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Abstract: In this paper we present a method for autofocusing images of sputum smears taken
from a microscope which combines the finding of the optimal focus distance with an algorithm
for extending the depth of field (EDoF). Our multifocus fusion method produces an unique
image where all the relevant objects of the analyzed scene are well focused, independently to
their distance to the sensor. This process is computationally expensive which makes unfeasible
its automation using traditional embedded processors. For this purpose a low-cost optimized
implementation is proposed using limited resources embedded GPU integrated on cutting-edge
NVIDIA system on chip. The extensive tests performed on different sputum smear image sets
show the real-time capabilities of our implementation maintaining the quality of the output image.
© 2017 Optical Society of America
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1. Introduction

In the last decade, several image processing applications have been developed for analyzing and
processing acquired images with optical instrumentation such as microscopes. The main goal of
these kind of applications is to obtain a high quality image for helping experts in the diagnosis
using automatic procedures. The overall quality of the process is directly related to the design of
automatic focusing algorithms [1]. However, very often the sample contains objects of different
sizes and thickness, making necessary to move the focus closer or further to get all the relevant
information in the scene. A clear example is the identification of the Tuberculosis Bacilli (TB).

The manual identification of TB is routinely performed in sputum smears dyed with fluoroscope
Auramine O, using a fluorescence microscope, being a non-invasive method which allows to
repeat the examinations. Manual screening for the identification of bacilli involves an intensive
and tedious task with a high false negative rate [2]. Automatic screening will entail several
advantages, e. g., a substantial reduction in the labor workload of the clinicians and a better
accuracy in diagnosis by increasing the number of images that can be analyzed by the computer.

Autofocus methods can be broadly classified as active and passive. Active methods are based
on the emission of certain kind of waves (ultrasound or electromagnetic) for measuring the
distance between the object and the lens [3]. These methods achieve good results except when
the object is near to the lens or when it is behind another transparent object, as is the case of
microscopy. On the other hand, passive methods [4] are based on extracting the high frequency
contents or the edge information from images. The passive methods present problems when the
lighting of the image is poor or when the contrast is low. Nevertheless, they work well in certain
kind of applications such as the microscopy [5] under controlled setting and light conditions.

The passive aforementioned algorithms are computationally intensives due to several reasons
and to overcome this problem three main approaches have been addressed. The first one is related
with designing custom hardware for accelerating the algorithms. In [6] and [7] authors propose
autofocus systems based on a window-based processed architecture, which is implemented using
an FPGA device. This approach offers real-time systems but at the cost of large development
times and low flexibility. The second one deals with high-end desktop processors, which execute
image processing software tools like Matlab. These tools and associated libraries facilitate the
development and tuning of algorithms but the final result lacks of the required performance.
Finally, the use of Graphic Processing Unit (GPU) boards has been proposed to assist desktop
computers by parallelizing autofocus algorithms. In [8] authors applied desktop GPU board to
digital holographic microscopy (DHM) obtaining 24 frames reconstructed per second (frps)
with resolution of 512x512. Dogar et al. [9], improved that result up to 70frps (1024x1024
resolution) employing a 1334-core GPU. Similarly, Kang et al. [13] employed a GPU populated
with 2880 cores for real-time volumetric display of optical-resolution photoacoustic microscopy
(OR-MAP). They reached an impressive refreshing rate of 480fps of low resolution (736x500)
images. Both methods, DHM and OR-MAP, mainly rely on FFT transforms which requires
O(M ∗N ∗ log(M ∗N)) operations, being M ∗N the size of the image, therefore massively parallel
GPUs are needed to process even low resolution images. Also First-Derivative methods have
taken advantage of GPU architectures showing promising results [10]. Since these methods can
be implemented by means of 2D convolutions, the computational complexity can be limited to
O(M ∗ N ∗ k ∗ k), being k the kernel size, or even O(M ∗ N ∗ 2 ∗ k) in the case of separable filters.
This fact opens the way to the employment of reduced versions of GPU architectures, integrated
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Fig. 1. Workflow of Multifocus Fusion method.

