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We clarify the relation between noncommutative spacetimes and multifractional geometries, two
quantum-gravity-related approaches where the fundamental description of spacetime is not given by a
classical smooth geometry. Despite their different conceptual premises and mathematical formalisms, both
research programs allow for the spacetime dimension to vary with the probed scale. This feature and other
similarities led to ask whether there is a duality between these two independent proposals. In the absence
of curvature and comparing the symmetries of both position and momentum space, we show that
κ-Minkowski spacetime and the commutative multifractional theory with q-derivatives are physically
inequivalent but they admit several contact points that allow one to describe certain aspects of κ-Minkowski
noncommutative geometry as a multifractional theory and vice versa. Contrary to previous literature, this
result holds without assuming any specific measure for κ-Minkowski. More generally, no well-defined
⋆-product can be constructed from the q-theory, although the latter does admit a natural noncommutative
extension with a given deformed Poincaré algebra. A similar no-go theorem may be valid for all multiscale
theories with factorizable measures. Turning gravity on, we write the algebras of gravitational first-class
constraints in the multifractional theories with q- and weighted derivatives and discuss their differences
with respect to the deformed algebras of κ-Minkowski spacetime and of loop quantum gravity.
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I. INTRODUCTION

The deformation of the symmetries of general relativity
is a typical feature of quantum-gravity scenarios. Effects of
quantum or anomalous geometry can break Poincaré
symmetries in local inertial frames as well as diffeomor-
phisms at a global level. The theory may still be invariant
under other types of symmetries, which typically are a
deformation of classical Poincaré and diffeomorphism
symmetries. Thus, there are two meanings in which one
has a deformed algebra of the generators of such sym-
metries. One is by deforming the generators Ai → A0

i,
which corresponds to a deformation of classical sym-
metries. For instance, in the quantum theory one can have
a momentum operator P0

i which generates a symmetry xi →
fðxiÞ analogous to the usual spatial translations xi → xi þ
ai generated by Pi, such that fðxiÞ≃ xi þ ai when quan-
tum corrections are negligible. In this case, one regards P0

i
as the generator of “deformed spatial translations.” The
other way in which an algebra is deformed is by a change in
its structure. For instance, given a classical algebra
fAi; Ajg ¼ fkijAk one might end up with an algebra
fA0

i; A
0
jg ¼ FðA0

kÞ in the quantum theory, which can be
written also in terms of the generators of the classical
symmetries, fAi; Ajg ¼ GðAkÞ, for some G ≠ F.

Given the proliferation of theories where spacetime
geometry is heavily deformed by quantum-gravity effects
or by other mechanisms, it is important to discriminate
among all the different ways in which symmetry algebras
are deformed. This task is all the more urgent considering
that many such theories share some striking similarities.
For instance, all of them are characterized by dimensional
flow, the change of spacetime dimensionality with the
probed scale [1–3]. Three examples, which are the focus of
the present paper, are noncommutative spacetimes [4–8],
multiscale (in particular, multifractional) spacetimes with
weighted and q-derivatives [9,10] and loop quantum
gravity [11,12]. We recall that multiscale theories are such
that the effective dimensions of spacetime, suitably defined,
change with the observation scale (dimensional flow).
Multifractional spacetimes are multiscale spacetimes
whose measures in position and momentum space are
factorizable in the coordinates.
Noncommutative and multifractional spacetimes cap-

ture, in different manners, some features that, according to
evidence, expectations, or intuition, should characterize
quantum gravity. In particular, spacetime noncommutativ-
ity aims to give a picture of a quantum Minkowski
spacetime by promoting coordinates to noncommutative
operators. Independent studies have shown that it can arise
from full-fledged theories of quantum gravity [13–23],
thereby enforcing the belief that quantum gravity might
require a description in terms of spacetime noncommuta-
tivity in its flat regime. More importantly, it is possible to
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extract effective physics and make predictions, some of
which have been of direct relevance for phenomenology
[24–26]. Among them we remind energy-dependent
dispersion of radiation, in-vacuo birefringence, modified
composition laws for momenta, blurring images of distant
sources due to spacetime fuzziness, and so on [27,28]. One
of the main motivations for studying multifractional geom-
etries comes from the fact that they are simple models to
realize dimensional flow, a feature common to all quantum-
gravity approaches and in some cases related to improved
renormalization properties [29]. They explore the possibil-
ity that spacetime is not a continuous manifold but, rather, a
multiscale geometry or, in some cases, even a multifractal.
To account for a fractal structure, the integration measure
and kinetic terms have to be deformed. Fractal properties of
geometry may arise in an intermediate regime between the
infrared continuous spacetime that we perceive and a
discrete fundamental picture (available in some other
top-down quantum-gravity approaches) at the ultraviolet
scale. Remarkably, the hypothesis of fractality gives exactly
the same measure required, more generally, when the
infrared is reached as an asymptote, and it produces a
very rich phenomenology that goes from effects on
electroweak processes to gravitational waves, to modifica-
tions of the cosmic microwave background spectra, and
more [29]. Multifractional frameworks are independent
theories with a top-down construction, but they can also be
regarded as bottom-up effective models in certain regimes
of interest for phenomenology [29]. In parallel to these
approaches, loop quantum gravity could, in principle,
provide a full solution to the problem of quantizing the
gravitational interaction; its phenomenology is still under
construction.
Experimental data are the best (and, of course, a

necessary) guidance in the construction of physical theo-
ries. This is the main reason why approaches such as
noncommutative spacetimes and multifractional geom-
etries, with so many contacts with phenomenology, have
been developed and will not easily get old. However, the
search for convergences or, on the opposite, departures
between different approaches which are attracting interest
in the literature, represent one of the ways to make some
progress in quantum gravity. We can benefit from the study
of links or dualities among quantum-gravity proposals for
several reasons. First of all, dualities can clear up the highly
diversified panorama of quantum-gravity research and,
moreover, yield new insights and bring novel physical
predictions. Bottom-up approaches are, by construction,
incomplete and each of them addresses the quantum-
gravity problem from a different perspective. Then, it is
natural to regard them as different pieces of the same jigsaw
puzzle and to look for the existence of possible comple-
mentarities. Furthermore, due to the fact that they focus on
different features, bottom-up approaches use very different
formalisms designed to develop a certain characteristic of

quantum gravity. As a consequence, they may be useful and
powerful in the characterization of some aspects, but weak
or inadequate in the description of others. For instance,
while dimensional flow is the cornerstone of multifrac-
tional geometries, there are fragmentary hints of its
presence in noncommutative spacetimes and, in certain
cases, it remains difficult to derive it rigorously. On the
other hand, integration measures can be either factorizable
or not in noncommutative spacetimes, but we do not
consider nonfactorizable measures in the context of multi-
fractional geometries. In the light of this, finding that these
approaches are complementary would contribute positively
to their development. Finally, it is important to look for
synergies between top-down and bottom-up approaches
because the latter are not candidate quantum-gravity
theories (they always rest on some kind of simplification)
and they need to be embedded into a top-down proposal.
Conversely, the complexity of top-down approaches often
forbids us to extract physical predictions.
Some relations among these frameworks have been

