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Abstract 40 

Autophagy is a eukaryotic catabolic pathway essential for growth and development. In 41 

plants, it is activated in response to environmental cues or developmental stimuli. However, 42 

in contrast to other eukaryotic systems, we know comparatively little mechanistically, 43 

regarding the regulation of this important and complex pathway, or the full complement of 44 

the molecular players involved in it. In the framework of the COST (European Cooperation 45 

in Science and Technology) action TRANSAUTOPHAGY (2016-2020), we decided to 46 

review our current knowledge of autophagy responses in vascular plants, with emphasis on 47 

knowledge gaps. We also assess here the potential of translating the acquired knowledge 48 

to improve crop plant growth and development in a context of growing societal and 49 

environmental challenges for agriculture in the near future.  50 

 51 

Introduction 52 

During the life span of a eukaryotic cell, a catabolic pathway known as autophagy degrades 53 

dysfunctional or unnecessary cellular components as a way of recycling macromolecules’ 54 

building blocks and ensuring cellular homeostasis (Klionsky et al., 2016). In essence, 55 

autophagy consists in the translocation of cytoplasmic components (cargo) into the vacuole 56 

(yeast and plant) or the lysosome (animal) and their subsequent degradation (Li and 57 

Vierstra, 2012). In plants, autophagy is a central regulator of fitness, longevity and 58 
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fecundity, as well as a major housekeeping mechanism underpinning plant tolerance to 59 

various biotic and abiotic stresses (Minina et al., 2018).  Plant cells decrease their 60 

dependency on external sources of nutrients by recycling their contents via autophagy 61 

(Guiboileau et al., 2013; Minina et al., 2013b). Furthermore, autophagy increases viability 62 

of cells under stress conditions by a quick removal of damaged macromolecules and 63 

organelles (Bassham et al., 2006; Li and Vierstra, 2012; Michaeli et al., 2016), modulation 64 

of immune response and targeting of virulence factors or entire pathogens (Hafren et al., 65 

2017; Haxim et al., 2017; Lenz et al., 2011). Thus, autophagy defines important 66 

agricultural traits, i.e. tolerance to macro-nutrient depletion, drought, heat, oxidative and 67 

salt stress, as well as immune response to pathogen infection. Although most of the 68 

research so far has been performed in the model plant Arabidopsis thaliana, the 69 

involvement of autophagy in a variety of agricultural traits generates great interest in the 70 

development of tools for efficient modulation of autophagy in plants. In this manuscript, 71 

we will review the current knowledge regarding autophagy in plants, its functional 72 

mechanisms and physiological roles and highlight possible uses for autophagy 73 

manipulation as potential enhancers of plant yield and tolerance.   74 

 75 

Types of autophagy in plants 76 

Autophagy can be generically distinguished into microautophagy and macroautophagy 77 

(Galluzzi et al., 2017). Other variants of autophagy such as chaperone-mediated autophagy 78 

(CMA) (Kaushik and Cuervo, 2012), secretory autophagy (Ponpuak et al., 2015) in 79 

mammalian cells, and cytoplasm-to-vacuole transport (CVT) in yeast (Reggiori et al., 80 

2004) are cell type-specific, and have not been described so far in plant cells. Both 81 

microautophagy and macroautophagy can be selective or non-selective in plants. 82 

Microautophagy is characterized by a direct invagination of the tonoplast (vacuolar 83 

membrane) to take up the cellular components to be degraded. A well-described example 84 

in plants is the functional accumulation of anthocyanins through microautophagy-derived 85 

inclusion bodies in the plant vacuole (Chanoca et al., 2015). Anthocyanins are a diverse 86 

family of flavonoid pigments synthesized in the cytoplasm, stored in the vacuole, acting as 87 

antioxidants and involved in plant tissues responses to environmental cues. These pigments 88 
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are stored in the vacuole as densely packed 3-10 µm vesicles generated through a 89 

microautophagy process (Chanoca et al., 2015). The molecular mechanisms of membrane 90 

dynamics driving microautophagy are not well understood in plants, but seem not to require 91 

any of the gene products involved in macroautophagy. Macroautophagy (hereafter 92 

autophagy) is characterized by the de novo formation of a double membrane organelle, the 93 

autophagosome, wrapping defined cytoplasmic components for degradation. The 94 

initiation, elongation, maturation and fusion of the autophagosome with the vacuole is 95 

marshalled by a conserved set of proteins encoded by autophagy-related (ATG) genes 96 

(Tsukada and Ohsumi, 1993). Notably, plant-specific autophagic pathways as defined by 97 

the cargo type do exist. A well-described example is chlorophagy or the autophagic 98 

degradation of whole chloroplasts (up to 5-10 µm in size, mean volume of 20 µm3) 99 

damaged by UV light (Izumi et al., 2017). The molecular mechanism and the complement 100 

of ATG proteins involved in the formation of these uncommonly large autophagosomes 101 

may be specific to the plant kingdom. 102 

 103 

Core autophagy complexes and their regulation in plants  104 

Autophagy is a tightly regulated cellular response, which can be activated rapidly and 105 

transiently in eukaryotic cells. The formation of the autophagosome is a complex, dynamic, 106 

and stepwise process resulting in the engulfment of cytoplasmic material and its 107 

translocation to the vacuole. The molecular machinery that executes and regulates 108 

autophagy was first characterized in yeast (Tsukada and Ohsumi, 1993). About half of the 109 

more than 36 ATG genes characterized to date encode core autophagy proteins, and appear 110 

to be well conserved in most studied multicellular organisms, including plants (Galluzzi et 111 

al., 2017; Klionsky et al., 2016). Autophagy is a powerful catabolic process that needs to 112 

be quickly fine-tuned to fit the temporary requirements of cells under variable conditions. 113 

In animal cells, autophagy seems to oscillate with astonishingly high frequency (Nazio et 114 

al., 2016). To prevent unwanted autophagic activity, most of the ATG proteins are 115 

synthesized in an inactive form and require activation by post-translational modification 116 

and recruitment into complexes (Ohsumi, 2014). Activation of autophagy is regulated by 117 

sensors of cellular nutrient state (Liu and Bassham, 2010) and stress (Minina et al., 2013a; 118 

Wang et al., 2015a; Yang et al., 2016).The pre-autophagosomal membrane or phagophore 119 
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is initiated in response to a given internal or external cellular stimulus, then elongates and 120 

enwraps the cytoplasmic cargo. The closed phagophore matures into an autophagosome, 121 

and then fuses with the vacuole/lysosome. Each of the mentioned steps is under the control 122 

of specific autophagy complexes made of core autophagy proteins, whose assembly, 123 

subsequent subcellular localization and activity are directly or indirectly regulated by stress 124 

signaling pathways. Four main complexes are known to be required for autophagosome 125 

initiation and formation, namely the ATG1 complex, the VPS34 complex, the ATG9 126 

complex, and the ATG8 conjugation systems (Figure 1).  127 

The ATG1 complex is thought to be essential in transmitting stress signals to the site where 128 

the autophagosome will be formed, most likely at an organelle contact site involving the 129 

endoplasmic reticulum (ER) (Antonioli et al., 2017; He and Klionsky, 2009; Nascimbeni 130 

et al., 2017). In yeast and mammalian cells, the ATG1 complex is a trimeric heterocomplex 131 

made of a catalytic subunit (ATG1/ULK, a serine/threonine kinase), regulatory subunits 132 

(ATG13 and ATG101), and scaffold subunits (ATG11 or ATG17 in yeast, and 133 

FIP200/RB1CC1 RB1 inducible coiled-coil 1 in animals) (Galluzzi et al., 2017). The 134 

structure, function and regulation of the ATG1 complex are not well understood in plants. 135 

The Arabidopsis genome, for example, encodes three full-length ATG1 proteins (ATG1a, 136 

locus AT3G61960; ATG1b, locus AT3G53960; ATG1c, locus AT2G37840), and a C-137 

terminus truncated ATG1 variant called ATG1t (locus AT1G49180) (Suttangkakul et al., 138 

2011), whose function is not yet clear. The Arabidopsis genome also encodes two 139 

functional ATG13 homologues, ATG13a and ATG13b, and a single ATG101 140 

(Suttangkakul et al., 2011). Intriguingly, no functional or structural homologue of 141 

