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ABSTRACT 

M-MCM-41 molecular sieves (M = Ce or Cr) were prepared by a hydrothermal method and 

impregnated with TiO2. The materials were characterized by XRD, N2 adsorption-desorption, 

DRS and XPS. Their potential application to photooxidize H2S in a wet gas stream was tested in 

a continuous flow reactor operating at a flow rate of 110 mL·min-1 at 50% relative humidity and 

using 30 ppmv of the pollutant. The photocatalytic efficiency using UV-A and visible-light was 

compared to the activity of TiO2/MCM-41 without heteroatoms incorporated into the MCM-41 

structure. It was found that the incorporation of Ce did not improve the performance of 

TiO2/MCM-41, but Cr-containing samples presented higher initial efficiency and were able to 

photooxidize H2S without formation of SO2 as a by-product, in contrast to the other prepared 

samples and to Degussa P-25 TiO2. Moreover, no other gaseous by-product was detected. The 

isomorphic incorporation of Cr into the structure of MCM-41 followed by TiO2 incorporation 

produced photocatalysts that presented good adsorption capacity and were much more active 

under visible-light than under UV-light. This performance represents an important advantage for 

solar applications. Their photoactivity depended on the concentration of chromium; the highest 

efficiency was attained with samples with a Si/Cr ratio of 50. Finally, deactivation was observed 

as a consequence of sulfate accumulation on the surface of the catalyst and reduction of Cr6+. 
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1 INTRODUCTION 

Most research about heterogeneous photocatalysis uses TiO2-anatase nanoparticles, which are 

known to absorb radiation below 387 nm (band gap energy = 3.2 eV). TiO2 may take advantage 

of just the UV-A range of the solar spectrum, which represents only 3-6% of the total solar 

radiation. In addition, the low photonic efficiency of TiO2 [1] further limits its overall usefulness. 

As a result, artificial illumination is usually required and, consequently, the full potential of 

photocatalysis as a cheap and clean technology is not completely realized. Therefore, a great 

deal of attention has been devoted to design visible light-activated materials to improve the 

photocatalytic systems [2] by approaches such as TiO2 doping with metal ions [3], N [4], C [5] or 

S [6]; semiconductor coupling [7] or even the search for alternative TiO2-free photocatalysts [8]. 

In this direction, mesoporous M41S molecular sieves modified by incorporation of transition 

metals have been tested recently in heterogeneous photocatalysis.  

 

MCM-41 is the most attractive member of the M41S family because of its hexagonal array of 

uniform pores with adjustable diameter (15 to 100 Å) and high surface area (typically > 

1000 m2.g-1) [9]. The isomorphic incorporation of transition metals into the MCM-41structure and 

impregnation with TiO2 produces catalysts active under visible light [10]. In addition to acting as 

a support to control the dispersion and local structure of the active sites, molecular sieves have 

other useful properties such as the condensation effect for reactant gases or the shape 

selectivity due to the pore structure and restricted molecular-scale size [11]. Finally, the MCM-

41 structure can enhance the interaction between TiO2 and the transition metal, which is directly 

correlated to photoactivity. The good synergy between TiO2 and Cr-MCM-41 has been recently 

demonstrated in the destruction of organic pollutants in aqueous phase [12]. The authors have 

proved the possibility of using this material also in gas phase photocatalysis in the elimination of 



3 

 

thiophene [13]. The use of TiO2/Cr-MCM-41 in gas phase eliminates the problem of Cr leaching 

and improves the environmental significance of these materials [14].  

 

The potential role of gas phase photocatalysis in the removal of malodorous and toxic 

compounds has been demonstrated by several authors [15-20]. One of the most targeted sulfur 

compounds to degrade is H2S, a widespread chemical released as by-product of many 

processes, such as sour gas flaring, petroleum refining, pulp and paper manufacturing or 

wastewater treatment. H2S has a very low odor threshold, 0.5 ppbv [21], and the Threshold Limit 

Values -Short Term Exposure Limit (TLV-STEL) and Time-Weighted Average (TLV-TWA)- are 