explored in the past. In Ref. [30], it was shown that the
cyclicity-inducing measure of κ-Minkowski spacetime can
be reproduced by the spacetime measure of multifractional
theories in the limit of very small scales. This suggested a
tight relation, or even a duality, between κ-Minkowski
spacetime and some multifractional theory. However, in
order to have a duality it remained to show that both
theories have the same symmetries. Since the publication of
Ref. [30], this issue remained unaddressed. We feel that the
relation between noncommutative spacetimes and multi-
fractional geometries deserves to be further studied and
fully clarified. For the aforementioned reasons, determining
what is such relation is important not only from a
mathematical point of view, but also and especially from
the perspective of phenomenology. The main objective of
this work is to perform a complete and self-contained
analysis of this problem. In this paper, we will fill this gap
and conclude that, although κ-Minkowski is not exactly
dual to any of the known multifractional theories, it shares a
number of similarities which permit to describe, in certain
regimes, this noncommutative spacetime as a multifrac-
tional one and vice versa.
In the process, we will recover previous results in a

more general way. In Ref. [30], a class of noncommutative
spacetimes was constructed such that their cyclicity-
inducing measures in position space coincide, after inspect-
ing the Heisenberg algebra of spacetime coordinates, with a
specific fractional measure ∼xα employed in multifrac-
tional theories. Contrary to that approach, we will face this
problem at the level of the Poincaré algebra and find a
correspondence between κ-Minkowski and the noncom-
mutative version of a certain multifractional spacetime,
without imposing cyclicity invariance. Generalizing to an
arbitrary multifractional measure, we will obtain a class
of noncommutative spacetimes endowed with a certain
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deformed Poincaré algebra, which we will write down
explicitly.
Note that noncommutative spacetimes do have dimen-

sional flow [4–6] and, therefore, are multiscale by defi-
nition [31]. The issue here is whether they are dual to
commutative multifractional spacetimes, which are a spe-
cial case of multiscale geometries. We immediately spell
out the main reason why one cannot establish an exact
duality between κ-Minkowski and any of the commutative
multifractional theories: multifractional measures are
always factorizable both in position and in momentum
space, while, in general, the measures of κ-Minkowski in
position and momentum space do not enjoy this property. It
is therefore natural to find different symmetries in these
theories. These findings lead us to a reconsideration of the
mutual standing of noncommutative and multifractional
theories: rather then being dual to each other, they are one
the extension of the other to the case of nonfactorizable
position or momentum measures. They simply cover
different regions in the landscape of multiscale theories
(roughly sketched in [31]).
In parallel, a connection between κ-Minkowski space-

time and the effective-dynamics (or effective-constraint, or
deformed-algebra) approach of loop quantum gravity
(LQG) [32–34] was found recently [23]: the deformed
Poincaré symmetries of the two theories are mutually
compatible. To see this, one plugs the Killing vectors of
Minkowski spacetime into the LQG deformed constraint
algebra and recasts the first-class constrains in terms of
rotation, boost and translation operators on flat space. Since
there is a relation between κ-Minkowski and multifractional
spacetimes, one may wonder if there is also a relation
between the latter and the effective limit of loop quantum
gravity described by the deformed-algebra approach. Such
relation will not be a duality for the reasons explained
above: if the symmetries of κ-Minkowski are compatible
with those of loop quantum gravity but different from the
symmetries of multifractional spacetimes, then the latter
cannot be exactly equivalent to loop quantum gravity.
Nevertheless, it is possible to construct the deformed
algebra of the gravitational constraints in two multifrac-
tional theories (with q- or weighted derivatives) and
compare it directly with the anomaly-free algebra found
in the effective-dynamics approach of LQG. We will do
so here and discuss similarities and differences in the
deformations.
The plan of the paper is as follows. In Sec. II, we explore

the possibility to interpret multifractional spacetimes as
noncommutative spacetimes in disguise. In Sec. II B, we
take the bicross-product Casimir operator in κ-Minkowski
and find the corresponding multifractional measure in
position space; however, the corresponding momentum
measure is different from that of κ-Minkowski. In Sec. II C,
we turn the problem around and look for noncommu-
tative spacetimes dual to the multifractional theory with

q-derivatives. Interpreting the product of twomultifractional
plane waves as the ⋆-product of two normal phases, one can
extract an approximate commutation relation of the coor-
dinates. However, the latter is ill-defined because it features
the momenta of both plane waves. The cause is identified in
the factorizability of the multifractional measure. In Sec. III,
wemove our focus onto the type of noncommutative algebras
arising when the coordinates in position and momentum
space of multifractional theories are promoted to noncom-
muting operators. In Sec. III A, we rederive themain result of
[30] with a much easier and faster method which also has the
virtue of being independent of the requirement of cyclicity
invariance. Instead of applying theWeylmap on planewaves
as done in [30], we will simply compute the phase-space
(position-momentum) Heisenberg algebra. Thus, the con-
nection found in [30] between κ-Minkowski and multifrac-
tional spacetimes turns out to be much more general than in
its original derivation. These results are generalized, in
Sec. III B, to arbitrary measures as well as Poincaré and
Heisenberg algebras. A comparison between the deformed
gravity algebra of LQG and the one in the multifractional
theories with q- and weighted derivatives is carried out in
Sec. IV. Section V is devoted to conclusions.
In most of the paper, we work in 1þ 1 dimensions for

simplicity and with time-space signature ð−;þÞ. The
generalization to many spatial directions is straightforward
and does not entail any relevant modification of the results
presented here. ℏ ¼ 1 ¼ c throughout and 8πG ¼ 1 in
Sec. IV.

II. A NO-GO THEOREM: SEPARATION
IN THE MULTISCALE LANDSCAPE

A. Essential facts about multifractional theories

The purpose of this subsection is to introduce only the
technical ingredients of multifractional spacetimes needed
in the paper; it is not meant to give a self-contained,
exhaustive introduction on the subject. The reader is
encouraged to consult the bibliography for all details
concerning theoretical foundations, conceptual topics,
physical interpretation and phenomenology. Recent over-
view sections can be found in [31,35].
The first element we will use is the existence of a

factorizable nontrivial measure in position and in momen-
tum space. By definition, any given multifractional field-
theory action S ¼ R

dDqðxÞL in D topological dimensions
is characterized by a measure dDqðxÞ¼dq0ðx0Þ
dq1ðx1Þ���dqD−1ðxD−1Þ¼dDxv0ðx0Þ���vD−1ðxD−1Þ, where
qμðxμÞ are called geometric coordinates and vμðxμÞ > 0

are D measure weights, possibly all different from one
another. The symmetries of the Lagrangian L depend
on the choice of kinetic terms for the field. In turn,
these symmetries determine the measure dDpðkÞ ¼
dp0ðk0Þ � � � dpD−1ðkD−1Þ ¼ dDkw0ðk0Þ � � �wD−1ðkD−1Þ in
momentum space. Of the four extant multifractional
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theories, we will consider only those with so-called
q-derivatives and with weighted derivatives. The former,
where all derivative operators ∂μ ¼ ∂=∂xμ in the
field-theory action are replaced by ∂=∂qμðxμÞ (called
q-derivatives), is characterized by a specific relation
between position and momentum geometric coordinates,
which are canonically conjugate variables [36]:

