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This work pioneers the quantization of primordial fermion perturbations in hybrid loop quantum
cosmology (LQC). We consider a Dirac field coupled to a spatially flat, homogeneous, and isotropic
cosmology, sourced by a scalar inflaton, and treat the Dirac field as a perturbation. We describe the
inhomogeneities of this field in terms of creation and annihilation variables, chosen to admit a unitary
evolution if the Dirac fermion were treated as a test field. Considering instead the full system, we truncate its
action at quadratic perturbative order and construct a canonical formulation. In particular this implies that, in
the globalHamiltonian constraint of themodel, the contribution of the homogeneous sector is correctedwith a
quadratic perturbative term. We then adopt the hybrid LQC approach to quantize the full model, combining
the loop representation of the homogeneous geometry with the Fock quantization of the inhomogeneities.
We assume a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger equation
for the quantum evolution of the perturbations, where the role of time is played by the homogeneous inflaton.
We prove that the resulting quantum evolution of the Dirac field is indeed unitary, despite the fact that the
underlying homogeneous geometry has been quantized as well. Remarkably, in such evolution, the fermion
field couples to an infinite sequence of quantum moments of the homogeneous geometry. Moreover, the
evolved Fock vacuum of our fermion perturbations is shown to be an exact solution of the Schrödinger
equation. Finally, we discuss in detail the quantum backreaction that the fermion field introduces in the global
Hamiltonian constraint. For completeness, our quantum study includes since the beginning (gauge-invariant)
scalar and tensor perturbations, that were studied in previous works.
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I. INTRODUCTION

Observational cosmology has gone through impressive
developments in the last decades, with improvements in the
resolution that, in particular, have allowed us to determine
several cosmological parameters with an error of a few
percent [1,2]. In this new era of precision cosmology, the
cosmic microwave background (CMB) is an important
source of information about the physics of the early
Universe and the primordial seeds for the later formation
of structures [3]. The observation of the CMB has given a
solid support to the idea that those seeds originated from
quantum fluctuations of the perturbations of a flat, homo-
geneous, and isotropic state of the Universe that underwent
a period of inflation [4,5]. The most conventional approach
to describe the intervening inflationary mechanism is
to introduce a scalar field (the inflaton) subject to a
potential, the contribution of which drives the expansion.
The consideration of primordial perturbations of scalar
and tensor nature within the inflationary paradigm leads to

great agreement between theoretical and observational
predictions. Nonetheless, most of the fundamental theories
for matter interactions involve nonbosonic degrees of free-
dom, and in particular spin-1=2 ones. Thus, it is interesting
to incorporate as well this type of fields in order to discuss
the physics of the early Universe in a more realistic manner.
This discussion would elucidate whether the presence and
evolution of fermion fields during the first cosmological
stages may have left any trace in the scalar and tensor
primordial perturbations, and investigate quantitatively the
extent to which they did or did not affect them.
Physical effects of free fermionic fields viewed as

perturbations propagating in a flat cosmology, both during
inflation and in other epochs of the Universe, have been
discussed in several works, treating them as test fields in
the framework of quantum field theory [6–13]. The first
analyses that studied fermions in quantum cosmology, that
is, assuming that the cosmological homogeneous back-
ground is as well a quantum entity, can be traced back to the
1970’s [14,15]. Interestingly, these works did not regard
the fermionic matter as a test field but rather as the source
of geometry. However, they restricted the fermionic field to
be homogeneous as well, therefore reducing its degrees of
freedom to a finite number.
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In the context of quantum geometrodynamics [16], the
inclusion of fermions was made by D’Eath and Halliwell
in a study particularized to Dirac spinors [17]. They
extended to these fields the treatment of cosmological
perturbations in a spatially closed universe put forward
by Halliwell and Hawking a few years before [18]. In their
paper, D’Eath and Halliwell adopted a holomorphic
representation for the fermionic field, and introduced
creation and annihilation variables that lead to an instan-
taneous diagonalization of the Hamiltonian. They argued
that the production of the corresponding particles is finite,
and discussed issues related to the backreaction of the
fermions onto the quantum background and perturbations
of the geometry and the inflaton.
The main purpose of the present work is to generalize

this treatment of fermionic fields in quantum cosmology in
order to allow for other approaches to the quantization of
the background instead of quantum geometrodynamics,
with our emphasis placed on the loop quantization program
[19]. Besides, we will also use recent results on the Fock
representation of fermions [20–22] with the aim at improv-
ing some properties of the quantization of the Dirac field
related with the unitarity of the evolution and the back-
reaction effects. Owing to its physical relevance, we will
adopt a flat topology for the spatial sections of our model.
Loop quantum cosmology (LQC) [19,23–25] is a quan-

tization approach for cosmological spacetimes that is
based on the methods of loop quantum gravity (LQG)
[26]. This latter formalism is one of the most solid
candidates to construct a nonperturbative quantum theory
of gravity. LQG is a canonical program for the quantization
of general relativity that is independent of background
structures. The application of LQC to homogeneous and
isotropic spacetimes has led to remarkable results, among
which the most celebrated one is the resolution of the
cosmological singularity, that is replaced by a quantum
bounce [27–30]. The framework of LQC was enlarged to
allow for the consideration of inhomogeneous spacetimes
with the introduction of hybrid quantization methods [31],
based on combining the loop quantization of certain global
modes of the geometry with other, more conventional
quantization techniques for the additional inhomogeneities.
This procedure, known with the name of hybrid LQC,
was first applied to linearly polarized Gowdy cosmologies
[32–35]. It was soon extended to realistic cosmological
scenarios corresponding to perturbed homogeneous and
isotropic universes, both with scalar [36–40] and tensor
perturbations [41]. Other methods have also been devel-
oped for the quantization of cosmological perturbations in
LQC. This is the case, e.g. of the dressed metric approach
[42–45], which employs as well hybrid quantization
techniques, but renouncing to the description of the whole
cosmological system as a symplectic constrained system.
The consequences of the loop quantization of the geometry
on the CMB have also been studied using effective

equations derived from arguments related with the closure
of the quantum constraint algebra and certain additional
assumptions about the form of the quantum corrections
[46–50]. For a recent review of these different lines of
attack, see Ref. [51]. On the other hand, the effect of hybrid
LQC on scalar and tensor perturbations, its reflection in
the correlation functions of the CMB, and the comparison
with observations, have been investigated in Refs. [52,53].
The predictions extracted so far seem in good agreement
with the observations.
The consideration of fermions in LQC has been limited

to the study of a homogeneous and anisotropic model
coupled to a homogeneous fermion field [54], where the
focus was placed in the role played by parity. In this work
we aim to analyzing a fermion field with local degrees of
freedom in the context of hybrid LQC. The interest of
considering fermions in hybrid LQC exceeds the inclusion
of realistic fundamental matter fields in our quantum
description of the early Universe. On the one hand, the
introduction of fermions puts to the test the very own
consistency of the hybrid approach, requiring a quantiza-
tion where the loop quantum geometry is coupled to
fermionic fields. Thus, one faces the challenge of com-
bining in a consistent way, in a constrained infinite-
dimensional system, the polymeric representation of the
geometry with a more conventional representation (e.g. a
Fock representation) of appropriate canonical anticom-
mutation relations for the fermions, following the rules of
quantum field theory in curved spacetimes [55]. On the
other hand, LQC provides a complete and fully controlled
quantization of homogeneous and isotropic universes.
Therefore, one expects that hybrid LQC will allow us
to treat fermions in cosmology in a genuine quantum way,
without recurring at any moment to semiclassical approx-
imations, as it was the case in Ref. [17]. This quantum
treatment is important if onewants to investigate thoroughly
physical processes that really belong to the quantum realm.
Moreover, the fact that the polymeric quantization is
inequivalent to other traditional quantizations (like geo-
metrodynamics) casts doubts on whether one can ignore
the effects on the cosmological evolution of the quantum
fermionic fields. In particular, the existence of a bounce
eliminates the singularity of the geometry and may change
drastically the behavior of the fermions, even when
described in the context of quantum field theory in a
nonstationary background. Partly related with this issue
is the correct definition of a vacuum state. The corrections
caused by the loop quantization alter the geometry, chang-
ing its dynamics and the corresponding symmetries of the
spacetime in effective descriptions. It is then natural to
expect that these changes modify as well the vacuum state,
at least if one understands it as a state that is optimally
adapted to the background dynamics. Another important
issue is the backreaction that the quantum fermions produce
onto the geometry. There is an increasing interest on this
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problem in LQC, and although some very preliminary
discussions have been carried out in different contexts
[56,57], the development of fully self-consistent forma-
lisms to study this backreaction is a necessary step before
dealing successfully with it. These are the questions and
problems that we want to discuss in this work.
The rest of the article is organized as follow. In Sec. II we

will describe our classical system, that represents a flat,
homogeneous, and isotropic Universe, with a homo-
geneous massive scalar field, that contains scalar and
tensor perturbations, as well as a Dirac field that is also
treated as a perturbation. In Sec. III we will discuss the
choice of creation and annihilation variables for the Dirac
field. We will summarize previous results on the unique-
ness of this choice if one demands a unitary dynamics for
the selected variables, together with some symmetry
requirements. This criterion picks out a family of Fock
representations that are all unitarily equivalent. We will
complete the change that leads to such creation and
annihilation variables, complementing it with a change
of homogeneous variables. The total transformation per-
formed in the system renders it canonical at the considered
perturbative level. Although we will try to maintain our
discussion as general as possible, independently of a
specific choice in the privileged family of representations
that is selected by our criteria, in Sec. IV we will focus our
attention on the representation associated with the same
creation and annihilation variables that were introduced by
D’Eath and Halliwell, given the interest in comparing our
results with those of Ref. [17]. We will then proceed to
the hybrid quantization of the resulting system in Sec. V.
In Sec. VI we will adopt a Born-Oppenheimer ansatz that
separates the dependence of the quantum states on the
homogeneous geometry, the scalar and tensor perturba-
tions, and the fermionic degrees of freedom. We will
discuss conditions to arrive in this way to a Schrödinger
equation for the fermionic part. In Sec. VII, we will study
the quantum dynamics of our creation and annihilation
operators for the nonzero-modes of the Dirac field. We will
implement the dynamics by means of an evolution operator
in Sec. VIII, where we will also construct solutions to the
associated Schrödinger equation and provide a fermionic
Hamiltonian. In Sec. IX we will prove the unitarity of the
quantum dynamics and discuss the production of particles
and the fermionic backreaction contribution. Finally, in
Sec. X we conclude discussing our results. We use units
such that the Newton constant, the speed of light, and the
reduced Planck constant are equal to one.

II. THE MODEL

A. The unperturbed homogeneous model

We start by considering a Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime in which the homo-
geneous and isotropic spatial sections have flat compact

topology, so that they are isomorphic to a three-torus T3.
This assumption of compactness should be irrelevant for
cosmological purposes if the compactification radius is
sufficiently large (typically much larger than the associated
Hubble radius), but will simplify considerably our math-
ematical treatment. The corresponding metric can be written
in the form

ds2 ¼ σ2ð−N2
0ðtÞdt2 þ e2αðtÞ0hijdθidθjÞ: ð2:1Þ

Lowercase Latin letters from the middle of the alphabet
denote spatial indices. Here, N0 is the homogeneous lapse
function, and α is a dynamical variable that, up to a constant,
coincides with the logarithm of the scale factor. Besides, we
have chosen spatial angular coordinates θi with a period
equal to 2π=l0, so that 2πθi=l0 ∈ S1. We have introduced the
(time-independent) Euclidean metric of the three-torus, 0hij,
as an auxiliarymetric. Finally, we have included the constant
factor σ2 ¼ 4π=ð3l30Þ for convenience.
In LQG, the fundamental variables that describe the

geometry are a densitized triad and an suð2Þ connection
[26], known as the Ashtekar-Barbero variables. Recalling
the homogeneity and isotropy of the spatial sections, and
making use of an auxiliary triad, e.g. the Euclidean triad
0ei, it is easy to see that each of the Ashtekar-Barbero
variables is determined by a single homogeneous variable.
A usual prescription in LQC [28] is to parametrize the
densitized triad in terms of a variable, v, that is related with
the scale factor of the model by [39]

eα ¼
�
3γ

ffiffiffiffiffiffi
Δg

p
2σ

jvj
�1=3

: ð2:2Þ

The sign of v determines the orientation of the triad, γ is a
constant called the Immirzi parameter [58], and Δg is the
minimum nonzero area allowed by the spectrum of the area
operator in LQG [28]. The variable jvj is proportional to the
volume V of the homogeneous sections, which is finite
owing to their compactness. We have that V ¼ 2πγ

ffiffiffiffiffiffi
Δg

p jvj.
In addition, one introduces a canonical variable b that
satisfies the Poisson brackets fb; vg ¼ 2. Given the flatness
of the spatial sections, it is not difficult to relate b with
the time derivative of α, and therefore with its standard
momentum πα in geometrodynamics,

πα ¼ −
3

2
vb: ð2:3Þ

Expressions (2.2) and (2.3) are the basic formulas to
establish the relation between the geometrodynamical
and the LQC variables. Since it is much more common
to carry out the classical discussion of the system in terms
of geometrodynamical variables, we will use them in
our analysis up to the point in which one only needs to
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substitute an operator version of these relations in order to
quantize the model according to LQC.
The matter content of this model will be a scalar field

ϕðtÞ subject to a potential. For definiteness, we consider the
simplest nontrivial case, given by a mass term quadratic in
the field. At this stage, we assume that the scalar field is
also homogeneous.
Then, this homogeneous model is subject only to one

constraint: the Hamiltonian (or scalar) constraint Hj0, that
generates homogeneous time reparametrizations in the
system. It can be written [39]

Hj0 ¼
e−3α

2

�
3

4π
π2ϕ − π2α þ

4π

3
e6α ~m2ϕ2

�
¼ 3e−3α

8π
ðπ2ϕ − 3πv2b2 þ V2m2ϕ2Þ: ð2:4Þ

Here, m ¼ ~m=σ is the mass of the scalar field, and πϕ its
momentum.

