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We present a comprehensive procedure to simulate real-world scenes viewed through ophthalmic lenses.
Such method enables to anticipate the effects on image formation of combined undesired optical defects
typically found in ophthalmic lenses: blur, distortion and chromatic aberration. Additionally, it helps
comparing the expected scenes seen with different lens designs. The procedure is based on the following
steps: 1) To calculate distortion and local dioptric matrix associated to a set of different gaze directions;
2) To estimate point-spread-functions (PSF) associated to these matrices; 3) To compute the joint action
of distortion, chromatic aberration and PSF field on the scenes. We illustrate this procedure with two +5
D spherical lenses: a moderately good performance lens and a highly degradating one. The method is
suitable to evaluate ophthalmic lenses in a virtual reality framework. © 2017 Optical Society of America

OCIS codes: (330.4595) Optical effects on vision; (330.5370) Physiological optics; (330.7326) Visual optics, modeling; (330.4460)
Ophthalmic optics and devices

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Ophthalmic lenses is the most widespread optical technology
used to compensate refractive errors, such as myopia, hyperme-
tropia, astigmatism or presbyopia. However, far from providing
a perfect representation of real-world object scenes, spectacles
introduce some undesired optical defects that make retinal im-
ages differ from the ideal ones. Consequently, it is very rele-
vant to model, as accurately as possible, how real-world scenes
are viewed through ophthalmic lenses. This, on the one hand,
enables to anticipate the effects on image formation of those
undesired optical defects, and on the other hand, to compare
them for different lens designs. This is the major motivation of
this work.

Due to the rapidly decaying concentration of cones at the
retina, the maximum visual acuity is reduced to a small field-of-
view (foveal vision). Therefore, voluntarily changing the gaze
direction allows imaging at the fovea the part of the scene that
we want to see in detail. However, this is not the only eye move-
ment presented in scene scanning. There are also rapid saccades
movements as high as 500 degrees per second [1], which are
used to fine-tuning the image location at the fovea. After these
saccades, the gaze direction remains relatively “fixed" (ignoring
nystagmus, drifts and microsaccades) for about 200-300 ms [1].
The visual information is processed only during these fixated
periods, because during the rapid saccades the brain blocks the
visual process (saccadic supression). Finally, within the visual

cortex process, all these “images" are fused providing a unified
visual perception of the overall scene.

Considering this knowledge, it is plausible to model scene
viewing as a superposition of multiple foveal (or parafoveal)
images, each one associated to each fixation between saccades,
with a smoothing transition between them. Although not ex-
plicitly justified as above, this rationale is behind the proposal
made by Barsky et al. [2] some years ago, which they called:
scanned foveal image. However, here we prefer to use the term
scene image, in order to stress the integrated nature of the visual
process during scene viewing .

For a fixed gaze direction, major defects introduced by spec-
tacles are blurring, chromatic aberration, image displacement
and distortion (the latter two are intimately connected). Hence,
the design of ophthalmic lenses searches for the optimal lens
surfaces that minimize these defects when looking through dif-
ferent parts of the lens, within a specific field of view. For this
purpose, blur and distortion can be separately analyzed using
maps that quantify them [3, 4]. However, this approach does not
provide direct information on how these errors jointly degrade
the scene image, as done by scene image simulation.

Furthermore, we propose scene image modeling for, on the
one hand, understanding and improving ophthalmic lens de-
signs, and, on the other hand, selecting the best design for a
specific need and subject. Inde

ed, in the last decade, the goal of simulating scene images
seen through eyeglasses has been tackled by researches in the
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field of computer graphics [5, 6], with a special emphasis in pro-
gressive addition lenses [7, 8]. However, the models proposed
in the aforementioned works do not provide the way to estimate
the relative blur size with respect to the area of the scene. Addi-
tionally, they do not consider the radiometric changes associated
to the distortion introduced by ophthalmic lenses. These issues
(explained in detail in section 2) become relevant if a precise
modeling of real scenes degradations is required. That is indis-
pensable, for example, for doing realistic simulations in a virtual
reality framework.