ATG17/FIP200 has been found yet in deciphered plant genomes. A potentially bifunctional 142 

protein containing structural domains related to yeast ATG11 and ATG17 is present in 143 

plants. In Arabidopsis, this protein was dubbed an ATG11 homologue since it is required 144 

for selective degradation of mitochondria via autophagy (Li et al., 2014). However, 145 

whether the plant ATG11-related protein acts as a scaffold protein within a bona fide ATG1 146 

complex remains to be clarified. If the plant ATG11-related protein functions only in 147 

selective autophagy, the plant scaffold protein required for non-selective autophagy is still 148 

to be identified. 149 
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The clustering and activation of the ATG1 complex at the phagophore initiates the 150 

recruitment of other autophagy complexes and in particular the class III VPS34 complex. 151 

The class III VPS34 complex involved in autophagy contains the catalytic subunit 152 

PI3kinase (PI3K), the regulatory subunits ATG6/Beclin-1 and ATG14, and the scaffold 153 

subunit VPS15. As compared to other multicellular organisms, plants have the peculiarity 154 

of expressing a single and essential PI3K of the class III type. The structure of the VPS34 155 

complex involved in autophagy is not known in plants. Remarkably, ATG14 is absent in 156 

the plant lineage. Yeast ATG14 and its functional homologues in other eukaryotic systems 157 

only share resemblance at their N-terminal coil-coiled domain (~200 first amino acids), 158 

whereas the C-terminus of these proteins appearing highly divergent (Itakura et al., 2008). 159 

ATG14 is known to determine the localization of the VPS34 complex, and to be required 160 

for both basal and induced autophagy in yeast and animals (Diao et al., 2015; Fan et al., 161 

2011). Phosphorylation of ATG14 by the ATG1 kinase activates the catalytic activity of 162 

PI3K, which catalyzes the production of the membrane lipid PI3P (phosphatidylinositol-3-163 

phosphate) essential for phagophore initiation and expansion (Baskaran et al., 2014). 164 

Whether a functional counterpart of ATG14 exists in plants awaits experimental evidence. 165 

The phagophore initiation and expansion requires input of specific lipids and proteins. The 166 

membrane source of these materials is still under debate, but they are more likely channeled 167 

to the site of autophagosome formation through ATG9-containing vesicles (Abada and 168 

Elazar, 2014; Karanasios et al., 2016). ATG9 is the only transmembrane protein among all 169 

known ATG proteins (Reggiori et al., 2004). The heterodimer complex ATG2-ATG18 170 

regulates the polytopic ATG9 vesicle-mediated cycling and tethering to and from the 171 

growing phagophore. Although plants seem to encode single ATG9 and ATG2 172 

homologues, a diversified multigenic family encodes the PI3P-binding ATG18-related 173 

proteins (up to 8 in Arabidopsis as compared to 1 in yeast and 4 in mammals). The resting 174 

cellular localization of ATG9 and the full complement of its interacting partners during 175 

autophagy-dependent membrane dynamics are not yet understood in plants. 176 

The phagophore membrane expansion also requires the recruitment of lipidated ATG8-177 

related protein. Soluble ubiquitin-like ATG8 becomes membrane-anchored through 178 

conjugation to the membrane lipid PE (phosphatidylethanolamine). This modification 179 

occurs through an ubiquitylation-like cascade regulated by the protease ATG4, the E1 180 
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activating enzyme ATG7, the E2 conjugating enzyme ATG3, and the E3 ligase complex 181 

comprising ATG5/ATG12/ATG16 (Pengo et al., 2017; Sanchez-Wandelmer et al., 2017). 182 

Apart from bona fide ATG16, whose plant orthologue has not yet been characterized, all 183 

the other components of this cascade are expressed and active in plants. ATG8-related 184 

members are relatively more diversified in plants, with some C-terminally truncated 185 

isoforms that are unique to plants (Bassham et al., 2006; Li et al., 2016a).      186 

Autophagy is regulated at many steps through post-translational modification (PTM) such 187 

as ubiquitylation, phosphorylation, acetylation, glycosylation and lipidation of ATG 188 

proteins. Many ATG proteins in other organisms were shown to undergo complex and 189 

multi-layered regulation through PTM. ATG proteins can be differently modified at 190 

multiple sites whereby one type of PTM can depend on another modification. An example 191 

is the phosphorylation-dependent ubiquitylation that leads to degradation of target 192 

proteins(Lin et al., 2002). By acting as a degradation signal, ubiquitylation not only 193 

regulate cargo of selective autophagy, but also the autophagy machinery itself. The 194 

abundance of mammalian ATG1/ULK1, ATG6/VPS30/beclin-1 (BECN1) and ATG12, for 195 

example, were reported to be regulated by ubiquitylation. ULK1 controls the autophagic 196 

flux together with ATG13 and is ubiquitylated by the E3 ligase NEDD4L (Nazio et al., 197 

2016) making NEDD4L a negative regulator of autophagy. BECN1, a positive regulator of 198 

autophagy induction, is a target of multiple E3 ligases (Shi and Kehrl, 2010; Xia et al., 199 

2013; Xu et al., 2014). By removing the ubiquitin chains, deubiquitylating enzymes such 200 

as USP10, USP13, USP14 and USP19 can counteract the E3 ligase activity and rescue 201 

BECN1 from degradation, and thus act as positive regulators of autophagy (Jin et al., 2016; 202 

Liu et al., 2011; Xu et al., 2016). These recent studies reveal molecular details of a tight 203 

regulation of autophagic activities through PTM. Since not all of these regulators are 204 

conserved in plants, whether and how PTM regulates plant ATG proteins awaits intensive 205 

future studies.  206 

Maturation and fusion of the autophagosome with the lytic compartment involves vectorial 207 

movement of the matured autophagosome toward the vacuole in plants, and specific 208 

tethering of the autophagosome to the tonoplast. F-actin nucleating and branching ARP2/3 209 

complex was shown in yeast to be associated to the autophagosome (Reggiori et al., 2005). 210 

In mammalian cells, WASP homolog associated with actin, membranes and microtubules 211 



8 
 

(WHAMM), WAS protein family homolog (WASH) and junction-mediating and 212 

regulatory protein (JMY) were reported to regulate autophagy (Coutts and La Thangue, 213 

2015; Kast et al., 2015; King et al., 2013; Xia et al., 2013; Zavodszky et al., 2014). In plants, 214 

only the WASP family verprolin (WAVE) homologous complex has been shown to be 215 

involved in autophagosome movement within the cytoplasm (Wang et al., 2016a). One of 216 

the WAVE subunits, NAP1, changes its localization from the cytoplasm to ER membrane 217 

under mechanical stress (Wang et al., 2016a). This localization change triggers the ARP2/3 218 

dependent F-actin nucleation on the phagophore, which is important for its expansion and 219 

ultimately for the maturation of the autophagosome (Wang et al., 2017a; Wang et al., 220 

2016a). Loss-of-function nap1 mutant Arabidopsis seedlings (lacking a functional WAVE 221 

complex) form less autophagosomes and are more sensitive to salt and nitrogen-deficiency 222 

stresses (Wang et al., 2017a; Wang et al., 2016a) . 223 

 224 

Selective autophagy in plants 225 

Autophagy was initially considered a bulk, non-selective process. It later became evident 226 

that autophagy selectively degrades diverse cellular cargoes under various conditions 227 

(Anding and Baehrecke, 2017; Li and Vierstra, 2012; Michaeli et al., 2016; Veljanovski 228 

and Batoko, 2014; Yang and Bassham, 2015). Selective autophagy typically utilizes cargo 229 

receptors that directly or indirectly bind specific cargo, and tether it to the forming 230 

autophagosome through interaction with core autophagy proteins (mainly ATG8) (Farre 231 

and Subramani, 2016; Kellner et al., 2017; Zaffagnini and Martens, 2016). In mammals, 232 

multiple cargo receptors were identified, including p62/ SQSTM1 and NBR1 that were 233 

implicated in the selective autophagy of protein aggregates and organelles (Anding and 234 

Baehrecke, 2017; Zaffagnini and Martens, 2016). p62 and NBR1 bind both ubiquitin and 235 

the mammalian ATG8 homologue, LC3, thus docking ubiquitinated substrates to the 236 

autophagosome. Arabidopsis NBR1 and its tobacco homologue JOKA2 are functional 237 

hybrids of mammalian p62 and NBR1, capable of binding ATG8 and ubiquitin. Both were 238 

shown to play a role in nutrient deficiency and abiotic stress tolerance (Hafren et al., 2017; 239 

Svenning et al., 2011; Zhou et al., 2013; Zhou et al., 2014a; Zientara-Rytter et al., 2011).  240 