in System on Chip devices (SoCs), for implementing high resolution real-time autofocus systems.
Although these new devices have limited resources, about one order of magnitude less of cores
and reduced memory bandwidth, they represent an opportunity for obtaining feasible low-cost
embedded systems.
In this context the contribution of the paper is twofold. Firstly, to present an autofocusing

method, named Multifocus Fusion method, which improves the quality of the final result for TB
identification. Secondly, to propose an efficient low-cost implementation based on the limited
resources of an embedded GPU System on Chip architecture, able to fulfill the time constraints
of an automated optical microscope. In contrast to other faster autofocusing approaches [11, 12]
our method is specifically designed to deal with TB samples, which makes the processing more
computationally demanding. It implies the usage of custom filters for removing impurities from
the samples. Also the different size and thickness of the specimens within a frame have to be
taken into account. To this end, an Extended Depth of Field (EDoF) technique is included to
obtain an unique multifocus image with all the relevant information about the analyzed scene.
For assessing our proposal, extensive test were performed using TB images as case-study by
extending the results obtained in [14]. To the best of our knowledge, there is no proposal of an
autofocus system for microscopy using multiple images with acceleration on embedded GPUs. In
our work the method was implemented using a commercial SoC NVIDIA Tegra that includes
a quad-core multiprocessor along with just 256 GPU cores and shared memory. By means of
parallelizing acquisition and processing, our implementation guarantee virtually zero delay at
maximum camera frame rate.

2. Multifocus fusion method

The method presented is composed by two main stages: Stack Reduction, where a subset of the
best focused images are selected; and Stack Fusion with Extended Depth of Field, where the best
focused regions in the subset of images are merged on a pixel by pixel basis. Individually, each of
these stages is subdivided into various phases. The whole procedure is depicted in Fig. 1. As it
can be seen, the input is a stack of N high resolution images, where N generally is around 15-30,
recorded at different focal distances by moving the sample along the Z axis. The first stage is
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(a) (b)

Fig. 2. (a) Original autofocus image; (b) Example of particle cleaning performed by the
top-hat algorithm with a square 9 × 9 mask.

aimed to get the best focused image among them, and based on it, reduce the number of images
for further processing to just n. This number depends on the sample under analysis, size and
thickness of the interest objects, and usually goes from 5 to 9 images.
Usually, samples are contaminated with dust and other small particles, which may provoke

inaccuracies during the sharpness extraction and selection phases. To alleviate this problem a
pre-processing phase, Top-Hat filter (using an square structuring element), is included in the
workflow of the system (see Fig. 1). This morphological filter transforms the raw images to
enhance the important regions and to reduce possible noise. An example of how it works can be
seen in Fig. 2. The image at the left (a) appears affected by a particle of dust. Due its relative
size respect to the TB cells, the sharpness measures will be altered producing out of focus
images. The image at the right (b) shows the result after the top-hat filter was applied. As can be
seen the effect of the strange particle has been fully removed. Once the Top-Hat filter has been
applied to each input image, the focusing process begins (Sharpness filter in Fig. 1) based on
passive methods. In a previous study [14] a wide number of focus algorithms based on image
sharpness were evaluated, and several modifications for improving the overall quality process
were proposed. Based on it, in such work the best solutions in terms of error and efficiency
(percentage of correctly focused stage) were assessed. Those algorithms are Vollath’s F4 (VOL4),
Midfrequency-DCT (MDCT), and Tenengrad (TEN), and in this study has been used for assessing
the performance of the multifocus fusion method proposed.
Once the optimal subset of images has been selected, the second stage is aimed to extract all

the relevant information from the scene and to combine them in an unique output image. Instead
of finding the optimal microscopic field based on the autofocus filter, this robust approach consist
on taking regions belonging to different stack images and combine them applying a multifocus
fusion technique. The original technique, called Extended Depth of Field was proposed in [15]. In
our case, the process involves the following phases: (i) Sobel filter, (ii) Maximum filter, (iii) Stack
Fusion, and (iv) Gaussian Blur filter. The Sobel Filter is a well-known edge detection algorithm
which creates an image emphasizing edges. In the particular case of this work, it is applied to all
the stack for highlighting the areas within each image that has more detail in terms of sharpness.
The Maximum operator uses the output generated in the previous step for improving the quality
of the information obtain by the Sobel operator. With the values of the sharpness we can estimate
the most focused regions (i.e. the sharpest) in each image. The Stack Fusion phase makes use of
this information to merge the images pixel by pixel.

Figure 3 illustrates the result of merging 8 images (from (1) to (8)) into a fused image (9) using
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Fig. 3. Example of a 8-Stack of images obtained by a microscope (converted to 8-bit
grayscale) with a stepsize of 3µm (1-8) and the final result of multifocus (9). Scale bars
represent 30µm.

this method. One of the advantages of the multifocus technique is that it allows to extend the
depth of field through the fusion of images of the same microscope field taken with different
focal points into a Z-projected image where each region in the field has maximum contrast and
optimal focus, without compromising the resolution after the "cut and paste" fusion process. For
such reason, particles that appear fainter if taken from isolated frames will become sharper after
the use of such technique.