10 and 15 ppmv, respectively, in most European countries [22]. Although widely used, 

commercial H2S removal techniques such as biofiltration and bioscrubbing [23], wet chemical 

scrubbing [24], incineration [25] and adsorption [26] are not optimal solutions. In fact, these 

techniques lack long-term stability, are non-destructive or require high chemicals and energy 

consumption. In contrast, the known advantages of photocatalysis make this technology very 

attractive. However, an important barrier to the full application of photocatalysis is the chemical 

nature of the pollutant and, consequently, of the reaction products. On one hand, most 

pollutants containing S (hydrogen sulfide, sulfur dioxide, dimethyl sulfide, dimethyl disulfide, 

carbon disulfide, carbonyl sulfide) or other heteroatoms such as N, P [27] or Si [28, 29], are 

capable of promoting irreversible deactivation of the photocatalyst. For compounds containing 

sulfur, accumulation of sulfate as the final oxidation product may deactivate the photocatalyst 

[30, 31]. On the other hand, a strategy to avoid deactivation could be limiting the 

photodegradation to reactions releasing gaseous oxidation products instead of depositing 

sulfate, but all gaseous sulfur compounds are toxic, corrosive and malodorous and therefore not 

recommended as final products of a treatment [32]. In our previous research with sol-gel TiO2 

and UV light, the feasibility of H2S photocatalytic removal was confirmed [33]. Nevertheless, 

sulfate was found to accumulate on the surface deactivating the catalyst. Moreover, although 

Canela and collaborators did not find any reaction product besides sulfate [34] and Kataoka and 
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collaborators found only a small amount of SO2 attributed to sources other than photoreaction 

[35], Portela and collaborators have found, with both TiO2 and TiO2-ZrO2 photocatalysts, that 

SO2 was a reaction product [20]. The formation of sulfur dioxide has been observed during the 

photooxidation of other sulfur compounds. For instance, Nishikawa and Takahara observed its 

formation during tests with dimethyl sulfide [36].  

 

In this study, we test the potential application of M-MCM-41 (M = Ce or Cr) molecular sieves 

impregnated with TiO2 to destruct H2S via photocatalysis using UV and visible light. The effect 

of the molecular sieve and the incorporated heteroatoms in the selectivity of the reaction and 

the nature of the catalyst deactivation is studied.  

2 MATERIALS AND EXPERIMENTAL 

2.1 Synthesis of photocatalysts based on MCM-41 

M-MCM-41 (M = Ce or Cr) molecular sieves were prepared using a hydrothermal method 

adapted from [37]. CrCl3·6H2O (Vetec, 97%) and CeCl3·7H2O (Vetec, 99%) were used as 

metallic precursors and tetraethylortosilicate (TEOS; Fluka, 99%) as source of silicon. In order 

to prepare samples with atomic ratio Si/M = ∞ (no heteroatom), 100, 50 and 25, the metallic 

precursors were added to a N-cetyl-N,N,N-trimethylammonium chloride solution (CTACl; 

Aldrich, 25% w/w) under stirring. After 30 minutes, tetramethylammonium hydroxide solution 

(TMAOH; Fluka, 25% w/w) was added dropwise under stirring. After addition of 

tetraethylortosilicate (TEOS; Fluka, 99%), the resulting mixture was stirred for 1.5 h. The molar 

ratio SiO2:CTACl:TMAOH:H2O:M (Cr2O3 or CeO2) was 1:0.40:0.26:25:x (where x = 0, 0.01, 

0.02 or 0.04). The final mixture, with pH values between 11 and 12, was treated under 

autogenous pressure without stirring at 135oC for 14 hours in a steel autoclave internally lined 

with Teflon. The resulting solids were filtered, washed with distilled water until pH 7 was 

reached, and dried in an oven at 90oC for 12 hours. The template was removed by calcination 
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under N2 flow at 540oC for 1 hour (heating rate of 2oC·min-1) followed by 5 hours under airflow 

at the same temperature.  