This paper aims at providing a clear and justified procedure
to simulate scene images through eyeglasses, where the effect
of blurring, chromatic aberration and optical distortion is com-
bined, and the relative size of the blurring kernel with respect to
scenes dimensions are carefully established.

2. METHOD

We first characterize a gaze direction (described by vector g,
Figure 1) with angular coordinates (θ, φ) having the following
meaning. The projection of g onto planes X-Z (nasal-temporal)
and Y-Z (vertical) are gx and gy, respectively. Then, θ and φ
are the angles between direction Z and vectors gx and gy, re-
spectively. Therefore, θ and φ quantify the angular deviation of
gaze direction, in the horizontal and vertical directions, from a
primary line of sight along Z.

We can define a vector space ℵ containing all possible gaze
directions (g) of the naked eye and another vector space = with
the gaze directions when looking through an ophthalmic lens.
Once an object point is fixed (e.g point a at Figure 2), the gaze
direction corresponding to each vector space (ga and gsa) are
optically linked. The line along the naked gaze direction (ga)
intersects its associated gsa (after refraction through the lens)
at the object point (a). Therefore, we can define a mapping
between both vector spaces: T : ℵ −→ =, or, using angular co-
ordinates between sets: T : (θ, φ) −→ (θs, φs). The smoothness
of refractive surfaces used in ophthalmic applications imposes
that mapping T itself is smooth (see a discussion on this at [3]).
Additionally, we assume something that occurs in virtually all
practical designs, namely, that mapping is invertible (inverse
mapping T−1). Furthermore, we assume that the inverse map-
ping itself is smooth too, something that also occurs in practice.
This allows for T and T−1 being safely interpolated, a property
that we exploit throughout this paper.

We now define an ideal scene image as that without optical
defects, i.e. zero blurring and distortion, being mathematically
represented as function of angular coordinates: Io(θ, φ, λ), being
Io the radiance captured by the eye for a specific gaze direction
and wavelength λ. We assume that for the primary line of sight,
eyeglasses perfectly correct sphere and cylinder, hence canceling
the blur. To mathematically characterize how the scene image
is degraded within a range of eye rotations implies to evaluate
how the radiance function is transformed between spaces ℵ and
=: G : Io(θ, φ) −→ Is(θs, φs).

Although physically it has a different meaning, formally
transformation G is identical to that between the irradiance
distribution at the object and the image plane in an incoher-
ent optical system. For this case, the output energy is just the
addition of impulse responses to each object point composing
the extended source [9]. We just substitute the object point of
the classical imaging formula with a gaze direction and get the
following superposition integral:

Is(θ
s, φs, λ) =

∫∫
ℵ

h(θs, φs, θ, φ; λ)Io(θ, φ; λ)dθdφ, (1)

where h(θs, φs, θ, φ; λ) is the impulse response for monochro-
matic incoherent imaging. Within this context we call this func-
tion point spread function (PSF).

Eq. 1 has to be evaluated numerically in vector space ℵ by
using a uniform sampling at ℵ: (θj, φj), j = 1...m. However, to
obtain it we should find the corresponding non-uniform set at
= that would map onto ℵ: T−1 : (θs

j , φs
j ) −→ (θj, φj), something

that is not straightforward. Instead, we adopted a different strat-
egy, namely to evaluate the involved functions on a uniform
lattice in ℵ, and then resample them according to the inverse
mapping T−1, such that the new quantities correspond to a
uniform sampling in ℵ. It is worth to note that most authors ig-
nore the uniform sampling requirement, evaluating the involved
functions in a uniform grid in = (e.g. [5, 6, 8]). This translates
into a significant error, corresponding to ignoring the scaling
factor produced by the Jacobian of T, which represents the vari-
able energy density at different spatial locations due to optical
distortion. However, this effect does not affect the PSF field and
the optical distortion.