Finally, the process ends by performing a Gaussian Blur to the output in order to smooth it and
removing fusion artifacts. When images have different field of view or are multi-exposure images
instead of using a crude cutting and pasting procedure, the images representing the blocks need
to be smoothly blended together. In this work a monotonically decreasing function (in particular
a Gaussian function with σ = 3) has been empirically determined to be effective for eliminating
the presence of sharp edges (i.e. artifacts) between blended regions. A characteristic of this
method is that it does not impair the resolution of the input images. The detailed procedure was
described in [20].

2.1. Experiments and results

The analysis of TB samples was used as case study for assessing the method. Clinical samples
proceed from sputum smears stained with the fluorochrome Auramine O. Fluorochromes are
fluorescence dyes used in fluorescence microscopy to stain organisms of interest. In this study
30 stacks were randomly selected for evaluation. This selection embodies a wide variety of
cases, from images with a high density of particles and debris to images almost empty of objects.
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Fig. 4. (a) The Angular Measure Spectrum produces a scale-spectrum that reflects the signal
complexity on all possible scales simultaneously. The figure represents the AMT spectrum
corresponding to a TB autofocus image (labeled ’original’) and defocused images with
Gaussian blur (σ = 4; σ = 8); (b) Normalized focus measures of the 30 selected stacks
corresponding to the autofocused and multifocus fused images. Bars represent mean values
and error bars the standard deviation.

Images could suffer other deterioration such as non-homogeneous illumination depending on
the region captured, the amount of dye, exposure time, or different combinations thereof. Each
stack is comprised of 17 images captured in steps of ∆Z = 3µm, from the nearest blurred
image to the optical system to the furthest one and blurred as well. Somewhere in between it
should be the image best in focus. The objective used in the present study was a Nikon CFI
Plan Fluor 20x with a numerical aperture of 0.50. The size of the images was 1600x1200
pixels and the exposure time was 0.25 s. It is well known that the limit of resolution along the
optical (Z-axis) can be estimated according with dR = 2λn/(N A)2 where n represents the index
of refraction, NA is the numerical aperture and λ is the wavelength (Rayleigh criterion). For
an emission value of λ = 520nm, with n = 1 (air) and N A = 0.50 it gives a dR = 4.16µm.
That means that the stepsize chosen in [14] is below the resolution limit and likely the reason
why the human observers in such study chose slightly different images around the optimal
focus. The image dataset was captured at the Microbiology Department of the Hospital General
Universitario Gregorio Marañón (Madrid, Spain), that are available from the public repository at
URL: http://biig.uc3m.es/autofocus_stacks.
In order to evaluate the performance of the multifocus method five metrics were computed

over the 30 above mentioned stacks. The first three are based on image sharpness (VOL4, TEN
and MDCT), the fourth criterion provides a measure of the image complexity on all possible
scales simultaneously (based on the AMT technique [18]), and the last one is the response of
an ideal observer. Figure 4(b) represents the comparison among these metrics between the best
focused image (labeled as "Autofocus") provided by the experts in [14] and the multifocus fusion
method proposed in this paper (labeled as "Fused"). These metrics present different dynamic
ranges and, in consequence, each one has to be normalized by its maximum absolute value.

Several test were performed for verifying the usefulness of the AMT technique using increasing
Gaussian Blurs (as an approximation to defocus in optics) applied to an original sharp image (See
Fig. 4(a)). From such figure it can be observed that blurring produces a significant decrease in the
MA response and therefore it can be used as an additional method to quantify the degree of blur.
This is a very common technique for reducing image detail. Defocus in optics is an aberration
that can be modeled through Zernike parabola-shaped polynomials.

The response of an ideal observer (the last criterion) is based on the variance of the expected
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directional entropy (anisotropy) called Anisotropic Quality Index (AQI) as it has shown to provide
an excellent performance as a no reference quality measure. The AQI measure can be considered
as an ideal observer because it has shown to provide a high correlation with the Mean Opinion
Scores (MOS) of human observers in the case of Gaussian blur [19].
Attending to the results exposed in Fig. 4(b), it can be concluded that the multifocus fusion

approach outperforms the autofocus methods, which is also in agreement with the ideal visual
observer provided by the AQI index.