pμðkμÞ ¼ 1

qμð1=kμÞ : ð1Þ

Since 1=qð1=kÞ ¼ pðkÞ ¼ R
dkwðkÞ for each direction, the

measure weight in momentum space is

wμðkμÞ ¼
�
pμðkμÞ
kμ

�
2

vμ

�
1

kμ

�
: ð2Þ

In the case of the theory with weighted derivatives, where
derivative operators are ∂μ → v−1=2μ ∂μðv1=2μ ·Þ, the measure
weight wðkÞ is arbitrary [37]. The gravitational and
particle-physics actions of these theories can be found
in [36,38].
The form of the geometric coordinates qμðxμÞ is dictated

by fractal geometry and it is constrained by two require-
ments: to have an anomalous scaling at small scales (i.e.,
such that q is not linear in x) and to display a discrete scale
invariance at possibly even smaller scales [9]. In a couple of
places below, we will take the example of the isotropic
coarse-grained binomial measure

qμðxμÞ≃ q�ðxμÞ ≔ xμ þ sgnðxμÞl�
α

���� x
μ

l�

����
α

; ð3aÞ

where 0 < α < 1 is a constant and l� is the only character-
istic length scale of the measure (more scales correspond to
polynomial measures, called multiscale [9]). This measure
has an anomalous scaling for jxμj ≪ l� determined by α
along all spacetime directions (isotropy). Discrete scale
invariance has been washed away by a coarse-graining
procedure at scales smaller than l� [9] and is not apparent
in (3). In the theory with q-derivatives, the conjugate
momentum measure reads

pμðkμÞ≃ p�ðkμÞ ≔
kμ

1þ α−1jl�kμj1−α
: ð3bÞ

B. Multifractional from noncommutative

We begin the program outlined in the introduction by
establishing whether κ-Minkowski spacetime corresponds
to some multifractional spacetime with a certain measure.
The symmetry algebra of κ-Minkowski spacetime is given
by the bicross-product κ-Poincaré algebra and it has been
introduced in Refs. [39,40] at the beginning of the 1990s.
As a first approximation, we can focus on the deformation

of the Casimir operator of the κ-Poincaré algebra: in
D ¼ 1þ 1 dimensions,

C ¼ −
�
2

λ
sinh

λK0

2

�
2

þ eλK0K2; ð4Þ

where λ ¼ lPl is the Planck length, K and K0 are the
generators of, respectively, spatial and time translations in
the bicross-product basis and we are restricting to the
massless case. Our aim is to find the factorizable measure
dQ0ðX0ÞdQ1ðXÞ of position space from the on-shellness
relation e−λK0C ¼ 0 suggested by Eq. (4). Defining

P0 ¼
2

λ
e−

λK0
2 sinh

λK0

2
; P ¼ K; ð5Þ

we recover the standard relation −P2
0 þ P2 ¼ 0 between

the time and the spatial parts of the momentum. We can
read off the spacetime coordinates from Eq. (1):

Q ¼ X; Q0 ¼
λe

λ
2X0

2 sinh λ
2X0

¼ λ

1 − e−λ=X0
: ð6Þ

Therefore, using the relation (1) between conjugate geo-
metric coordinates, we have been able to shift the nontrivial
features of the κ-deformed Casimir (4) from momentum
space to position space. To check that the spacetime
dimensionality changes with the scale, we can calculate
the Hausdorff dimension dH ≔ d lnV=d lnR, where V ¼R
ball dQ

0dQ1 is the volume of a 2-ball of Euclidean radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 þ X2

1

p
¼ R. Clearly, the spatial dimension is 1. The

Euclideanized time direction is less trivial. Centering the
ball at X0 ¼ 0 ¼ X, from Eq. (6) one has

V ∝
R

1 − e−λ=R
⇒ dH ¼ 1 −

λ=R

1 − eλ=R
: ð7Þ

In D dimensions, one replaces 1 → D − 1. In the infrared
(IR, jλ=Rj ≪ 1, large scales and long time intervals), we
get standard spacetime with Q0 ≃ X0, V ∼ RD and
dH ≃D − 1þ 1 ¼ D. In the ultraviolet (UV, jλ=Rj ≫ 1,
small scales and short time intervals), the time direction
becomes degenerate, Q0 ≃ λð1þ e−λ=X0Þ≃ λ, and dH≃
D − 1þ 0 ¼ D − 1. Thus, the Hausdorff dimension runs
from D − 1 to D monotonically. In 4 dimensions, it runs
from 3 to 4.
Another useful geometric indicator is the spectral

dimension of spacetime (see, e.g., [41] for an introduction),
defined as dS ≔ −2d lnPðσÞ=d ln σ, where σ is a ðlengthÞ2
parameter representing the probed scale and, in the
multifractional theory with q-derivatives, PðσÞ ¼R
dDP exp½−Q0ðσÞPμPμ� ∝ ½Q0ðσÞ�−D=2 [10]. Then, dS ¼

Dλ=½ðeλ=σ − 1Þσ�. In the IR (λ=σ ≪ 1), dS ≃D, while in
the UV (λ=σ ≫ 1) dS ≃ 0.
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However, the multifractional spacetime found from the
Casimir operator is not κ-Minkowski spacetime. An easy
way to see this is to compare the measure in momentum
space, which is different: factorizable in the multifractional
case (in order to have an invertible Fourier transform [36,37])
and nonfactorizable in the noncommutative case. Also, the
running of dS found above is not the dimensional flow of
κ-Minkowski spacetime where, for the bicross-product
Casimir, the spectral dimension decreases from the UV to
the IR [6]. Therefore, the Casimir alone cannot establish a
duality between κ-Minkowski and a multifractional space-
time, although it does correspond to the dispersion relation of
a multiscale spacetime. This spacetime is not multifractal
because the measureQ0ðX0Þ in Eq. (6) does not correspond
to a fractal geometry [9]. The same conclusion is reached
after computing the walk dimension and noting that it does
not combine with the Hausdorff and spectral dimension in
the way it should for fractals [31].

C. Noncommutative from multifractional

The factorizable measure of multifractional models is
the main obstacle towards establishing a duality between
them and noncommutative spacetimes. However, commu-
tative multiscale theories with nonfactorizable measures
[3,42,43] were shown to be not very manageable in early
studies of fractal spacetimes on a continuum [29], whichwas
the reason to propose the factorizable measures of modern
multifractional theories [9,44]. Since the technical problems
entailed in multiscale nonfactorizable measures seem
unavoidable, and since κ-Minkowski is a multiscale theory
(by definition) where nonfactorizability issues are solved
with the elegant machinery of noncommutative products, we
might as well regard noncommutative spacetimes as the
natural generalization of multifractional spacetimes to non-
factorizable measures. In this case, both classes of theories
are multiscale but the landscape of noncommutative models
might contain the landscape of multifractional spacetimes. If
this conjecture were true, one should be able to write a
nontrivial phase-spaceHeisenberg algebra for any of the four
known multifractional theories. The theory with ordinary
derivative does not have awell-definedmomentum transform
andhas therefore been regarded as amultiscale toymodel;we
do not expect it to correspond to any noncommutative
spacetime. The theory with fractional derivative is still under
construction and we cannot say much about its relation with
noncommutative models. The theory with q-derivatives and
that with weighted derivatives are the best studied and we
can work directly on them. The following calculation proves
the conjecture “noncommutative implies multifractional”
wrong. In other words, despite some remarkable similarities
at the level of the spacetime measure, noncommutative and
multifractional models constitute separate, nonoverlapping
regions in the landscape of multiscale theories.
Consider the multifractional theory with q-derivatives.