A fascinating cross talk between the major cellular degradation pathways, autophagy and 241 
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the proteasome, was uncovered with the discovery of both non-selective (starvation- 242 

induced) and selective autophagy mediated degradation of the 26S proteasome in 243 

Arabidopsis (Marshall et al., 2015). While the proteasome subunit RPN10 was previously 244 

shown to facilitate the recognition of ubiquitinated targets, Marshall et al. found that it can 245 

also bind ATG8 (Marshall et al., 2015). They further demonstrated that RPN10 is needed 246 

for inhibition-induced selective degradation of inactive 26S proteasome complexes 247 

(proteaphagy), suggesting a role for RPN10 as an autophagy cargo receptor. Intriguingly, 248 

in a recent study, mammalian p62 was shown to mediate selective starvation-induced 249 

autophagosomal uptake of proteasomes (Cohen-Kaplan et al., 2016; Marshall et al., 2016). 250 

Whether NBR1 or other plant cargo receptors have similar functions awaits further 251 

research. 252 

Recent studies have demonstrated the selective degradation of peroxisomes by autophagy 253 

(Pexophagy). Peroxisomes are highly dynamic organelles, housing oxidative metabolic 254 

pathways, such as photorespiration and fatty acid β-oxidation, produce reactive oxygen 255 

species and contain important antioxidative components (Sandalio and Romero-Puertas, 256 

2015). During seedling establishment, in a light-dependent manner, there is a functional 257 

transition from glyoxysomes, peroxisomes present in seeds and harboring the glyoxylate 258 

cycle and β-oxidation, to leaf type peroxisomes, containing photorespiration enzymes. 259 

Recent evidence shows that pexophagy takes place during this metabolic remodeling 260 

combined with peroxisomal protease LON2 activity (Young and Bartel, 2016).  Pexophagy 261 

also mediates the turnover  of peroxisomes damaged by H2O2   accumulation in old tissues, 262 

, under favorable and stress conditions, regulating the quality and number of peroxisomes 263 

(Shibata et al., 2014; Shibata et al., 2013).  Pexophagy occurs at a higher rate in green 264 

tissues and appears to be more marked than other types of selective autophagy due to the 265 

highly oxidative peroxisomal metabolism (Yoshimoto et al., 2014). Pexophagy is aided by 266 

autophagy receptors, although the plant autophagy receptor/adaptor protein linking ATG8 267 

to damaged peroxisomes has not been identified. Some evidence, though controversial, 268 

suggests the involvement of NBR1 (Zhou et al., 2013). Recently, 9 peroxines (PEXs, 269 

peroxisomal membrane proteins) have been identified as possible ATG8 binding proteins, 270 

two of which, AtPEX6 and AtPEX10, were shown to interact with ATG8 by bimolecular 271 

fluorescence complementation (BiFC) (Xie et al., 2016). The signal involved in triggering 272 
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pexophagy has not yet been identified, although oxidized catalase has, controversially, 273 

been proposed as a possible candidate (Shibata et al., 2013).  274 

Chloroplasts represent an interesting case study for selective autophagy in plants, as they 275 

have unique turnover demands due to the photosynthetic electron chain and its oxidative 276 

byproducts. In addition, chloroplasts are the major nitrogen reservoir in mesophyll cells 277 

and thus important for nutrient recycling (Ishida et al., 2014). Early studies suggested that 278 

the vacuole plays a role in chloroplast recycling (Minamikawa et al., 2001; Wittenbach et 279 

al., 1982) and autophagy-related and -unrelated pathways were later implicated in the 280 

degradation of chloroplast components (chlorophagy) (Ishida et al., 2014; Izumi et al., 281 

2017; Martinez et al., 2008; Michaeli et al., 2014; Wang and Blumwald, 2014; Wang et 282 

al., 2013; Xie et al., 2016). Two types of vesicles, Rubisco containing bodies (RCBs) and 283 

ATG8-interacting protein1 (ATI1) bodies, were shown to participate in chlorophagy and 284 

are induced during senescence and abiotic stresses (Chiba et al., 2003; Dong and Chen, 285 

2013; Honig et al., 2012; Ishida et al., 2008; Michaeli et al., 2014; Wada et al., 2009; 286 

Yamane et al., 2012). Interestingly, autophagy is also involved in the remobilization of 287 

transitory starch from chloroplasts to vacuoles via Small Starch Granules like structures 288 

(SSGLs) (Wang et al., 2013). RCBs were characterized in Arabidopsis, tobacco, wheat and 289 

rice (Chiba et al., 2003; Ishida et al., 2008; Izumi et al., 2015; Ono et al., 2013; Prins et 290 

al., 2008; Wada et al., 2009). They were shown to deliver Rubisco and other stromal 291 

proteins to the vacuole, though their mode of cargo recognition is not known (Chiba et al., 292 

2003). ATI1 is a plant specific ATG8-binding protein localized in the ER and chloroplasts 293 

(Honig et al., 2012; Michaeli et al., 2014). In Arabidopsis, ATI1-labeled vesicles (ATI1-294 

bodies) were shown to deliver plastid-targeted GFP to the vacuole. ATI1 can bind both 295 

stromal and membrane-bound chloroplast proteins, suggesting that the cargo of ATI1-296 

bodies differ from that of RCBs (Michaeli et al., 2014). Another difference is that RCBs 297 

are associated with chloroplast stromules, while ATI1 bodies initiate inside the chloroplast. 298 

In addition,  the release of RCBs for the chloroplast is dependent on the ATG machinery , 299 

while ATI1 bodies bud from it in an ATG-independent manner, though their delivery to 300 

the vacuole requires active autophagy machinery (Ishida et al., 2014; Michaeli et al., 2014). 301 

Interestingly, two ESCRT-III subunit paralogs, were implicated in the delivery of RCBs to 302 

the vacuole, suggesting a cross talk between chlorophagy and endomembrane trafficking 303 
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events (Spitzer et al., 2015)(Kalinowska and Isono, JXB review 2017, accepted for this 304 

issue). Another chlorophagy pathway involves the vacuolar delivery of entire shrunken 305 

chloroplasts (Wada et al., 2009). This pathway is induced upon UV-B or high light 306 

treatments (Izumi et al., 2017). Information regarding selective autophagy of other types 307 

of plastids is still limited, but there is evidence for RCB-like and entire plastid autophagy 308 

in roots of Arabidopsis and rice (Izumi et al., 2015; Nakayama et al., 2012). 309 

Mitophagy, the selective degradation of mitochondria by autophagy, was only recently 310 

identified in plants with the characterization of an Arabidopsis ATG11-related protein. 311 

Similarly to yeast, the Arabidopsis ATG11-related protein participates in the selective 312 

clearance of mitochondria. Lack of ATG11-related protein in mutant Arabidopsis plant 313 

resulted in mitochondria accumulation (Li et al., 2014). However, a plant homolog to the 314 

yeast ATG32, which recruits ATG11 to damaged mitochondria has not been identified 315 

(Anding and Baehrecke, 2017; Li et al., 2014). Plants also lack homologues of animal  316 

mitophagy receptors such as the BCL2 interacting protein (BNIP) family members. ER-317 

phagy (reticulophagy), the selective degradation of ER by autophagy, is induced by ER 318 

stress resulting from accumulation of unfolded or misfolded proteins in the ER, similarly 319 

to yeast and mammals (Anding and Baehrecke, 2017; Dikic, 2017; Liu et al., 2012; Yang 320 

et al., 2016). This process requires the ER stress sensor IRE1b, but the downstream factors 321 

remain unknown (Liu et al., 2012). In Arabidopsis, as in other organisms, ribophagy, the 322 

autophagic degradation of rRNA, requires the nonspecific T2 endoribunuclease RNS2 323 

(Bassham and MacIntosh, 2017; Floyd et al., 2015; Floyd et al., 2017; Hillwig et al., 2011). 324 

A differential role was suggested for ATG5 and ATG9 in this process, but the exact 325 

mechanism of the selection of rRNA for degradation is still unknown (Floyd et al., 2015)  326 

 327 

Methods of monitoring and manipulating autophagy in plants 328 

Monitoring autophagy in various systems has been previously described (Klionsky et al., 329 

2016). However, plant systems pose unique challenges requiring special modification. 330 

Here we summarize some of the methods commonly used to assess and modulate 331 

autophagy in plants, adding to some other excellent reviews on the topic (Bassham, 2015).    332 