B. Perturbations of the scalar field and the geometry

In the model described above, we now perturb the tetrad
and the scalar field, and introduce a Dirac field that is
regarded as an additional perturbation of the original
system. All these perturbations are included up to quadratic
contributions in the action, which is the order of truncation
in our perturbative approximation [17,18,22,39]. Since the
fermionic part of the Einstein-Dirac action is already
quadratic in the fermionic contributions, and they are
treated as perturbations, including a possible homogeneous
component of the Dirac field, the considered truncation is
tantamount to couple the Dirac field directly to the tetrad
of the homogeneous unperturbed spacetime. Therefore, at
the considered perturbative level we only need to study the
quadratic perturbation of the Einstein action minimally
coupled to a scalar field and add to the result the Dirac
action for the fermions evaluated in the FLRW geometry.
The perturbation of the Einstein action at quadratic order

has been studied in a Hamiltonian and manifestly gauge-
covariant description in Ref. [39]. Since some steps of the
treatment presented in that work have implications for our
discussion, in this subsection we succinctly review the
results that are relevant for our study. The inclusion of
fermions will be considered in the next subsection.
Since the perturbations of the metric and the scalar field

introduce inhomogeneities, it is convenient to expand them
in modes. A general way to introduce well-defined modes
and proceed to an expansion of this type is the following.
One can consider the connection 0∇i of the auxiliary metric
0hij and its corresponding Laplace-Beltrami operator
0hij0∇0

i∇j. The eigenfunctions of this operator provide
then a complete set of modes (for functions that are square
integrable with the volume element determined by the
auxiliary metric). Moreover, these eigenfunctions can be

chosen real. We call them ~Qn⃗;ϵðθ⃗Þ, with θ⃗ being the tuple
formed by the coordinates θi, and ϵ a parameter that
indicates the behavior under the change of θi by l0 − θi:
ϵ ¼ −1 if they are odd and ϵ ¼ 1 if they are even. For our
flat topology, these eigenfunctions correspond, respec-
tively, to sine and cosine functions. We fix their norm
equal to l3=20 with respect to the auxiliary volume element.
The label n⃗ ¼ ðn1; n2; n3Þ ∈ Z3 is any tuple of integers for
which the first nonvanishing component is positive. This
label determines the corresponding eigenvalue, which is
−ω2

n ¼ −4π2jnj2=l20, with jnj the Euclidean norm of n⃗.
Note that, thanks to the compactness of the spatial sections,
the spectrum of the Laplace-Beltrami operator is discrete.
Since the zero-modes of the geometry and the scalar
field are not considered as perturbations, we obviate these
modes from all of our expansions. With our set of
eigenfunctions, the connection 0∇i, and the metric 0hij,
we can then construct a complete basis of scalar, vector, and
tensor harmonics on the spatial sections.
If we adopt a 3þ 1 decomposition of the spacetime

metric, we can use the above harmonics to expand in modes
the spatial metric (a spatial tensor), the shift vector, and the
lapse function (a scalar), aswell as the scalarmatter field. The
vector modes do not play any physical role in a system like
ours, which does not contain any vector matter field. The
genuine tensor perturbations (which are not derived from the
scalar harmonics by multiplication by the auxiliary metric
nor by differentiation with respect to the associated con-
nection) represent true degrees of freedom of the system.
They decouple from the scalar perturbations and their only
contribution is the addition of a quadratic term to the zero-
mode of the Hamiltonian constraint. They have been studied
in detail within the framework of hybrid LQC in Ref. [41].
Much more complicated is the treatment of the scalar
perturbations. They are also the most relevant perturbations
from an observational point of view, since they are respon-
sible of the anisotropies measured in the CMB.
Scalar perturbations affect not only the scalar field,

but also (some parts of) the spatial metric, the shift, and
the lapse function. Besides, they are constrained by the
linearization of the momentum and Hamiltonian constraints
of general relativity. The resulting linear perturbative
constraints appear in the quadratic truncation of the perturbed
action (written in Hamiltonian form) accompanied by
Lagrange multipliers that are determined by the perturbed
lapse and shift [18,39]. The need to consider quantities that
are invariant under the transformations generated by these
perturbative constraints, so that they have a well-defined
physical meaning, leads to the introduction of the so-called
gauge invariants [59,60]. In particular, it is especially
convenient to use the Mukhanov-Sasaki invariant field
[4,61–63], since it is directly related with the comoving
curvature perturbations, and therefore with the power spec-
trum of the CMB anisotropies. This gauge invariant is
obtained from an appropriate (nonlocal) combination of
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the scalar matter field perturbation and the scalar perturba-
tions of the metric. In our analysis, we will describe it by the
(time-dependent) coefficients vn⃗;ϵ of its mode expansion in
the basis formed by ~Qn⃗;ϵðθ⃗Þ.
It was proven in Ref. [39] that, at the level of our

perturbative truncation, it is possible to Abelianize the linear
perturbative constraints and, with their Abelian version and
theMukhanov-Sasaki gauge invariant, forma complete set of
compatible perturbative variables, in the sense that they
commute under Poisson brackets. This set can be completed
into a canonical one introducing suitable momenta, in such
a way that the momentum of the Mukhanov-Sasaki field is
also a gauge invariant. The freedom in the choice of this
momentum is removed by demanding that, dynamically, it is
proportional to the time derivative of the Mukhanov-Sasaki
field on shell. We will call πvn⃗;ϵ the (time-dependent)
coefficients of the mode expansion of this momentum.
Much more remarkably, the analysis of Ref. [39] demo-

nstrated also that the variables of the homogeneous system
can be corrected with quadratic terms in the perturbations
so as to complete the canonical set of perturbative variables
into a canonical set for the entire system (homogeneous
sector plus perturbations), at the level of our perturbative
approximation. The explicit expression of these new
homogeneous variables can be found in Appendix A of
Ref. [39]. The modification can be regarded as a type of
backreaction effect of the perturbations onto the definition
of the homogeneous variables.
Apart from the linear perturbative constraints, only one

more constraint remains to be imposed, which in fact is a
global one. It is the zero-mode of the Hamiltonian con-
straint. As far as the geometry and the matter scalar field are
concerned, it is the sum of the Hamiltonian constraint Hj0
of the homogeneous system (evaluated in the corrected,
new homogeneous variables) plus a quadratic contribution
of the Mukhanov-Sasaki invariant and its momentum, that
we call the Mukhanov-Sasaki Hamiltonian and denote by
H̆j2 (with the notation of Ref. [39]). In addition, if there are
tensor perturbations, the constraint includes also a quad-
ratic contribution of them, that we call T ~Hj2 [41]. Using
from now on the notation ðα; πα;ϕ; πϕÞ [and its LQC
counterpart ðv; b;ϕ; πϕÞ] to denote the perturbatively cor-
rected homogeneous variables instead of the original ones,
the quadratic perturbative contributions to the Hamiltonian
constraint can be expressed as [39,41]

H̆j2 ¼
X
n⃗;ϵ

H̆n⃗;ϵ
j2 ; T ~Hj2 ¼

X
n⃗;ϵ;~ϵ

T ~Hn⃗;ϵ;~ϵ
j2 ; ð2:5Þ

H̆n⃗;ϵ
j2 ¼ e−α

2

�
ω2
n þ e−4απ2α þ ~m2e2α

�
1þ 20πϕ2

− 12ϕ
πϕ
πα

− 32π2e6α ~m2
ϕ4

π2α

��
v2n⃗;ϵ

þ e−α

2
π2vn⃗;ϵ ; ð2:6Þ

T ~Hn⃗;ϵ;~ϵ
j2 ¼ e−α

2
½ðω2

n þ e−4απ2α − 4π ~m2e2αϕ2Þ ~d2n⃗;ϵ;~ϵ þ π2~dn⃗;ϵ;~ϵ
�:

ð2:7Þ
Here, ~ϵ is a dichotomous label that describes the two possible
polarizations of the tensor perturbations (~ϵ ¼ þ;×), the
variables ~dn⃗;ϵ;~ϵ are the (time-dependent) coefficients of the
mode expansion of the tensor perturbations multiplied by eα

(i.e., the scale factor up to a constant), and π ~dn⃗;ϵ;~ϵ
are their

canonical momenta [41]. The freedom to add a contribution
linear in ~dn⃗;ϵ;~ϵ to these momenta has been fixed by choosing
them so that, dynamically, they are proportional to the time
derivatives of their configuration variables.

C. Dirac fermions as perturbations

We now proceed to include a Dirac field in the system,
treated as a perturbation of the homogeneous model. As we
have already commented, this field is governed by the
fermionic part of the Einstein-Dirac action, which is
quadratic in the fermions, and therefore in the perturbations
[17]. Hence, at our order of perturbative truncation, the
coupling with the tetrad in the action for the Dirac field
can be replaced with a coupling with the tetrad of the
homogeneous spacetime, either before or after correcting it
with the modifications introduced by the scalar perturba-
tions. The difference between those tetrads, multiplied by a
quadratic term in the fermions, is of higher than second
order in the perturbations, and hence can be neglected in
our approximations. Thus, in the following, we consider
that the Dirac fermion is directly coupled to the homo-
geneous geometry with the corrected scale factor. As we
explained at the end of the previous subsection, to avoid
complicating in excess our notation, we maintain our
original symbols for the homogeneous variables in spite
of having already modified them with quadratic terms of
the scalar perturbations, as worked out in Ref. [39].
It is clear that the homogeneous and isotropic spacetime

with scale factor a ¼ σeα admits a global orthonormal tetrad,
that we call eμa, where, μ ¼ 0, 1, 2, 3 is a spacetime index and
a ¼ 0, 1, 2, 3 is an internal gauge index. As a consequence,
we can always define a spin structure [64,65]. We will keep
our discussion general and do not make explicit the choice of
this structure. The Dirac field Ψ can be understood as the
cross sections of the corresponding spinor bundle, such that
they obey the Dirac equation, with a mass M,

eμaγa∇S
μΨ ¼ MΨ: ð2:8Þ

In turn, the fermionic part of the Einstein-Dirac action has the
form

ID ¼
Z

dV
�
iMΨ†γ0Ψ −

1

2
ðiΨ†γ0eμaγa∇S

μΨ

þ Hermitian conjugateÞ
�
: ð2:9Þ
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Here, dV is the four-dimensional volume element corre-
sponding to the considered spacetime metric, the dagger
denotes Hermitian conjugate, ∇S

μ is the spin lifting of the
Levi-Cività connection [65], and γa are the Dirac matrices.
Adopting the so-called Weyl representation for them, as in
Ref. [17], we can describe the Dirac field by a pair of two-
component spinors of definite chirality. The left-handed and
right-handed projections of Ψ will be called ϕA and χ̄A0 ,
respectively, whereA ¼ 1, 2,A0 ¼ 10; 20, and the bar denotes
complex conjugation. The components of these spinors are
Grassman variables [66], to reflect the anticommuting
properties of fermions. Besides, spinor indices are raised
and lowered with the antisymmetric matrices ϵAB, ϵAB, ϵA

0B0
,

and ϵA0B0 , all of them with nondiagonal component equal to
one if the chiral indices that label them are in increasing
order [17].
Following the treatment of Ref. [17], it is convenient to

introduce a choice of gauge fixing known as time gauge,
imposing that ej0 ¼ 0. Notice that this fixes only part of the
internal gauge, intrinsic to the fermions, but does not affect
at all the gravitational constraints (perturbative or not) of
the rest of the system. The effect on the spin structure is a
restriction that can be reinterpreted as a spin structure on
each of the toroidal spatial sections. The two component
spinors of the Dirac field can be seen as families of cross
sections of the resulting spinor bundle, parametrized by the
time coordinate [22]. On the other hand, the anticommu-
tation canonical relations of the Dirac field are provided by
the symmetric Dirac brackets at coincident time

fa3=2Ψ†ðθ⃗Þ; a3=2Ψðθ⃗0Þg ¼ −iδðθ⃗ − θ⃗0ÞI; ð2:10Þ

where I is the identity matrix in four dimensions. These
brackets are obtained after eliminating second-class con-
straints that relate the Dirac field with its momentum and
that appear in the system because the Dirac action is first-
order in the field derivatives.
Similar to our analysis of the scalar and tensor perturba-

tions, we can decompose the two-component spinors of the
Dirac field in modes. In the present case, it is convenient to
choose the basis of spinor modes as a basis of eigenfunctions
of the Dirac operator associated with the auxiliary Euclidean
triad on the toroidal sections. The corresponding spectrum is
discrete, with eigenvalues �ωk given by ωk ¼ 2πjk⃗þ τ⃗j=l0
[67]. Vertical bars symbolize the Euclidean norm, and the
row vector k⃗ ∈ Z3 is any tuple of integers. We have used the
notation τ⃗ ¼ P

Iτ
Iv⃗I=2, where I ¼ 1, 2, 3, the vectors v⃗I

form the standard orthonormal basis of the lattice Z3, and
τI ∈ f0; 1g characterizes each of the possible spin structures
onT3. The label k inωk distinguishes eigenvalues and can be
identified with the norm of one of the tuples k⃗ that leads to it.
The Dirac eigenvalues can be degenerated, with degeneracy
denoted by gk. This degeneracy grows as a function of
asymptotic order Oðω2

kÞ when k tends to infinity.

With the choice of the Euclidean triad as the auxiliary
one, the spin connection vanishes. One can then obtain the
explicit form of the Dirac eigenspinors. For the left-handed
chirality of ϕA and the eigenvalues �ωk, one gets

wk⃗;ð�Þ
A ¼ uk⃗;ð�Þ

A ei
2π
l0
ðk⃗þτ⃗Þ·θ⃗; ð2:11Þ

where the constant two-component spinors uk⃗;ð�Þ
A are

normalized so that

ūk⃗;ð�Þ
10 uk⃗;ð�Þ

1 þ ūk⃗;ð�Þ
20 uk⃗;ð�Þ

2 ¼ 1; ð2:12Þ

and, for all k⃗; k⃗0 ≠ −τ⃗, they satisfy the conditions

uk⃗
0;ðþÞ
A ϵABuk⃗;ð−ÞB ¼ 0; uk⃗

0;ð�Þ
A ϵABuk⃗;ð�Þ

B ¼ eiC
ð�Þ
k⃗ δk⃗0;−k⃗−2τ⃗:

ð2:13Þ

Summation over repeated spinorial indices is assumed, and

Cð�Þ
k⃗

are constants that can be changed by modifying the

phase of uk⃗;ð�Þ. The above conditions do not apply in the
case of zero-modes, namely, for modes with vanishing
eigenvalue ωk. These modes exist only when the spin
structure is trivial (τ⃗ ¼ 0). For such modes, one can take

u0⃗;ðþÞ
A as the spinor defined by u0⃗;ðþÞ

1 ¼ 1 and u0⃗;ðþÞ
2 ¼ 0,

whereas for u0⃗;ð−ÞA one takes u0⃗;ð−Þ1 ¼ 0 and u0⃗;ð−Þ2 ¼ 1.
On the other hand, the complex conjugate of Eq. (2.11)
provides a basis of modes for eigenspinors of right-handed
chirality, like χ̄A0 .
Let us expand, in the above basis of eigenmodes of the

Dirac operator, our field multiplied by a3=2 ¼ σ3=2e3α=2 [as
it appears in the anticommutation relations (2.10)] and by a
convenient constant factor l3=20 (equal to the square root of
the auxiliary volume of the toroidal sections). Let us callmk⃗
and r̄k⃗ the time-dependent coefficients in the mode expan-
sion of the left-handed spinor for positive and negative
eigenvalues, respectively, and s̄k⃗ and tk⃗ the corresponding
coefficients for the right-handed part,

ϕAðxÞ ¼
e−3α=2

σ3=2l3=20

X
k⃗;ð�Þ

h
mk⃗w

k⃗;ðþÞ
A þ r̄k⃗w

k⃗;ð−Þ
A

i
; ð2:14Þ

χ̄A0 ðxÞ ¼ e−3α=2

σ3=2l3=20

X
k⃗;ð�Þ

h
s̄k⃗w̄

k⃗;ðþÞ
A0 þ tk⃗w̄

k⃗;ð−Þ
A0

i
: ð2:15Þ

Let us also denote generically as ðxk⃗; yk⃗Þ any of the ordered
pairs ðmk⃗; sk⃗Þ or ðtk⃗; rk⃗Þ. Then, the Dirac Eq. (2.8) leads to
the following set of dynamical equations for all k⃗ ≠ τ⃗ [22]:

xk⃗
0 ¼ iωkxk⃗ − i ~Meαȳ−k⃗−2τ⃗;