If it corresponded also to a noncommutative spacetime,

then we should be able to derive the Moyal product from
the product of functions of the geometric coordinates
qμðxμÞ defining the theory. The opportunity of finding
the ⋆-product in this way resides in the nonlinearities
brought by both the coordinates qμðxμÞ and their conjugate
momenta pμðkμÞ. Thus, let us consider the composition of
two plane waves

eipμðkμÞqμðxμÞeipνð~kνÞqνðxνÞ; ð8Þ

where index contraction follows the Einstein convention
(pμqμ ¼ ημνpμqν) and, for our purposes, the coordinate
profiles are given by Eq. (3). Although the full multifrac-
tional profiles are more complicated, the binomial example
is enough. Momenta pμðkμÞ and coordinates qμðxμÞ are
nonlinear functions of kμ and xμ, respectively. Let us
suppose, for simplicity, that the measure is deformed only
in the spatial part, i.e., q0 ≡ x0 and p0 ≡ k0. Our aim is to

interpret Eq. (8) as the Moyal product eikμx
μ⋆ei~kνxν of two

plane waves on x-space. Plugging Eq. (3) into Eq. (8),
expanding for small momenta, and taking the resulting
expression as our definition of the ⋆-product, in 1þ 1
dimensions we get

eikμx
μ⋆ei~kνxν ≔ exp

�
iðkμ þ ~kμÞxμ þ i

l�
α
ðk1 þ ~k1Þ

���� x1l�

����
α

−i
�

k1
jl�k1jα−1

þ
~k1

jl� ~k1jα−1
�
x1
α

�
: ð9Þ

The final step consists in using the above definition to find
the corresponding noncommutative theory. This can be
done by means of a Weyl map, which is an isomorphism
between a given noncommutative algebra for the spacetime
coordinates Xμ and a corresponding ⋆-product (or Moyal
product). In other words, a Weyl map Ω is a one-to-one
correspondence between a noncommutative theory and a
commutative theory with a nontrivial multiplication rule.
This means that, using a Weyl map Ω, we can write the
product of two functions FðXμÞ and GðXνÞ depending on
noncommutative coordinates Xμ in terms of a nontrivial
multiplication rule between two functions fðxμÞ and gðxνÞ
of the commutative coordinates, i.e., FðXμÞGðXνÞ ¼
Ω½fðxμÞ⋆gðxνÞ�. We hereby introduce a suitable Weyl
map defined by

eikμx
μ⋆ei~kνxν ≔ Ω−1ðeikμXμ

ei~kνX
νÞ

≃Ω−1ðeiðkμþ~kμÞXμ−kμ ~kν
2
½Xμ;Xν�Þ

¼ Ω−1ðeiðkμþ~kμÞXμþk0 ~k1−k1 ~k0
2

½X1;X0�Þ; ð10Þ

where we have used the first-order approximation of the
Baker–Campbell–Hausdorff (BCH) formula. Equating this
with Eq. (9), we finally obtain the commutation rule
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½X1; X0� ¼ 2i

k0 ~k1 − k1 ~k0

�
l�
α
ðk1 þ ~k1Þ

����X
1

l�

����
α

−
�

k1
jl�k1jα−1

þ
~k1

jl� ~k1jα−1
�
X1

α

�
: ð11Þ

If we wrote, for instance, the noncommutative Lagrangian
of a scalar field with this result, then by construction we
would obtain the scalar-field Lagrangian of the q-theory
approximately.
However, Eq. (11) is ill-defined because it depends on the

momenta of both planewaves, while it should bemomentum
independent. The explicit reference to plane waves’
momenta prevents us from interpreting Eq. (11) as a general
noncommutative spacetime algebra that should hold for
any number of waves. This happens because we imposed
the commutator to give the nonlinear terms coming from the
BCH formula. For a well-defined noncommutative theory
there is a mutual compatibility between the ⋆-product, the
Weyl map Ω and the noncommutativity of Xμ. In particular,
the ⋆-product matches the nonlinear functions of the
momenta appearing in the terms of the BCH expansion
[see the last line of Eq. (10)] in such a way that the
commutator involving Xμ does not depend on momenta.
Clearly, it does not happen in the case we are analysing here.
Moreover, both (9) and (11) are completely ad hoc formulæ
constructed for the composition of two planewaves and they
would not work for three or more phases. All these problems
stem from the factorizability of the measure of the q-theory.
There is, in fact, a clear tension between Eqs. (9) and (10):
while the first is a factorized composition of position
and momentum coordinates, the second tends to mix the
momenta of both waves. Forcing the definition (9) results in
the expression (11).
That the form of the multifractional measure is the main

problem for an interpretation of multifractional theories as
noncommutative ones can be seen in another way. Consider
the scalar-field action in the q-theory in 1þ 1 dimensions:

Sq ¼ −
1

2

Z
d2q

�
∂qμϕ∂qμϕþm2ϕ2 þ 2σ

n!
ϕn

�

¼ 1

2

Z
dq0dq1

�
ð∂q0ϕÞ2 − ð∂q1ϕÞ2 −m2ϕ2 −

2σ

n!
ϕn

�

¼ 1

2

Z
dx0dx1

�
v1
v0

ð∂0ϕÞ2 −
v0
v1

ð∂1ϕÞ2 − v0v1m2ϕ2

−v0v1
2σ

n!
ϕn

�
ð12Þ

and let us compare it with the scalar-field action in a generic
(i.e. without specifying any specific form for the ⋆-product)
noncommutative theory:

S⋆ ¼ −
1

2

Z
d2x

�
∂μϕ⋆∂μϕþm2ϕ⋆ϕþ 2σ

n!
ϕ⋆ϕ⋆ � � �⋆ϕ

�
:

