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Abstract 

 
Accelerator Mass Spectrometry (AMS) provides with an excellent sensitivity for the determination of 
radionuclides in the environment. In fact, conventional radiometric techniques can hardly compete with 
AMS in the solution of many problems involving the measurement of very low levels of radioactivity in 
Nature. For that reason, during the last years AMS has become a powerful tool for Radioecology studies.  
In this paper a review is done on the evolution of AMS applications to the measurement of environmental 
radioactivity and, therefore, its contribution to the understanding of radionuclide behavior in Nature.For that, 
the advantages of using AMS to determine key nuclides as 129I, 14C, Pu-isotopes and others in different 
natural compartments will be discussed. The content of the paper is illustrated with the contributions to these 
studies of the Spanish National Center for Accelerators (CNA) AMS systems. 
 
Introduction 
One of the main interest in Radioecology is the study of the dynamics and behaviour of 
radionuclides in the environment, their sources and fate. For that we need to measure radioactivity 
in Nature. In the majority of the cases at low or very low levels. Radiometric methods solve this 
problem by the direct mesurement of the radiations emitted by the radionuclides as a way of 
determining its activity. The basis for these methods is the well known Equation. 
 

ܣ ൌ  (1)                                              	ܰߣ	
 
Being A the activity of the sample,  the disintegration constant and N the number of radioactive 
nuclei. There are many examples in the literature which show how these methods have succeeded 
all along the history of Radioecology. In many cases, however, they cannot give reasonably precise 
data, or it is simply impossible, due to the extremely low concentration of the radionuclide or its 
very long half-life, or both.In these situation is better to measure N instead of A.That is possible by 
using mass spectrometry techniques where the application of electric and magnetic fields to a 
charged beam that contains the radionuclide of interest produce a deviation of its trajectory 
according to its mass and energy. 

Accelerator Mass Spectrometry (AMS) is a veteran mass spectrometry technique which 
consists of the coupling of a mass spectrometer to an accelerator of tandem type. Its sensitivity has 
made it a very competitive analytical technique.In fact very long lived radionuclides can be 
determined with sensitivities close or below one part in 1015. A brief description of AMS is given in 
the next Section. After that its application to the measurement to key radionuclides in Radioecology 
are discussed. 
 
Methods 
AMS was proposed for the first time by Alvarez and Cornog 1939 which used a cyclotron to 
identify 3He in Helium. Under its actual form, however, AMS appears by 1977 (Gove et al. 2010) 
as a way to solve the limitations of conventional radiometric techniques for 14C dating. After this 
moment it has rapidly evolved to find application in many disciplines. One of them, the 
measurement of Environmental Radioactivity. 
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size, based on a 200 kV van de Graaff accelerator. This system is devoted in CNA to 14C 
measurements. Both are described in Chamizo et al 2015a. 

There is an ample documentation about how AMS can succesfully meet Radioecology 
problems. In practical terms the main adavantages of AMS is providing extremely good precision in 
the measurement for very small samples and using low counting times. Indeed, g or mg for solid 
samples or few L or fraction of L for liquid samples are very common in the majority of AMS 
experiments. Counting times of some 20 min for 129I are enough to obtain precissions of 10% 
forits determination with current methods. Another illustrative example is the case of the 
measurement of Pu-isotopes in environmental samples where some 15 min of counting gives results 
with a precission of 5% and the additional advantage of measuring 239Pu and 240Pu. This is simply 
impossible to achieve with conventional radiometric methods. 

The application of AMS to the measurement of radionuclides in waters, sediments, biota, 
etc., i.e. to some relevant problems for Radioecology, needs new radiochemical methods for sample 
preparation. Indeed, the final chemical form of the radionuclide to be measured has to be 
compatible with the mass spectrometer ion source.  

There are many examples in the literature about such developments. One of them is the 
procedure developed at CNA by Chamizo et al. 2008 for the separation of Pu from different 
matrices basedon the use of TEVA resins. The main potential interferents in this case are 238U and 
Dy isotopes. 238U may reach the detector even in the case the spectrometer is tunned for 239Pu, due 
to, for instance, instrumental unstabilities. 160Dy2+ has the same M/q ratio that 240Pu3+ and, therefore 
can also be counted by the detector. The method provides good decontamination factors that makes 
posible the measurement of 239Pu down to fg levels. Pu is injected in the spectrometer as Pu oxide. 

Another interesting example is that presented by Gómez-Guzmánet al. 2010 also at CNA for 
the separation of 129I from lichens based on a microwave digestion which significantly diminishes 
the processing time regarding the conventional leaching or combustion based methods. As a last 
step of the method, Iodine is precipitated as AgI.  
 
Results 
The range of applications of AMS and the number of radionuclides that can be measured with such 
a technique are still expanding. Nowadays, however, the most relevant radionuclides for 
Radioecology can be tried by AMS. A very brief summary of such applications are given in what 
follows. 
 