Overall, to simulate the effect of Eq. 1 we propose a computa-
tional model comprising the following sequential steps:

1. To choose a uniform grid at =: (θs
j , φs

j ), j = 1...m.

2. To compute the dioptric matrix (R) for each (θs
j , φs

j ):
R(θs

j , φs
j ), as explained in section A.

3. To compute the PSF field from the dioptric matrix R(θ, φ),
involved in Equation 1 (section B).

4. To obtain a set of R(θ, φ) at a uniform grid of ℵ, and repeat
the previous steps for three different chromatic channels
(section C).

5. A method to compute Eq. 1 once the PSF field is known.
This step is accounted for in section D.

A. Dioptric matrix computations
For each viewing point of the scene we compute the geometrical
PSF due only to the spectacles. In this case it is customary to
characterize optical aberrations within first-order geometrical
optics (i.e., aberrations due to pupil size are ignored [10]) and,
consequently, to locally describe them with a linear transforma-
tion, performed by the dioptric matrix [11].

To compute the dioptric matrix associated to each viewing
point of the scene, the wavefront vergence and the gaze direc-
tion are required. Every viewing point (e.g. points a and b in
Figure 2) corresponds to a unique gaze direction ( gsa and gsb).
The distance to the viewing point along the gaze direction deter-
mines the vergence of the wavefront emerging from that point.
We assume that this distance is known and represented as a
function of angular coordinates: d(θs

j , φs
j ). It could be directly

computed, for instance in a virtual reality framework, by tracing
rays and finding their intersections with the object surface scene.
Alternatively, there are imaging devices with capability to esti-
mate the distance to the camera of the viewed objects (e.g. [12]).
The so captured scenes associate a distance to each pixel in the
image (RGB-d pixel format).
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There are several methods available to compute the dioptric
matrix from the geometry of the lens and the object distance.
Loos et al. [13] proposed tracing localized wavefronts through
ophthalmic lenses, particularly progressive lenses. That method
is based on applying laborious differential geometry formulae
involving curvature data of the lens surfaces and wavefronts [8,
14].

However, in this work we prefer to follow a differential ray
tracing method, details of which have been published before
by ourselves [3]. We note that the accommodation of the eye is
not explicitly considered in this work, but could be easily imple-
mented changing the vertex sphere (see [3]) if that information
was known. Indeed, this step would be unavoidable when ana-
lyzing mid-near vision scenarios (presbyopic corrections).

B. From dioptric matrix to the PSF
As explained before, our model depends on angular coordinates
that characterize global eye movements. However the shape of
the blur (associated to the PSF field of Eq. 1) is an irradiance func-
tion that hinges on spatial coordinates at the retina. Therefore, a
correspondence between both sets of coordinates is required.

An object seen with a solid angle from the eye has an associ-
ated subtended angle measured at the retina. This angle can be
computed using the concept of nodal points [15]. Within parax-
ial approximation a ray coming from the object space forms the
same angle with the optical axis when passing through the front
and back nodal points. Obviously this implies that the lateral
size of the viewing object is reduced at the retina. However,
considering angular coordinates, the scene subtends the same
angle at object and image (where retina is situated) spaces. This
does not happen when the object is seen through eyeglasses,
because they introduce an overall magnification (included in the
mapping T).

Conventional Snellen letter charts, used to measure visual
acuity, implicitly assume that a letter could be recognized by
a refractive corrected healthy eye if the limbs of the characters
subtend a minimum of 1 minute of arc [16]. This value is sus-
tained in theoretical and experimental studies. The theoretical
maximum resolution of the human eye, considering the separa-
tion of cones at the fovea and the diffraction theory, is about 48
seconds of arc; however, experimental studies lower this value
to around 90 seconds of arc (p. 24 [16]). The maximum resolu-
tion threshold sets the limit to the admissible spacing between
angular coordinates at the retina. For this paper, we used 90
seconds of arc.