ð13Þ

In the action Sq, we have done easy manipulations in order
to shift the nontrivial form of the q-measure as well as of
the q-derivatives to prefactors in front of the fields. In this
way, since in a noncommutative theory the ⋆-product
between fields produce nontrivial prefactors, we can check
whether it is possible to match deformations in Sq with
those carried by the ⋆-products in S⋆. However, this is not
the case. In Sq, there are three terms quadratic in the field ϕ
but all of them have different measure prefactors given by
the combinations of the profiles v0ðx0Þ and v1ðx1Þ. In D
dimensions, the μth component of the kinetic term has a
“deformation” v0v1…ð1=vμÞ…vD−1, while the mass term
has a v0 � � � vD−1 prefactor. It is then difficult to read a
⋆-product in this type of action, since terms in S⋆ with the
same number of fields (e.g. kinetic and mass term) have the
same deformation because they are all of the form ϕ⋆ϕ and
the derivatives of the kinetic term do not affect the
⋆-product. This is a general feature of noncommutative
theories that does not fit the structure of multifractional
actions.
The same conclusion can be reached in all other multi-

fractional theories with factorizable measures. For instance,
in the theory with weighted derivatives the free scalar-field
case is trivial because, after a field redefinition
ϕ → ϕ=

ffiffiffiffiffiffiffiffiffi
v0v1

p
, the Oðϕ2Þ part coincides with a commu-

tative theory (see Ref. [45] for the details of the dynamics in
D dimensions). This is not an issue per se because one
could invoke the trace property on the free part and
concentrate on nonlinear field terms. The interaction ϕn

has exactly the same structure as in Eq. (12) and its
deformation v0v1 could be used as a ⋆-product, were it
not for the fact that interacting noncommutative field
theories are not easy to work out. Although we do not
try this calculation here, we do not foresee any way to avoid
the factorizability problem.

III. NONCOMMUTATIVE AND
MULTIFRACTIONAL

Although we cannot interpret multifractional spacetimes
as noncommutative, we can make them so and study the
corresponding deformed symmetry algebras. Instead of a
direct construction, we follow a more attractive path which,
in generic terms, starts from a noncommutative symmetry
algebra and leads to a multifractional measure. We begin
with a special case and then move to the general one.

A. Multifractional spacetimes from κ-Minkowski
phase-space algebra

Working in D ¼ 1þ 1 dimensions, we can denote with
ðQ;Q0; P; P0Þ the phase-space operators of the multifrac-
tional theory with q-derivatives with a generic nontrivial
weight measure given by dQ0dQ ¼ dX0dXvðXÞ. We
assume that such a deformed measure only depends on
the spatial coordinate X, while the time part is left
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unmodified (i.e., it has a trivial weight). This assumption is
dictated only by the aim of the following calculation, which
is to reproduce the κ-Minkowski algebra. Of course, one
can conceive the general case with a nontrivial time
measure and repeat the procedure detailed below. In that
case, one will find a more general noncommutative
spacetime that collapses to κ-Minkowski in the limit
Q0ðX0Þ → X0. The calculation would be complicated by
the presence of commutators ½f1ðX0Þ; f2ðXÞ� between
functions of operators, which can be written as infinite
series once f1;2 are known [46].
By definition, the geometric coordinates obey the

Heisenberg algebra

½Q;P� ¼ i; ½Q0; P0� ¼ −i; ½Q;P0� ¼ ½Q0; P� ¼ 0;

ð14Þ

and they are related to the phase space generated by
ðX;X0; K; K0Þ in the following way:

Q ¼
Z

dXvðXÞ; Q0 ¼ X0; P ¼ 1

vðXÞK;

P0 ¼ K0; ð15Þ

where v is the measure weight in the spatial direction.
The third expression is a consequence of imposing the
canonical commutation relations ½Q;P� ¼ i and ½X;K� ¼ i,
which are the quantum counterpart of the classical canoni-
cal relation (1).
We want to prove that the multifractional weight is given

by vðXÞ ∝ jXj−1 if X and X0 are κ-Minkowski coordinates,
i.e.,

½X;X0� ¼ iλX: ð16Þ

Such a result, that establishes a connection between multi-
fractional and noncommutative spacetimes, was first
derived in Ref. [30]. However, in that case the analysis
was done in position space and by using the ⋆-product to
find a map between the set of ðQ;Q0Þ coordinates and
ðX;X0Þ. Information on the multifractional momentum
space was not used and this permitted to keep the multi-
fractional side of the correspondence arbitrary. On the other
hand, here we find the same outcome in a more compact
way just using the deformed Heisenberg algebra of the
κ-Minkowski phase space, but specifying the multifrac-
tional theory to be the one with q-derivatives.
The κ-Heisenberg algebra is given by the commutation

relations [47]

½X;K� ¼ i; ½X0; K0� ¼ −i; ð17Þ

½X;K0� ¼ 0; ½X0; K� ¼ iλK; ð18Þ

as one can easily check by computing the Jacobi identities
involving the phase-space operators and taking into
account (16).
The explicit form of the measure weight vðXÞ can be

derived thanks to the two sets of commutators (14) and
(17). To this aim, let us consider the commutation relation
between time Q0 and the spatial momentum operator P:

0 ¼ ½P;Q0� ¼
�

1

vðXÞK;X0

�

¼ 1

vðXÞ ½K;X0� þ
�

1

vðXÞ ; X0

�
K

¼ 1

vðXÞ ð−iλKÞ − v0ðXÞ
v2ðXÞ ½X;X0�K

¼ −
iλ

vðXÞ
�
1þ v0ðXÞ

vðXÞ X
�
K; ð19Þ

where v0ðXÞ ¼ dvðXÞ=dX and we have used the third
expression in Eq. (15) and the phase-space commutators
(17). Notice that the ordering between X andK is nontrivial
because they are noncommuting variables. Integrating over
X and introducing a length scale λ to keep v dimensionless,
we get

−
Z

dX
X

¼
Z

dv
v

⇒ vðXÞ ¼ λ

jXj ; ð20Þ

which is exactly the measure found in Ref. [30]. Apart from
the shortness of this novel derivation, the main advantage
comes from the fact that we have not assumed any specific
form for the integration measure on κ-Minkowski space-
time, contrary to the analysis of Ref. [30]. There, the
argument was based on a comparison of the fractional
measure with the κ-Minkowski cyclic-invariant measure,
which has the drawback of breaking the relativistic sym-
metries (see, e.g., [48]). Here we have found the measure
(20) relying only on the commutators of the phase space of
both multiscale (14) and κ-Minkowski (17) variables. In
this way, we have not been forced to introduce a symmetry-
breaking measure on κ-Minkowski spacetime.
The measure weight vðxÞ ∼ 1=jxj arises as the ultraviolet

limit of a multifractional measure with logarithmic oscil-
lations. In this limit, the fundamental scale l∞ appearing in
the oscillatory part is factored out of the asymptotic
measure as an overall constant. Thus, the theoretical
problem of the disappearance of the Planck length in the
κ-Minkowski cyclic-invariant measure was solved in [30]
by regarding κ-Minkowski spacetime as the limit of non-
commutative multifractional Minkowski spacetime and by
identifying l∞ with the Planck scale. This embedding
would be fully valid only if the symmetries of κ-Minkowski
exactly matched those of the multifractional q-theory. Here
we checked this correspondence at the level of the
Heisenberg algebra and, in the next subsection, we will
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give another proof at the level of the Poincaré algebra.
Therefore, the geometrical and physical interpretation of
[30] is confirmed. Note that there is no contradiction
between this result and the fact that we cannot identify
multifractional field theories with noncommutative field
theories, first because the embedding of κ-Minkowski in
the multifractional framework is at the level of spacetime,
not of field theory; and, second, because such embedding is
of a noncommutative spacetime within another, while the
negative results of the previous section involve noncom-
mutative theories on one hand and commutative multifrac-
tional theories on the other hand.