Monitoring autophagy in plants by biochemical analysis 333 
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Assessing the formation and degradation of autophagosomes can be performed using 334 

western blot analysis. Two main approaches exist for this analysis: (i) ATG8 lipidation 335 

assay and (ii) free GFP release assay from expressed GFP-ATG8 chimera. 336 

ATG8 is incorporated to the growing phagophore membranes through a C-terminal post-337 

translational modification (processing followed by lipidation). Assessing the rate of ATG8 338 

lipidation can be used as a measure of autophagosome formation. The lipidated and non-339 

lipidated forms of ATG8 can be separated by SDS-PAGE in presence of 6 M urea followed 340 

by western blotting (Chung et al., 2009; Thompson et al., 2005). Expression of GFP-ATG8 341 

can be used to visualize autophagosomes using confocal microscopy, as discussed later in 342 

this section. In addition, it is also possible to monitor the release of free GFP after 343 

proteolysis of GFP-ATG8 in the vacuole. The level of free GFP released from ATG8 344 

indicates the relative rate of autophagosome degradation and can be used as a measure of 345 

autophagic flux (Li et al., 2015; Slavikova et al., 2008). GFP-ATG8 degradation in the 346 

vacuole is drastically reduced by Concanamycin A (ConcA) treatment. ConcA increases 347 

the pH of the vacuolar lumen by inhibiting the activity of the vacuolar H+-ATPase. 348 

Therefore, ConcA treatment can result in autophagosomal bodies accumulating in the 349 

vacuole, hence reducing the proteolysis of expressed GFP-ATG8.  350 

Imaging approaches to study plant autophagy 351 

Live imaging of autophagosomes in plants requires both specific reporters and an adequate 352 

light microscope (LM) configuration. Multiple organic dyes such as LysoTracker (Liu et 353 

al., 2005) and Monodansylcadaverin (MDC) (Contento et al., 2005), have been used to 354 

label autophagosomes, based on the presumed acidity of the autophagic interior. However, 355 

their selectivity for autophagic compartments is still questionable (Klionsky et al., 2016; 356 

Mizushima, 2004). Fluorescently-tagged ATG proteins are more frequently used as 357 

autophagosome markers, allowing a specific identification of autophagosomes at different 358 

stages of their maturation (Le Bars et al., 2014; Suttangkakul et al., 2011).  359 

Tracking autophagosome formation and dynamics within plant cells may be complicated 360 

because : i) the lifetime of the process is very short, ii) ATG proteins are only transiently 361 

associated with the autophagosomal membranes, iii) low expression levels of potential 362 

marker proteins and their high dynamics in certain cell types. To circumvent these 363 
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limitations, one possibility is to use a light microscope equipped with highly sensitive 364 

detectors and image acquisition at a high frame rate.   These conditions are met using 365 

confocal laser scanning microscopes with a resonant scanner, or a spinning disk 366 

microscope whose high-speed acquisition rate can also contribute in lowering the 367 

phototoxic effect of the imaging process (Figure 2a).  368 

It is worth mentioning that mechanical stress could arise from tissue preparation and 369 

mounting between the microscope slide and coverslip conducive of autophagy induction 370 

(Wang et al., 2016a). Having a spacer between the coverslip and the slide and performing 371 

the microscopic observations immediately following mounting can alleviate these 372 

unwanted artefacts in the experimental design. Rootchip (Grossmann et al., 2011) can be 373 

a good strategy to allow long-term observation of Arabidopsis roots without affecting 374 

autophagy. 375 

Higher resolution autophagic structures can be visualized with transmission electron 376 

microscopy (TEM) (Figure 2b-c). Correlative light and electron microscopy (CLEM) 377 

protocols, allowing LM and TEM observations of the same sample can be used to combine 378 

the localization of ATG proteins with light microscopy and the identification of the labelled 379 

membranes with TEM (Marion et al., 2017). 380 

Indirect (using anti-GFP antibodies) (Figure 2b) or direct (using specific antibodies against 381 

plant ATG8) (Chung et al., 2010) TEM immunogold labelling of ATG8 can provide 382 

ultrastructural details of ATG8 membrane-bound structures including autophagosomes. A 383 

convenient and feasible processing method for ATG8 immunogold labeling is freeze-384 

substitution (FS) followed by cryoembedding in an acrylic resin (Figure 2c). Several 385 

protocols of FS have been developed, providing excellent ultrastructure and high 386 

sensitivity immunogold labelling of various antigens, including membrane-bound 387 

molecules (Andreu et al., 2007; Bernal et al., 2007; Derrien et al., 2012; Segui-Simarro et 388 

al., 2011; Segui-Simarro et al., 2003). This strategy has revealed the localization of ATG8 389 

in autophagosomes and autolysosomes in various plant cells and tissues such as maize 390 

aleurone (Reyes et al., 2011), Arabidopsis root (Zhuang et al., 2013), or Brassica napus 391 

tapetum (Figure 2c), a tissue with high autophagy activity during late pollen development 392 

(Hanamata et al., 2014; Papini et al., 2014). The development of antibodies against plant 393 
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ATG proteins, with high specificity and sensitivity, will help to identify the components 394 

and ultrastructural organization of autophagic structures in diverse plant cells and systems.  395 

Approaches for manipulating plant autophagy 396 

Since autophagy is a very dynamic process, it needs to be and is in fact tightly regulated at 397 

multiple levels: transcriptional, post-transcriptional, translational and post-translational 398 

(Feng et al., 2015; Kraft et al., 2008) 399 

Targeting transcriptional regulation of plant ATG genes 400 

Some ATG proteins are either actively incorporated into autophagosomes as their integral 401 

part or are engulfed together with the cargo destined for degradation (Nakatogawa, 2013; 402 

Nakatogawa et al., 2012).  Autophagy is constitutively active at the basal level in most 403 

types of plant cells, playing a housekeeping role. Hence, ATG genes are constitutively 404 

transcribed, albeit at lower levels (Pu et al., 2017). Interestingly, expression of multiple 405 

plant ATG genes goes up under stress, e.g. under starvation conditions, coinciding with 406 

upregulation of autophagic activity (Chung et al., 2010; Minina et al., 2013b; Rose et al., 407 

2006). Thus, identification of master regulators influencing the expression of ATG genes 408 

is an important step towards the development of autophagy-modulating tools. Multiple 409 

transcription factors regulating ATG gene expression in animal cells have already been 410 

identified (Feng et al., 2015). Although there is no doubt that such transcription factors 411 

also exist in plants, information about them is still very scarce. For example, it has been 412 

demonstrated that induced expression of Arabidopsis’ ATG genes upon Botrytis cinerea 413 

infection is directly mediated by the transcriptional activator AtWRKY33 (Lai et al., 2011). 414 

In addition, the tomato transcription factor HsFA1a binds the promoters of ATG10 and 415 

ATG18f to activate their transcription upon drought stress (Wang et al., 2015a). 416 

To date, phenotypic studies of the role of autophagy in plants have been based on 417 

comparing the performance of either ATG-knockout or knockdown lines to wild–type 418 

plants under various unfavorable conditions (Kim et al., 2012). All these studies 419 

collectively indicate a potential benefit of upregulated autophagy for stress tolerance and 420 

plant fitness. While ectopic overexpression of ATG genes in yeast did not seem to have an 421 

effect on autophagic activity (Ma et al., 2007), a growing body of evidence indicates that 422 
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overexpression of ATG genes might be successfully used for upregulation of autophagy in 423 

other model organisms, including plants (Minina et al., 2018; Pyo et al., 2013; Scott et al., 424 

2007; Wang P et al., 2016; Wang et al., 2017b; Xia et al., 2012). These results indicate that 425 

the level of the core ATG proteins are a limiting factor of autophagic activity in plant and 426 

animal cells, but not in yeast. A possible explanation of this phenomenon is the difference 427 

in the number of phagophore assembly sites (PAS), where the core ATG proteins are 428 

active. While yeast has a single PAS, animal and plant cells do not seem to have a limit in 429 

the number of PASes. Thus, availability of a higher amount of the core ATG proteins might 430 

stimulate the formation of a higher number of PASes, leading to increase formation of 431 

autophagosomes (Minina et al., 2018). The predicted benefit of enhanced autophagy for 432 

plant fitness, fecundity, biomass and stress tolerance has been described in the recent 433 

studies (Minina et al., 2018; Wang et al., 2016b). Further development of this approach is 434 

required as there might be penalties for constitutive upregulation of plant autophagy in 435 

most of the tissues as well as benefits of tissue/organ-specific stimulation of autophagic 436 

activity. 437 

Targeting post-transcriptional regulation of plant ATG genes 438 

Although multiple examples of miRNA regulating autophagy are known for animal models 439 

