are given by >Nuclear, Nuc=Cyt, or >Cytosolic to indicate the predominant subcellular distribution of each mutant.

Nuclear localization of the new chimaerin isoform β 1-chimaerin- Δ 7p.

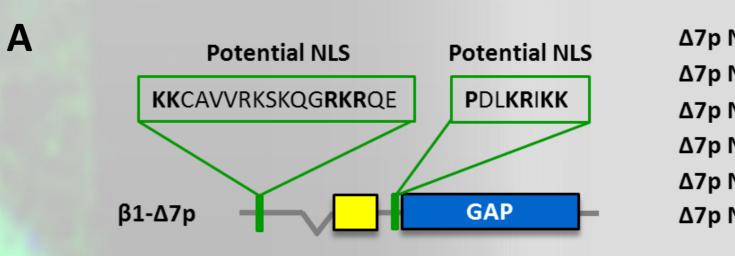
A) Schematic representation of the *CHN2* gene The generation of β^2 - and β^1 -chimaerin from different start sites of the *CHN2* gene is indicated. β^1 -chimaerin- Δ^7p is generated by alternative splicing. Numbers indicate the *CHN2* exons. Color indicate the different chimaerin domains: SH2 (red), C1 (yellow), and GAP (blue). **B)** Subcellular localization of β -chimaerin isoforms in transfected COS1 cells.. β^2 -chimaerin is cytosolic, β^1 -chimaerin is mainly cytosolic with some nuclear localization while β^1 -chimaerin- Δ^7p is mostly localized in the nucleus.

β 1-chimaerin- Δ 7p has a nonfunctional C1 domain

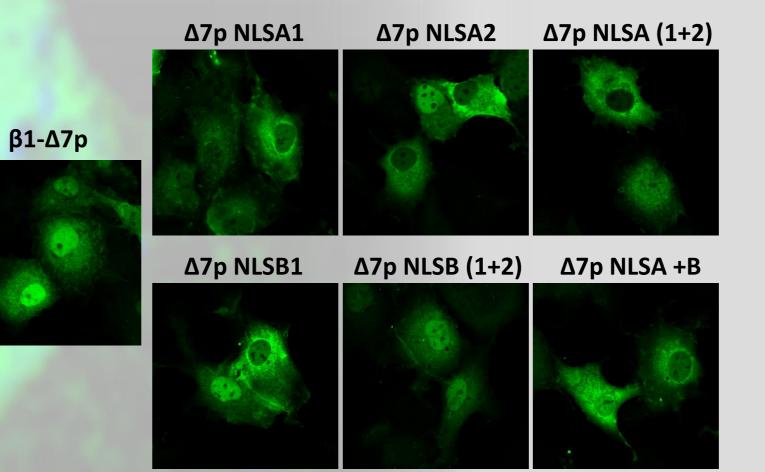
β1-chim

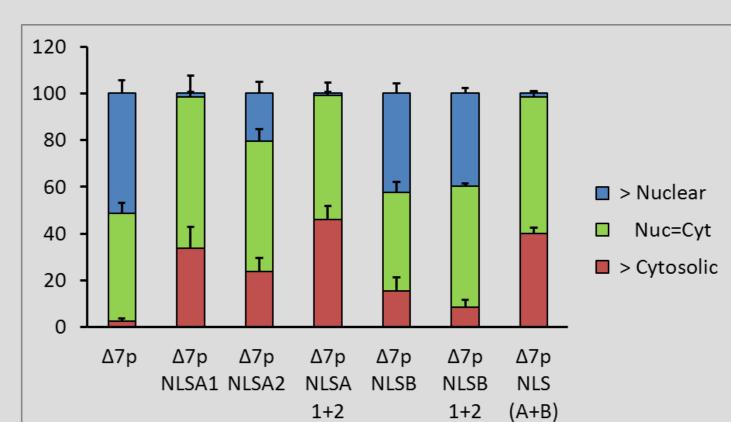
β1-Δ7p

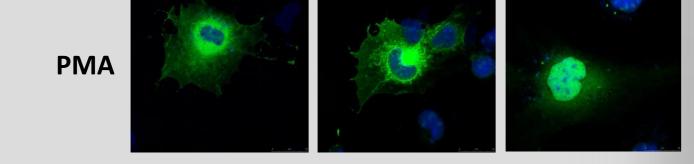
---- HTFRGPHWCEYCANFMWGLIAQGVRCSDCGLNVHKQCSKHVPN