B. Noncommutative spacetimes from multiscale
deformed symmetries

In this subsection, we start from the multifractional
q-theory and recast it as a noncommutative spacetime with
exactly the same symmetries. By definition, the dynamics
of this theory in the absence of curvature is invariant under
the so-called q-Poincaré symmetries

qμðx0μÞ ¼ Λμ
νqνðxνÞ þ aμ; ð21Þ

which correspond to highly nonlinear transformations of the
x-coordinates. This means that, in the q position space, we
have the undeformed Poincaré commutators between the
classical generatorsN andmomenta ðP0; PÞ of, respectively,
infinitesimal boosts and time-space translations:

½N ; P� ¼ iP0; ½N ; P0� ¼ iP; ½P0; P� ¼ 0; ð22Þ
where

N ¼ i

�
Q

∂
∂Q0

−Q0

∂
∂Q

�
; P0 ¼ i

∂
∂Q0

;

P ¼ −i
∂
∂Q :

On the other hand, these q-Poincaré commutators generate
the nonlinear transformations (21) on theX position space. In
order to make this manifest, we derive the symmetry algebra
expressed in terms of the momenta ðK0; KÞ. To this end, we
consider the simplified case in which only the spatial part of
the measure is modified. Then, P0 ¼ K0 and P ¼ PðKÞ is
determined by the geometric coordinates in position space
via Eq. (1). In terms of the momenta ðK0; KÞ, the symmetry
algebra is

½N ; K� ¼ iK0

wðKÞ ; ½N ; K0� ¼ iPðKÞ; ½K;K0� ¼ 0;

ð23Þ
where, according to Eq. (2), wðKÞ ¼ ðP2=K2Þvð1=KÞ.
These commutation relations reduce to the usual Poincaré
algebra if we send to infinity the deformation parameter

appearing in w → 1 and P → K. For instance, for the
operatorial version of the binomial measure (3)

QðXÞ ¼ X þ sgnðXÞl�
α

���� Xl�

����
α

; ð24aÞ

PðKÞ ¼ K
1þ α−1jl�Kj1−α

; ð24bÞ

one has

vðXÞ ¼ 1þ
���� Xl�

����
α−1

; wðKÞ ¼ 1þ jl�Kj1−α
ð1þ α−1jl�Kj1−αÞ2

;

ð25Þ

and the limit giving the standard Poincaré algebra is
jl�=Xj → 0←jl�Kj (vanishing fundamental length scale
at which multiscale effects become apparent).
Interestingly, the deformation we have obtained is given

by nonlinear functions of the generators of translations (i.e.,
K and K0) on the X position space. These kinds of
modifications are those studied to characterize the relativ-
istic symmetries of noncommutative spacetimes (see
Ref. [49] for a recent review on generalized deformations
of the Poincaré algebra in the framework of quantum
groups). In the light of this analogy, we want to determine
what type of noncommutativity of the coordinates ðX0; XÞ
is implied by (23). Our strategy is to derive the commu-
tation relations involving the set of operators ðN ; K0;
K; X0; XÞ from the known commutators of both the q-
Poincaré algebra (22) and theQ phase space. Then, we will
look for the outcome of the commutator ½X;X0� needed to
satisfy all the Jacobi identities.
Let us start by deriving the commutators between the

boost operator N and ðX0; XÞ. They can be obtained from
the corresponding commutators on the Q space, which are
by definition

½N ; Q0� ¼ iQ; ½N ; Q� ¼ iQ0; ð26Þ

giving the desired commutation relations ½N ; X0� and
½N ; X�:

½N ; X0� ¼ iQðXÞ; ½N ; X� ¼ iX0v−1ðXÞ: ð27Þ

Given the above deformed actions ofN on the coordinates,
one can now derive the commutator between spacetime
coordinates by requiring the validity of the Jacobi identity
involving ðN ; X; X0Þ:

0 ¼ ½½N ; X�; X0� þ ½½X0;N �; X� þ ½½X;X0�;N �
¼ iX0½v−1ðXÞ; X0� þ ½½X;X0�;N �

¼ −iX0½X;X0�
v0

v2
þ ½½X;X0�;N �: ð28Þ

GIANLUCA CALCAGNI and MICHELE RONCO PHYSICAL REVIEW D 95, 045001 (2017)

045001-8



At this point, we make two mutually exclusive Ansätze:
either

½X;X0� ¼ ihðX0Þ ð29Þ

or

½X;X0� ¼ ifðXÞ: ð30Þ

In the first case, Eq. (28) and the first commutator in (27)
give X0hðX0Þv0ðXÞ=v2ðXÞ ¼ QðXÞh0ðX0Þ, which is solved
by

hðX0Þ ¼ βeX
2
0
=ð2l2Þ; QðXÞ ¼

ffiffiffi
2

p
lErf−1

� ffiffiffi
2

π

r
X
l

�
;

where β is a dimensionless constant, l is a constant length
and Erf−1 is the inverse error function. This noncommu-
tative spacetime is compact and has a very strange
behavior: it has a canonical position-space algebra in the
double early-time limit jX0=lj ≪ 1 and UV limit jX=lj ≪ 1
(where Q≃ X). Since it does not possess a well-defined IR
limit, we discard this solution.
Case (30) is more appealing. From Eq. (28) and the

second commutator in (27), we have v0=v ¼ −f0=f, hence
f ¼ λ2=v, where λ is a constant length:

½X;X0� ¼
iλ2

vðXÞ : ð31Þ

Fortunately, the measure weight vðXÞ is unconstrained and
it can take the standard form in multifractal spacetimes with
q-derivatives [in the absence of log oscillations, Eq. (25)].
If λ ¼ 0, the algebra of the coordinates is trivial, ½X;X0� ¼
0 and position space is commutative. If λ ≠ 0, then Q
position space is canonical. In fact, from the definition of
geometric coordinates it follows directly that

½Q;Q0� ¼ iλ2: ð32Þ

The nature of position space depends on whether one
imposes λ ¼ 0 (commutativity) or λ ≠ 0 (noncommutativ-
ity). Note that for vðXÞ ¼ λ=X, Eq. (31) reproduces the
κ-Minkowski algebra (16). Thus, up to an absolute value
we have obtained the same result of the previous sub-
section, but using the Poincaré algebra instead of the
Heisenberg one. Repeating the procedure we adopted to
derive Eq. (23) and considering the Jacobi identity for N ,
X0 and K, the remaining commutators read