14C 
In the case of 14C, its main role in AMS is dating. In fact, as it was said before, AMS based on 
tandem machines was developed to overcomethe limitations of 14C dating by radiometric methods. 
For that the discovery of the instability of 14N- was a fundamental starting point (Gove et al. 2010). 
But the advantages of AMS can be used to determine 14C in environmental samples. 

A beautiful example is the use of 14C to trace seawater masses movements. In Gislefoss et 
al. 1994, AMS was used to repeat several GEOSEC Nordic Seas water profiles previously 
measured by conventional radiometric techniques. AMS allowed to use 0.5 L water samples instead 
of 100 to 200 L needed for traditional techniques. That is very important in order to make the 
sampling in a cruise expedition and manage the samples after at the laboratory.The authors claim to 
obtain 6o/ooprecision or better with some 20 min counting time per sample. Interesting information 
is presented in the paper about the CO2 uptake in the Nordic Seas and its transport into deep waters. 
Also the age of deep waters is estimated and the authors conclude that the meaurement of 14C by 
traditional techniques in deep waters “has come to an end”.   

Radiocarbon is considered to be the most important contributor for the collective total dose 
received by the population from nuclear fuel processes (UNSCEAR, 2008). For that it is very 
important to know its behaviour and fate in affected environments. A typical study case is that 



 
 

presented byTierney et al. 2016 on the presence of 14C in the Irish Sea and West of Scotland as a 
result of Sellafield activities. The authors find a general 14C enrichment of mussels and shell 
material above the background level. A time series study show that the enrichment level in mussels 
is decreasing as the Sellafield releases have decreased along the time. However, the enrichment is 
still increasing in sediments. A similar study is presented by the same group but for the Eastern UK 
coastal environment (Muir et al. 2015). Anomalous 14C enrichment are found in the samples 
analysed, biota and sediments, and some possible 14C  sources are suggested. On the other hand, by 
dating the sediments with210Pb, the authors find that the 14C releases are being produced since1960 
til the present days. 

Inputs of radiocarbon from the Fukushima accident into the sea has been also investigated 
(Povinec et al. 2016). Impact has been determined but in general terms the contribution of 
Fukushima 14C was only 9% above global fallout level. Interesting to say is that the amount of 
seawater sample to extract CO2 for 14C  AMS analysis was typically of 20 mL. The uncertainty in 
the measurements were 5º/oo. 

The analysis of 14C in tree rings is a good way to determine the environmetal impact from 
Nuclear Facilites in their close environment. An example of these type of works appears in Janovics 
et al. 2016 where a study is carried out on the impact of a low to intemediate level radioactive 
wastes disposal installation on nearby trees. Radiocarbon is measured in rings from a tree situated 
close to the facility and from a tree far from the site in order to compare results. As expected, rings 
of the nearby tree shows a 14C time pattern distribution unambiguously related to the radioactive 
wastes disposal plant.  

A very complete analysis of the impact of a Nuclear Power Plant based on 14C appears in 
Wang et al. 2014. Seawater, undergroundwaters, river waters and drinking waters, together with 
atmospheric samples are analysed for 14C by AMS. Samples of some 1 L were enough to give 14C 
with less than 1% uncertainty. The authors find that air samples present impact from the operation 
of the plant while seawaters give results which are not distinguishable from the background. 

In CNA, 14C measurements are mainly addressed to dating works (Santos et al. 2009). 
Nevertheless, environmental applications are also done. In Beramendi-Orosco et al. 2015, data are 
presented on the measurement of atmospheric samples at Mexico City. Specifically 14C is 
determined in tree rings collected at a park within the metropolitan area of the city. The typical 14C 
bomb pulse with a peak at 1964 is found, but a detailed studied of the results obtained in 
comparison with similar data taken at the Northern Hemisphere shows a 14C depletion (up to 246‰ 
lower than the expected backgorund)atributted to the vast fossil fuel consumed in the area. Few mg 
samples and some half an hour of measurement is enough to get a very precise measurement of 14C 
in each ring. 
 
129I 
The development of AMS has been crucial for 129I. It has a very long half-life and is very diluted in 
127I. Therefore, its measurement by conventional radiometric methods is only posible under very 
special circumstances. Pioneering works on AMS of 129I dates back to Elmore et al 1980 and later 
to Kilius et al. 1990. After this work the information on the presence of 129I in the environment has 
increased outstandingly. The  review by Raisbeck and Yiou, 1999 is a good reference on how AMS 
benefited the 129I “environmental science”, specially in oceans, since 129I is a well recognised tracer 
of water movements, as the authors themselves proposed. By that time, it was posible to measure 
129I in only 1L water sample volume with an uncertainty better than 10%. The authors analyze the 
vertical and horizontal distribution pattern of 129I /127I in North Atlantic Ocean and combine these 
data with those of 137Cs and 99Tc. Thus obtaining an ample oceanographic information on the area. 

The sensitivity of AMS has made possible the measurement of 129I in surface fresh waters. 
Aldahan et al. 2006 studied its presence in rivers of the Baltic area. 1L samples were enough to 
obtain precise 129I concentrations. The origin of 129I in the rivers was attributed to atmospheric 



 
 

inputs from the Baltic Sea which in turn is affected by Sellafield and La Hague nuclear fuel 
reprocessing plant. Being others contributions as global fallout or Chernobyl inputs negligible. 