3. Efficient implementation of multifocus fusion method

In this section an efficient implementation using embedded GPUs is described. This means that
our system has to meet the time constraints imposed by the camera acquisition time and the
slide/lens displacement subsystem. As usual, the limited field of view of microscope objectives
is not enough for registering all the sample area. Thus, in order to scan the whole scene, the
slide of the microscope has to be mechanically moved along XY axes for recording the different
sample subregions. For each subregion, an stack of images is acquired varying the focal distance
(Z axis). Once a full stack has been recorded, the processing system has to do its job with
the minimum delay. Ideally, it corresponds to the time interval for moving the slide between
consecutive subregions, this way no delay will be appreciated. For this study we assume as worst
case scenario: minimum area per subregion, XY movement along just X axis and maximum
image resolution. These conditions define the maximum time available to do the processing
before the next stack acquisition. For autofocus testing we have attached to one of the coaxial
fine focus control of a Brunel’s SP30 low cost microscope a bipolar stepper motor Nema14 with
0.9º step angle (400 steps/revolution) (http://bit.ly/23sQJkT). Two additional Nema14 motors
attached to mechanical stage allows to automatize the XY displacement. All motors have been
controlled using an Arduino Mega board. Measures taken from the prototype gave 527ms for a
displacement of 85 microsteps, covering a trip of 152µm. This time span along with different
image resolutions were considered in our study. In addition, the performance of our method was
analyzed using each of the autofocus filters: VOL4, MDCT and TEN.
Jetson TX1 board was used for prototyping, since it counts with enough peripherals and

resources for hosting all the subsystems (camera control and acquisition, motors controller,
processing and communications). Jetson TX1 is a NVIDIA’s embedded Linux development
platform featuring a Tegra X1 SoC built-in with a multicore CPU and GPU. The CPU consist
of a quad-core 1.9GHz ARM Cortex-A57, while the GPU is a 256-core Maxwell [16] graphics
processor. Both CPU and GPU share 4GB of LPDDR4 memory with 25.6GB/s of memory
bandwidth.
Along with the support for CUDA programming, Jetson platform provides a version of

the de-facto standard computer vision library OpenCV. This library has been optimized by
NVIDIA for the Tegra SoC CPUs under the name of OpenCV4Tegra [17] allowing a one by one
replacement of OpenCV functions in a transparent way. A baseline implementation for running on
ARM multicore was developed using OpenCV4Tegra functions when possible, and conventional
programming paradigm for the rest of the algorithm (e.g. in the case of Stack Fusion). From it,
the different filters and algorithms that compose the proposal were incrementally migrated to the
GPU resulting in an accelerated implementation.

For this task, OpenCV also offers an optimized module for GPU that facilitates the migration of
some parts of the code. Specifically Sobel, Maximum and Gaussian Blur filters were coded with
the corresponding OpenCV GPU versions. In addition, Autofocus algorithms were parallelized
combining different library functions. The MDCT implementation uses the well-known OpenCV
functions under the names of gpu::filter2D() and gpu::multiply(). In a similar way, VOL4
was coded making use of gpu::warpAffine() and gpu::multiply() functions. Finally, Tenengrad
implementation used gpu::transpose(), gpu::filter2D(), and gpu::mul() funtions.
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Fig. 5. Execution time in seconds on Multicore and GPU baseline implementations. The
values represent the average among VOL4, MDCT and TEN algorithms grouped by image
size.

Likewise, Top-Hat filter was initially implemented combining OpenCV morphological filters,
but the performance was really poor, even worse than multicore version. Therefore a custom
implementation was carried out obtaining significant better results. Additionally, and due to the
important computational load of Stack Fusion, this task was implemented for GPU using native
CUDA code, assigning a thread per pixel for getting the maximum value along the reduced stack
in a parallel way. A wrapper between OpenCV data structures and CUDA have been implemented
by means of the gpu::PtrStepSz OpenCV structure permitting to integrate the OpenCV4Tegra
with native CUDA code.

Figure 5 shows the total execution time averaged across the three versions of the method (TEN,
VOL4 and MDCT) implemented on Multicore and GPU respectively. In all tests the initial size of
stack was 17 images, and different stack reduction sizes were considered in the second stage (n to
5, 7, and 9 images). The image resolutions employed in the study were 800x600 (0.47MPixels),
1280x960 (1.2Mpixels), and 2560x1940 (4.7MPixels). As it can be seen, execution time shows a
strong dependency when the image size varies, meanwhile the number of images has a minor
effect. Analyzing Multicore results, VOL4 version offers the best execution times followed
by MDCT and TEN. Differences between VOL4 and the others are around 20%. In any case,
Multicore implementation offers poor results that widely overpass the available time span. The
average execution times are above 3 s, 8 s, and 34 s for the resolutions under consideration. On
the other hand, GPU implementation obtain better results around 1 s for low and intermediate
resolutions. Even at maximum resolution the execution time remains in average below 2.6 s.
Similar to Multicore, GPU provides more reduced times for VOL4 version, below 0.8 s, 1 s
and 2 s for 0.47 MPixels, 1.2 MPixels, and 4.7 MPixels respectively. Despite these gains in
performance, results are not enough for meeting the requirements constraints imposed by our
prototype, therefore further optimization is needed.

