

Laccase-Catalyzed Bioelectrochemical Oxidation of Water Assisted with Visible Light

<u>Marcos Pita</u>, Cristina Tapia, Sergey Shleev, José Carlos Conesa, Antonio L. De Lacey

Funding

MINECO/FEDER
CTQ2015-71290-R and
ENE2013-46624-C4-1-R

• CSIC PIE 2015601018

 FP7-PEOPLE-2013-ITN-607793

UNIÓN EUROPEA "Una manera de hacer Europa"

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Water Splitting

- Goal: obtain H₂ and O₂ from H₂O through a sustainable synthesis route.
- High energy demanding process.
- Appropriate catalysts are key to the process.

 $2 \cdot H_2 O \xrightarrow{E} 2 \cdot H_2 + O_2$

Electrochemical Water Splitting

- Goal: obtain H₂ and O₂ from H₂O through a sustainable synthesis route.
- High energy demanding process.
- Appropriate catalysts are key to the process.
- Electrochemistry can supply enough energy, although the overpotentials are high.
- Research focus on either electrode, as their behavior and mechanisms differ.

Bioelectrochemical Water Splitting

- Catalytic processes allow minimizing the overpotential challenge.
- Appropriate biocatalysts are key to the process: Hydrogenase for the anode; enzyme candidate for the cathode?
- O₂ evolution is not a naturaloccurring reaction except for photosynthetic routes (PSI, PSII).

Bioelectrochemical O₂ Evolution

 Cu complexes have been reported as electrocatalysts for O₂ evolution.

Chen, Z.; Meyer, T.J. Angew. Chem. Int. Ed. 2013, 52, 700-703.

 Laccase immobilized on an electrode can be forced through an external potential to produce O₂ from water.

Pita, M. et al. J. Am. Chem. Soc. 2014, 136, 5892-5895

Photolytic Water Splitting

- Solar light can provide the energy if appropriate catalysts are used. First example Fujishima, Honda (1972 Nature).
- Only uses UV, disregards ≥ 95% solar spectrum.
- It can be doped, used with cocatalysts, even co-biocatalysts to ease the H₂ evolution.

Photolytic Water Splitting

- Other photocalysts can harvest visible light and their conduction band allows H₂ evolution, although may need a cocatalyst.
- In₂S₃ has the physical properties to allow water split

In₂S₃ Characterization

- Microparticles ranging 100 nm – 1 μm. Crystal size: 37.2 nm (XRD).
- Band gap: 2.1 eV
- n-type semiconductor
- High surface and porosity:
 - $40.6 \pm 0.3 \text{ m}^2/\text{g}, \\ 0.168 \text{ cm}^3/\text{g},$
 - average pore diameter:16.5 nm.

In₂S₃ as co-catalyst for H₂ production

- H₂ photo-generation test with In₂S₃ + NiFeSe Hase
- The Hase included surface aminoacid mutations: cysteine residues substituted others close to the distal Fe₄S₄ cluster.
- Aqueous sulfide solution pH=7, tungsten lamp, mass spec. H₂ detection

In₂S₃ as co-catalyst for H₂ production

- Photocatalytic production of H₂ and In₂S₃ particles just after they are mixed together.
 - Illuminating on the mixture yielded H2 production, whereas illuminating only one of the components failed.
- Incubation time was analyzed.
- 6 hours incubation yielded the best results in both specific activity and photoactivity vs methyl viologen standard activity.
- 1 day incubation affected the interface between the catalysts-

Photobiocatalytic H₂ production

- In₂S₃ is a suitable material for H₂ production in combination with hydrogenase.
- If the sacrificial agent is substituted by an electrode, aiming a photobioelectrocatalytic process, H₂ is not produced: a p-type semiconductor is needed.

Photobiocatalytic O₂ production

- In₂S₃ was deposited on an FTO electrode and electrochemically modified with aminoaryldiazonium salt.
- Trametes hirsuta laccase was covalently bonded to the ln₂S₃ surface.
- O₂ production was evaluated upon illumination and simultaneous application of an oxidative potential.

Photoelectrochemical setup

C. Tapia et al., ACS Catalysis 7 (2017) 4881-4889.

Cyclic Voltammetry Results

Photoelectrochemical operation of $FTO + In_2S_3 + ThLc$ laccase

Cyclic voltammograms at 20 mV/s

Chronoamperometry Results

The irradiated electrode modified with In_2S_3 and laccase yields O_2 production.

There appears a 50s delay between the current measured and the O₂ sensor signal.

Interest in quantifying the amount of O_2 produced.

Chronoamperometry Calibration

Chronoamperometry of FTO at increasing V vs. SHE: evaluate response from O₂ sensor

Chronoamperometry Calibration

Chronoamperometry of FTO at increasing V vs. SHE: evaluate response from O₂ sensor

Chronoamperometry Results

E (SHE) / V	Charge (mC)	O ₂ (nmol)	Faradaic yield (%)
0.7	0.3 ± 0.1	0	0
0.8	0.7 ± 0.1	0.5 ± 0.1	30 ± 5
0.9	0.6 ± 0.2	0.44 ± 0.03	30 ± 10
1.0	0.8 ± 0.2	0.93 ± 0.04	45 ± 5

C. Tapia et al., ACS Catalysis 7 (2017) 4881-4889.

Light effect on ThLc

ThLc immobilized on FTO or FTO- In_2S_3 electrodes keeps its natural activity.

After irradiating either FTO-ThLc or FTO-In₂S₃-ThLc electrodes.

Inactivation took place under applied +0.8V potential, also with no applied potential.

Light filter effect

Xe Light affects severely to ThLc.

We used light filters to remove UV

 O_2 production detected only when $\lambda \ge 400$ nm was irradiated.

In any case ThLc survived longer than 5 min

Future Work

- Test alternative semiconductors absorbing in VIS range: SnS₂, CuO...
- Protect laccase from light inactivation.
- Increase effective area (nanoparticles).
- Assemble a full water splitting cell able of photobioproducing H₂ and O₂.

Thank you!