½K;X� ¼ −
i

vðXÞwðKÞ ; ½K0; X0� ¼ i; ð33aÞ

½K0; X� ¼ 0; ½K;X0� ¼ 0: ð33bÞ

Equipped with these commutators, one can finally check
that all the Jacobi identities are satisfied.
The choice λ ≠ 0 in Eq. (31) defines a noncommutative

extension of the multifractional theory under examination.
In order to complete this extension, we need to identify a
suitable Weyl map. After having found a correspondence
between the noncommutativity given by Eq. (31) on the
x-space and the canonical noncommutative q-space, it is
immediate to write down the ⋆q-product for a canonical
spacetime with (32):

fpðq0; qÞ⋆qgkðq0; qÞ ¼ Ω−1
q ½fpðQ0; QÞgkðQ0; QÞ�

¼ eiðpμþkμÞqμe−iλ2p0k; ð34Þ

where μ ¼ 0, 1. Such a Weyl map allows us to work with
functions depending on commutative coordinates ðq0; qÞ
equipped with the ⋆q-product (34). For instance, the action
for a real scalar field ϕ with self-interaction reads

S⋆q ¼ −
Z

dq0dq

�
1

2
∂qμϕ⋆q∂qμϕþm2

2
ϕ⋆qϕ

þ σ

n!
ϕ⋆q � � �⋆qϕ

�
: ð35Þ

The same line of reasoning applies also to the x position
space but with more technicalities due to the form of
Eq. (31). By definition of the Weyl map, we know that
fpðX0; XÞgkðX0; XÞ ¼ Ωx½fpðx0; xÞ⋆xgkðx0; xÞ�, where the
coordinates ðx0; xÞ are commutative while ðX0; XÞ obey
Eq. (31). Then, we can express functions of noncommu-
tative coordinates as inverse Fourier transforms of commut-
ing functions on momentum space, i.e., fðX0; XÞ ¼ ð2πÞ−1R
dp0dpeipμxμfðp0; pÞ. Thus, in order to find the ⋆x-

product explicitly, we must be able to compute the product
of phases such as eipμXμ

eikνX
ν
depending on noncommuting

operators. This can be done by exploiting the BCH lemma
that, in general, gives such a product in terms of the sum of
the two operators plus an infinite series of corrections. The
latter are combinations of the commutators between the
operators: expðipμXμÞ expðikνXνÞ ¼ exp½iðkμ þ pμÞXμ −
kμpν½Xμ; Xν�=2þOðλ4Þ� ¼ expfiðkμ þ pμÞXμ þ iλ2ðk0p−
kp0Þ=½2vðXÞ� þOðλ4Þg, where we used Eq. (31) and we
restricted only to the first-order correction term.
Unfortunately, in the case of Eq. (31) we do not have a
simplified version of the BCH formula. This prevents us
from finding explicitly the ⋆x-product at all orders in λ
which, thus, can be introduced only in a formal way (i.e.,
order by order).

IV. MULTISCALE HYPERSURFACE
DEFORMATION ALGEBRA

So far, we have ignored gravity and considered space-
times embedded in flat Minkowski. Turning gravity on, we
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can extract interesting information about spacetime sym-
metries in the curved case.
In the Hamiltonian formulation of general relativity, the

general covariance of the theory is encoded in the algebra
closed by the scalar (H½N�) and vector (D½Ni�) constraints,
the so-called hypersurface-deformation algebra (HDA) [50]:

fD½Mk�; D½Nj�g ¼ D½L ~MN
k�;

fD½Nk�; H½M�g ¼ H½L ~NM�;
fH½N�; H½M�g ¼ D½hjkðN∂jM −M∂jNÞ�; ð36Þ

where H½N� and D½Ni� depend, respectively, on the lapse
function N and the shift function Ni and L is the Lie
derivative.
Multiscale spacetimes depart from classical Riemannian

geometry due to the introduction of a nontrivial integro-
differential structure independent of the metric structure.
A natural question, which we answer here for the first time,
is whether the HDA should be deformed in this framework.
Moreover, recently there has been a growing effort in
studying quantum deformations of Eqs. (36) in the context
of effective models motivated by loop quantum gravity
[32,34]. Therefore, it is interesting to compare the LQG
modifications in the effective-dynamics approach with
possible modifications of the HDA in the multifractional
approach.
In the previous sections, we have seen that multifrac-

tional measures in the Minkowski embedding produce
nonlinear deformations of the Poincaré algebra. In general,
the Poincaré algebra can be obtained as the flat-spacetime
limit of the HDA, a fact that crucially helped to find an
agreement between κ-Poincaré and the HDA with LQG
holonomy corrections (see Refs. [23,33]). This suggests to
look for a possible connection between LQG in the
effective-dynamics approach and multifractional theories.
In this section, we derive the HDA in two different
multifractional models: the theory with q-derivatives and
that with weighted derivatives.

A. Theory with q-derivatives

Gravity in multifractional theories has been studied
in Ref. [36]. The case of the q-theory is simple and
amounts to replacing xμ → qμðxμÞ everywhere in the
standard Einstein–Hilbert action of general relativity.
Despite its simplicity, this replacement gives rise to a
nontrivial physics because it introduces a preferred frame
where all observables should be computed [31,36]. It is
easy to guess that the constraint algebra has the same form
of Eq. (36), with the difference that coordinates now are the
composite objects qμðxμÞ. However, as a consequence,
neither the first-class constraints (36) nor the Lie deriva-
tives therein are the standard ones. Since the spatial q-
derivatives can be expressed as ∂qi ¼ v−1i ðxiÞ∂i (where
∂i ¼ ∂=∂xi), we can write explicitly the q-HDA as

fDq½Mk�; Dq½Nj�g ¼ Dq

�
1

vjðxjÞ
ðMj∂jNk − Nj∂jMkÞ

�
;

fDq½Nk�; Hq½M�g ¼ Hq

�
1

vjðxjÞ
Nj∂jM

�
;

fHq½N�; Hq½M�g ¼ Dq

�
hjk

vjðxjÞ
ðN∂jM −M∂jNÞ

�
; ð37Þ

where the index of the deformed measure weight vj is inert
and it is not contracted with other indices. We stress that the
constraints Hq½N� and Dq½Nk� generate time translations
and spatial diffeomorphisms of the geometric coordinates
qμðxμÞ, which means that these are not the usual time
translation and diffeomorphisms, as it would become
evident when turning to x-spacetime.
Thus, all Poisson brackets acquire the same anisotropic

deformation in the right-hand side. Such a result is not
compatible with the LQG modifications of the HDA in the
effective-dynamics approach because, in the latter case,
spatial diffeomorphisms are unmodified (i.e., both fD;Hg
and fD;Dg remain untouched). On the other hand, the
scalar part fHq;Hqg of Eq. (37) can be compared with the
analogous LQG bracket

fH½N�; H½M�g ¼ D½βhjkðN∂jM −M∂jNÞ�; ð38Þ

where β is a phase-space background-dependent function.
Although one might naively identify the LQG deformation
function β ¼ 1=viðxiÞ with the inverse of the multifrac-
tional spatial measure weight, we also have deformations in
the other brackets. Another point of departure comes from
the fact that the q-deformation (37) of the HDA is back-
ground independent: it consists only in the measure of the
anomalous geometry, which is completely independent of
the metric structure. Finally, while β can change sign in
different regimes (an effect often interpreted as a spacetime
signature change), 1=v is always positive definite.
A deformed HDA and the related signature-change effect

appear only when cancellation of quantum anomalies is
imposed in the LQG algebra. In two cosmological
approaches to loop quantum gravity, based on a dressed
metric [51–54] or on a hybrid quantization scheme [55–58],
no such deformation is found (β ¼ 1 in (38)). The multi-
fractional theory with q-derivatives also differs from these
cases, since all q-Poisson brackets are deformed and
the gravitational physics is qualitatively different from
the LQG one [36]. We conclude that, regardless of the
quantization scheme adopted, the HDA of loop quantum
gravity (and, in particular, loop quantum cosmology) and
of the multifractional q-theory are physically inequivalent.