Within first-order geometrical optics the PSF takes the form of
a uniformly illuminated ellipse (a disc in the absence of cylinder)
called defocus blur [15, 17, 18].

To obtain the defocus blur from the dioptric matrix two steps
are required. First, to translate the dioptric matrix into a geomet-
rical ellipse. Second, to convert the values of the semi-axes of
the ellipse into angular coordinates. We note here that Kakimoto
et al [5] provided a procedure to the first step without clarifying
the second one.

We have followed a similar procedure to that of G. Smith [17].
However, whereas Smith started with a defocus defined at the
object space, we directly applied the blur at the retina, because
the dioptric matrix provides the defocus with respect to the
paraxial location within the eye.

As mentioned before, we assume that the eye is emmetropic
for the central viewing direction. Therefore, a pencil of rays
associated to this central viewing direction and passing through
the exit pupil converges to a unique point at the retina given by

the focal length H′F′ (see Figure 3). In that case the eigenvalues
of the dioptric matrix are equal and equivalent to the required
prescription power of the subject.

When looking through different areas of the spectacles the
dioptric matrix changes. The inverse of the eigen-values of
the dioptric matrix for those gaze directions provide a major
( f1) and a minor focal length ( f2). Let set one of them: f j. A
marginal ray (passing through the edge of the exit pupil) will
cross the optical axis (point G Fig. 3) and intersects the retina at
ζ ′j. This magnitude provides the lateral size of the blur ellipse
at the retina for that specific meridian. However, as explained
before, we need the angular magnitude of the blur with respect
to the back nodal point N’. We denote this magnitude: ψj =

arctan
(

ζ j
N′F′

)
. Considering similar triangles at Fig. 3 it is easy

to see the relation: ζ j =
ρ(H′F′− f j)

f j
. Thus:

ψj = arctan

(
ρ(H′F′ − f j)

f j N′F′

)
. (2)

In this work we used Gullstrand’s eye model no1 [15] for
which H’F’ = 22.785 mm and H’N’ = 5.73 mm. Additionally, we
assumed ρ = 2.5 mm.

Finally, each elliptical PSF is described by a set of three scalars
(ψ1, ψ2, α), where (ψ1, ψ2) refer to the ellipse’s major and minor
axis and α is the angle formed by the major axis with the abscissa
(Figure 4) which is obtained from the eigenvectors of the dioptric
matrix.

C. Dioptric matrices at = space
Next step is to compute the PSFs on a uniform grid at = space
with an interval of 90 seconds of arc. The procedure followed
here was first to obtain (through non-uniform interpolation) a
coarse approximation, on a regular grid in ℵ, of mapping T and
the scalars descriptors of the dioptric matrix: (ψ1,j, ψ2,j, αj), j =
1...m, and then use a standard uniform interpolation to refine to
the final 90 arcsec/pixel interval grid. Given that, due to its sym-
metry, the ellipse’s orientation ranges from 0 to π, whereas the
computed angles from dioptric matrix are in the [0 2π] range.
In order to avoid discontinuities between adjacent equivalent
angles (e.g., π/2 and 3π/2), we have resampled and interpo-
lated cos(2α) and sin(2α) instead of α itself. Then, we recover
the angle by applying α = 1/2 arctan(sin(2α)/ cos(2α)).

So far, our analysis has been confined to monochromatic
light. However, to take into account chromatic defects we have
to evaluate Eq. 1 for different wavelengths and combine the
effects. A reasonable and manageable procedure is to consider
three wavelengths. We used the three wavelength channels
typically used to characterize ophthalmic lenses [19]: Hydrogen
(red) C-line, Helium (central) d-line and Hydrogen (blue) F-line
with 656.27 µm, 587.56 µm and 486.13 µm respectively. The
associated refractive indexes are denoted with: nC, nd and nF.
From now on, in a first (rough) approximation we identify these
wavelengths with the red, green and blue (RGB) channels used
in trichromatic imaging and display devices. A more accurate
color representation would imply using many wavelengths to
approximate continuous spectral profiles.