(Feng et al., 2015), almost nothing is known about post-transcriptional regulation of 440 

autophagy in plants. Indirect evidence of possible regulation of autophagy by miRNA via 441 

the stress sensor SnRK1 was demonstrated in the study by Confraria et al (Confraria et al., 442 

2013). So far, post-transcriptional silencing of plant ATG genes has only been implemented 443 

by using artificial ATG-specific RNAi constructs (Kim et al., 2012).  444 

Targeting translational regulation of plant ATG genes 445 

Under stress conditions, autophagy degrades cytoplasmic content together with ribosomes, 446 

thus downregulating the translation of most mRNAs, including ATG mRNAs (Bassham 447 

and MacIntosh, 2017; Kraft et al., 2008). Importantly, selective degradation of ribosomes, 448 

ribophagy, under normal conditions positively affects the efficacy of the translational 449 

machinery by controlling ribosome quality (Mathis et al., 2017).  Artificial modulation of 450 

autophagy at the translational level has not yet been attempted due to numerous challenges 451 

regarding the specificity of this approach. 452 



16 
 

Pharmacological modulation of plant autophagy 453 

As compared to animals, pharmacological manipulation of autophagy in plant has not been 454 

comprehensively tested in part due to poor cellular accessibility of many of the described 455 

chemical modulators. Paradoxically, some of the natural chemicals tested for their 456 

modulation of animal cell autophagy, are plant-derived and we know nothing about their 457 

potential effect on plant autophagy (Fleming et al., 2011; Vakifahmetoglu-Norberg et al., 458 

2015; Wang et al., 2017c). There are several compounds that have been demonstrated to 459 

either inhibit or stimulate plant autophagy ((Klionsky et al., 2016), Table 1). Drug 460 

treatment can be a quick and a relatively easy method to modulate autophagy activity in 461 

plants. The important disadvantages of pharmacological modulation of plant autophagy are 462 

potential off-target effects of the drugs currently available (Table 1), issues with drug 463 

stability and tissue/cell-permeability. Nevertheless, this approach has a very important 464 

practical benefit, as it may be applicable for agricultural purposes in the countries that do 465 

not allow cultivation of genetically modified organisms. 466 

 467 

Autophagy responses to abiotic stress in plant 468 

Plant stress has been defined by Lichtenthaler (1996) as “any unfavorable condition or 469 

substrate that affects or blocks a plant metabolism, growth or development”. A common 470 

feature of abiotic stresses such as high salinity, drought and osmotic stress is their ability 471 

to induce, at the cellular level, a transient or permanent physiological water deficit, 472 

conducive of energy limitation in plants. Low energy level in plant tissues is sensed by a 473 

subfamily of serine/threonine kinases known as SnRK1 (SNF1-related kinase), 474 

homologous to the yeast SNF1 (Sucrose Non-Fermenting-1) and the animal AMPK 475 

(Adenosine MonoPhosphate-activated protein Kinase). Plant SnRK1 act as metabolite 476 

sensors to constantly adapt metabolism to the supply of, and demand for, energy, and are 477 

central integrators of a transcriptional network for stress and energy signaling (Bakshi et 478 

al., 2017; Emanuelle et al., 2015; Jossier et al., 2009; Nukarinen et al., 2016). SnRK1-479 

dependent restoration of energy homeostasis and promotion of tolerance to adverse 480 

conditions is partly achieved through an induction of catabolic processes and a general 481 

repression of anabolism (Emanuelle et al., 2015; Soto-Burgos and Bassham, 2017). 482 
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Multitudes of unrelated cellular pathways converge on the autophagy machinery to signal 483 

a diversity of stimuli. Indeed, activated SnRK1 induces the catabolic pathway autophagy 484 

by inhibiting its negative regulator TOR (Target Of Rapamycin) complex in plants (Chen 485 

et al., 2017; Soto-Burgos and Bassham, 2017). A crucial feature of autophagy is that it is 486 

a highly regulated and dynamic process, able to sense intracellular stress within minutes 487 

and rapidly initiate an appropriate response to cope with the damage (Antonioli et al., 488 

2017). High salinity and osmotic stress induce autophagy in plant tissues within a couple 489 

of hours of incubation into stress-induction medium (Liu et al., 2009; Vanhee et al., 490 

2011b). Accordingly, many core ATG genes are transcriptionally upregulated by various 491 

abiotic stresses (Bassham et al., 2006; Wang et al., 2015a; Zhou et al., 2014a). Conversely, 492 

autophagy-deficient plants are more sensitive to abiotic stresses (Liu et al., 2009). Recent 493 

evidence also suggest that ectopic overexpression of defined plant core ATG genes can 494 

confer tolerance to various types of stresses and improve growth performance under 495 

nutrient starvation conditions (Minina et al., 2018; Wang et al., 2017b)    496 

The plant adaptation responses to abiotic stresses involve phytohormones-dependent 497 

signaling cascades, including that of the stress hormone abscisic acid (a growth negative 498 

regulator) and that of brassinosteroid (a growth promoting regulator) to reprogram its 499 

metabolism (Mair et al., 2015). When subjected to an abiotic stress, plants have to balance 500 

between maintaining growth and competitiveness on the one hand, and ensuring survival 501 

on the other hand (Claeys and Inze, 2013). This delicate and vital process involves 502 

hormone-regulated master regulators, some of which have been characterized recently.  503 

ABI1 (ABA insensitive 1) and PP2CA (protein phosphatase 2C-A) are negative regulators 504 

of ABA-dependent signaling, and the two phosphatases were shown to dephosphorylate 505 

and inactivate SnRK1. The repressive action of protein phosphatases, established negative 506 

regulators of the ABA signaling pathway, is blocked by their ABA-dependent interaction 507 

with ABA receptors (Emanuelle et al., 2015). ABA-dependent signaling results in the 508 

expression of effector proteins regulating different aspects of plant physiology. The 509 

polytopic transmembrane protein TSPO is a multi-stress regulator, transiently induced by 510 

water-related stress and ABA treatment in plants (Guillaumot et al., 2009). The induced 511 

Arabidopsis TSPO protein is also rapidly (within 48 hours) degraded, suggesting a time-512 

limited role for it during stress. Plant TSPO may act as an autophagy cargo receptor for a 513 
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diverse set of cargo such as cytoplasmic free porphyrins and defined water channels 514 

(Veljanovski and Batoko, 2014). AtTSPO interacts with a highly expressed plasma 515 

membrane water channel, aquaporin PIP2;7, during osmotic stress. The aquaporin-TSPO 516 

complex is targeted by autophagy for degradation in the vacuole, thus preventing PIP2;7 517 

from reaching the plasma membrane and possibly protecting the cell from water loss 518 

(Hachez et al., 2014). However, constitutive expression of TSPO can be detrimental to 519 

plant growth and development (Guillaumot et al., 2009; Vanhee et al., 2011a). This is 520 

probably due to its intrinsic free heme binding capacity, and the consequence of this 521 

cytoplasmic heme titration on ROS scavenger enzymes activity (Batoko et al., 2015; 522 

Vanhee et al., 2011b). Enhanced ROS accumulation could generate ER-stress and chronic 523 

UPR (Unfolded Protein Response) followed by cell death (Petrov et al., 2015). The free 524 

heme/porphyrin detoxification function of TSPO may be required only transiently, when 525 

the plant cell needs to manage stress-induced ROS, and probably ROS-dependent signaling 526 

events (Batoko et al., 2015).  527 

Plant TSPO is also upregulated by the growth-promoting hormone brassinosteroid (Nolan 528 

et al., 2017). Brassinosteroid (BR) plasma membrane receptor BRI1 (Brassinosteroid 529 

Insensitive 1) and the downstream signaling components regulate the activity of the 530 

transcription factor BES1 (BRI1-EMS Suppressor 1) (Li and Nam, 2002). BR inhibits the 531 

activity of the kinase BIN2 that negatively regulates BES1 by phosphorylation. BES1 532 

master transcriptional activity promotes plant growth, and its deregulation was shown 533 

recently to enhance plant survival instead of growth during abiotic stress (Nolan et al., 534 

2017). During osmotic stress for example, BES1 is ubiquitylated and interacts with the 535 

ubiquitin-binding receptor protein DSK2 (Dominant Suppressor of Kar2), a known 536 

autophagy cargo receptor in higher eukaryotes (Lee et al., 2013). BES1 is therefore 537 

targeted for autophagy-mediated degradation as a response to abiotic stress. DSK2’s 538 

autophagy receptor activity is regulated by phosphorylation, the latter being catalyzed by 539 

the BIN2 kinase. Loss-of-function dsk2 mutant plants accumulate BES1 proteins, have 540 

altered global gene expression profiles and compromised survival during abiotic stresses 541 