ȳk⃗
0 ¼ −iωkȳk⃗ − i ~Meαx−k⃗−2τ⃗; ð2:16Þ
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where the prime stands for the derivative with respect to a
conformal time η defined via dη ¼ e−αdt, and ~M ¼ Mσ.
Introducing the representation of the Dirac field in terms

of two-component spinors and the mode expansion of the
latter, one then arrives to a expression of the action in terms
of mode coefficients [17],

ID ¼ δτ⃗
0⃗
I
0⃗
þ
X
k⃗≠τ⃗

Ik⃗; ð2:17Þ

where δτ⃗
0⃗
¼ 1 if τ⃗ ¼ 0⃗ and vanishes otherwise. Here, the

contribution of the nonzero-modes is

Ik⃗ ¼
Z

dt

�
−
i
2
ð _mk⃗m̄k⃗ þ _̄mk⃗mk⃗ þ _rk⃗r̄k⃗ þ _̄rk⃗rk⃗ þ _sk⃗s̄k⃗

þ _̄sk⃗sk⃗ þ _tk⃗t̄k⃗ þ _̄tk⃗tk⃗Þ
− N0

~Mðs−k⃗−2τ⃗mk⃗ þ m̄k⃗s̄−k⃗−2τ⃗ þ r−k⃗−2τ⃗tk⃗ þ t̄k⃗r̄−k⃗−2τ⃗Þ

þ N0e−αωkðm̄k⃗mk⃗ þ t̄k⃗tk⃗ − rk⃗r̄k⃗ − sk⃗s̄k⃗Þ
�
; ð2:18Þ

where the dot means derivative with respect to t. For the
trivial spin structure, one has to add the zero-mode
contribution

I
0⃗
¼

Z
dt

�
−
i
2
ð _m

0⃗
m̄

0⃗
þ _̄m

0⃗
m

0⃗
þ _r

0⃗
r̄
0⃗
þ _̄r

0⃗
r
0⃗
þ _s

0⃗
s̄
0⃗

þ _̄s
0⃗
s
0⃗
þ _t

0⃗
t̄
0⃗
þ _̄t

0⃗
t
0⃗
Þ

− N0
~Mðs

0⃗
r̄
0⃗
þ r

0⃗
s̄
0⃗
þm

0⃗
t̄
0⃗
þ t

0⃗
m̄

0⃗
Þ
�
: ð2:19Þ

The part with time derivatives determines the anticom-
mutation relations in terms of the mode coefficients and
tells us that the pairs ðxk⃗; ȳk⃗Þ are canonical Grassman
variables. The rest of the action, that is linear in the
homogeneous lapse function, supplies a contribution to
the zero-mode of the Hamiltonian constraint of the total
system, contribution that, as we expected, is quadratic in
the fermionic variables. Namely, the global Hamiltonian
constraint of our perturbed system becomes

Hj0 þ H̆j2 þ T ~Hj2 þHD; HD ¼ δτ⃗
0⃗
H

0⃗
þ
X
k⃗≠τ⃗

Hk⃗;

ð2:20Þ

Hk⃗ ¼ ~Mðs−k⃗−2τ⃗mk⃗ þ m̄k⃗s̄−k⃗−2τ⃗ þ rk⃗t−k⃗−2τ⃗ þ t̄−k⃗−2τ⃗ r̄k⃗Þ
− e−αωkðm̄k⃗mk⃗ þ t̄k⃗tk⃗ − rk⃗r̄k⃗ − sk⃗s̄k⃗Þ; ð2:21Þ

H
0⃗
¼ ~Mðs

0⃗
r̄
0⃗
þ r

0⃗
s̄
0⃗
þm

0⃗
t̄
0⃗
þ t

0⃗
m̄

0⃗
Þ: ð2:22Þ

Finally, we notice that (after having corrected the homo-
geneous variables with suitable quadratic contributions of

the scalar perturbations) the system is symplectic at our
order of perturbative truncation, and it is described by a
homogeneous part, the Mukhanov-Sasaki gauge invariant
and its momentum, the mode coefficients of the tensor
perturbations (rescaled with the scale factor) and their
momenta, and the above fermionmode coefficients, all this
in addition to the linear perturbative constraints and some
suitable momenta of them (which form canonical pairs that
commute with all the previous variables). Apart from those
linear perturbative constraints, our system is subject only
to the zero-mode of the Hamiltonian constraint specified
above, and to gauge rotations of the fermions (the rest of
internal gauge transformations have been fixed when we
have imposed the time gauge [17]). Since the role of gauge
transformations is well under control and is not crucial for
the passage to the quantum theory, we simply assume that
the remaining gauge freedom has also been fixed, e.g. by
choosing a certain triad among all those related by gauge
rotations. This leaves the constraint (2.20) as the only
remaining one.

III. CREATION AND ANNIHILATION VARIABLES
FOR THE DIRAC FIELD

Before we can proceed to the hybrid quantization of our
system, in which we will adopt a Fock representation for
the fermionic variables, we have to introduce creation and
annihilation variables for the Dirac field. There is an infinite
ambiguity in their definition that, in our model, reflects the
freedom of choice at two stages. On the one hand, one can
extract part of the evolution of the fermionic variables and
express it in terms of the background, role which is played
in our system by the homogeneous sector. If one considers
only the dynamical effect of the background geometry, the
available redefinitions of the creation and annihilation
variables and of their evolution are those related by trans-
formations that depend on the (homogeneous) scale factor
and its momentum. On the other hand, even if we select the
dynamics, we can still choose different sets of creation and
annihilation variables that could lead to inequivalent Fock
representations. The different possibilities correspond to
choices of different complex structures [55]. These sets of
variables are now related by constant transformations, since
the dynamical content has already been taken into account
in the first step of our considerations. Obviously, the
combined freedom of choice is described by all possible
ðα; παÞ-dependent canonical transformations. Given the
linearity of the field equations and of the basic structures
for a Fock representation, like the complex structure, we
will restrict our attention to linear transformations. Besides,
we ask them to respect the dynamical decoupling between
modes, although they may be mode dependent: they may
vary with the labels that characterize each Dirac mode.
In total, we analyze creation and annihilation variables of
the generic form,

FERMIONS IN HYBRID LOOP QUANTUM COSMOLOGY PHYSICAL REVIEW D 96, 044023 (2017)

044023-7



aðx;yÞ
k⃗

¼ fk⃗;ðx;yÞ1 ðα; παÞxk⃗ þ fk⃗;ðx;yÞ2 ðα; παÞȳ−k⃗−2τ⃗;

b̄ðx;yÞ
k⃗

¼ gk⃗;ðx;yÞ1 ðα; παÞxk⃗ þ gk⃗;ðx;yÞ2 ðα; παÞȳ−k⃗−2τ⃗; ð3:1Þ

where we recall that τ⃗ is fixed and differs for each of the
allowed spin structures. The background-dependent
coefficients in these linear expressions of the fermionic
variables may change for positive and negative helicity,
corresponding to the pair ðxk⃗; yk⃗Þ ¼ ðmk⃗; sk⃗Þ or to
ðxk⃗; yk⃗Þ ¼ ðtk⃗; rk⃗Þ. In a Fock representation with a standard
interpretation, the operators for aðx;yÞ

k⃗
and b̄ðx;yÞ

k⃗
would

annihilate particles and create antiparticles, respectively.
Based on recent results about criteria to remove the

ambiguity in the choice of a Fock quantization on cosmo-
logical backgrounds, first proposed for scalar fields
[68–71] and then extended to fermions [20,21,72], and
in particular to Dirac fields in flat FLRW spacetimes [22],
we can minimize the physical consequences of our freedom
of choice of creation and annihilation variables. Under the
requirements of: i) unitary implementability of the dynam-
ics of the chosen variables in the quantum theory, ii) invari-
ance of this theory under the Killing isometries of the
toroidal sections and the spin rotations generated by the
helicity, and iii) a convention for the concepts of particles
and antiparticles that connects smoothly in the massless
limit with the standard one, the analysis of Ref. [22]
demonstrated that the family of possible choices of vari-
ables has associated Fock representations which are all
unitarily equivalent. This family is precisely of the form
(3.1), with background-dependent coefficients restricted by
our three requirements (of unitarity, invariance, and a
standard convention of particles and antiparticles) as
follows, except perhaps for a finite number of modes:

(a) For tuples k⃗ in an infinite subset Z3
1 of Z3, the

functions fk⃗;ðx;yÞ1 have the asymptotic behavior at large
jk⃗j and at all times,

fk⃗;ðx;yÞ1 ¼
~Meα

2ωk
eiF

k⃗;ðx;yÞ
2 þ ϑk⃗;ðx;yÞ withX

k⃗

jϑk⃗;ðx;yÞj2 < ∞: ð3:2Þ

(b) If the complement of Z3
1 in Z3 is infinite, for tuples k⃗

belonging to it the functions fk⃗;ðx;yÞ1 must be asymp-
totically of order ω−1

k or higher, and form a sequence
that is square summable at all times.

Besides, the rest of coefficients must satisfy the relations

gk⃗;ðx;yÞ1 ¼ eiG
k⃗;ðx;yÞ

f̄k⃗;ðx;yÞ2 ; gk⃗;ðx;yÞ2 ¼ −eiGk⃗;ðx;yÞ
f̄k⃗;ðx;yÞ1 ;

ð3:3Þ

fk⃗;ðx;yÞ2 ¼ eiF
k⃗;ðx;yÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jfk⃗;ðx;yÞ1 j2

q
: ð3:4Þ

To obtain these results, Ref. [22] used some mild assump-
tions about the logarithmic scale factor α, e.g. that it has a
continuous third derivative with respect to the con-
formal time.

In the rest of this section, we will study the consequences
of adopting a set of creation and annihilation variables
with the above properties. Later on, in Sec. IV, we will
particularize our analysis to a specific set of this type,
namely, the variables employed in Ref. [17] by D’Eath and
Halliwell, adapted to our case of toroidal spatial sections.
Since our change of fermionic variables from the pairs

ðxk⃗; yk⃗Þ to the pairs ðaðx;yÞ
k⃗

; bðx;yÞ
k⃗

Þ may depend on the

homogeneous logarithmic scale factor α and its momentum
πα, in general they do not longer commute with this
homogeneous pair. To recover the canonical structure of
our system, we must modify the homogeneous variables,
correcting them with fermionic contributions that counter-
balance the loss of commutativity. The calculation can be
carried out in a way similar to that presented in Sec. 4.1 of
Ref. [39], but now extended to the consideration of
Grasmman variables. One starts with the Legendre term
of the perturbed action of our system (truncated at second
perturbative order), symmetrized in the fermionic ðx; yÞ-
variables, and introduces the inverse of the linear change
(3.1). Integrating by parts time derivatives in the fermionic
contribution, disregarding irrelevant boundary terms
(evaluated at initial and final times), and neglecting terms
of higher than second order in the fermions, it is not
difficult to see that the corrected homogeneous variables,
that render the system canonical again, are given by

ᾰ ¼ αþ i
2

X
k⃗;ðx;yÞ

½ð∂παxk⃗Þx̄k⃗ þ ð∂πα x̄k⃗Þxk⃗ þ ð∂παyk⃗Þȳk⃗

þ ð∂πα ȳk⃗Þyk⃗�; ð3:5Þ

π̆α ¼ πα −
i
2

X
k⃗;ðx;yÞ

½ð∂αxk⃗Þx̄k⃗ þ ð∂αx̄k⃗Þxk⃗ þ ð∂αyk⃗Þȳk⃗

þ ð∂αȳk⃗Þyk⃗�; ð3:6Þ

where the sum over ðx; yÞ is over left-handed and right-
handed chiral pairs, ðm; sÞ and ðt; rÞ.
A especially interesting situation, given its simplicity, is

the case in which the phases Gk⃗;ðx;yÞ and Fk⃗;ðx;yÞ
2 of the

coefficients (3.3) and (3.4), as well as the phase of fk⃗;ðx;yÞ1 ,
are constant. Then, a straightforward calculation, using the
inverse of the linear relation (3.1) and Eqs. (3.3) and (3.4),
shows that the fermionic corrections in the definition of the
canonical pair of variables for the homogeneous geometry

are a linear combination of the products aðx;yÞ
k⃗

bðx;yÞ
k⃗

and

b̄ðx;yÞ
k⃗

āðx;yÞ
k⃗

, with coefficients that are complex conjugates

one of each other.
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Returning to the general case, we notice that, in terms
that are exactly quadratic in the perturbations, the replace-
ment of our homogeneous variables for the geometry with
the new ones has no effect at our order of truncation, since
the difference between the two considered sets of homo-
geneous variables is also quadratic, and would produce new
terms that are at least quartic in the perturbations.
Therefore, for all such terms, we can simple substitute
the pair ðα; παÞ by ðᾰ; π̆αÞ. This is not the case, however, for
homogeneous contributions that depend on the geometry.
In our Hamiltonian description of the system, the only term
of this type is the homogeneous part of the zero-mode of the
Hamiltonian constraint, Hj0. Following the same procedure
as in Sec. 4.2 of Ref. [39], if we insert the expression of
the old homogeneous variables in terms of the new ones in
the geometric dependence of Hj0, expand the result around
the new homogeneous pair, and truncate it at second
perturbative order, consistently with the rest of our approx-
imations, we obtain in place of Hj0ðα; παÞ the term

Hj0ðᾰ; π̆αÞ − Δᾰ∂αHj0ðᾰ; π̆αÞ − Δπ̆α∂παHj0ðᾰ; π̆αÞ; ð3:7Þ

where Hj0ðᾰ; π̆αÞ is the original homogeneous Hamiltonian
with the old geometric variables identified with the new
ones. Besides, Δᾰ ¼ ᾰ − α and Δπ̆α ¼ π̆α − πα, both quan-
tities expressed in terms of the new variables for the
homogeneous geometry and of the fermionic creation
and annihilation variables. Given Eqs. (3.5) and (3.6),
these last two quantities are quadratic in the fermions, and
hence in the perturbations. Using the explicit expression
(2.4) of Hj0, we can rewrite Eq. (3.7) as

Hj0ðᾰ; π̆αÞ þ ½3Hj0ðᾰ; π̆αÞ − 4πe3ᾰ ~m2ϕ2�Δᾰþ e−3ᾰπ̆αΔπ̆α:

ð3:8Þ

In this way, and up to a contribution that is a sum of the
linear perturbative constraints (with coefficients that are
also linear in the perturbations [39]), we get that the total
Hamiltonian of the system is

N0ðHj0 þ 3Hj0Δᾰ − 4πe3ᾰ ~m2ϕ2Δᾰþ e−3ᾰπ̆αΔπ̆α þ H̆j2

þ T ~Hj2 þHD½a; b�Þ; ð3:9Þ

where all the dependence on the homogeneous geometry
must be evaluated setting the original variables ðα; παÞ
equal to ðᾰ; π̆αÞ, and we have called HD½a; b� the fermionic
Hamiltonian HD expressed in terms of our creation and
annihilation variables.
Since the second term in the above formula is propor-

tional to Hj0, with a proportionality factor that is quadratic
in the fermions, we can absorb it at our order of perturbative
truncation by redefining the lapse as N̆0 ¼ N0 þ 3Δᾰ.
On the other hand, the quadratic contribution of the
fermions in the Hamiltonian constraint is given by