D. Simulating the effect of distortion and space-variant PSF
Once the PSF field has been computed we can evaluate Eq. 1.
There are many methods proposed in computer graphics and
image processing literature to compute this imaging equation
with a space-variant PSF. A way to proceed is to compute the
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integration kernel from the PSF field (which is not trivial, and
rather computationally complex), and then apply some tech-
niques based on convolution and the Singular Value Decompo-
sition (see, e.g., [20, 21]). However these methods can not easily
integrate the distortion effect.

An alternative approach, which includes the distortion (map-
ping T) simultaneously with the blurring, is to directly simulate
the aggregation of PSFs, each one centered at the coordinates
given by T.

For this purpose, computer graphics researchers have simu-
lated blurred features using the so-called distributed ray trac-
ing [22] techniques. The idea is to trace multiple samples from
each pixel/voxel location of the scene, distributed according to
the corresponding (previously computed) PSF field. A classical
solution is to use a random sampling (see, e.g., [23]). However,
other possibilities are open, like to do a uniform deterministic
sampling covering the pixel [8]. This latter method is specially
suitable for our purposes, because our PSFs, like in [8], are uni-
form elliptical disks. Instead of actually tracing all those rays, in
our case we only need to trace a central ray, and simply apply the
geometrical transformation induced by the local dioptric matrix
to a normalized circular disk made of uniform samples, defined
in the reference image space. Each color component of a pixel in
the reference image gives raise to an elliptical cloud of dots in
the image space, as indicated in Fig. 4, whose contributions to
the final image pixels’ values are aggregated. For the reference
circular disk we used 197 dots, each mapped and bi-linearly
shared by adjoint cells in = grid, before integrating them. Addi-
tionally we imposed a minimal value of 90 arc-seconds for the
width of the ellipse’s axes.

Finally, in order to avoid undesired effects of positive mag-
nification (digital zoom), producing unnatural smoothness, we
used a reference image with a higher angular sampling rate
(60 arcsec/pixel) than the simulation result (90 arcsec/pixel).
These sampling rates difference allows for up to 50 % positive
magnification free from digital zoom artifacts.

3. EXAMPLES OF APPLICATION

We simulated scene image degradation for two different types
of +5 D spherical lenses. To compute the defocus blur in both
lenses we assumed a 2.5 mm pupil radius.

Lens A: The radii of curvature of the front and back surfaces
were +56.6 and +131 mm respectively. Central thickness was
3 mm. We assumed a CR39 plastic material, with the follow-
ing refractive indexes: nd=1.498, nF=1.504 and nC=1.4956 [19].
This design approximately represents the so-called Percival solu-
tion [19], which corresponds to the spherical lens that minimizes
the mean power error for all gaze directions, leaving some de-
gree of astigmatism. Additionally, the dispersion chromatic
power of CR39 is moderate.

Lens B: We selected an extreme flat design (almost plano-
convex). The radii of curvature of the front and back surfaces
were +114 and +3903 mm respectively. As for Lens A, central
thickness was 3 mm. For this lens we selected a polycarbon-
ate material, with the following refractive indexes: nd=1.5855,
nF=1.5994 and nC=1.5799 [24]. Note that this flat polycarbonate
design is not a wearable lens; instead, it has been intentionally
designed to produce high polychromatic blur and distortion
levels in order to illustrate large image degradations.

For the experiments shown here, we have chosen a simplify-
ing assumption, suitable for a far-sight spectacle design. Namely,
we have considered a scene made of far objects. Then, we avoid

computing the depth map d(θ, φ) that specifies the distance for
each view angle. For computation purposes we chose a constant:
d(θ, φ) = 1010.