(Nolan et al., 2017). Consistently, constitutively active BR signaling mutant plants are 542 

more sensitive to abiotic stress, suggesting that reducing growth during abiotic stress is a 543 

vital mechanism for plant to survive during abiotic stresses. Although BES1 abundance 544 
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can be regulated by the ubiquitin proteasome system (Lin et al., 2011), autophagy appears 545 

to be a key pathway in achieving this tricky physiological and metabolic balance between 546 

growth and survival.   547 

      548 

The role of autophagy in plant-pathogen interactions 549 

Autophagy is a central regulator of plant innate immunity. It can either act as survival or 550 

cell death pathway in response to invading microbes with different pathogenic (i.e. 551 

biotrophic or necrotrophic) lifestyles. Because of the co-evolutionary battle with their 552 

hosts, several pathogens have developed various countermeasures to suppress, evade or 553 

subvert autophagy processes to the benefit of infection. In addition, some eukaryotic 554 

microbes require their own autophagy machinery for successful pathogenesis (Hofius et 555 

al., 2017). Most studies demonstrating the role of autophagy in plant-microbe interactions 556 

have considered autophagy as a largely unspecific (“bulk”) process. However, recent 557 

reports indicate that plants are able to explore selective autophagic mechanisms to 558 

effectively fend off microbial intruders, whereas some pathogens overcome plant 559 

immunity by hijacking autophagy pathways for selective removal of host components 560 

(Clavel et al., 2017; Dagdas et al., 2016; Hafren et al., 2017; Haxim et al., 2017). In this 561 

section, we will briefly discuss the role of autophagy in different immunity- and disease-562 

related contexts, including the hypersensitive response (HR) to avirulent pathogens as well 563 

as infections with virulent fungal, viral, oomycete and bacterial species. More 564 

comprehensive reviews on the topic are available from (Hofius et al., 2017; Minina et al., 565 

2014; Zhou et al., 2014b) and in this Special Issue on Plant Autophagy from Leary et al. 566 

(Leary et al., 2018). 567 

Pathogen recognition by the plant immune system often results in HR, a localized form of 568 

programmed cell death (PCD) activated by intracellular immune receptors [known as 569 

resistance (R) genes] (Coll et al., 2011). HR levels were reduced in autophagy-deficient 570 

mutants infected with avirulent bacteria and oomycetes, or enhanced in autophagy-571 

stimulated transgenic plants upon virus challenge (Coll et al., 2011; Hackenberg et al., 572 

2013; Han et al., 2015; Munch et al., 2014; Munch et al., 2015). Hence, autophagy acts 573 

locally as a positive regulator of HR. Autophagy mutants were also shown to display 574 
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unrestricted cell death upon HR induction (Liu et al., 2005; Yoshimoto et al., 2009) 575 

suggesting that autophagy can contribute to the confinement of HR, thus minimizing 576 

damage to healthy, non-infected tissue (Hofius et al., 2011). This pro-survival effect of 577 

autophagy might be linked to its homeostatic role in eliminating potentially noxious by-578 

products of systemic responses triggered during infection (Coll et al., 2014; Hofius et al., 579 

2011; Munch et al., 2014; Yoshimoto et al., 2009).  580 

An additional pro-survival role of autophagy in immunity has been revealed in the context 581 

of plant defense against necrotrophs, which deliberately activate cell death to retrieve 582 

nutrients from the host. Autophagy-deficient mutants displayed enhanced disease-583 

associated cell death and pathogen growth upon infection with different necrotrophic fungi 584 

(Katsiarimpa et al., 2013; Lai et al., 2011; Lenz et al., 2011; Li et al., 2016b), whereas 585 

plants with elevated level of autophagy showed increased resistance (Minina et al. 2018). 586 

Besides restricting disease-associated necrotic cell death, autophagy may also contribute 587 

to basal defense against necrotrophs by modulating hormone levels or eliminating toxic 588 

cellular constituents induced as part of the disease response (Lai et al., 2011). Some 589 

necrotrophic fungi have therefore evolved mechanisms to overcome autophagy-mediated 590 

defenses in plants. For example, secretion of the phytotoxin oxalic acid by Sclerotinia 591 

sclerotiorum results in unrestricted host cell death via autophagy inhibition (Kabbage et 592 

al., 2013).  593 

Intracellular pathogens in animals are often subject to direct targeting and elimination by 594 

the autophagy machinery in a process referred to as xenophagy (Levine et al., 2011; 595 

Mostowy, 2013; Paul and Munz, 2016). In plants, viruses are the only pathogens with 596 

intracellular replication, but the anti- and pro-viral functions of autophagy in host immunity 597 

and viral pathogenesis have only recently begun to emerge (Clavel et al., 2017). Most 598 

strikingly, selective autophagy mechanisms were discovered as integral part of the innate 599 

immune response against different DNA viruses. The cargo receptor NBR1 mediates 600 

autophagic degradation of non-assembled capsid proteins and viral particles of Cauliflower 601 

mosaic virus (CaMV), providing a first example of xenophagy in plants (Hafren et al., 602 

2017). Likewise, the virulence factor βC1 of Cotton leaf curl Multan virus (CLCuMuV) is 603 

selectively targeted during infection (Haxim et al., 2017). However, recruitment of this 604 
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viral suppressor of RNA silencing (VSR) to autophagosomes seems to involve direct 605 

interaction with ATG8 rather than distinct cargo receptors. The potyviral HCpro and 606 

cucumoviral 2b proteins, representing VSRs of RNA viruses, were also shown to undergo 607 

autophagic clearance but the link between their binding to the host protein rgsCaM and the 608 

autophagy machinery is unclear (Nakahara et al., 2012). In contrast to the examples from 609 

DNA viruses, the biological relevance of the autophagic processes for antiviral immunity 610 

against RNA viruses remains to be shown.  611 

As part of their counter defense, some viruses trigger the autophagic degradation of host 612 

antiviral RNA silencing pathway components (Cheng and Wang, 2017; Derrien et al., 613 

2012). In addition, virus-induced activation of bulk autophagy seems to benefit virus 614 

survival and particle production via suppression of disease-associated cell death and 615 

promotion of plant fitness (Hafren et al., 2017). Hence, viral measures to interfere with 616 

xenophagic targeting may influence the pro-viral effects of bulk autophagy, implying a 617 

potential trade-off between suppression of antiviral autophagy and host survival.  618 

The hemibiotrophic oomycete pathogen Phytophthora infestans was also shown to be 619 

targeted by NBR1-dependent autophagy processes as part of the host defense (Dagdas et 620 

al., 2016). In turn, the P. infestans effector protein PexRD54 can outcompete the 621 

interaction of the NBR1 tobacco homolog Joka 2 with an ATG8 protein, which led to the 622 

speculation that P. infestans hijacks the autophagy pathway to selectively remove defense 623 

components or to recycle and deviate nutrients to the intracellular infection structures 624 

(Dagdas et al., 2016). The role of autophagy during infection with the strictly biotrophic 625 

downy mildew oomycete and powdery mildew fungal species still remains unclear, 626 

probably because of the use of different autophagy-deficient mutant backgrounds and 627 

pathogen species or plant age-dependent alterations in cellular homeostasis and hormone 628 

signaling (Hofius et al., 2009; Lenz et al., 2011).  629 

Similarly, the functions of autophagy during virulent bacterial infection are not well 630 

understood. There is the prevailing view that autophagy promotes plant susceptibility to 631 

infection with Pseudomonas syringae (Hofius et al., 2017; Kwon et al., 2013; Lenz et al., 632 

2011). The recent identification of the Ralstonia solanacearum AWR5 effector, which 633 
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inhibits the negative autophagy regulator TOR, further suggests that bacteria can exploit 634 

autophagy activation to enhance virulence (Popa et al., 2016)  635 

 636 

Autophagy as a facilitator of nutrient recycling and remobilization in plants 637 

It is generally accepted that autophagy is involved in nutrient recycling and that it is 638 

induced under nutrient starvation. This role has been suspected since the early stages of 639 

autophagy research, when de Duve observed autophagosome structures in the livers of rats 640 

submitted to nutrient starvation (Deter et al., 1967). Further, the possibility to induce 641 

autophagy for nutrient recycling in yeast using starvation was used by Oshumi  and 642 

colleagues to set up a mutant screening strategy that permitted the discovery of the ATG 643 

genes (Takeshige et al., 1992). In mice, the importance of autophagy in nutrient recycling 644 

was demonstrated by the strong impact of autophagic activity on newborn survival (Kuma 645 

et al., 2004). In plants, hypersensitivity to carbon and nitrogen starvation has been 646 

established as a basic phenotype of atg mutants, characterized originally in Arabidopsis 647 