H̆D ¼ −4πe3ᾰ ~m2ϕ2Δᾰþ e−3ᾰπ̆αΔπ̆α þHD½a; b�: ð3:10Þ

The first and second of these terms are just the change in the
fermionic Hamiltonian owing to the fact that our change to
creation and annihilation variables is time dependent via its
dependence on the homogeneous geometry. Summarizing,
at our truncation order and modulo the linear perturbative
constraints, we finally obtain the total Hamiltonian

N̆0ðH0 þ H̆j2 þ T ~Hj2 þ H̆DÞ: ð3:11Þ

IV. VARIABLES FOR INSTANTANEOUS
DIAGONALIZATION

Let us now particularize our discussion to a set of
creation and annihilation variables similar to that used
for the description of the Dirac field by D’Eath and
Halliwell [17]. These variables have the distinctive property
of allowing an instantaneous diagonalization of the
Hamiltonian HD (ignoring zero-modes). They are deter-
mined by the choice of coefficients

fk⃗;ðx;yÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk − ωk

2ξk

s
; fk⃗;ðx;yÞ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk þ ωk

2ξk

s
; ð4:1Þ

gk⃗;ðx;yÞ1 ¼ fk⃗;ðx;yÞ2 ; gk⃗;ðx;yÞ2 ¼ −fk⃗;ðx;yÞ1 ; ð4:2Þ

where

ξk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ ~M2e2α

q
: ð4:3Þ

We note that ξk ≥ ωk > 0. Hence, the f-coefficients in
Eq. (4.1) are well-defined and real, and the expression of
the g-coefficients, that are real as well, coincides with the
particularization of formula (3.3) to our case. Moreover, it
is not difficult to check that the above set of coefficients
possesses the asymptotic behavior (3.2), so that the
corresponding variables lead to a Fock representation in
the privileged family selected by our uniqueness criterion
of unitary dynamics, symmetry invariance, and standard
convention of particles and antiparticles. As we have
commented, this choice of variables turns out to diago-
nalize the part of the nonzero-modes in the Hamiltonian
HD. Recall that this is not our full Hamiltonian H̆D. In this
sense, it is worth noticing that, even if the issue of particle
production was discussed in Ref. [17] in terms of the
creation and annihilation variables defined by Eqs. (4.1),
the Hamiltonian treatment was carried out using in fact the
variables fmk⃗; rk⃗; sk⃗; tk⃗g for the fermionic nonzero-modes,
without modifying HD, and introducing a holomorphic
representation in the passage to the quantum theory rather
than a Fock one.
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Since the coefficients (4.1) only depend on the loga-
rithmic scale factor α, but are all independent of πα, the
change Δᾰ in Eq. (3.5) vanishes in our case. However, this
does not happen for Δπ̆α. From Eq. (3.6), at the adopted
perturbative order, we get the expression,

Δπ̆α ¼ −i
~Mωk

2ξ̆2k
eᾰ

X
k⃗≠0⃗;ðx;yÞ

�
aðx;yÞ
k⃗

bðx;yÞ
k⃗

þ āðx;yÞ
k⃗

b̄ðx;yÞ
k⃗

�
: ð4:4Þ

Here, ξ̆k is the result of replacing α directly with ᾰ in the
definition (4.3) of ξk. Employing this formula and the
expression of HD, a direct calculation shows that

H̆D ¼ δτ⃗
0⃗
H

0⃗
þ
X
k⃗≠τ⃗

H̆k⃗; ð4:5Þ

H̆k⃗ ¼
e−ᾰ

2

X
ðx;yÞ

�
ξ̆k
�
āðx;yÞ
k⃗

aðx;yÞ
k⃗

− aðx;yÞ
k⃗

āðx;yÞ
k⃗

þ b̄ðx;yÞ
k⃗

bðx;yÞ
k⃗

− bðx;yÞ
k⃗

b̄ðx;yÞ
k⃗

�
− i

~Mωk

ξ̆2k
e−ᾰπ̆α

�
aðx;yÞ
k⃗

bðx;yÞ
k⃗

þ āðx;yÞ
k⃗

b̄ðx;yÞ
k⃗

��
: ð4:6Þ

This is the Hamiltonian that generates the dynamical
evolution of the creation and annihilation variables

faðx;yÞ
k⃗

; bðx;yÞ
k⃗

; āðx;yÞ
k⃗

; b̄ðx;yÞ
k⃗

g, as well as that of the fermionic

zero-modes if they exist. according to the results of
Ref. [22] commented above, such dynamics would be
unitarily implementable in the corresponding Fock repre-
sentation of the fermionic system if we were to treat the
homogeneous geometry as a classical (nonstationary)
background.

V. HYBRID QUANTIZATION

We can now quantize our perturbed cosmological model
and impose on it the constraints à la Dirac, i.e., as operators
that annihilate the physical states. We will carry out a
hybrid quantization, in which we will adopt specific
quantum representations of the homogeneous sector and
of the perturbations, the former one based on LQC,
although the treatment is easily generalizable to other
approaches to the quantization of the homogeneous geom-
etry. On the tensor product of the corresponding repre-
sentation spaces, wewill impose the quantum version of the
constraints. These constraints couple the homogeneous and
inhomogeneous quantum subsystems of the model, making
the quantization nontrivial. More precisely, the coupling
occurs in the zero-mode of the Hamiltonian constraint. In
addition, we recall that there are four linear perturbative
constraints for each nonzero-mode, but these only affect the
scalar perturbations, reducing their number of physical
degrees of freedom.

We callHmatt
kin the kinematical Hilbert space on which we

represent the zero-mode of the scalar field. For instance, we
can choose the Hilbert space L2ðR; dϕÞ of square inte-
grable functions over the real line, with ϕ̂ acting on it by
multiplication, and its canonical momentum π̂ϕ acting as
−i∂ϕ. On the other hand, we call Hgrav

kin the representation
space for the homogeneous geometry, that for LQC can be
chosen as the space of square summable functions over the
points of the real line with the discrete topology [24,25].
Functions of the homogeneous scale factor act by multi-
plication in this representation. On Hgrav

kin , we need to
represent the variables ðᾰ; π̆αÞ. Preparing the road to an
LQC quantization, we can consider instead the canonical
pair ðv; bÞ defined via Eqs. (2.2) and (2.3), once ðα; παÞ has
been replaced with ðᾰ; π̆αÞ on the left-hand side of those
equations. Let v̂ and b̂ be the associated elementary
operators. Denoting V̂ ¼ 2πγΔ1=2

g jv̂j, which is a positive
operator, we can then represent eᾰ by ½3=ð4πσÞ�1=3V̂1=3.
Similarly, we can construct a (self-adjoint, and hence
symmetric) operator Ω̂0 to represent 2πγvb (the propor-
tionality constant in this expression is standard in LQC).
Then, −3Ω̂0=ð4πγÞ provides an operator version of π̆α.
More explicitly, in LQC the kinematical Hilbert space

Hgrav
kin can be identified with the span of the basis of

eigenstates jvi of v̂, with eigenvalue v ∈ R, taking as
inner product the discrete one, hv0jvi ¼ δv

0
v [24,25]. The

operator v̂, determined by the action v̂jvi ¼ vjvi, has then a
discrete spectrum. The basic holonomy operators e�ib̂=2

shift the label of these states in a unit, e�ib̂=2jvi ¼ jv� 1i
[19]. Calling dsinðbÞ ¼ iðe−ib̂ − eib̂Þ=2, and adopting the
symmetric ordering proposed in Ref. [29], we can define

Ω̂0 ¼
1

2
ffiffiffiffiffiffi
Δg

p V̂1=2½ dsignðvÞ dsinðbÞþ dsinðbÞ dsignðvÞ�V̂1=2:

ð5:1Þ
Combining these definitions and choices, we can

straightforwardly obtain the quantum representation of
the homogeneous contribution Hj0 to the zero-mode of
the Hamiltonian constraint, given in Eq. (2.4). Leaving
aside a global factor of 3e−3ᾰ=ð4πÞ, that we can absorb with
a convenient redefinition of the homogeneous lapse func-

tion N̆0, we get the quantum operator ðπ̂2ϕ − Ĥð2Þ
0 Þ=2, where

Ĥð2Þ
0 ¼ 3

4πγ2
Ω̂2

0 − V̂2m2ϕ̂2: ð5:2Þ

The operator Ω̂2
0 annihilates the zero-volume state and

leaves invariant its orthogonal complement, without relat-
ing the subspaces H�

ε spanned by states supported on the
semilattices L�

ε ¼ f�ðεþ 4nÞjn ∈ Ng, where ε ∈ ð0; 4�
[29]. In each of these superselection sectors, the homo-
geneous volume v has a strictly positive minimum ε (or a
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negative maximum −ε). Using these results, we can restrict
the discussion of physical states in LQC, e.g. to Hþ

ε ,
corresponding to states with positive v ∈ Lþ

ε .
Another operator that we will need in our quantization is

the regulated version of the inverse of the volume, d½1=V�.
Using standard conventions in LQC, we define it as the
cube of the regularized operatord�1
V

�1=3
¼ 3

4πγ
ffiffiffiffiffiffi
Δg

p dsignðvÞV̂1=3½e−ib̂=2V̂1=3eib̂=2

− eib̂=2V1=3e−ib̂=2�: ð5:3Þ
This operator is well-defined on the subspaces H�

ε and
commutes with V̂.
Let us now consider the representation of the perturba-

tions. For the linear perturbative constraints and their
canonical momenta, we assume a representation in which
the mentioned constraints act as (generalized) derivatives.
Their quantum imposition then simply implies that the
physical states do not depend on this sector of degrees of
freedom of the perturbations [39]. We can then focus our
attention on the rest of perturbative variables: the
Mukhanov-Sasaki gauge invariant and its momentum,
the tensor perturbations, and the fermion modes. On the
system that they form with the homogeneous sector, the
only quantum constraint that remains is that corresponding
to the zero-mode of the Hamiltonian constraint.
For this part of the perturbative sector, we adopt a tensor

product of Fock representations, similar to those discussed
for the gauge-invariant scalar, the tensor perturbations, and
the Dirac field in Refs. [22,37,38,41], respectively. The
Fock spaces for the scalar and tensor perturbations are
symmetric, while the fermionic one is antisymmetric. All
these Fock representations—or, strictly speaking, a family
of unitarily equivalent representations in each case—have
been selected based on our criterion of unitary dynamics of
the creation and annihilation variables, and symmetry
invariance (as well as a reasonable concept of particles
and antiparticles in the fermionic case). We call F s, F T ,
and FD the corresponding Fock spaces, where the sub-
indices s, T, and D refer to scalar perturbations, tensor
perturbations, and Dirac fermions, respectively. To simplify
the notation, we include in FD the Dirac zero-modes, even
if we may adopt for them a representation in terms of
variables other than creation and annihilation ones. With
this convention, a basis of states in each of these Fock
spaces is provided by the occupancy-number states jN is,
jN iT , and jN iD, where N denotes an array of (positive
integer) occupancy numbers in each of the considered
cases. Creation and annihilation operators (for which we
adopt standard conventions and notation) act increasing and
decreasing these occupancy numbers, as usual.
Together with our discussion of the homogeneous sector,

we thus conclude that the physical states of our system can
be determined starting with elements of the space

H ¼ Hgrav
kin ⊗ Hmatt

kin ⊗ F s ⊗ F T ⊗ FD; ð5:4Þ

by imposing the quantum version of the zero-mode of the
Hamiltonian constraint. To complete the quantum represen-
tationof this constraint,we still have to consider thequadratic
contributions of the perturbations. With the redefinition of
the lapse function commented above, these contributions are
given classically by 4πe3ᾰðH̆j2 þ T ~Hj2 þ H̆DÞ=3. The only
step to reach the desired representation that is not straightfor-
ward is the construction of operator versions of the factors
that appear multiplying the quadratic powers of the pertur-
bations in this contribution, which are nonlinear functions of
the homogeneous variables. For the scalar and tensor parts,
we adopt the same prescriptions as in Refs. [39,41].
Therefore: (i) we take a symmetric multiplicative factor
ordering for products of the form fðϕÞπϕ, (ii) we adopt an
algebraic symmetrization in factors of the form Vrgð2πγvbÞ
for any function g and real number r, so that we assign to
them the operators V̂r=2gðΩ̂0ÞV̂r=2, (iii) the same type of
algebraic symmetric factor ordering is taken for powers of
the inverse volume, (iv) even powers of 2πγvb ∝ πᾰ are
represented by the same powers of Ω̂0, and (v) odd powers
ð2πγvbÞ2kþ1, with k an integer, are represented by
jΩ̂0jkΛ̂0jΩ̂0jk, where jΩ̂0j ¼ ðΩ̂2

0Þ1=2 and Λ̂0 is defined as
Ω̂0 but doubling the length of the holonomies, so that the sine
operator is replaced with half the sine of the double angle in
Eq. (5.1). This doubling of the holonomies length is
necessary to leave the superselection sectors H�

ε invariant
under the action of our constraint. To these prescriptions, we
have to add the following for the fermionic contributions:
(vi) for ξ̆k and any of its algebraic powers (including negative
ones), we define the operator representation in terms of V̂
using the spectral theorem, so that it commutes with V̂, and
besides admits (at least locally) a series expansion in powers
of ωk, and (vii) in contributions that create or annihilate
fermions [arising from the second term in Eq. (4.6)], we
adopt again an algebraic symmetric ordering for operators
of the volume similar to that specified in (ii) and (iii), given
by ξ̆−1k eᾰ=2π̆αeᾰ=2ξ̆

−1
k , and then adopt the prescriptions

explained above. With this procedure, we obtain the
representation of the remaining Hamiltonian constraint
in our hybrid approach.
The resulting constraint can be expressed as

Ĥ ¼ 1

2
½π̂2ϕ − Ĥð2Þ

0 − Θ̂e − ðΘ̂oπ̂ϕÞsym − Θ̂T

− δτ⃗
0⃗
ϒ̂

0⃗
− ϒ̂F − ϒ̂I�; ð5:5Þ

where we have adopted the symmetrization ðΘ̂oπ̂ϕÞsym ¼
ðΘ̂oπ̂ϕ þ π̂ϕΘ̂oÞ=2 and the different perturbative terms are
defined as follows. For the scalar gauge invariants, with the
notation

FERMIONS IN HYBRID LOOP QUANTUM COSMOLOGY PHYSICAL REVIEW D 96, 044023 (2017)

044023-11



Θe ¼ −
X
n⃗;ϵ

½ðϑeω2
n þ ϑqeÞv2n⃗;ϵ þ ϑeπ

2
vn⃗;ϵ �;

Θo ¼ −
X
n⃗;ϵ

ϑov2n⃗;ϵ; ð5:6Þ

and our prescriptions for the quantization, we arrive at the
following ϑ-operators of only the homogeneous geometry:

ϑ̂e ¼ l0V̂
2=3; ð5:7Þ

ϑ̂qe ¼
4π

3l0

d�1
V

�1=3
Ĥð2Þ

0 ð19 − 24πγ2Ω̂−2
0 Ĥð2Þ

0 Þ
d�1
V

�1=3
þm2

l0
V̂4=3

�
1 −

8π

3
ϕ̂2

�
; ð5:8Þ

ϑ̂o ¼
16π

l0
γm2ϕ̂V̂2=3jΩ̂0j−1Λ̂0jΩ̂0j−1V̂2=3: ð5:9Þ

We recall that l0 ¼ ½4π=ð3σ2Þ�1=3. Similarly, for the tensor
perturbations, we have [41]