For this purpose, we used here a high-quality photographic
outdoors long-distance image: photograph 1C3A6074.CR2,
available at www.dpreview.com, with permission from its author,
James Carey. In order to remove any traces from the sensor’s
CFA (color filter array, such as Bayer), we have first decreased
the spatial resolution of this image, by locally averaging 2× 2
pixel non-overlapping blocks. We have then cropped a region of
1536× 768 pixels for our reference original, which corresponds
to a 25.6◦ × 12.8◦ solid angle, considering a resolution of 60
arcsec/pixel. For obtaining the emmetropic naked-eye image
at 90 arcsec/pixel resolution of Figure 5, we have simply re-
sampled our reference original, by first interpolating 2× 2 and
then averaging 3× 3 non-overlapping blocks, resulting in a 2/3
magnification factor. That resulted in a 1024× 512 pixel image.
Global scene simulations shown here (Figures 5 and 6) are de-
signed to be visualized from a 45 cm distance, the eye’s primary
line of sight being orthogonal to the upper left corner of the
image plane.

A. Simulations
Figures 5 and 6 show how a scene image is seen through Lens A
and B, respectively. We exploited the axial rotationally symmetry
of the lens examples and plotted only one quadrant of the whole
range of eye rotations; i.e θ and φ ranging from 0 to 25.6◦ and
−12.8◦ respectively. The primary line of sight (θ = 0◦ and
φ = 0◦) is located at the top left corner of both images.

The blurring effects (including transverse chromatic aberra-
tion) can be more easily perceived in the area close to the down
right corner of the scene, to a larger extent when using lens B
(Fig. 6). To see more clearly the effects of the scene image degra-
dation, in Figure 7 we zoomed-in two image details located at
the right upper and bottom corners of the scene seen through
lenses A and B. For comparison purposes we also included the
same details as seen with an emmetropic naked eye.

Fig. 7 shows the higher level of blurring of lens B as compared
with lens A. Whereas for the latter the number printed over the
boat surface (56974), though blurry, can be discriminated, the
larger blur introduced by lens B prevents from reading that
number. The chromatic effect is more clearly seen at the bottom
rigth corner of the scene image. The white strips of the window
frame appear as colored bands through both lenses, although
the effect is stronger in lens B. Figure 8 helps to understand these
effects. It depicts the polychromatic geometrical blurs associ-
ated to the gaze directions covering the zoomed-in scene areas
of Fig. 7. In both lenses the axial rotational symmetry implies
the astigmatism blur has its major axis oriented towards the
radial direction. However, lens B generates a larger and more
spread astigmatic blur ellipse than that of lens A. The polychro-
matic geometrical blurs also show how the blueish color are
more spread than those closer to red, stressing the role of trans-
verse chromatic aberration when using polycarbonate materials.
Indeed, this role is in accordance with previous experimental
works [25], which report that the effect of 0.1 prismatic diopter
due to transverse chromatic aberration is similar to that due to
0.5 D of cylindrical defocus.

The distortion effects can be more explicitly visualized if a
regular mesh image is used instead of a natural scene. This
is shown in Figure 9. As expected, lenses A and B generate
a distortion that increases radially from center to periphery,
much the same as the astigmatic blur [3]. The visual system
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is, nonetheless, more tolerant to distortion than to blur, partly
due to neural adaptation and partly to the comparatively lower
negative impact of distortion on the visual information flow.

Finally, one can perceive a significant loss of brightness of
the simulated images in all examples with respect to the naked-
eye reference. Such effect is simply due to the strong positive
magnification of the lenses chosen in this article (+5D), which
proportionally decreases the irradiance on the retina. However,
this phenomenon has usually not a strong visual impact. Un-
der normal circumstances (photopic visual range) a moderate
decrease of the global brightness level has quite a small effect on
visual perception, thanks to neural adaptation.

4. DISCUSSION

In this paper we provide a comprehensive procedure to simulate
real-world scenes viewed through ophthalmic lenses. We note
that we are just simulating the effects on image formation due
to the optical defects induced by ophthalmic lenses, without
considering eye’s own aberrations. To consider them, one should
first measure them and afterwards include their effect in the PSF
field computation step.