(Doelling et al., 2002; Ishizaki et al., 2005; Phillips et al., 2008; Thompson et al., 2005), 648 

but also shown in maize (Li et al., 2015). However, our knowledge of the underlying 649 

molecular details of such interplay is limited.  650 

Both carbon and nitrogen starvation are known to induce autophagy (Avila-Ospina et al., 651 

2016; Rose et al., 2006). Expression of ATG genes was shown to increase upon carbon and 652 

nitrogen starvation in many plant species, including Arabidopsis, maize, tobacco, wheat 653 

and the model algae Chlamydomonas reinhardtii, as well as increased lipidation of ATG8 654 

(Caldana et al., 2011; Li et al., 2015; Pei et al., 2014; Perez-Perez et al., 2010; Thompson 655 

et al., 2005; Zientara-Rytter et al., 2011). In addition, crossing atg mutants with starch 656 

deficient mutants was shown to exacerbate their starvation phenotype, demonstrating the 657 

tight link between autophagy and carbon supply under starvation (Izumi et al., 2013). Links 658 

between autophagy and other nutrient deficiencies are less documented. Induction of some 659 

autophagy-related genes (ATG8 and Joka2) in roots of tobacco plants grown in sulfur 660 

deficient conditions (Zientara-Rytter et al., 2011) suggested that sulfur starvation induces 661 

autophagy activity. Indeed, it was recently shown in Arabidopsis that limited sulfur supply 662 

decreases soluble sugars, downregulates TOR activity, as demonstrated by downregulation 663 
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of its downstream target S6K, and increases level of the lipidated ATG8a (Dong et al., 664 

2017). Induction of autophagy under phosphorus starvation has also been suggested in the 665 

model algae Chlamydomonas reinhardtii and marine algae Emiliania huxleyi (Couso et al., 666 

2017; Shemi et al., 2016). In Arabidopsis, it has been proposed that in the absence of 667 

phosphate, selective autophagy (with PUB9 as E3 ligase) is involved in degradation of 668 

auxin accumulation repressor, leading to auxin accumulation and lateral roots growth (Deb 669 

et al., 2014). 670 

We do not know what triggers the induction of autophagy-related genes during limitation 671 

of certain nutrients, however the signal, at least for nitrogen, carbon and sulfur starvation, 672 

is probably TOR-dependent (Dong et al., 2017; Pu et al., 2017; Rexin et al., 2015). 673 

Interestingly, the level of hydrogen sulfide, a recently identified negative regulator of 674 

autophagy, drops during sulfur limitation, and, at least, in such conditions might be one of 675 

the triggers (Gotor et al., 2013; Laureano-Marin et al., 2016).  676 

It is considered that starvation induces non-specific autophagy (i.e. bulk degradation) of 677 

cytoplasmic components for nutrient remobilization. In mammals, however, the selective 678 

degradation of lipid bodies under starvation was demonstrated in hepathocytes (Singh et 679 

al., 2009). In addition, selective degradation of ald6p under nitrogen starvation has been 680 

demonstrated in yeast (Onodera and Ohsumi, 2004). The diversity of the cytoplasmic 681 

components dedicated for degradation by autophagy, including protein aggregates, 682 

membranes, organelles, suggests that in addition to C and N molecules, many other mineral 683 

nutrients could be released from the process. These compounds can then be used for the 684 

cell’s own metabolism, to sustain respiration for example (Barros et al., 2017) or dedicated 685 

for the whole organism after remobilization. Whether phosphate, iron, zinc, sulphur or 686 

potassium can be recycled though autophagy is not documented. Also it is unknown 687 

whether some selectivity exists in the cargos degraded by autophagy under starvation 688 

conditions. It is likely, for example, that under dark conditions, chloroplasts could be 689 

preferentially targeted and that autophagy could participate in starch degradation (Wang 690 

and Liu, 2013; Wang et al., 2015b). Under low nitrate availability, autophagy would 691 

mainly participate in protein degradation but not starch degradation as proteins 692 

accumulated in atg mutants while starch was depleted (Guiboileau et al., 2013). Under 693 
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carbon starvation, the situation is singularly the opposite, with increased usage of free 694 

amino acids, presumably as an alternative carbon source for respiration (Avin-Wittenberg 695 

et al., 2015). 696 

At the whole plant level, autophagy is an essential process for nitrogen remobilization from 697 

leaf to seeds as shown by the 15N pulse-chase experiments performed in Arabidopsis 698 

(Guiboileau et al., 2012). Based on this Arabidopsis study, pulse-chase labelling strategy 699 

was used on maize atg12 mutants that showed accordingly lower N mobilization to the 700 

seeds (Li et al., 2015). Both studies thus confirmed that autophagy manages nutrient 701 

resources in source leaves and that its role for seed formation and seed filling is 702 

fundamental. In Arabidopsis, the composition of atg mutant seeds is strongly modified as 703 

their nitrogen content mainly relies on the post anthesis nitrate uptake rather than N 704 

remobilization from leaves (Guiboileau et al., 2012). Because of their poor N 705 

remobilization capacity, atg mutant display lower yield and lower harvest index. Whether 706 

increasing autophagy activity in the source leaves during senescence could conversely 707 

increase plant performance in seed production and seed quality is then a major issue to be 708 

investigated.  709 

While several studies have performed metabolic profiling of atg mutants (Avin-Wittenberg 710 

et al., 2015; Barros et al., 2017; Masclaux-Daubresse et al., 2014), analysis of the changes 711 

in the metabolic fluxes are considerably less common. Metabolic flux analysis relies on 712 

determining the redistribution of label over time in order to estimate the atomic flux 713 

between pools of different metabolic species. Two approaches are commonly used: (i) 714 

radiolabeled isotopes,  namely 14C and 35S and 3H, and (ii) stable isotopes, such as 13C 715 

and 15N (Batista Silva et al., 2016). Few works investigate primary metabolic fluxes in 716 

connection to autophagy and in plants. In the first study, etiolated wild type and atg mutant 717 

Arabidopsis seedlings were incubated in the presence of either uniformly labelled 14C-718 

glucose, positionally labelled 14C glucoses or 13C lysine in order to characterize the 719 

respiratory metabolism of these mutants (Avin-Wittenberg et al., 2015). These revealed 720 

various effects, including lower protein synthesis and an accumulation of label in specific 721 

amino acids and TCA cycle intermediates. As mentioned above, the change in amino acid 722 

levels were different from that reported during nitrogen deficiency (Masclaux-Daubresse 723 
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et al., 2014). It would therefore be interesting to examine the impact of autophagy 724 

deficiency on metabolic fluxes in a range of conditions/tissues other than the etiolated 725 

seedling. These examples highlight the power of incorporating flux analyses into studies 726 

on plant autophagy, suggesting that their greater adoption will yield further insights into 727 

molecular and energetic mechanisms regulating and being modulated by autophagy.  728 

Targeting autophagy in plant oil production 729 

Plant oils play pivotal role in human nutrition and the potential for plant oils to replace 730 

fossil oil in chemical industry is likewise immense. To realize the full potential of using 731 

plant oils, it is crucial to optimize quantity and quality of the oil in planta using genetic 732 

and metabolic engineering. As in all eukaryotes, plants store their lipid reserves in 733 

specialized organelles, lipid droplets (LDs), which are especially abundant in seeds of 734 

oilseed crops. Recent research using animal and yeast systems has established that 735 

autophagy plays pivotal role in both breakdown and biogenesis of LDs (Singh et al., 2009; 736 

Zhang et al., 2009) and that LDs in return can regulate autophagy (Shpilka et al., 2015). 737 

The process of autophagic degradation of LDs in the lysosome or lytic vacuole has been 738 

named “lipophagy” and shown to crosstalk in a number of ways with cytosolic lipolysis 739 