ΘT ¼ −
X
n⃗;ϵ;~ϵ

½ðϑeω2
n þ ϑqTÞ ~d2n⃗;ϵ;~ϵ þ ϑeπ

2
~dn⃗;ϵ;~ϵ

�; ð5:10Þ

and our prescriptions lead to the new ϑ-operator

ϑ̂qT ¼ 4π

3l0

d�1
V

�1=3
Ĥð2Þ

0

d�1
V

�1=3
−
8π

3l0
m2V̂4=3ϕ̂2: ð5:11Þ

Finally, for the Dirac contribution, including the zero-
modes [represented here as operators ðm̂

0⃗
; r̂

0⃗
; ŝ

0⃗
; t̂

0⃗
Þ, for

instance choosing for them a holomorphic representation
similar to that of Ref. [17]] and taking normal ordering for
all other modes, we adopt the definitions,

ϒ̂
0⃗
¼ −2MV̂ðŝ

0⃗
r̂†
0⃗
þ r̂

0⃗
ŝ†
0⃗
þ m̂

0⃗
t̂†
0⃗
þ t̂

0⃗
m̂†

0⃗
Þ; ð5:12Þ

ϒ̂F ¼ −
X

k⃗≠τ⃗;ðx;yÞ
2l0ξ̆kðV̂ÞV̂2=3ðâðx;yÞ†

k⃗
âðx;yÞ
k⃗

þ b̂ðx;yÞ†
k⃗

b̂ðx;yÞ
k⃗

Þ;

ð5:13Þ

ϒ̂I ¼ −i
X

k⃗≠τ⃗;ðx;yÞ

Mωk

l0γ
ξ̆−1k ðV̂ÞV̂1=6Λ̂0V̂

1=6ξ̆−1k ðV̂Þ

×
�
âðx;yÞ
k⃗

b̂ðx;yÞ
k⃗

þ âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

�
: ð5:14Þ

The generalization of our discussion to a generic
potential for the scalar field is rather straightforward.
Actually, one only needs to replace any quadratic term
of the homogeneous scalar field of the form m2ϕ2=2 with
the considered potential, any linear term m2ϕ with the
derivative of the potential, and the constant m2 with the

second derivative of the potential in every contribution in
which it is not accompanied by the homogeneous scalar
field. Finally, we can also generalize the analysis to hybrid
quantizations in which the homogeneous geometry is not
quantized à la loop. To use our formulas in any other
representation of the geometry, we only have to identify the
operators that play in it the role of V̂, its regularized inverse
(which might coincide with the true inverse), Ω̂0, and its
modified version Λ̂0. In this way, our results can be applied
to a variety of schemes other than LQC.

VI. BORN-OPPENHEIMER APPROXIMATION

We will now introduce an ansatz describing a family of
physical states that are interesting in realistic scenarios, and
in particular in situations in which the perturbations are not
expected to affect much the homogeneous geometry. We
seek physical states in which the dependence on this
homogeneous geometry, on the scalar perturbations, on
the tensor ones, and on fermions, can be separated. The
homogeneous scalar field ϕ will be regarded as an internal
time, so that each part of the wave function Ξ of our
physical states may depend on it. With our notation for the
occupancy numbers of scalar (s), tensor (T), and Dirac (D)
perturbations, and denoting the dependence on the homo-
geneous geometry symbolically with a dependence on V,
our ansatz can be expressed

Ξ ¼ ΓðV;ϕÞψðN s;N T;N D;ϕÞ
¼ ΓðV;ϕÞψ sðN s;ϕÞψTðN T;ϕÞψDðN D;ϕÞ: ð6:1Þ

The homogeneous part is chosen as a wave function of the
form [39,40]

ΓðV;ϕÞ ¼ Û0ðV;ϕÞχðVÞ; ð6:2Þ

where Û0 is a unitary evolution operator in the internal time
ϕ, that we suppose generated by a self-adjoint operator,

defined as ~̂H0 ¼ ½π̂ϕ; Û0�Û−1
0 . The state Γ can be considered

as a solution of the homogeneous part of the constraint up to
the order of the perturbative contributions. For this, we

assume that the difference ð ~̂H0Þ2 − Ĥð2Þ
0 is negligibly small

on Γ at all orders dominant over the quadratic one in the

perturbations. In addition to this, either we have that ½π̂ϕ; ~̂H0�
is also negligible up to second perturbative order, included,
or it is most convenient to absorb this commutator by slightly
changing the factor ordering in the homogeneous part of
the constraint (5.5) [40]. For instance, we can adopt the

ordering1 ðπ̂ϕ þ ~̂H0Þðπ̂ϕ − ~̂H0Þ þ fð ~̂H0Þ2 − Ĥð2Þ
0 g, so that

1Factor orderings of this kind can be related with the definition
of the state Γ in the unperturbed system by means of group
averaging techniques [73,74].
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its action on the state (6.2) coincides with the action of the
last contributionbetween curved brackets,which is atmost of
quadratic perturbative order according to our assumptions.

Finally, we also assume that ~̂H0 is positive. In fact, a
suggested operator is the square root of the positive part

of Ĥð2Þ
0 [40], althoughwewill not restrict our discussion here

to a specific choice. As for the state χ above, we take it
normalized with respect to the inner product of the homo-
geneous geometry, i.e., in Hgrav

kin . We can think of χ as the
initial state for the homogeneous geometry, and it would be
natural to choose it with a highly semiclassical behavior,
strongly peaked on a certain FLRW geometry.
With our ansatz and mild hypotheses, the constraint

equation on Ξ becomes

Γðπ̂2ϕψÞ þ 2ð ~̂H0ΓÞðπ̂ϕψÞ þ ðfð ~̂H0Þ2 − Ĥð2Þ
0 gΓÞψ

þ i
2
dϕΘ̂oðΓψÞ − Θ̂ofΓðπ̂ϕψÞg

− fΘ̂e þ ðΘ̂o
~̂H0Þsym þ Θ̂T þ δτ⃗

0⃗
ϒ̂

0⃗
þ ϒ̂F þ ϒ̂IgðΓψÞ

¼ 0; ð6:3Þ

where we have used the notation −idϕÔ≡ ½π̂ϕ − ~̂H0; Ô�,
with Ô being a generic operator. In the above constraint
equation, all the dependence on π̂ϕ has been shown
explicitly. In this sense, note that, with our definitions,
dϕΘ̂o is independent of this momentum.
Let us now introduce the assumption that, on states of

the Born-Oppenheimer type, one can ignore any quantum
transition in the homogeneous geometry mediated by the
constraint [39]. If this is the case, the constraint equation
is tantamount to taking its expectation value on the
homogeneous state Γ. One can prove that this assumption
holds if and only if one can neglect the dispersions on Γ,
relative to the corresponding expectation values, of the

operators ~̂H0 and ð ~̂H0Þ2 − Ĥð2Þ
0 , as well as of ϑ̂e and ϑ̂qe þ

ðϑ̂o ~̂H0Þsym − idϕϑ̂o=2 in the presence of scalar perturba-

tions, of ϑ̂qT if there are also tensor perturbations, of V̂ if
there are Dirac zero-modes, and, finally, of V̂2=3ξ̆kðV̂Þ and
ξ̆−1k ðV̂ÞV̂1=6Λ̂0V̂

1=6ξ̆−1k ðV̂Þ in the presence of other modes
of the Dirac field. Remarkably, in the absence of fermionic
nonzero-modes, the number of operators of the homo-
geneous geometry that must be peaked on Γ is finite (and
small in number, in fact), in spite of the existence of an
infinite number of degrees of freedom in the system. It is
only the introduction of fermions that puts the classicality
of the quantum state of the homogeneous geometry to a
severe test, since their presence, and the nonconformal
coupling with the geometry that their mass involves,
requires a peaked behavior of an infinite number of
operators. At least, we point out that the dependence of

all these operators on Λ̂0 is the same, and the only change
is in their dependence on the volume.
If our assumption is valid, and we denote the expectation

value of a generic operator Ô on Γ by hÔiΓ, we arrive at

π̂2ϕψ þ 2h ~̂H0iΓπ̂ϕψ þ hð ~̂H0Þ2 − Ĥð2Þ
0 iΓψ

− hΘ̂e þ ðΘ̂o
~̂H0ÞsymiΓψ þ i

2
hdϕΘ̂oiΓψ

− hΘ̂TiΓψ − hδτ⃗
0⃗
ϒ̂

0⃗
þ ϒ̂F þ ϒ̂IiΓψ ¼ 0: ð6:4Þ

In agreement with our perturbative approximations, we
have neglected a term hΘ̂oiΓπ̂ϕψ compared to the second
contribution in the above equation. Besides, we note that
our expectation values are taken only over the homo-
geneous geometry, i.e., with respect to the inner product in
Hgrav

kin , and that the result, in general, is an operator defined
on Hmatt

kin ⊗ F s ⊗ F T ⊗ FD.
With our Born-Oppenheimer ansatz, that separates the

dependence on the scalar gauge invariants, the tensor
perturbations, and the Dirac fermions, the constraint
Eq. (6.4) leads to Schrödinger equations for each of these
perturbative sectors under certain reasonable hypotheses
[39]. The most important of these hypotheses is that π̂2ϕψ
must be negligible compared to the rest of terms, and in
particular in comparison with the term that is proportional
to π̂ϕψ . Essentially, this condition requires that the con-
tribution of the wave function of the perturbations to the
momentum of the homogeneous scalar field be much
smaller than its value on Γ. The consistency of this
hypothesis can be confirmed, once π̂ϕψ is estimated using
the assumption and the constraint, by taking the derivative
of the result with respect to ϕ and comparing the neglected

quantity with h ~̂H0iΓπ̂ϕψ . The other, much less relevant
hypothesis leading to Scrödinger equations is that one can
neglect the contribution of hdϕΘ̂oiΓ. Note that this con-
tribution affects only the scalar part of the perturbations,
and therefore only their Schrödinger equation. The hypoth-
esis is necessary inasmuch as one requires a unitary
evolution for the Mukhanov-Sasaki modes; otherwise,
one can proceed keeping the corresponding term in our
considerations.
Accepting these two hypotheses, and recalling that we

have assumed that ~̂H0 is defined as a positive operator, so
that in particular it is meaningful to divide by its expect-
ation value, one arrives at the following evolution equations
in ϕ for the different perturbative sectors:

π̂ϕψ s ¼
�hΘ̂e þ ðΘ̂o

~̂H0ÞsymiΓ
2h ~̂H0iΓ

þ CðΓÞ
s ðϕÞ

�
ψ s; ð6:5Þ

π̂ϕψT ¼
� hΘ̂TiΓ
2h ~̂H0iΓ

þ CðΓÞ
T ðϕÞ

�
ψT; ð6:6Þ
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π̂ϕψD ¼
�hδτ⃗

0⃗
ϒ̂

0⃗
þ ϒ̂F þ ϒ̂IiΓ
2h ~̂H0iΓ

þ CðΓÞ
D ðϕÞ

�
ψD; ð6:7Þ

where CðΓÞ
s ðϕÞ, CðΓÞ

T ðϕÞ, and CðΓÞ
D ðϕÞ are functions of ϕ,

possibly dependent on the state Γ considered for the
homogeneous geometry, such that

CðΓÞ
s ðϕÞ þ CðΓÞ

T ðϕÞ þ CðΓÞ
D ðϕÞ ¼ hð ~̂H0Þ2 − Ĥð2Þ

0 iΓ: ð6:8Þ

In some sense, this quantity can be interpreted as a
backreaction on the homogeneous geometry, inasmuch

as hð ~̂H0Þ2 − Ĥð2Þ
0 iΓ indicates a departure of the homo-

geneous state Γ from an exact solution to the zero-mode of
the Hamiltonian constraint in the absence of perturbations,
case in which the left-hand side of Eq. (6.8) vanishes. Note,
nonetheless, that in principle one can have no departure at
all if the backreaction of the fermions is counterbalanced by
the contribution of the scalar and tensor perturbations.
Before closing this section, let us comment that one can

derive effective equations for the perturbations from our
previous discussion paralleling the arguments explained in
Ref. [39]. One can extract them from Eq. (6.4), assuming
that the quadratic dependence on π̂ϕ and on the operators
that describe the degrees of freedom of the perturbations
has an associated effective dynamics on the considered
physical state, dynamics that is obtained essentially by
replacing those operators by their direct classical counter-
part. Alternatively, one can admit the validity of the
hypotheses necessary for the above Scrödinger equations
and consider the dynamics generated by the respective
Hamiltonians in those equations, accepting that the per-
turbative operators that appear in them can be treated
effectively as classical variables. We refer the reader to
Refs. [39,40] for further details on this topic.

VII. QUANTUM DYNAMICS OF THE FERMIONIC
PERTURBATIONS

Let us now discuss the quantum dynamics of the creation
and annihilation operators for the nonzero-modes of the
Dirac field that follows from the Schrödinger Eq. (6.7) or,
alternatively, directly from the quantum constraint (6.4), if
one neglects the contribution of the perturbations to the
momentum of the homogeneous scalar field in comparison

with the homogeneous contribution h ~̂H0iΓ. It is straightfor-
ward to see that the resulting evolution equations are

dηΓ â
ðx;yÞ
k⃗

ðη; η0Þ ¼ −iFðΓÞ
k âðx;yÞ

k⃗
ðη; η0Þ þGðΓÞ

k b̂ðx;yÞ†
k⃗

ðη; η0Þ;
dηΓ b̂

ðx;yÞ†
k⃗

ðη; η0Þ ¼ iFðΓÞ
k b̂ðx;yÞ†

k⃗
ðη; η0Þ − GðΓÞ

k âðx;yÞ
k⃗

ðη; η0Þ;
ð7:1Þ

where, by convenience, we have introduced a conformal
time ηΓ, that is defined in terms of the homogeneous scalar
field by means of the relation2

dηΓ ¼ l0hV̂2=3iΓ
h ~̂H0iΓ

dϕ; ð7:2Þ

We are evaluating it at the instant η, and FðΓÞ
k and GðΓÞ

k are
the following mode-dependent functions of time:

FðΓÞ
k ¼ hξ̆kðV̂ÞV̂2=3iΓ

hV̂2=3iΓ
; ð7:3Þ

GðΓÞ
k ¼ Mωk

2l20

hξ̆−1k ðV̂ÞV̂1=6Λ̂0V̂
1=6ξ̆−1k ðV̂ÞiΓ

γhV̂2=3iΓ
: ð7:4Þ

Note that the dependence of these functions on the mode
is only through ωk, and not through the rest of details of
the specific tuple k⃗ under consideration. Besides, all our
definitions include an implicit dependence on the particular
state Γ considered for the homogeneous geometry. In
addition, in all these expressions, the dependence on the
conformal time appears via the dependence on the homo-
geneous field ϕ, including the dependence of Γ, once the
relation (7.2) has been integrated. Finally, for our evolution

equations, we take the operators âðx;yÞ
k⃗

and b̂ðx;yÞ†
k⃗

as initial

conditions at an arbitrary initial time η0 ¼ ηΓðϕ0Þ.
It is worth remarking that, since ~̂H0 is a positive operator

by assumption, and since V̂ is bounded from below by a
positive number in any superselection sector of LQC [29],
our change to conformal time and the definition of the
functions (7.3) and (7.4) are well-defined. For other
possible representations of the homogeneous geometry,
like in geometrodynamics, the volume operator might reach
a vanishing expectation value, for instance in the big bang
for semiclassical states, and might pose intrinsic obstruc-
tions to the above constructions.
We expect that the studied dynamics for the nonzero-

modes of the Dirac field can be implemented unitarily in
our quantum theory, given our choice of Fock representa-
tion and the hybrid approach that we have adopted.
Nonetheless, the functions FðΓÞ

k and GðΓÞ
k that determine

the dynamics are not defined by a classical background
geometry, but are ratios of expectation values on a quantum
state. We could consider situations in which these expect-
ation values are not associated with a semiclassical or
effective trajectory. To cope with these issues, we will
analyze the quantum dynamics in detail. In the rest of this
section, we will study the Bogoliubov transformation that
relates the creation and annihilation operators for the