Such tool is specially useful in the optometry practice because
its prediction nature. This, for instance, occurs for off-axis gaze
directions in high power monofocal or progressive addition
lenses. In those cases, in which chromatic aberration, distortion
and blurring are mixed, it is highly important to predict the
interaction of all these optical errors in the final scene.

Indeed, our simulation tool could shed light to specific de-
signs trade-offs. For example: should ophthalmic lens designs
be lead by a metric that tries to avoid regions having simulta-
neously low magnification (magnification < 1) and high blur-
ring? [3].

It is quite obvious that the most natural application of our
simulation tool is the evaluation of progressive addition lenses
(PALs). We have not included any example of it because ana-
lyzing PALs involve some, not trivial, adaptions of the general
procedure that will be tackled in a future work. In particular,
simulating PALs implies a careful analysis on the accommoda-
tion changes when looking at different object locations through
the lens. The object location modifies both the ellipse blur (due
to changes in the object vergence) and the distortion. This effect
is included in our procedure by means of d(θ, φ) function. How-
ever, additionally, the power of the eye itself changes during ac-
commodation because of crystalline lens changes. Such change
should be included in our procedure substituting the fixed fo-
cal length (H′F′) of Eq. 2 with a function H′F′ = f (d(θ, φ)),
depending on the object distance location. This function is the
accommodative response of the eye. If unknown, average values
for a specific age range could be used [15].

Finally, we note that our procedure is specially suitable to be
integrated in a virtual (or augmented) reality framework, provid-
ing a fully visual immersion experience. This again would imply
extra-work that includes modeling imaging formation through
a head-mounted display optical system. Indeed, Hoya Corpora-
tion claims to commercialize such a simulation tool (Hoya Vision
Simulator [26]), although no openly available demonstrator nor
scientific literature is available to make a comparison with our
procedure.

A. Acknowledgments
This work was supported by grant FIS2016-75891-P from the
Spanish Ministerio de Economia, Industria y Competitividad.

REFERENCES

1. K. Rayner, Eye movements in reading and information processing: 20
years of research, Psychol. Bull. 124(3), 372–422 (1998).

2. B.A. Barsky, A.W. Bargteil, D.D. García and S.A. Klein., Introducing
vision-realistic rendering, in Eurographics Proceedings, 1–7 (2002).

3. S. Barbero, J. Portilla, Geometrical interpretation of dioptric blurring and
magnification in ophthalmic lenses, Opt. Express. 23(10): 13185–13199
(2015).

4. S. Barbero, J. Portilla, On the relation between diopter power and magni-
fication in progressive addition lenses, Ophth. Phy. Opt. 36(44): 421–427
(2016).

5. M. Kakimoto, T. Tatsukawa, Y. Mukai, T. Nishita, Interactive simulation
of the human eye depth of field and its correction by spectacle lenses,
Comput. Graph. Forum. 26(3), 627–636 (2007).

6. M. Kakimoto, T. Tatsukawa, T. Nishita, An eyeglass simulator using
conoid tracing, Comput. Graph. Forum 29(8), 2427–2437 (2010).

7. J. Rodriguez-Celaya, P. Brunet, N. Ezquerra and J.E. Palomar., A Virtual
Reality approach to progressive lenses simulation, in XV Congreso
Espanol de Informatica Grafica, 1–9 (2005).

8. M. Niesner, R. Sturm, G. Greiner, Real-time simulation and visualization
of human vision through eyeglasses on the GPU, in Proceedings of the
11th ACM SIGGRAPH, 195–202 (2012).

9. J.W. Goodman, Introduction to Fourier optics. San Francisco, McGraw-
Hill (1968).

10. D.A. Atchison., Modern optical design assessment and spectacle
lenses, Opt. Act. 32(5), 607-–634 (1985).

11. J. Alonso, J.A. Gomez-Pedrero, E. Bernabeu, Local dioptric power
matrix in a progressive addition lens, Ophthal. Physl. Opt. 17(6), 522-
–529 (1997).