The resulting materials were impregnated with 20 wt% of TiO2 obtained by hydrolysis of 

titanium (IV) isopropoxide (Aldrich, 97%). The molecular sieve (typically 1.0 g) was suspended 

in 80 mL of isopropyl alcohol (Synth, p.a.) and the proper amount of Ti(OPri)4 was added to 

achieve 20 wt% of TiO2. The suspension was stirred at ambient temperature and 1 mL of water 

was added dropwise. After 1 h the solvent was evaporated by heating at 50oC. The samples 

were dried in an oven for 1 h at 90oC and calcined at 450oC under airflow for 4 h.  

In Table 1 are listed the different prepared samples (the number in brackets is the Si/M ratio) 

together with the sample P25-SiO2, prepared for comparative purposes by mixing commercial 

SiO2 (Merck) and TiO2 (Degussa P-25). When the samples have been used in photocatalytic 

tests with either visible or ultraviolet-A radiation the suffix “VIS” or “UVA” was added.. 

2.2 Characterization of synthesized photocatalysts 

This study used N2 physisorption to determine surface area and pore size distribution with a 

Quantachrome Autosorb 1C. All samples were degassed for 1 h at 300oC under vacuum before 

analysis. Surface areas and pore size distributions were determined using BET (P/P0 = 0.05-

0.30) and BJH methods, respectively, both through Autosorb for Windows® software, version 

1.24. Diffuse reflectance spectra (DRS) in the range of 200-800 nm were recorded by a Varian 

spectrophotometer equipped with ISR1200 integrating sphere attachment using BaSO4 as 

reference. X-Ray Diffraction analysis were performed by means of an X´Pert Pro PANalytical 

automatic diffractometer, using Cu Kα radiation (λ = 0.154 nm) with a Ni filter. Low angle 

measurements were performed in the 2θ range from 0.4º to 8º with a step size of 0.02º and a 

step time of 20 s.  

X-ray photoelectron spectra (XPS) were obtained with a VG Escalab 200R spectrometer fitted 

with a monochromated Mg Kα radiation (hν = 1253.6 eV) 120 W X-ray source and a 

hemispherical electron analyzer. The powdered samples were placed on a sample rod and 
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introduced in a pre-treatment chamber to be degassed at 25ºC and 10-3 Pa for 5 hours prior to 

their transfer to the analysis chamber. Residual pressure during data acquisition was 

maintained below 3·10-7 Pa. The energy regions of the photoelectrons of interest (Cr 2p, Ti 2p, 

Si 2s, O 1s, S 1s), were scanned several times to provide an acceptable signal-to-noise ratio. 

Accurate binding energies (± 0.2 eV) were determined by referring to the C1s peak at 284.9 eV. 

2.3 Photocatalytic activity tests  

The photocatalytic tests were performed in a steel tubular reactor (dint = 18.2 mm) illuminated by 

an internal 8W lamp placed in axial position (dext = 15.2 mm). OSRAM L8W/954 was used for 

tests made with visible light (emission maximum at around 460 nm, 540 nm and 615 nm) and 

PHILIPS TL8W/05 FAM for tests made with UV light (emission maximum at 365 nm). 200 mg of 

photocatalyst were placed in the thin annular volume between the lamp and the reactor wall 

(thickness: 3 mm). The catalyst occupied a length of 10 mm and was held in place by plugs of 

glass wool. A continuous inlet gas stream with a flow rate of 110 mL·min-1, 30 ppmv of H2S and 

50% relative humidity at 30ºC entered the reactor. This procedure implied a residence time of 

0.43 s and a space time (calculated as catalyst load to molar flow rate ratio) of 8·1010 mg·s·mol-

1. H2S was supplied from a certified H2S/N2 cylinder (Air Liquide) and diluted with wet air. The 

desired concentrations of pollutant, H2O and O2 (20 % ±1) in the air were attained by means of 

liquid and gas mass flow controllers, in a system that has already been reported [33]. The 

analysis of the gaseous compounds was performed using a Micro-GC Varian CP-4900 

equipped with a micro thermal conductivity detector (μ-TCD) and a CP-PoraPlotQ column (10 m 

x 0.15 mm). The concentration of the continuous inlet gas stream was measured in by-pass until 

stabilization before each run. The gas stream was then passed through the reaction system in 

dark conditions. The lamp was turned on only when the adsorption equilibrium was reached (the 

H2S concentration was higher than 95% of the by-pass value). 
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3 RESULTS AND DISCUSSION 