β2-chim

Control

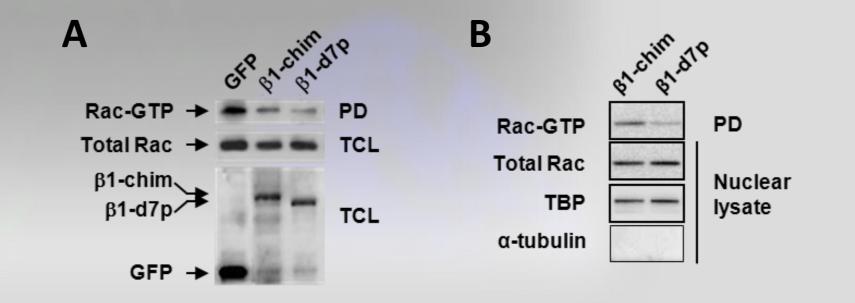

Α


B


NLSA1	KKCAVVRKSKQG <mark>AAA</mark> QE	PDLKRIKK
NLSA2	AACAVVRKSKQGRKRQE	PDLKRIKK
NLSA (1+2)	AACAVVRKSKQGAAAQE	PDLKRIKK
NLSB1	KKCAVVRKSKQGRKRQE	PDL <mark>AA</mark> IKK
NLSB (1+2)	KKCAVVRKSKQGRKRQE	PDL <mark>AAIAA</mark>
NLSA+B	KKCAVVRKSKQGAAAQE	PDL <mark>AAIAA</mark>

β 1- and β 1- Δ 7p chimaerins have a functional NLS.

A) Computational two NLS in β_1 - and β_1 - Δ_7 p chimaerins, one bipartite in the most N-terminal region and one classic NLS in the linker between the C1 and GAP domains. Point mutants generated on the β_1 - Δ_7 p potential NLSs are shown on the right. **B)** Representative confocal immunofluorescence images of COS-1 cells transfected with the EGFP-tagged mutants indicated. **C)** Subcellular distribution of each mutant was analyzed in ~100 cells scored in three different experiments. The result are given by >Nuclear, Nuc=Cyt, or >Cytosolic to indicate the predominant subcellular distribution of each mutant.


 β 1-chimaerin- Δ 7p does not respond to PMA treatment.

A) Schematic representation of the functional domains of β_1 - and β_1 -chimaerin- Δ_7p isoforms. The truncated isoform loses five aa of the C1 domain. **B)** Subcellular localization of the chimaerin isoforms in transfected COS1 cells treated with PMA. Translocation of β_2 - and β_1 -chimaerin, mainly to perinuclear regions, is observed. However, β_1 - Δ_7p subcellular localization is not affected by PMA.

CONCLUSIONS

- \square We have identified a new chimaerin isoform (β 1-chimaerin Δ -7p) that is generated by alternative splicing.
- Δ-7p has a nuclear localization mediated by one NLS and the loss of one NESβ1-chimaerin Δ-7p has a nuclear localization mediated by one NLS and the loss of one NES.
- \square β 1-chimaerin-d7p regulates the activation of nuclear Rac.

The nuclear chimaerin isoform β 1- Δ 7p regulates nuclear Rac activity

β 1-chimaerin- Δ 7p negatively regulates nuclear Rac

A) The levels of active Rac (Rac-GTP) in cells transfected with control (GFP), β 1-chimaerin and β 1-d7p were determined by a pull down (PD) assay in whole cell lysates. **B)** Rac-GTP levels were measured by PD assay in isolated nuclei from cells transfected with β 1-chimaerin or β 1-d7p. TBP was used as a nuclear loading control. a-tubulin was used to corroborate that nuclear fractions had no cytoplasmic contamination.

FINANCIAL SUPPORT

Junta de Castilla y León. Consejería de Sanidad and Consejería de Educación (CSI090U14).