12. P. Henry, M. Krainin, E. Herbst, X. Ren and D. Fox, RGB-D mapping:
Using Kinect-style depth cameras for dense 3D modeling of indoor
environments, Int. J. Rob. Res. 31(5): 647–663 (2012).

13. J. Loos, P. Slusallek, H.P. Seidel, Using wavefront tracing for the visual-
ization and optimization of progressive lenses, Comput. Graph. Forum
17(3): 255–265 (1998)

14. O.N. Stavroudis, The optics of rays, wavefronts, and caustics. New
York, Academic Press (1972).

15. D.A. Atchison, G. Smith., Optics of the human eye. Edinburgh, Butter-
worth Heinemann (2000).

16. R.B. Rabbetts, Bennett & Rabbetts’ clinical visual optics. Edinburgh,
Elsevier/Butterworth Heinemann (2007).

17. G. Smith, Angular diameter of defocus blur discs, Opt. Vis. Sci. 59(11),
885–889 (1982).

18. C. Chan, G. Smith, R.J. Jacobs., Simulating refractive errors: source
and observer methods, Opt. Vis. Sci. 62(3), 207–216 (1985).

19. C. Fowler, Spectacle lenses: theory and practice. Oxford, Butterworth-
Heinemann (2001).

20. D. Miraut and J. Portilla . Efficient shift-variant image restoration using
deformable filtering (Part I), EURASIP J Adv Signal Process 2012(1),
(2012).

21. L. Denis, E. Thiébaut, F. Soulez, J. Becker and R. Mourya. Fast Approx-
imations of Shift-Variant Blur. Int. J. Comput. Vision 115(3), 253–278
(2015)

22. R.L. Cook, T. Porter, and L. Carpenter, Distributed ray tracing, in
Proceedings of the 11th ACM SIGGRAPH ’84, 137–145 (1984).

23. E. Veach, J. Leonidas, and J. Guibas, Optimally combining sampling
techniques for Monte Carlo rendering, in Proceedings of the 22nd SIG-
GRAPH, 419–428 (1995)

24. M.J. Weber, Handbook of optical materials. Boca Raton, CRC Press
(2003).

25. C.Y. Tang and W.N. Charman, Effects of monochromatic and chromatic
oblique aberrations on visual performance during spectacle lens wear,
Ophthal. Physiol. Opt. 12, 340–9 (1992).

26. http://www.hoya-vision-simulator.com/



Research Article Journal of the Optical Society of America A 6

5. FIGURES

Fig. 1. Gaze direction (g) with respect to the primary line of
sight (z) is described by two angular coordinates: θ and φ.

Fig. 2. Scheme showing how the distance from each object
point of the scene to the lens changes, thus inducing a different
vergence onto the eye.

Fig. 3. Elliptical blur size. H’ and N’ are the back principal and
back nodal plane positions, ρ is the radius of the exit pupil and
f j a principal focal length.

Fig. 4. Generating clouds of elliptical dots to simulate space-
variant blur.
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Fig. 5. Simulation of scene image seen with naked eye. Only one quadrant plotted, where the primary line of sight is located in the
left top corner.
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(a)

(b)

Fig. 6. Simulation of scene image seen through lenses A (top) and B (bottom). Only one quadrant plotted, where the primary line of
sight is located in the left top corner.
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(a) (c) (e)

(b) (d) (f)

Fig. 7. Two details of scene image simulation (a)-(b) naked eye;
and seen through: (c)-(d) Lens A; (e)-(f) Lens B.

(a) (c)

(b) (d)

Fig. 8. Polycromatic PSFs for right top (upper image) and
bottom (lower image) details of overall scene image. (a)-(b)
Lens A; (c)-(d) Lens B.

(a)

(b)

Fig. 9. Mesh seen through: (a) Lens A; (b) Lens B. Only one
quadrant plotted, where the primary line of sight is located in
the left top corner.
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