3.1 Characterization of synthesized photocatalysts 

3.1.1. XRD studies and N2 adsorption isotherms 

Low angle XRD patterns of these materials showed a peak at 2θ values of about 2º in all cases, 

as shown in Figure 1 for some representative samples. This peak can be indexed to the (100) 

reflection of the hexagonal array of pores characteristic of MCM-41 phase [38]. However, the 

relatively low intensity of this feature, coupled with the absence of the weaker high-index peaks, 

indicates that the MCM structure was not completely ordered, and therefore the existence of 

some amorphous domains in our samples was highly likely. In contrast with other studies [39, 

40] the incorporation of Cr or Ce is not clearly detrimental for the crystallinity of our samples 

because, as displayed in Figure 1, the intensity of the (100) peak presents similar or higher 

intensity for samples containing metals than for the pure siliceous molecular sieve. The unit cell 

parameter of the hexagonal cell, a0, can be calculated from the spacing of the (100) planes, 

d100, according to the equation a0= 2d100/√3 [40]. The results obtained for these samples were 

summarized in Table 1. The data indicate that the incorporation of Cr slightly increased the unit 

cell, while Ce addition had the opposite effect. Although the increment of the M-O distance with 

respect to Si-O is expected to yield an increment of a0, the opposite tendency has been 

observed as well [39], as specific synthesis conditions may affect wall thickness. 

Figure 1 

Meanwhile, TiO2 incorporation was studied by high angle (20-80º 2θ) XRD measurements. The 

obtained results revealed the formation of TiO2-anatase, whose pattern is overlapped with the 

broad amorphous halo of SiO2 at about 23.4º. However, there is no obvious indication of the 

presence of other metal oxides. The crystallite size of TiO2 for samples with and without Cr or 

Ce estimated by the Scherrer equation was summarized in Table 1. These results show that Cr 

incorporation results in anatase crystals of smaller diameter, which could be caused by an 

easier nucleation on the metal-modified surface of the molecular sieve. 
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The N2 physisorption isotherms are of type IV, according to IUPAC classification, a typical 

pattern of mesoporous structures [41]. All samples exhibited complementary textural- and 

framework-confined mesoporosity, which was evidenced by the presence of two separate and 

well-defined hysteresis loops. Isotherm profiles were not modified by TiO2 impregnation. The 

formation of larger pores in samples containing chromium or cerium was associated to the 

formation of defects (or distortions) in the molecular sieve structure (Table 1). The surface area 

decreased with the amount of chromium and cerium in the samples. The same trend has been 

reported in the literature [42].  

Table 1 

3.1.2. Diffuse reflectance spectroscopy – UV-Vis 

Figure 2 shows UV-Vis spectra of Cr-MCM-41 and Ce-MCM-41 impregnated with 20 wt% TiO2. 

Chromium-containing materials showed absorption beginning at approximately 600 nm, while 

samples without chromium absorbed light only in the UV-range. The presence of the 

heteroatom apparently reduced the band-gap energy from the 3.2 eV value found for pure TiO2 

to ≈2.0 eV. These results demonstrate that the synthesized materials have a great potential as 

photocatalysts capable of using solar light. DRS spectrum of calcined Cr-MCM-41(100) has two 

intense bands at 275 and 390 nm, attributed to O(2p)→Cr6+(3d0) charge transfer of chromate 

(CrO4
2-) species, that indicate chromium oxidation to Cr(VI) during calcination [43], [39]. 

Moreover, d-d transition of Cr5+ occurs in the same spectral region. The band at 440 nm may be 

assigned to octahedral Cr3+ ions which indicate the presence of Cr3+ in the calcined sample, 

even under calcination temperatures of 630ºC. Rodrigues et al. detected Cr3+ species on Cr-

MCM-41 [38]. The band at 440 nm may also be attributed to the forbidden charge transfer band 

of dichromate species [44]. In our study such process was difficult to observe due to the overlap 

with TiO2 adsorption band, after the impregnation. A band at ≈350 nm confirmed the formation 

of anatase TiO2 in chromium and cerium-containing materials. Band coincidence between TiO2 

and chromate species indicates that the absorption in the range of 370-500 nm could be related 

to a heterojunction of titania and chromium. The spectra of chromium-containing samples 
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showed an absorption band around 700 nm in the red region of the electromagnetic spectrum 

assigned to d-d transitions described as 4A2g(F)→4T2g(F) from Cr3+ in octahedral coordination 

[45]. The cerium-containing materials showed an absorption band below 300 nm attributed to 

the electronic transition from oxygen to cerium for a tetra-coordinated Ce4+ (O2-→Ce4+) [42]. The 

absorption in the visible region was very weak and no absorption was detected above 500 nm. 