(Zechner et al., 2017). 740 

It has been shown that Arabidopsis mutants in beta-oxidation of fatty acids have greatly 741 

reduced seed oil content, demonstrating that turnover of lipids is an essential component 742 

for efficient seed oil accumulation (Lin et al., 2004). Therefore, can manipulation of 743 

autophagy be used as a tool to improve oil crops? To-date, the evidence for the role of 744 

autophagy in biogenesis or degradation of LDs in plants is rather scarce and fragmented, 745 

encompassing only a few species. Thus, autophagy is required for the formation of LDs in 746 

tapetal cells and phospholipid editing in rice pollen (Kurusu et al., 2014). Two cytological 747 

studies using electron microscopy have revealed micro- and macroautophagy-mediated 748 

engulfment of LDs in the algae Auxenochlorella protothecoides (Zhao et al., 2014) and 749 

Micrasterias denticulata (Schwarz et al., 2017) respectively. Finally, although autophagy 750 

does not seem to be critically required for Arabidopsis seed development, efficient 751 

mobilization of lipids upon seed germination under carbon-deprived conditions is at least 752 

partly dependent on autophagy (Avin-Wittenberg et al., 2015). Clearly, more research is 753 
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needed to establish a solid platform for biotechnological application of autophagy in 754 

regulating plant oil reserves (Elander et al., 2018).  755 

 756 

Future perspectives 757 

The study of autophagy in plants has boomed in the last few years, and our understanding 758 

of the function and regulation of this complex mechanism is steadily expanding. However, 759 

much work is still needed in order to understand the many facets of autophagy and utilize 760 

it for agricultural use. Primarily, it is very importance to continue deciphering the 761 

mechanisms regulating autophagy in plants, as these are still only partially understood. 762 

Better understanding of the regulation of autophagy will assist in the modulation of 763 

autophagy on the field. In the field of selective autophagy, for example, information on the 764 

role of selective autophagy in plant development is lagging behind. In addition, the cargo 765 

receptors or other specificity factors involved in selective autophagy need to be further 766 

identified and characterized and the role of ubiquitin-tagging in organelle degradation 767 

elucidated. As a complementary approach, understanding the functional differences 768 

between the different plant ATG8 isoforms would be very useful. Most of our 769 

understanding of selective autophagy pathways is currently based on studies in model 770 

plants, mainly Arabidopsis. More emphasis should be given to expanding the research to 771 

crops and to possible specific differences in autophagy pathways and responses.  772 

Translating the knowledge gained from model systems to crop plants is also a challenge 773 

for understanding the interplay between autophagy and plant pathogens, which cause 774 

devastating economical losses to farmers and threaten global food security. Future work 775 

will help gaining additional insight into the molecular mechanisms that pathogens use to 776 

exploit plant autophagy for their own benefit and deepen our understanding of the 777 

autophagic components and pathways contributing to plant innate immune responses. 778 

Development of artificial tools for modulating plant autophagy will allow us to control 779 

crop fitness, stress-tolerance and productivity, eliminating the need in laborious and time-780 

consuming breeding process. Advances in CRISP/CAS9-based genetic editing tools and 781 

high-throughput drug screens should facilitate manipulation of autophagy in crops. All this 782 
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may result in the production of crops with increased nutrient remobilization, able to cope 783 

better with nutrient starvation and increase efficacy of agriculture and its adjustability to 784 

the changing climate conditions, as well as stability under high pathogen pressure in the 785 

field.  786 
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Table 1. Tools for plant autophagy modulation 

      Confirmation of the expected effect on autophagy 

Type of regulation 
Effect on 
autophagy 

Suggest mechanism of action/target Algae Mosses Seed plants 

Genetic regulation 

Knockout of ATG 
gene(s)  

Inhibition  Possibly (Zhang et al., 
2014) 

Yes (Mukae et al., 
2015), (Vera et al., 
2017) 

Yes (Kim et al., 
2012) 

Knockdown of ATG 
gene(s)  

Inhibition  - - 
Yes (Kim et al., 
2012) 

Overexpression of ATG 
gene(s) 

Stimulation  - - 

Possibly (Xia et al., 
2012), (Wang et al., 
2017; Wang et al., 
2016) 

Pharmacological regulation 

Rapamycin Stimulation An inhibitor of TOR kinase 
Yes (Crespo et al., 
2005) 

Reference to personal 
communication in 
(Menand et al., 2002) 

In Arabidopsis it 
requires the 
presence of 
FKBP12 (Ren et 
al., 2012), (Zhang 
et al., 2013) 

AZD8055  Stimulation TOR kinase active site inhibitor 
Yes (Imamura et al., 
2016) 

- 
Yes (Dong et al., 
2015) 

Torin1 
Stimulation TOR active site inhibitor 

Yes (Imamura et al., 
2016) 

- 
Yes (Montane and 
Menand, 2013) 

KU63794  Stimulation TOR active site inhibitor - - 

Yes, especially in 
combination with 
rapamycin (Deng et 
al., 2017) 



3-MA (3-methyladenine) 

Inhibition, 
but also 
might lead 
to 
enhancement 

A pan Phosphatidylinosytol-3 kinase 
(PI3K) inhibitor. Can persistently 
inhibit class III PI3K and transiently 
inhibit class I PI3K. 

Yes (Jiang et al., 
2012) 

- 
Yes (Takatsuka et 
al., 2004), (Wang et 
al., 2013) 

Wortmannin Inhibition 
A pan Phosphatidylinosytol-3 kinase 
(PI3K) inhibitor. Inhibit class I and III 
PI3K with the same efficacy. 

- - 
Yes (Takatsuka et 
al., 2004) 

LY294002  

Inhibition, 
but also 
might lead 
to 
enhancement 

A pan Phosphatidylinosytol-3 kinase 
(PI3K) inhibitor. Inhibits activity of 
class I and class III PI3Ks and 
additionally influences Ca2+ 

homeostasis. 

- - 
Yes (Takatsuka et 
al., 2004) 

Bafilomycin A1 Inhibition 
A specific inhibitor of vacuolar H+-
ATPase 

- - 

Yes. In BY-2 it 
gives a weaker 
effect than 
Concanamycin A 
(Matsuoka et al., 
1997) 

Concanamycin A Inhibition 
A specific inhibitor of vacuolar H+-
ATPase 

- 
Yes (Mukae et al., 
2015) 

Yes (Matsuoka et 
al., 1997; Yano et 
al., 2015) 

E-64c/d Inhibition 
A cysteine-protease inhibitor, blocks 
degradation of autophagic cargo and 
ATG4 activity 

Possibly (Moriyasu, 
1995) 

Yes (Mukae et al., 
2015) 

Yes (Oh-ye et al., 
2011; Yano et al., 
2015)  

BTH (benzothiadiazole) Stimulation Acts as analog of salicylic acid - - 
Yes (Yoshimoto et 
al., 2009) 

Fumonisin B1 Stimulation 
 An inhibitor of sphingosine N-
acyltransferase 

- - 
Possibly (Qin et al., 
2017) 



Tunicamycin 
Stimulation Induces ER stress 

Possibly (Diaz-Troya 
et al., 2011) 

- 
Yes (Yang et al., 
2016) 

Polyamines Stimulation 
Spermidine was suggested to influence 
expression of ATG genes by changing 
chromatin structure 

- - 
Possibly (Sequera-
Mutiozabal et al., 
2016) 

 

"-", no published data is yet available 



Figure 1: Autophagic response initiation in plants: complexes in complexity. In 

response to a stimulus, the ATG1 complex is formed and targeted to an organelle 

contact site involving the endoplasmic reticulum (ER) and an unknown organelle (?). 

The ATG1 complex activates and recruits the VPS34 complex resulting in local PI3P 

(phosphatidylinositol-3-Phosphate) synthesis and enrichment within the organelles 

contact site. ATG9-containing vesicles (black circle) are docked to the contact site by 

ATG9 interaction with ATG2-ATG18 dimers, site-localized through ATG18 binding to 

PI3P, the input of membrane lipids and defined proteins contributing in the formation of 

the phagophore. The phagophore membranes are decorated with enzymatically 

processed and lipidated (conjugation to PE, phosphatidylethanolamine) ATG8. This 

process is facilitated by components of the ATG8 conjugation systems. Putative 

subunits of the various complexes not yet characterized in plant are illustrated in grey.  

Figure 2. Imaging of plant autophagic structures and subcellular localization of 

ATG8 by different microscopy approaches. (a) Live imaging of ATG8-GFP reporter 

proteins in Arabidopsis roots observed by spinning disk confocal microscope. (b) TEM 

micrograph of the same plant tissues immunolabelled for ATG8 -GFP detection using 

anti-GFP antibodies. Note the gold particles on the autophagosome membrane. (c)  

TEM immunogold labelling with anti-ATG8 antibodies of a tapetal cell of Brassica 

napus. 

 