2Note that classically this time would coincide with the
conformal time introduced below Eq. (2.16).
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nonzero-modes with the operators that represent their initial
values. We will leave to the next sections the determination
of the operator that implements this transformation and the
proof that it is indeed unitary. With this operator at hand, we
will be able to construct solutions to the Schrödinger
equation of (the nonzero-modes of) the Dirac field.
Let us start by introducing the following definition of

operators, motivated by the classical relation (3.1), or rather
by its inverse, that can be easily calculated using Eqs. (3.3)
and (3.4), particularized to the case of real coefficients,

x̂k⃗ðη; η0Þ ¼ fðΓÞ1;k â
ðx;yÞ
k⃗

ðη; η0Þ þ fðΓÞ2;k b̂
ðx;yÞ†
k⃗

ðη; η0Þ; ð7:5Þ

ŷ†
−k⃗−2τ⃗

ðη; η0Þ ¼ fðΓÞ2;k â
ðx;yÞ
k⃗

ðη; η0Þ − fðΓÞ1;k b̂
ðx;yÞ†
k⃗

ðη; η0Þ; ð7:6Þ

with jfðΓÞ1;k j2 þ jfðΓÞ2;k j2 ¼ 1. Note that we restrict these
functions to depend on ωk, rather than on k⃗, and to coincide
for the possible values of ðx; yÞ, namely ðm; sÞ and ðt; rÞ.
Inspired by the choice made in Eq. (4.1) and the definition

of FðΓÞ
k , we take

fðΓÞ1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðΓÞ
k − ωk

2FðΓÞ
k

vuut ; fðΓÞ2;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðΓÞ
k þ ωk

2FðΓÞ
k

vuut : ð7:7Þ

Since ξkðV̂Þ ≥ ωk as an operator, and V̂ is strictly positive,

it is ensured that FðΓÞ
k ≥ ωk. Hence, f

ðΓÞ
1;k and fðΓÞ2;k are well-

defined for any state Γ, and they are real functions. The
dynamical Eqs. (7.1) then translate into

dηΓ x̂k⃗ðη; η0Þ ¼ iωkx̂k⃗ðη; η0Þ þHðΓÞ
k ŷ†

−k⃗−2τ⃗
ðη; η0Þ; ð7:8Þ

dηΓ ŷ
†
−k⃗−2τ⃗

ðη; η0Þ ¼ −iωkŷ
†
−k⃗−2τ⃗

ðη; η0Þ − H̄ðΓÞ
k x̂k⃗ðη; η0Þ;

ð7:9Þ

where we have defined

HðΓÞ
k ¼ −GðΓÞ

k − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFðΓÞ

k Þ2 − ω2
k

q
þ ωkðFðΓÞ

k Þ0

2FðΓÞ
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFðΓÞ

k Þ2 − ω2
k

q ;

ð7:10Þ

and the prime denotes from now on the derivative with
respect to the conformal time ηΓ. Recalling that Λ̂0 and V̂
are representations of −4πγπᾰ=3 and 4πσe3ᾰ=3, respec-
tively, and that on classical trajectories πᾰ ¼ −ᾰ0e2ᾰ ignor-
ing perturbative corrections, one can check that, on states
peaked on such trajectories, the dynamical Eqs. (7.8) and
(7.9) reproduce the classical ones (2.16).
Let us now call ẑk⃗ any of the operators x̂k⃗ or ŷk⃗

indifferently, and define ~̂zk⃗ ¼ ðiHðΓÞ
k Þ−1=2ẑk⃗. It is easy to

derive the associated equation

~̂z00
k⃗
¼ −

�
~ω2
k þ jHðΓÞ

k j2 þ 1

2
ðlnHðΓÞ

k Þ00
�
~̂zk⃗; ð7:11Þ

where ~ωk ¼ ωk þ iðlnHðΓÞ
k Þ0=2. As in Appendix B of

Ref. [20], we search for two independent solutions
of the corresponding classical equation with the form ~zl

k⃗
¼

exp ½−ið−1ÞlΘl
k�, where l ¼ 1, 2. We get

Θl
k ¼ ωkðη − η0Þ þ

i
2
½ð−1Þl þ 1� ln

�
HðΓÞ

k

HðΓÞ;0
k

�
þ
Z

η

η0

Λl
kðηΓÞdηΓ; ð7:12Þ

where we have employed the notation HðΓÞ;0
k ¼ HðΓÞ

k ðη0Þ
and Λl

k is a solution to the Ricatti equation

ðΛl
kÞ0 ¼ ið−1Þl½ðΛl

kÞ2 þ 2 ~ωkΛl
k� − ulk; ð7:13Þ

ulk ¼ ið−1ÞljHðΓÞ
k j2 þ i

2
½ð−1Þl þ 1�ðlnHðΓÞ

k Þ00 ð7:14Þ

with initial condition Λl
kðη0Þ ¼ 0. An asymptotic analysis

like the one carried out in Ref. [20] shows then thatZ
η

η0

Λl
kðηΓÞdηΓ ¼ −ð−1Þl i

2ωk

Z
η

η0

ulkðηΓÞdηΓ þOðω−2
k Þ:

ð7:15Þ

These results are valid under relatively mild conditions on

HðΓÞ
k , for instance that it does not vanish and has a fourth-

order time derivative that is continuous in the considered
interval (so that, in our analysis, all the performed inte-
grations by parts are well-defined).
The operators x̂k⃗ or ŷk⃗ are given by linear combinations

of our two independent solutions to Eq. (7.11). The
coefficients in these combinations are operators that carry
the information about the initial conditions. Combining
these linear relations with Eqs. (7.5) and (7.6), we can
express our fermionic creation and annihilation operators as
linear combinations of their initial values at η0,

âðx;yÞ
k⃗

ðη; η0Þ ¼ αkðη; η0Þâðx;yÞk⃗
þ βkðη; η0Þb̂ðx;yÞ†k⃗

;

b̂ðx;yÞ†
k⃗

ðη; η0Þ ¼ −β̄kðη; η0Þâðx;yÞk⃗
þ ᾱkðη; η0Þb̂ðx;yÞ†k⃗

: ð7:16Þ

A detailed calculation of the coefficients of this Bogoliubov
transformation [20] leads finally to the following formula
[where we obviate the time dependence and the limits of
integration over ðη; η0Þ to simplify the notation],
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αk ¼
�
fðΓÞ1;kðfðΓÞ;01;k − fðΓÞ;02;k ζkÞei

R
Λ1
k

− fðΓÞ2;kf
ðΓÞ;0
1;k ζ̄k

H̄ðΓÞ
k

H̄ðΓÞ;0
k

ei
R

Λ̄2
k

�
eiωkðη−η0Þ

þ
�
fðΓÞ2;k ðfðΓÞ;01;k ζ̄k þ fðΓÞ;02;k Þe−i

R
Λ̄1
k

þ fðΓÞ1;kf
ðΓÞ;0
2;k ζk

HðΓÞ
k

HðΓÞ;0
k

e−i
R

Λ2
k

�
e−iωkðη−η0Þ; ð7:17Þ

βk ¼
�
fðΓÞ1;k ðfðΓÞ;02;k þ fðΓÞ;01;k ζkÞei

R
Λ1
k

− fðΓÞ2;kf
ðΓÞ;0
2;k ζ̄k

H̄ðΓÞ
k

H̄ðΓÞ;0
k

ei
R

Λ̄2
k

�
eiωkðη−η0Þ

þ
�
fðΓÞ2;kðfðΓÞ;02;k ζ̄k − fðΓÞ;01;k Þe−i

R
Λ̄1
k

− fðΓÞ1;kf
ðΓÞ;0
1;k ζk

HðΓÞ
k

HðΓÞ;0
k

e−i
R

Λ2
k

�
e−iωkðη−η0Þ: ð7:18Þ

We have used that fðΓÞ1;k and fðΓÞ2;k are real, and their initial

values at η0 have been called fðΓÞ;01;k and fðΓÞ;02;k , respectively.
In addition, we have defined

ζk ¼
iHðΓÞ;0

k

2ωk þ iðlnHðΓÞ
k Þ00

; ð7:19Þ

where the subscript in the derivative of the logarithm stands
for evaluation at the initial time. Finally, we notice that,
since the canonical anticommutation relations hold at all
times, we have that jαkðη; η0Þj2 þ jβkðη; η0ÞÞj2 ¼ 1.

VIII. EVOLUTION OPERATOR FOR THE
FERMION PERTURBATIONS

We will discuss now the implementability of the
Bogoliubov transformation that encodes the quantum
dynamics of the fermionic nonzero-modes in terms of an
evolution operator ÛD.
Based on Eq. (4.1), we expect fðΓÞ2;k to be asymptotically

of order unity for large ωk, and fðΓÞ1;k to be negligible. As a
result, the dominant contribution to αkðη; η0Þ in this
asymptotic limit should be given by the term that contains

the product fðΓÞ2;kf
ðΓÞ;0
2;k . Recalling in addition Eq. (7.15), we

expect that αkðη; η0Þ behaves asymptotically as the phase
e−iωkðη−η0Þ. It is most convenient to absorb this phase in a
trivial unitary evolution operator ÛL and deal separately
with the remaining Bogoliubov transformation. More
specifically, we will adopt the splitting ÛD ¼ ÛBÛL,

where ÛL changes the annihilation operators of the

nonzero-modes by a phase e−iωkðη−η0Þ (and the creation
operators by the inverse phase), and ÛB imple-
ments the supplementary Bogoliubov transformation with
coefficients

~αkðη; η0Þ ¼ eiωkðη−η0Þαkðη; η0Þ;
~βkðη; η0Þ ¼ e−iωkðη−η0Þβkðη; η0Þ: ð8:1Þ

It is easy to construct the evolution operator ÛL.
Defining

T̂Lðη; η0Þ ¼ iðη − η0Þ
X

k⃗≠τ⃗;ðx;yÞ
ωkðâðx;yÞ†k⃗

âðx;yÞ
k⃗

þ b̂ðx;yÞ†
k⃗

b̂ðx;yÞ
k⃗

Þ;

ð8:2Þ

we simply have ÛL ¼ e−T̂L . Here and in the following, we
avoid displaying the time dependence explicitly, unless
necessary, to simplify the notation. Then, we clearly have

Û−1
L âðx;yÞ

k⃗
ÛL ¼ e−iωkðη−η0Þâðx;yÞ

k⃗
;

Û−1
L b̂ðx;yÞ†

k⃗
ÛL ¼ eiωkðη−η0Þb̂ðx;yÞ†

k⃗
: ð8:3Þ

In turn, for the remaining Bogoliubov tansformation, we
adopt the parametrization

~αk ¼ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔkj2 þ ρ2k

q
þ iρk

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔkj2 þ ρ2k

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔkj2 þ ρ2k

q ;

~βk ¼ −Δk

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔkj2 þ ρ2k

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔkj2 þ ρ2k

q ; ð8:4Þ

where ρk is a real number, and Δk is complex. Associated
to this Bogoliubov transformation, we can introduce the
quadratic operator

T̂B ¼
X

k⃗≠τ⃗;ðx;yÞ

h
Δkâ

ðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

− Δ̄kb̂
ðx;yÞ
k⃗

âðx;yÞ
k⃗

− iρkðâðx;yÞ†k⃗
âðx;yÞ
k⃗

þ b̂ðx;yÞ†
k⃗

b̂ðx;yÞ
k⃗

Þ þ icðx;yÞk

i
; ð8:5Þ

where cðx;yÞk is a time-dependent (c-number) phase that we

leave arbitrary for the moment. We next define ÛB ¼ e−T̂B .
Then, employing the formula

eT̂BÔe−T̂B ¼ Ôþ
X∞
n¼1

1

n!
½T̂B;…½T̂B; Ô��ðnÞ; ð8:6Þ

where ½:; :�ðnÞ denotes the nth commutator and Ô is a
generic operator, and recalling Eq. (8.4), it is possible to
check that, at least formally,
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Û−1
B âðx;yÞ

k⃗
ÛB ¼ ~αkðη; η0Þâðx;yÞk⃗

þ ~βkðη; η0Þb̂ðx;yÞ†k⃗
;

Û−1
B b̂ðx;yÞ†

k⃗
ÛB ¼ − ~̄βkðη; η0Þâðx;yÞk⃗

þ ~̄αkðη; η0Þb̂ðx;yÞ†k⃗
: ð8:7Þ

Hence we see that, acting with the composed operator
ÛD ¼ ÛBÛL, we achieve in fact the original Bogoliubov
transformation (7.16) of our quantum evolution.
It is obvious that ÛL does not alter the vacuum j0iD of

our Fock representation, namely, the state with unit norm

that is annihilated by all the operators âðx;yÞ
k⃗

and b̂ðx;yÞ
k⃗

. This

is a consequence of the fact that ÛL does not change
annihilation operators into creation ones. On the other
hand, using the expansion in power series of the exponen-
tial, one can also compute the action of ÛB on the vacuum
state j0iD. One gets

Û−1
B j0iD ¼

Y
k⃗≠τ⃗;ðx;yÞ

e−iðρk−c
ðx;yÞ
k Þ ~αk

�
1 −

~βk
~αk
âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

�
j0iD;

ð8:8Þ

ÛBj0iD ¼
Y

k⃗≠τ⃗;ðx;yÞ
eiðρk−c

ðx;yÞ
k Þ ~̄αk

�
1þ

~βk
~̄αk
âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

�
j0iD:

ð8:9Þ

Given our previous discussion, this is also the action of
the complete evolution operator ÛD on the vacuum. Thus,
in terms of our original Bogoliubov coefficients,