Figure 2 

 

3.1.3. X-ray photoelectron (XPS) analysis 

Samples with different Cr content were analyzed by X-Ray photoelectron spectroscopy. The 

energy regions for Cr2p, Ti2p, Si2p, O1s and S1s were analyzed for all the samples. The Ti 

2p3/2 region showed a band centered at 458.5eV with a satellite peak at 464.2 eV characteristic 

of TiO2-anatase. The binding energy for Si2p core level was found at 103.3 eV, corresponding 

to SiO2. In Figure 3a and 3b the Cr2p and O1s spectra for samples with atomic ratio Si/Cr=100 

and Si/Cr=25 are displayed and the surface atomic ratios calculated for Cr-containing samples 

are collected in Table 2. The analysis of the Cr2p3/2 region showed the presence of two 

different Cr species or chemical states on the catalysts surface with maxima centered at 576.6 

eV and 579.0 eV, corresponding to Cr3+ and Cr6+ species, respectively. The presence of these 

two species has been observed previously with other supports [46]. The deconvolution of the 

O1s spectra showed two bands, centered at 532.7 eV and 529.7 eV. The former corresponded 

to oxygen from SiO2 [47] and the latter assigned to the combination of oxygen species from 

TiO2 and CrOx [48]. As expected, higher SiO2 content in TiO2/Cr-MCM-41(100) resulted in 

higher contribution of the O1s band centered at 532.7 eV. The sample with Si/Cr=25 presented 

the highest Cr/Ti ratio and also a greater amount of Cr+3, in agreement with Sun et al., who 

found that samples with smaller Si/Cr ratio contained mixed oxidation states and therefore lower 

Cr+6/Crtotal [14] Nevertheless, considering the Cr/Ti ratio calculated by XPS and the Si/Cr 

theoretical ratio, the results suggest the formation of extraframework Cr, probably as Cr2O3, 

reducing the metal dispersion on TiO2/Cr-MCM-41(25). 
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Figure 3 

In order to verify whether there was any influence of the irradiation and radiation type on the 

oxidation state of superficial species, XPS analysis of some samples were performed after 

reactions using visible and UV-A lamps (Figure 4). A band centered at 168.7 eV was detected 

now in the S1s spectra. According to the literature, this band was assigned to sulfate species 

[49]. A dependence of the S/Ti ratio with the Cr content in the sample was found (Table 2). On 

the other hand, the photocatalytic reaction promoted an increase of the Cr3+/Crtotal ratio in all the 

studied cases, due to the reduction of Cr6+ to Cr3+. Moreover, UV-A radiation, more energetic 

than visible radiation, practically caused the total reduction to Cr3+. The decrease of the Cr/Ti 

ratio after the catalytic test was probably due to the deposition of sulfate over the Cr species. 

Figure 4 

 

3.2 Adsorption capacity of the samples 

The adsorption capacity of the different catalysts under dynamic conditions in wet air was 

measured before the photocatalytic tests. The H2S adsorption capacity was very low when no 

heteroatom was incorporated into the structure of the molecular sieves. However, the 

adsorption capacity improved with the amount of chromium (Figure 4), despite a decrease in the 

surface area. Previous studies reported the use of hydrogen sulfide to reduce Cr(VI) to Cr(III) 

species [50]. Therefore, considering that these samples contain a significant amount of Cr6+, as 

revealed by XPS analysis, H2S could initially reduce part of the chromate present in Cr-

containing molecular sieves. Nevertheless, this process does not lead to the total reduction of 

the chromate species present in the samples, as the study of the used catalysts indicates. This 

fact could be related with the presence of different monochromate/polychromate species in the 

molecular sieve after calcination [44, 51]. 