A deep analysis of the method reveals that Stack Reduction takes a high percentage of the total
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Fig. 6. Optimized Multicore/GPU implementation.

execution time. In average 72%, 75% and 83% for VOL4, MDCT and TEN versions respectively.
To overcome this bottleneck, an optimized implementation is outlined in Fig. 6, where Multicore
CPU and GPU work in parallel. Two threads (1 and 2) form the code for Stack Reduction: the first
is in the charge of Z displacement control and image recording, meanwhile the second processes
the previous image by means of the GPU kernel. These two parallel threads perform N iterations,
one per image of the initial stack, and at the end only n images remain in the GPU memory. Using
this approach, the available time interval for processing each of the N images is the combination
of the acquisition time of the camera (Ta) and the time for displacement in Z axis (Tz). This first
deadline was calculated considering the worst case scenario, i.e. a minimum displacement of just
6 steps (35 ms), summed up to the acquisition time at maximum frame rate. Once the first stage
has finished, thread 4 initiates the DoF extension calling the corresponding GPU kernel, and
in parallel thread 3 generates the XY displacement. This way, the second deadline defines the
maximum time available for EDoF stage as the time for moving the slide to the next subregion of
the sample.
The whole process is repeated for every subregion, producing F multifocus images for the

sample. The execution time for obtaining one multifocus image can fluctuate depending on two
factors: the number of Z steps needed to get the optimal focal plane (N) and the number of images
for being fusioned (n). Anyway, both deadlines must be met to fulfill the real time requirements.
Results are shown in Fig. 7 where the execution time of each stage is compared with the

corresponding deadline. In figure (a), the red squares represent the available time span during the
Stack Reduction stage. Their values are different because camera frame rate differs with image
resolution. The best behavior is obtained using the maximum resolution images. In this case
TEN, MDCT and VOL4 versions use just 72%, 53% and 35% of the available time respectively.
For 1.2 MPixels resolution, TEN version is close to the maximum (90%) meanwhile MDCT
and VOL4 are below 60%. For the lowest resolution, there is only one case (TEN version) that
need more time than available (a 35% more, i.e. around 16 ms). This problem can be overcame
relaxing the maximum frame rate constraint. In this way, the resulting accumulated delay for a 20
images stack is negligible, around 330 ms. Hence, Stack Reduction stage for all the cases and
resolutions can be executed on-the-fly without any delay. In the same way, total execution time of
EDoF stage can be seen in figure (b) where the dashed line represents the maximum available
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Fig. 7. Execution time for each stage, (a) Stack Reduction stage and (b) Extended Depth of
Field stage. In (a) the three methods VOL4, MDCT and TEN are compared for three sizes of
image. In (b) the comparison is made for the same three image sizes in (a) and four levels of
fusioned images.

time span (i.e., 527 ms for all the cases). Implementation fulfills the requirements except for just
one case, fusion of 9 images at maximum resolution, where the delay is under 70 ms. As in TEN
version in previous figure, this is an extreme case shown for illustrating the limits of the proposal.
Excluding this case, the parallelization of the tasks between Multicore CPU and GPU guarantee
virtually zero delay for executing our method at maximum camera frame rate.

4. Conclusions

In biological microscopy it is of great importance to investigate new methods for automating
labor intensive tasks that requires a high degree of attention from the specialist. Slide scanning
automation procedures, from image acquisition to analysis, will be of benefit to the clinician
from different aspects. First, by reducing the contact with the samples and therefore minimizing
possible risks. Second, the automation will allow to increase the number of fields of view to be
analyzed, that is always a tedious task.
In this paper an improved autofocus method was presented and five metrics were used to

assess its performance. The results show that our approach outperforms the three best autofocus
methods in the case of TB identification, even considering the ideal observer metric provided by
the AQI index. (A MATLAB toolbox for computing AQI for arbitrary grayscale or color images
is available from DOI: 10.6084/m9.figshare.4276382.v1).
An efficient implementation, based on embedded GPU, was also proposed for assembling a

low-cost automatized microscope. Despite of the limited resources, our implementation is able
to generate multifocus fused images fulfilling the real-time constraints of the prototype. This
result show the feasibility of using embedded GPU platforms for automating autofocus processes
where multicore processors are not enough on their own.
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