ÛDj0iD ¼
Y

k⃗≠τ⃗;ðx;yÞ
ei½ρk−c

ðx;yÞ
k −ωkðη−η0Þ�ᾱk

×

�
1þ βk

ᾱk
âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

�
j0iD: ð8:10Þ

All these formulas are strictly rigorous if the transformed
vacuum is a well-defined state on the Fock space, that is, if
it has finite norm, something that happens if and only if the
sequence of β-coefficents of our Bogoliubov transforma-
tion is square summable. This summability is precisely the
necessary and sufficient condition for the unitary imple-
mentability of the evolution [75,76], implementability that
we will prove in the next section. With this eventual caveat,
we will now demonstrate that the transformed vacuum state
(8.10) is a solution to the Schrödinger equation of the Dirac
field (6.7), leaving apart the zero-modes.
Recalling the definition of the operators ϒ̂F and ϒ̂I

in Eqs. (5.13) and (5.14), and of the functions FðΓÞ
k andGðΓÞ

k
in Eqs. (7.3) and (7.4), we get

1

2l0

hϒ̂F þ ϒ̂IiΓ
hV̂2=3iΓ

ÛDj0iD

¼
X

k⃗≠τ⃗;ðx;yÞ

h
−FðΓÞ

k

�
âðx;yÞ†
k⃗

âðx;yÞ
k⃗

þ b̂ðx;yÞ†
k⃗

b̂ðx;yÞ
k⃗

�
− iGðΓÞ

k

�
âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

þ âðx;yÞ
k⃗

b̂ðx;yÞ
k⃗

�i
ÛDj0iD: ð8:11Þ

A simple calculation using Eq. (8.10) leads then to

1

2l0

hϒ̂F þ ϒ̂IiΓ
hV̂2=3iΓ

ÛDj0iD

¼
X

k⃗≠τ⃗;ðx;yÞ

��
−2FðΓÞ

k
βk
ᾱk

− iGðΓÞ
k

ðβkÞ2 þ ðᾱkÞ2
ðᾱkÞ2

�
âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

þ iGðΓÞ
k

βk
ᾱk

�
ÛDj0iD: ð8:12Þ

On the other hand, taking directly the time derivative of
Eq. (8.10), we obtain

dηΓÛDj0iD ¼
X

k⃗≠τ⃗;ðx;yÞ

�
idηΓρk − idηΓc

ðx;yÞ
k − iωk þ

dηΓ ᾱk
ᾱk

þ ᾱkdηΓβk − βkdηΓ ᾱk
ðᾱkÞ2

âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

�
ÛDj0iD:

ð8:13Þ

The quantum evolution Eqs. (7.1) and the Bogoliubov
relation (7.16), together with the phase redefinition per-
formed in Eq. (8.1), imply that

dηΓαk ¼ −iFðΓÞ
k αk −GðΓÞ

k β̄k;

dηΓβk ¼ −iFðΓÞ
k βk þGðΓÞ

k ᾱk; ð8:14Þ

dηΓ ~αk ¼ −iðFðΓÞ
k − ωkÞ ~αk −GðΓÞ

k
~̄βk: ð8:15Þ

In turn, we can take time derivatives in the parametrization
(8.4) of ~αk. Substituting this parametrization in Eq. (8.15)
and identifying the results, one can prove that

dηΓρk ¼ ωk − FðΓÞ
k −GðΓÞ

k ℑðΔkÞ; ð8:16Þ

whereℑðΔkÞ ¼ −iðΔk − Δ̄kÞ=2 is the imaginary part ofΔk.
Inserting this identity and Eq. (8.14) in our formula for the
derivative of the evolved vacuum, we get
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− idηΓÛDj0iD
¼

X
k⃗≠τ⃗;ðx;yÞ

��
−2FðΓÞ

k
βk
ᾱk

− iGðΓÞ
k

ðβkÞ2 þ ðᾱkÞ2
ðᾱkÞ2

�
âðx;yÞ†
k⃗

b̂ðx;yÞ†
k⃗

þ iGðΓÞ
k

βk
ᾱk

− GðΓÞ
k ℑðΔkÞ − dηΓc

ðx;yÞ
k

�
ÛDj0iD: ð8:17Þ

So, recalling Eq. (8.12) and employing the change of time
(7.2), we conclude that the evolved vacuum is indeed a
solution to the Schrödinger equation of the Dirac field
(without zero-modes). Moreover, we confirm that the
fermionic Hamiltonian that generates the evolution in the

time ϕ is hϒ̂F þ ϒ̂IiΓ=ð2h ~̂H0iΓÞ, modulo a backreaction
contribution equal to

CðΓÞ
D ðϕÞ ¼ −

l0hV̂2=3iΓ
h ~̂H0iΓ

X
k⃗≠τ⃗;ðx;yÞ

h
GðΓÞ

k ℑðΔkÞ þ dηΓc
ðx;yÞ
k

i
:

ð8:18Þ

IX. UNITARITY AND BACKREACTION
CONSIDERATIONS

The unitarity of the evolution operator introduced in the
previous section can be dilucidated by checking whether
the β-coefficients of the corresponding Bogoliubov trans-
formation that provides the change in time of the creation
and annihilation operators are square summable or not at all
instants in the time interval under consideration. Assuming
the finiteness of those coefficients, the summability
depends only on the asymptotic behavior for large values
of ωk, where the contribution of an infinite number of
fermionic modes can result in a divergence.
Let us start by considering the functions FðΓÞ

k and GðΓÞ
k

that encode the information about the expectation values on
the state Γ of the homogeneous geometry that is relevant for
the dynamics of the fermion field. We use their expressions
(7.3) and (7.4) and the definition of ξ̆k in Eq. (4.3), rewritten
in terms of the volume V ¼ 4πσe3ᾰ=3, namely

ξ̆kðV̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ

M2V̂2=3

l20

s
: ð9:1Þ

If we then introduce the spectral decomposition of Γ
associated with the operator V̂ and call V̆ the studied
eigenvalue, we can express ξ̆kðV̂Þ in a series expansion in
powers of V̂2=3 at least for ωk > MV̆1=3=l0, something that
happens in the ultraviolet region of infinitely large ωk. In
this way, one gets the following expansions of the functions

FðΓÞ
k and GðΓÞ

k , which provide in fact their asymptotic
Laurent series in powers of ωk:

FðΓÞ
k ¼ ωk −

X∞
n¼1

ð−1Þn M2n

l2n0 ω2n−1
k

ð2n − 3Þ!!
2nn!

WðΓÞ
n ;

WðΓÞ
n ¼ hV̂2ðnþ1Þ=3iΓ

hV̂2=3iΓ
; ð9:2Þ

and

GðΓÞ
k ¼

X∞
n¼0

ð−1Þn M2nþ1

l2ðnþ1Þ
0 ω2nþ1

k

λðΓÞn

2nþ1
; ð9:3Þ

λðΓÞn ¼
Xn
m¼0

ð2m − 1Þ!!ð2n − 2m − 1Þ!!
m!ðn −mÞ!

×
hV̂ð4mþ1Þ=6Λ̂0V̂

½4ðn−mÞþ1�=6iΓ
γhV̂2=3iΓ

; ð9:4Þ

where n!! is the double factorial of the integer n, identified
with the unity if n ≤ 0.
Substituting these formulas in Eq. (7.10) and expanding

the square roots and denominators, one can obtain an

asymptotic series for HðΓÞ
k . We give here only the leading

orders,

HðΓÞ
k ¼ M

l0

ffiffiffiffiffiffiffiffiffiffi
WðΓÞ

1

q �
−iþ 1

4ωk
ðlnWðΓÞ

1 Þ0
�

−
M

2l20ωk
λðΓÞ0 þOðω−2

k Þ; ð9:5Þ

where, with our notation,

WðΓÞ
1 ¼ hV̂4=3iΓ

hV̂2=3iΓ
; λðΓÞ0 ¼ hV̂1=6Λ̂0V̂

1=6iΓ
γhV̂2=3iΓ

: ð9:6Þ

This formula allows us to get the asymptotic behavior of ζk.
In doing so, apart from employing the asymptotic series of

HðΓÞ;0
k , we have to express the denominator in Eq. (7.19) as

a power series in the inverse of ωk. The required series

expansion is possible at least for ωk > jðlnHðΓÞ
k Þ00j=2 or,

approximating the right-hand side of this inequality by

means of Eq. (9.5), for ωk > jðlnWðΓÞ
1 Þ00j=4, condition that

holds in the studied asymptotic region. We get at leading
orders

ζk ¼
M

2l0ωk

ffiffiffiffiffiffiffiffiffiffiffiffi
WðΓÞ;0

1

q
− i

M
4l20ω

2
k

λðΓÞ;00 þOðω−3
k Þ; ð9:7Þ

where again the superscript 0 means evaluation at the initial
time. In addition, we can derive the asymptotic expansion
of the integral of Λl

k using Eqs. (7.14), (7.15), and (9.5).
For our discussion, we will only need
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Z
η

η0

½Λ1
kðηΓÞ − Λ̄2

kðηΓÞ�dηΓ

¼ −
1

2ωk
½ðlnHðΓÞ

k Þ0 − ðlnHðΓÞ
k Þ00� þOðω−2

k Þ

¼ −
1

4ωk
½ðlnWðΓÞ

1 Þ0 − ðlnWðΓÞ
1 Þ00� þOðω−2

k Þ: ð9:8Þ

Note that, without entering the asymptotic region of
extremely large ωk, each of the two contributions to the
dominant term is smaller than the unity in absolute value,
and then we expect that the whole quantity will be small, if
we have that, both at the considered value η of the
conformal time and at the initial value η0,

ωk >
1

4
jðlnWðΓÞ

1 Þ0j: ð9:9Þ

In particular, at the initial time, this condition guarantees

the requirement ωk > jðlnWðΓÞ
1 Þ00j=4 that we had found in

our discussion above.
Let us discuss now the asymptotic behavior of fðΓÞ1;k and

fðΓÞ2;k . We can calculate their asymptotic series using the
expansion (9.2) and expressions (7.7). We obtain

fðΓÞ1;k ¼ M
2l0ωk

ffiffiffiffiffiffiffiffiffiffi
WðΓÞ

1

q
þOðω−3

k Þ; ð9:10Þ

fðΓÞ2;k ¼ 1 −
M2

8l20ω
2
k

WðΓÞ
1 þOðω−4

k Þ: ð9:11Þ

At last, we can compute the asymptotic expansion of the
β-coefficient of the dynamical Bogoliubov transformation
by inserting in the formula (7.18) all the pieces about the
asymptotic behavior that we have accumulated in this
section. A careful calculation leads to

βk ¼ i
M

4l20ω
2
k

h
λðΓÞ;00 e−iωkðη−η0Þ − λðΓÞ0 eiωkðη−η0Þ

i
þOðω−3

k Þ:

ð9:12Þ

In this way, we reach the important conclusion that βk is of
the asymptotic order of ω−2

k . Since the degeneracy (i.e., the

number of tuples k⃗ with the same value of ωk) is at most of
the order of ω2

k in the ultraviolet limit under consideration,
it follows that the sequence formed by the β-coefficients is
indeed square summable. Even if we expected this result,
based on our choice of Fock representation and on the
strategy followed in the hybrid approach, the inclusion of
quantum fluctuations in the background casted shadows
over the unitary implementability of the evolution. We see
that, definitively, the quantum dynamics of the nonzero
fermionic modes is unitary. This closes the only point left
open in the proof that the evolved vacuum ÛDj0iD is a

solution to the Schödinger equation of the nonzero-modes
of the Dirac field.
In addition, it is well-known that the number of particles

produced out of the vacuum in the evolution, as perceived
by the original vacuum (i.e., according to its notion of
particles) coincides in fact with the sum of the square norm
of the β-coefficients [17,55]. This quantity is also the
number of antiparticles created in the evolution, since
particles and antiparticles appear in pairs. Therefore, the
production of particles (or, strictly speaking, of pairs of
particles and antiparticles) is finite with our choice of
creation and annihilation operators for the Dirac field, as it
was already shown in the geometrodynamical case in
Ref. [17]. Actually, we see from Eq. (9.12) that the
contribution of modes with large ωk is proportional to
the square mass of the fermion field, and hence really small,
taking into account that this mass is typically insignificant,
e.g. around 10−23 for the electron in Planck units. This
property, together with the decaying behavior of the
production of particles as ω−4

k for large ωk, guarantees
that the fermionic part of the state does not depart much
from the vacuum for modes that are well inside the
cosmological horizon when semiclassical trajectories are
chosen for the expectation values of the homogeneous
geometry. Therefore, our results prove to be compatible
with the expected behavior of fermion fields in the low-
curvature regions of the spacetime. Besides, the square
norm of βk at dominant asymptotic order is proportional to

the sum of the squares of λðΓÞ0 and λðΓÞ;00 , both of which are
real, plus an oscillating term. The contribution of this last
term to the particle production will be negligible compared
with the other two, since the sum over modes will average
the huge asymptotic oscillations. We also notice that the

definition of λðΓÞ0 in Eq. (9.6) involves the operator Λ̂0. This
operator is a modified version of Ω̂0 in which the length of
the holonomies has been doubled. For states that are highly
peaked on genuine classical trajectories, in regions where

general relativity holds, one expects λðΓÞ0 to be approx-
imately equal to the derivative of the scale factor with
respect to the conformal time, apart from a multiplicative
constant. But in LQC, beyond those regions, it provides the
quantum value of the Hubble constant, which is known to
vanish in the big bounce on effective trajectories. These
trajectories depart from general relativity, as we have
commented, when the energy density approaches the
Planck density [27], even though there still exist quantum
states peaked on them. Therefore, if we choose the initial
time at the big bounce and we consider a state that, at least
around η0, is peaked on an effective trajectory, the con-

tribution of the initial value of λðΓÞ0 , namely λðΓÞ;00 , should
vanish (or be negligible). In this sense, LQC is able to
provide initial conditions that minimize the production of
fermionic particles. Note that a similar situation would not
be possible, for instance, in geometrodynamics, because the
Hubble constant will never vanish in that approach.
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As for the production of particles in modes that do not
belong to the ultraviolet region, one can follow an analysis
similar to that presented in Ref. [17]. Actually, the
expansions and approximations that we have carried out
in the deduction of Eq. (9.12) are valid if condition (9.9)
is verified at the conformal times η and η0, and if
ωk > MhV̂1=3iΓ=l0, where we have approximated the
action of the operator V̂1=3 by its expectation value. On
quantum states that are peaked on effective trajectories, the
right-hand side of Eq. (9.9) can be estimated, apart from an
irrelevant multiplicative number, as the Hubble parameter
multiplied by the scale factor. Hence, in the case of LQC
and choosing the bounce as the initial instant, the condition
at η0 reduces to the trivial demand that ωk > 0, which can
be ignored. Again, this would not happen with other
approaches to the quantization of the homogeneous geom-
etry. In total, we expect that our restrictions imply that
ωk > ω0

k, where ω0
k is the larger of MhV̂1=3iΓ=l0 and

jðlnWðΓÞ
1 Þ0j=4. For modes that do not satisfy this inequality,

the particle production should be of the order of unity per
mode, adding to a total quantity proportional to the cube
of ω0

k, where we have taken into account the degeneracy of
the modes. Let us emphasize that the physically important
result is the finiteness of the number of particles, in spite of
the presence of an infinite number of modes. This means
that the ultraviolet modes do not depart considerably from
their vacuum, and thanks to this fact they make very little
contribution to the particle production.
Let us complete our asymptotic analysis by considering

the behavior or some additional quantities, related to the
backreaction contribution of the fermionic field. A calcu-
lation similar to that explained for βk, but now using
Eq. (7.17), confirms that

αk ¼ e−iωkðη−η0Þ þOðω−1
k Þ; ð9:13Þ

as we anticipated at the beginning of the previous section.
If we make use of this asymptotic expression and of
Eq. (9.12), and recall the parametrization (8.4) of the
phase-shifted Bogoliubov coefficients, we can check that
ρk ¼ Oðω−1

k Þ, whereas ~βk ¼ e−iωkðη−η0Þβk coincides with
−Δk up to subdominant terms of order ω−3

k or less, so that

ℑðΔkÞ ¼
M

4l20ω
2
k

n
λðΓÞ0 − λðΓÞ;00 cos ½2ωkðη − η0Þ�

o
þOðω−3

k Þ:

ð9:14Þ

Multiplying this identity by GðΓÞ
k and using the expansion

(9.3), we get

GðΓÞ
k ℑðΔkÞ ¼

M2

8l40ω
3
k

λðΓÞ0

×
n
λðΓÞ0 − λðΓÞ;00 cos½2ωkðη − η0Þ�

o
þOðω−4

k Þ:
ð9:15Þ

The sum over all modes of the subdominant terms of order
ω−4
k in this expression converges, because the degeneracy

grows asymptotically at most as a function of order ω2
k.