Figure 5 

It has been performed one test in the absence of humidity in order to verify a possible 

competition for the adsorption sites between water and hydrogen sulfide. Our results confirmed 
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this fact since H2S adsorption capacity in the dark dropped drastically when humidity was 

present in the continuous gas stream (Figure 6, left). Once the catalyst surface was saturated, it 

was irradiated in order to eliminate H2S photocatalitically. The humidity did not seem to affect 

the photocatalytic activity (Figure 6, right).  

Figure 6 

 

3.3 Photocatalytic activity 

A blank test (without catalyst) demonstrated the absence of homogeneous photolysis of H2S. In 

Figure 7 a typical photocatalytic test is shown. When a constant concentration by-passing the 

reactor is reached, the polluted wet gas stream is passed through the reactor in the dark, until 

the adsorption drops below 5% of the H2S in the feed. Then the light is turned on. Around 30 

minutes, in the case of the UV-A–lamp, or 45 minutes, in the case of the visible-lamp, are 

necessary to reach the new adsorption equilibrium, due to the progressive temperature increase 

produced during the lamp initialization, which causes water and H2S desorption. 

Figure 7 

 

3.3.1 Photocatalytic activity with UV-A light 

Figure 8 shows the evolution of the photoactivity during 6 hours of UV irradiation of TiO2/M-

MCM-41 molecular sieves (M = Ce or Cr, Si/M = 50 and 100) compared to the TiO2-MCM-41 

molecular sieve (without heteroatom) and to a mixture of commercial SiO2 and TiO2 with the 

same TiO2 content (20% w/w). The latter presented the highest conversion, 80%, and no 

deactivation occurred within 3 hours. Despite the higher surface area of the molecular sieves, 

P25-SiO2 was more efficient in the degradation of H2S than TiO2 impregnated on MCM-41. The 

higher efficiency in H2S degradation of P-25 from Degussa can be explained by the synergic 

effect of anatase and rutile allotropic forms present in this material, an effect widely described in 

the literature [52, 53], while TiO2 added to MCM-41 is present only in the anatase form.  
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Figure 8 

Among the molecular sieves, the one without heteroatom converted 33% of the H2S and no 

deactivation occurred during 24 hours; the addition of Ce did not seem to improve this 

performance. The incorporation of Cr at the adequate concentration (Si/Cr = 50) had two 

different effects: the initial conversion rate was enhanced and the deactivation was faster. This 

results can be adequately explained by observing the formation of SO2 during the photoreaction 

(Figure 9), which is the only gaseous product detected during H2S photocatalytic degradation 

[20].  

Figure 9 

With P25-SiO2 most of the H2S was converted into SO2, which was desorbed and released with 

the outlet gas stream. Therefore, deactivation did not occur, but the degradation product into 

which the pollutant was converted is both toxic and corrosive. On the other hand, during tests 

with TiO2/Cr-MCM-41 samples, no gaseous products containing sulfur were detected. Sulfate or 

elemental sulfur, the most likely reaction products, would accumulate on the surface of the 

photocatalyst covering the active sites and, therefore, lead to a progressive loss of activity. In 

the case of TiO2/MCM-41 and TiO2/Ce-MCM-41, SO2 appeared in the outlet gas stream after 

some minutes of reaction, corroborating previous results on the same subject [20].  

 

In addition to the deactivation caused by products accumulation, the influence of Cr6+ reduction 

on this process, according to XPS results, must not be ignored. Sun et al. have reported that 

TiO2/Cr-MCM-41 catalysts deactivate gradually during 4-chlorophenol degradation under visible 

light due to Cr6+ reduction [14]. These authors have also found that reduced chromium in the 

photocatalyst can be completely reoxidized by heating the catalyst at 450ºC for 3 hours. 