B. Theory with weighted derivatives

In the multifractional theory with weighted derivatives,
the gravitational field behaves quite differently. After a

GIANLUCA CALCAGNI and MICHELE RONCO PHYSICAL REVIEW D 95, 045001 (2017)

045001-10



frame choice, a conformal transformation of the metric and
some field redefinitions, it is possible to write the gravi-
tational action of the system as the standard Einstein–
Hilbert action plus a rank-0 function ϕðxÞ that looks like a
scalar field [36]. Since the form of the HDA is insensitive to
the specific matter content of the theory, one might think
that the gravitational and the scalar parts should satisfy
separately the classical HDA (36). However, ϕ ¼ ϕ½vμðxμÞ�
is not a scalar field, since it is a nondynamical function of
the measure.
The super-Hamiltonian constraint can be written as

H½N� ¼ H0½N� þHϕ½N� ¼ R
d3xNðH0 þ

ffiffiffi
h

p
HϕÞ, where

h is the determinant of the spatial metric,

H0 ¼
πlkπ

lkffiffiffi
h

p −
π2

2
ffiffiffi
h

p − ð3ÞR
ffiffiffi
h

p
ð39Þ

is only metric dependent and the density Hϕ is both metric
and measure dependent. The diffeomorphism constraint is
the usual one, D½Nk� ¼ −2

R
d3xNkhkjDlπ

lj. Since there
are no dynamical degrees of freedom associated with ϕ,
there is no conjugate momentum πϕ. Thus, when comput-
ing the Poisson brackets (36), the only contribution of the
measure-dependent ϕ part is given by the last two pieces in

fH½N�; H½M�g ¼ fH0½N�; H0½M�g

þ
Z

d3xNðxÞ
Z

d3yMðyÞ

× fH0ðxÞ;
ffiffiffi
h

p
gHϕðyÞ

þ
Z

d3xNðxÞ
Z

d3yMðyÞ

×HϕðxÞf
ffiffiffi
h

p
;H0ðyÞg: ð40Þ

However, it is easy to realize that the last two Poisson
brackets cancel each other. In fact, the only terms that give
nonzero contributions to the constraint algebra are those that
contain the spatial derivative h0ij of the metric in one argu-
ment of the Poisson bracket and the conjugate momentum
πlm in the other. This happens because only in that case dowe
get the derivative of a delta function, which prevents the term
from being cancelled by the identical Poisson bracket where
the two functionals are exchanged. Then, taking into account
that the boundary conditions are chosen such that the
constraints vanish at infinity, it is possible to shift these
derivatives to N and M thanks to an integration by parts.
Following these steps, one can work out the Dirac algebra.
In the light of this, it is clear that themeasure-dependent term
of theHamiltonian constraint withweighted derivatives does
not affect the Poisson bracket fH½N�; H½M�g.
As a result, we can claim that standard diffeomorphism

invariance is preserved in the multifractional theory
with weighted derivatives in the absence of matter, since the
ϕ-dependent correction term is not affected by diffeo-
morphisms. When interacting matter fields are present,

diffeomorphism invariance is broken [36]. As far as LQG is
concerned, the absence of deformations in the HDA
excludes a relation between the theory with weighted
derivative and the LQG formulation where anomaly free-
dom is imposed, while the differences in the cosmological
dynamics [36] exclude a connection also in LQG
approaches with undeformed HDA.

V. CONCLUSIONS

In this paper, we have explored the similarities between
κ-Minkowski and other noncommutative spacetimes with
multifractional spacetimes. We found no exact duality
between these two mutually disconnected regions of the
landscape of multiscale theories. By making the multifrac-
tional theory with q-derivatives noncommutative via a
canonical quantization of the geometric coordinates, we
reproduced κ-Minkowski spacetime in the deep UV limit of
the multiscale measure, in a much more general way than in
[30]. All these results have been obtained at the level of the
Heisenberg and Poincaré algebras of spacetime, i.e., by
using symmetry arguments only. Making symmetry alge-
bras central in the discussion is an efficient way to keep
contact with phenomenology, since dispersion relations, the
design of experiments involving the elementary measure-
ments of lengths and times, and other aspects related to the
physical testing of these theories can all be derived from the
spacetime algebras considered here.
This study settles an issue left open in the literature.

Having discovered that the conjectured duality is not
present, we have shed light on the mutual relation between
noncommutative and multifractional spacetimes. It is now
clear that these occupy different places in the wide zoo of
multiscale theories [31] and, thus, they have to be consid-
ered as two independent and distinct approaches, which
should be experimentally tested independently. The loss of
a duality forbids to merge these two proposals and, in
parallel, highlights their weak points. More attention
should be paid to dimensional flow in noncommutative
spacetimes, while nonfactorizable measures [3,42,43]
deserve further investigations albeit only as phenomeno-
logical models [29]. We feel confident that forthcoming
efforts will polarize also into these expanding fields.
The findings of Sec. IV close a theoretical gap in the

analysis of the gravitational dynamics in multifractional
theories. We have computed the constraint algebra and
compared its deformations, when present, with those of
loop quantum gravity in the effective-dynamics approach.
There was no reason, a priori, to expect a perfect match
between these deformations, partly because the multifrac-
tional cosmological dynamics [36] is clearly different from
that of loop quantum cosmology [59–61] and partly due
to the mismatch, made clear in Sec. II, between the
symmetries of multifractional spacetimes and those of
κ-Minkowski (compatible with the flat limit of LQG).
However, the points of similarity with κ-Minkowski begged
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for further inspection in the context of the hypersurface-
deformation algebra.
With respect to the two multifractional theories consid-

ered here, with weighted and q-derivatives, the theory with
fractional derivatives differs only in the choice of kinetic
terms [9,44]. This choice does affect the structure of
momentum space, so that both the deformed Heisenberg
algebra and the deformed Poincaré symmetry algebra of
the theory with fractional derivatives will most likely be
different from the algebras we constructed above.
Nevertheless, since everything said here is heavily con-
ditioned by the factorizability property of the measure of
multifractional theories, we expect all our general argu-
ments to apply also to the case with fractional derivatives.
In particular, this case should not be dual to any non-
commutative theory and should admit a well-defined

noncommutative extension giving rise to specific deformed
symmetries. It will be interesting to verify these expect-
ations, not only to complete the theoretical study of
multifractional spacetimes but also because the theory with
fractional derivatives may offer a viable framework where
to quantize gravity perturbatively [3,9]. We hope to report
on that in the near future.
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