Hence, in the backreaction contribution (8.18) of the
nonzero-modes of the Dirac field, the only possible

divergences arising from GðΓÞ
k ℑðΔkÞ may come from its

dominant term, of order ω−3
k . Actually, the oscillating part

proportional to λðΓÞ;00 can be ignored in LQC if we choose
the initial time at the bounce and the state Γ to be
sufficiently peaked on an effective trajectory around η0,
as we have argued in the discussion of the particle
production. In this case, the only possible divergent

contribution would be that of M2ðλðΓÞ0 Þ2=ð8l40ω3
kÞ. The

presence of this divergence requires a regularization proc-
ess, that can be incorporated in our discussion by means of

a suitable choice of the phase cðx;yÞk in the fermionic
Hamiltonian. The divergence is absorbed with a choice of
the form

cðx;yÞk ¼ −
M2

8l40ω
3
k

Z
η

η0

ðλðΓÞ0 Þ2 þOðω−4
k Þ: ð9:16Þ

We notice that the dominant term is independent of the
considered pair ðx; yÞ and vanishes at the initial time, since
the same happens with the divergent part of (9.15).
This contrasts with the situation found in Ref. [17],

where the divergent contribution of each fermionic mode
was shown to be proportional to ωk, much worse than the
behavior Oðω−3

k Þ found here. The improvement in the
quantum theory with respect to these divergences in
absence of regularization must be attributed mainly to
our selection of Fock representation for the nonzero-modes
of the Dirac field, instead of using the same holomorphic
representation adopted in the mentioned work. On the other
hand, arguments of the kind explained in that reference lead
to the expectation that the fermionic backreaction, after
regularization, should have negligible effects for the typical
small values of the fermion mass (even the divergent term is
proportional to the square mass). Moreover, in the next
section we will present further comments pointing out to
the possibility that this backreaction can be made finite
without regularization, just by adapting in an optimal way
our selection of Fock quantization, while remaining in the
same unitary equivalence class of the choice discussed here.

X. DISCUSSION

In this work, we have discussed the quantization of a
Dirac field coupled to a perturbed flat FLRW spacetime
with a massive scalar field in the framework of LQC. For
mathematical convenience, we have assumed compact
spatial sections. This hypothesis should not have physically
relevant consequences in cosmology, at least if the com-
pactification scale is much larger than that corresponding to
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the cosmological horizon. In our quantization, the geom-
etry and the scalar matter content have been treated
quantum mechanically as well. Moreover, we have allowed
the presence of scalar and tensor perturbations in the
quantum system. Vector perturbations do not play any
physical role, since they are gauge degrees of freedom in
our model and can be ignored. In practice, the Dirac field
has also been treated as a perturbation, inasmuch as any
possible contribution of the fermionic zero-modes has been
supposed small, if the spin structure permits that such
modes exist. We have truncated the Dirac-Einstein action,
with the coupling to the scalar field, at quadratic order in
the perturbations. For the modes of the Dirac field, the
truncation has no effect, since their contribution to the
action is already quadratic. Our analysis can be considered
an extension to LQC of the work of D’Eath and Halliwell
[17] in quantum geometrodynamics, with certain additional
distinctive features that will be pointed out in the following
discussion.
We have adopted a hybrid quantization strategy, with

different kind of representations for the sector of homo-
geneous degrees of freedom of our system and for its
inhomogeneities. The quantum representation of the total
system is a direct product, but the system is highly
nontrivial because the distinct sectors of variables are
coupled by constraints, arising from those of general
relativity and from the gauge symmetries. For the homo-
geneous sector, the scalar perturbations, and the tensor
ones, it is possible to introduce a canonical transformation
that disentangles the constraints that have a genuine
perturbative nature. This leads to a set of variables for
the perturbations that includes those constraints, some
suitable conjugate momenta, and canonical pairs of gauge
invariants (namely, variables that commute with the gauge
transformations generated by the perturbative constraints).
Besides, this transformation provides homogeneous vari-
ables that retain the canonical structure, not only among
them, but also with respect to the perturbations [39]. After
the transformation, it is almost straightforward to deal with
the perturbative constraints à la Dirac. Physical states
depend only on the homogeneous variables, the gauge-
invariant scalar and tensor perturbations, and the fermionic
modes. The relevant constraint left in the system is the zero-
mode of the Hamiltonian constraint, in which the homo-
geneous constraint that persists in absence of perturbations
appears modified by quadratic perturbative contributions.
According to our hybrid approach, we have then passed

to a convenient Fock description of the Dirac field. For its
nonzero-modes, we have employed the same type of
creation and annihilation variables adopted in Ref. [17].
This choice belongs to a privileged family of unitarily
equivalent Fock representations for the fermionic degrees
of freedom. When the background spacetime is regarded
as a classical entity, this family is picked out by the criterion
of a unitarily implementable dynamics, together with the

invariance of the vacuum under the spatial symmetries of
the system and the spin rotations generated by the helicity
[22], adopting a convention of particles and antiparticles
that connects smoothly with the standard one in the
massless case. In contrast to the analysis of Ref. [17]
where, at the end of the day, a holomorphic representation
was selected for the Dirac field, we have truly performed
the change to these creation and annihilation variables in
our Hamiltonian treatment. Since this change depends on
the configuration variable that describe the homogeneous
geometry (let us say its scale factor), we have had to
complete it into a canonical transformation for the entire
system, at our order of perturbative truncation. This has two
effects. First, it requires a modification of the canonical
momentum of the homogeneous geometry, incorporating
quadratic contributions of the fermions. This modification
allows us to retain a symplectic (canonical) structure in our
system, and to progress in the discussion with a neat
correspondence between our canonical variables and the
metric and matter fields. Second, it alters the global
Hamiltonian constraint, since the transformation involves
time-varying variables. As a consequence, the final global
Hamiltonian constraint for our hybrid quantization differs
from that of Ref. [17]. Our Hamiltonian dictates the
evolution of the system after a splitting of the degrees of
freedom in which a specific part of the dynamics of the
Dirac field is attributed to the homogeneous geometry and
another to the selected creation and annihilation variables,
rather than to the fermionic variables associated with the
holomorphic representation used by D’Eath and Halliwell.
In the hybrid quantization of this system, we have

introduced a Born-Oppenheimer ansatz, searching for
quantum physical states that present a separated depend-
ence on the homogeneous geometry, the gauge-invariant
scalar perturbations, the tensor perturbations, and the
fermionic degrees of freedom. In this ansatz, the role of
the homogeneous scalar field is that of an internal time. The
corresponding wave function of the homogeneous geom-
etry has been constructed as a state evolving unitarily in
terms of that internal time. The generator of this unitary
evolution is assumed to be perturbatively close to that of the
unperturbed model. We have then identified the conditions
necessary to ignore transitions of the homogeneous geom-
etry mediated by the global, zero-mode of the Hamiltonian
constraint. In this way we have arrived at a master
constraint equation that is quadratic in the momentum of
the scalar field and in all the perturbative elementary
operators (of scalar, tensor, or fermionic nature) and where
the homogeneous geometry is incorporated only via
expectation values. From this master constraint, and some
very mild assumptions about the contributions of the
perturbations to the momentum of the homogeneous scalar
field, one can derive, for instance, the quantum counterpart
of the Mukhanov-Sasaki equations for the gauge-invariant
scalar perturbations [39] or the quantum dynamics of the
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fermionic variables. Alternatively, we have specified con-
ditions so that, from this master constraint equation, one
can extract Schrödinger equations for the different pertur-
bations of the system. These Schrödinger equations use
again the homogeneous scalar field as a natural time for the
quantum evolution. The procedure to arrive to these
equations also differs in some fundamental aspects from
the discussion presented in Ref. [17]. There the authors
recurred to a semiclassical approximation, starting from an
action that was a Hamilton-Jacobi solution of the homo-
geneous model and defining a notion of time evolution in
terms of the projection in the direction of the gradient of
this action, all this performed in absence of a Hilbert space
and an inner product for the homogeneous geometry. In our
case, the Hilbert space and the inner product are those of
LQC, and the expectation values that appear in the master
constraint equation are rigorously defined and capture the
quantum behavior of the wave function of the homo-
geneous geometry, without the need of assuming semi-
classical trajectories. Nevertheless, let us clarify that many
aspects of our treatment can be generalized to other
approaches to the quantization of the homogeneous geom-
etry, different from LQC, along the lines that we have
sketched at the end of Sec. V. On the other hand, and partly
related to the issue of time that we were commenting, we
have also introduced a conformal time (7.2) that depends on
the particular state considered for the homogeneous geom-
etry. This time is well-defined in our quantization, at the
level of our perturbative truncation. In geometrodynamics,
however, any possible semiclassical counterpart of the
definition of this time would be problematic around the
big bang, since the numerator of Eq. (7.2) would vanish
there, given that the cosmological singularity is not eluded
in the semiclassical trajectories.
For the fermionic nonzero-modes, we have analyzed in

detail the quantum dynamics. The evolution equations
retain the effects of the quantization of the homogeneous
geometry by means of the presence of expectation values
that replace the role played by functions of the background
in ordinary quantum field theory in curved spacetimes.
At this point, several comments are in order.
The dynamical equations for all the infinite tower of

modes of the (gauge-invariant) scalar and tensor pertur-
bations depend only on a finite number of expectation
values. In full contrast, in the case of the Dirac field, its
dynamics depends on different expectation values for
each of the modes, leading to an infinite sequence of
them. This has radical implications for the philosophy that
has been put forward in the dressed metric approach,
where the standard interpretation is that a limited number
of expectation values must suffice to characterize the
dressed metric, encoding essentially the same information
that determines the homogeneous solutions to the effec-
tive description of LQC [42–44]. We also emphasize that
the expectation values that enter the dynamical equations

of the sequence of creation and annihilation variables of the
Dirac field explore the quantum dependence of the wave
function of the homogeneous geometry in an infinite number
of algebraic powers of the volume, but they always depend
in the same operational way on the conjugate momentum.
In spite of the inclusion of these quantum effects on the

geometry, and the subsequent replacement of functions of
the background by expectation values in the dynamical
equations of the fermionic variables, the resulting dynamics
determines a Bogoliubov transformation that is indeed
implementable as a unitary transformation in our hybrid
quantization. This result is reassuring and permits a
rigorous connection between LQC and quantum filed
theory in curved backgrounds. We have found the unitary
operator that implements the dynamical evolution and
proved that it is generated by a fermionic Hamiltonian
that, as expected, coincides with the Hamiltonian that
appears in the Schrödinger equation deduced for the
system. In particular, we have constructed a solution to
this equation, which describes the evolution of the (non-
zero-modes part of the) fermionic vacuum. The construc-
tion is exact: The transformed vacuum satisfies the
Schrödinger equation without further approximations.
The identification of a notion of quantum dynamics for

the fermionic degrees of freedom that is unitarily imple-
mentable, and its realization in terms of a specific operator
and its corresponding Hamiltonian, guarantees the quantum
coherence of the evolution in what refers to the associated
concept of particles and antiparticles. In other words, we
have been able to split the evolution of the Dirac field into a
part that varies with the homogeneous geometry and
another for which the dynamics can be implemented as
a unitary transformation in the quantum theory (at least in
the range of validity of the Schrödinger equation). Even if
the geometry is a quantum dynamical entity as well, and in
general is far from being stationary, the unitarity of the
fermionic dynamics preserves the coherence, and hence the
quantum information, about the particles and antiparticles
described by the creation and annihilation variables that we
have picked out in our Fock quantization.
In particular, the unitarity immediately ensures that the

particle production, or equivalently the creation of pairs of
particles and antiparticles, is finite. For modes with ωk
smaller or of the order of the fermion mass and the Hubble
parameter, we have recurred to arguments similar to those
explained in Ref. [17] to estimate that the number of
particles per unite volume will be, roughly speaking,
proportional to the cube of the larger of the two considered
quantities, that in inflationary scenarios is typically the
Hubble scale. Much more importantly, for any mode with
larger ωk, and especially those deep inside the ultraviolet
sector, the production is insignificant and, in general,
proportional to the square fermion mass. The number is
small enough as to have a convergent sum when all modes
are considered. In this sense, we can consider that the
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modes in the ultraviolet sector, which do not cross the
cosmological horizon, do not depart significantly from their
vacuum state in the quantum evolution. Let us also com-
ment that, for modes which do not really belong to the
region of asymptotically large ωk, one could modify the
vacuum state following prescriptions like, for instance, that
introduced recently by Martín de Blas and Olmedo [52].
That prescription is characterized precisely by minimizing
the particle production in the evolution while not affecting
in a relevant way the physical behavior of the vacuum in the
ultraviolet sector.
We have also investigated the issue of the backreaction

contribution of the fermions to the master constraint equa-
tion, which includes not only the homogeneous sector, but
also the scalar and tensor perturbations. This backreaction
contribution is identified as the fermion-independent part of
the quantum Hamiltonian for the Dirac field, once we have
adopted the normal ordering corresponding to our choice of
Fock representation. We have shown that this backreaction
needs regularization, as it was already discussed in Ref. [17],
but the situation is now much better than the one found in
the geometrodynamical analysis. The divergent individual
contributions of each mode in the ultraviolet sector are now
of the order Oðω−3

k Þ, instead of order OðωkÞ. Actually, any
contribution of order Oðω−3þε

k Þ, with arbitrary ε > 0, is
summable and hence leads to a finite backreaction effect.
We have postponed to this point of the discussion an
important comment. As we have explained, we still have
certain freedom in the choice of Fock description for our
Dirac fieldwhile respecting the criterion of unitary dynamics
and symmetry invariance. This freedom corresponds to a
privileged family of unitarily equivalent quantizations,which
do not only allow for equivalent complex structures, but
also for slightly different dynamics [22]. All of these
dynamics are unitarily related, and the change from one to

another amounts to a distinct splitting of the dependence of
the Dirac field into components that depend on the homo-
geneous geometry and fermionic variables. We have also
explained that these different dynamics have a different
global Hamiltonian constraint associated with them.
It should then be obvious that we still have freedom left
to improve the behavior of the backreaction contribution by
optimizing our choice of creation and annihilation variables
for the nonzero-modes of the Dirac field, a choice that,
being dependent on the homogeneous geometry, captures the
available freedom in the selection of dynamics and of
complex structure for the corresponding canonical anticom-
mutation relations. The useof this freedom todealwith issues
like the backreaction without recurring to regularization in
LQCwill be explored in futureworks. In this sense, our study
has to be regarded as a first step towards the rigorous
consideration of the backreaction in the quantization of
cosmological perturbations. The system investigated here
has the advantage of presenting a well understood transition
from the quantum cosmology regime to the quantum field
theory regime in a quantum corrected, curved spacetime, as
we have shown, something that comes combined with the
possibility of performing analytical computations and esti-
mations with a great deal of accuracy and control in the
quantum theory.
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