Davydov et al. have found the same kind of deactivation and confirmed the progressive 

reduction of Cr6+ to Cr3+ and Cr2+ [10].  
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3.3.2. Photocatalytic activity with visible light 

Samples containing Cr show light absorption above 400 nm (see Figure 2), indicating that they 

might show photocatalytic activity under visible light. Figure 10 shows the photoactivity of the 

molecular sieves with Si/Cr ratios of ∞ (no Cr), 100, 50 and 25. As expected, the sample without 

chromium was unable to photodegrade H2S under visible light, while samples containing 

chromium were very active photocatalytically, 2-3 times more active than under UVA-light. 

Nevertheless, it has been found that the sample with Si/Cr=50 was more active than the 

samples with Si/Cr=25 or 100. This result indicates that there is an optimal amount of chromium 

for these photocatalysts. According to XPS results, the sample with higher metal loading 

presented higher S/Ti ratio, indicating that probably the extra-framework Cr2O3 favored the 

formation of sulfate and, in addition to the lower surface area and higher content of Cr3+, the 

faster catalyst deactivation. Cr-MCM-41(50) sample showed very low conversion of H2S, which 

was attributed to the fast reduction of Cr6+ [50]. Davydov et al. have shown that the interaction 

of Cr6+ and TiO2 is essential for the activity of the photocatalyst, because it allows the charge 

transfer transition Cr6+=O2-(Cr5+−O-)*, which is promoted by visible light [10]. Therefore, Cr5+ 

species can probably donate an electron to the neighboring TiO2. Meanwhile, the O- of the 

photoexcited chromate species can withdraw electrons from the TiO2 particles, leaving an 

oxidant hole in the valence band during the decay process.  

Ce-containing samples impregnated with TiO2 did not show any activity in the visible light, as 

expected due to the scarce absorption in the visible range (see Figure 2). 

Figure 10 

3.3. Discussion  

H2S was converted either into sulfate, which accumulated on the surface deactivating the 

catalyst, or as previous studies [33] into both sulfate and SO2, toxic and corrosive compound 

which was desorbed and released with the outlet gas stream, depending on the incorporation of 

Cr or not to the molecular sieves. In the first case, the reaction may take place using visible light 
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at even higher reaction rate than using UV-A-light, which enables the reaction activation by 

solar energy.  

TiO2/M-MCM-41 samples are equally active in the presence or absence of water vapor, which 

may be related to the higher surface area and to the large amount of Si-OH available in the 

molecular sieves than the supported TiO2 used in previous studies, where higher initial 

photoactivity and faster deactivation of the catalyst were observed with dry inlet gas streams 

[20] compared to streams containing water vapor [33].  

The presence of Cr6+ on the catalysts was essential to carry out the photocatalytic reaction, but 

low Cr concentration (Si/Cr ≥ 50) favors the conversion. Cr6+ was reduced to Cr3+ during the 

photocatalytic process, according to XPS results before and after the photocatalytic test, 

probably by the electrons accumulated on the catalyst surface. Therefore the increase of Cr3+ 

concentration was one reason for the catalysts deactivation. According to Rodrigues et al., 

during the degradation of trichloroethylene, Cr6+/Cr5+ were the only photospecies susceptible to 

absorb visible-wavelength photons, whereas with UV light Cr3+ species were also active [38]. 

Davydov et al. [10] observed that Cr6+ was essential for the reaction using visible light, since its 

fully reduced form did not exhibit any photoactivity, but the role of Cr3+ was not clear, even if the 

deactivated catalysts were rich in Cr3+.  

The catalysts deactivation was mainly caused by the reduction of Cr6+ to Cr3+ and the blockage 

of active sites due to the accumulation of sulfate on the catalysts surface. Nevertheless this 

deactivation may be reversible. Sun et al. pointed out that the reduced chromium in 25% 

TiO2/Cr-MCM-41 can be reoxidized to Cr6+ by calcination at 450ºC and under this circumstance 

the catalyst regeneration would be achieved [14]. We have analyzed a 20% TiO2/Cr-MCM-41 

deactivated sample by thermogravimetry-mass spectrometry (TG-MS) and the formation of 

sulfur species (SO and SO2) with a maximum at 460ºC indicates that sulfate may be 

decomposed by calcination as well. 
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4 CONCLUSIONS 

MCM-41 molecular sieves with incorporated Cr or Ce and impregnated with TiO2 (20% w/w) 

showed high efficiency to photooxidize H2S in gas phase.  

Among the prepared photocatalysts tested, the highest H2S conversion was obtained by the 

use of TiO2/Cr-MCM-41 and visible light. TiO2/Cr-MCM-41 degraded H2S with either UV- or 

visible-light and did not generate any other toxic gaseous product, such as SO2, which is a 

problem when the samples without Cr incorporation or TiO2 P-25 from Degussa are used. 

Nevertheless, the catalyst deactivated with time due to the reduction of Cr6+ to Cr3+ and the 

blockage of active sites by sulfate accumulation on the surface. The photoactivity depended on 

chromium concentration and the optimal Si/Cr ratio was found to be 50.  

The incorporation of Ce to the structure of the molecular sieves has neither improved their 

performance, nor avoided SO2 formation or extended the activity to the visible range.  
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Figure captions 
 

Figure 1. XRD patterns at low (A) and high (B) angle of the samples a) MCM-41, b) TiO2/Cr-

MCM-41(100) and c) TiO2/Cr-MCM-41(50). The star marks a peak of the sample holder, while 

”a” stands for the anatase peaks. 

Figure 2. DRS-UV-Vis spectra of the molecular sieves modified with Ce (left) and Cr (right). 

Figure 3. XPS spectra of the core levels for TiO2/Cr-MCM-41 samples with different Cr loading 

a) Cr2p b) O1s 

Figure 4. XPS spectra of the core levels for fresh and used samples: a) Cr 2p and b) O1s 

Figure 5. Adsorption of H2S in the dark as a function of chromium content. Si/Cr = ∞ (), 100 

(), 50 () and 25 (). 

Figure 6. Behavior of TiO2/Cr-MCM-41(50) sample in the dark (left) and during irradiation with 

UVA light after saturation (right) with wet () or dry () inlet gas streams.  

Figure 7. H2S (▬) and water (▬) during visible-light test with TiO2/Cr-MCM-41(50) sample. 

Figure 8. H2S conversion over time under UV-A light for P25-SiO2 (―), TiO2/MCM-41 (―), 

TiO2/Ce-MCM-41(100) (), TiO2/Ce-MCM-41(50) (), TiO2/Cr-MCM-41(100) () and 

TiO2/Cr-MCM-41(50) () 

Figure 9. SO2 generation during H2S UV-photooxidation with TiO2/MCM-41 (), TiO2/Ce-MCM-

41(100) (), and TiO2P25-SiO2 (). During tests with TiO2/Cr-MCM-41(100) no SO2 

was detected under neither UV light nor visible light. 

Figure 10. H2S conversion under visible light for MCM-41 with 20% TiO2 (black) and without 

TiO2 (gray) after 45 minutes (--) and 180 minutes (··) of illumination. 
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Table 1. Results of textural and structural characterization of the photocatalysts. 

Sample Si/M 
TiO2 

(%) 

BET 

(m2/g) 

Pore 

size (Å) 

Pore 

volume 

(cm3/g) 

Unit cell 

parameter 

a0
 (Å) 

TiO2 

size 

(nm) 

P25-SiO2 ∞ 20 51 - - - 23.0 

TiO2/MCM-41 ∞ 20 1068 22 0.54 49 13.3 

TiO2/Ce-MCM-41(100) 100 20 724 24 0.64 43 14.2 

TiO2/Ce-MCM-41(50) 50 20 542 23 0.57 48 8.9 

TiO2/Cr-MCM-41(100) 100 20 823 24 0.62 51 7.0 

TiO2/Cr-MCM-41(50) 50 20 557 29 0.60 52 6.9 

TiO2/Cr-MCM-41-(25) 25 20 316 18  - - 
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Table 2. Surface atomic ratios calculated for Cr-containing samples.  

 Cr/Ti Cr3+/Cr total (%) S/Ti 

TiO2/Cr-MCM-41(100) 0.34 60 - 

TiO2/Cr-MCM-41(100)VIS 0.16 75 0.05 

TiO2/Cr-MCM-41(100)UVA 0.12 94 0.06 

TiO2/Cr-MCM-41(25) 0.45 67 - 

TiO2/Cr-MCM-41(25)VIS 0.42 77 0.13 
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