129I in the amosphere has been also an important topic. A good review of 129I in air can be 
found in Jabal et al. 2013. And it is a target of the CNA studies. AMS allowed a high time 
resolution analysis on its presence in Sevilla, Spain, an area not affected by nuclear facilities. 
Results presented in Santos et al. 2006 gave information on 129Iconcentration and the ratio 129I/127I 
of aerosol and rainwater samples. These measurements allowed the authors to conclude the 
influence of the atmospheric emissions of Sellafield and La Hague over the area and suggest the 
possibility that such discharges were done in an aerosol form or in a chemical form that associates 
rapidly to aerosol which facilitates the arriving to Sevilla.  

More recently, measurements have been done of 129I in aerosol samples and 0.5 L rainwater 
samples during March and April 2011 when the radioactive Fukushima plume arrived Spain 
(Gómez-Guzmán et al. 2016). 131I was also measured. The analysis showed the 129I impact in Sevilla 
and according to the data it is suggested to use it as a marker of 131I radiological impact. The same 
conclusion is derived by Muramatsu et al. 2015 that analysed both I isotopes in soils close to 
Fukushima.  

Once more the sensitivity of AMS allowed to determine it in a sediment core taken at 
Huelva, SW Spain, a non affected place by direct emissions, during 1999 (Santos et al. 2007). Only 
2 g of sediments were enough to clearly identify three sections in the profile. The older layers 
corresponding to the pre-nuclear era, a prominent peak corresponding to the 1964 bomb pulse and 
the more young layers which reflect the influence of Sellafield and La Hague in the area. 

As said before, there is a wide scientific literature on the presence of 129I in the marine 
environment. It has also been studied by the CNA group. Results in seaweed and water samples 
taken in the Baltic area were presented in Gómez-Guzmán et al. 2013 and Gómez-Guzmán et al. 
2014. It was possible to show that the main contributionsto this area comes from the releases of  
Sellafield and La Hague and that the contribution of 129I from Chernobyl was not significant. An 
interesting comparison is done on the concentration of 129I in the South and North Atlantic áreas 
(López-Gutiérrez et al. 2016). 

The sensitivity of AMS has permitted to makespeciation studies of 129I in waters from the 
Baltic Sea and in the surroundings of the Savannah River site contaminated by the Savannah 
atmospheric emissions. Speciation works are key studies in radioecology as it is known. For long 
half-life radionuclides it is only posible by very sensitive techniques, AMS in our case. Iodide and 
iodate forms for 129I are identified in waters from the Baltic Sea in Hansen et al. 2011. The authors 
compare it with the same analysis for 127I and do not find differences in this environmental context. 
In  the case of waters from the Savannah (Schwehr et al. 2014) the authors find a clear dependency 
on pH of the 129I/127I isotopic ratio for each chemical species. 
 
36Cl 
The determination of 36Cl by AMS is a classic topic in this field. The first work was published in 
1979 (Elmore et al. 1979) on the analysis of 36Cl in natural water samples requiring only 1 to 5 L. 
In this pioneer paper the principles of 36Cl detection by AMS were presented for the first time. 
Rejection of 36S, its main interferent, was done with a gas ionisation based E-E telescope. 
Uncertainties in measurements were  10% in less than 1 h counting time.Since that paper many 
works have been producedon the determination of 36Cl in different samples. The main application 
being dating groundwaters or tracing its dynamics. An interesting work on that issue was published 
by Balderer and Synal 1997. In this paper the authors carry out a detailed study of the presence and 
sources of 36Cl in groundwaters and develop a model for the application of 36Cl to understand the 
groundwater cycle. The extremely precise 36Cl AMS measurements make possible to inform on 
residence times, age, evaporation porcesses, water-rock interactions etc.  



 
 

36Clhas been used also as a tracer of the environmental contamination provoked by 
contaminated Chernobyl material buried in trenches in the exclusion zone. Indeed, Roux et al. 
2014studied the presence of 36Cl in underground waters in the surroundings of one of these 
trenches. Results shown  that 36Cl is a suitable tracer in this context and 36Cl/Cl ratios some 3 to 4 
orders of magnitudes higher than foreseen at natural conditions were found. Once again the amount 
of sample needed for analysis was small, 1 to 6 L each. The choice of 36Cl as a tracer was based in 
the assumption of its conservative behaviour in waters. A recent work describes, however, a 36Cl 
non-conservative behaviour in the Great Lakes (Poghosyan and Sturchio 2015). 

The presence of 36Cl in the atmosphere has received attention from seveeral groups. 36Cl in 
rainwater samples taken at Sevilla, Spain, during 1999 and 2000 was studied and results presented 
in Santos et al. 2004. Uncertainties  10% in 36Cl atom concentrations and 36Cl/Cl isotopic ratios 
are obtained by analysisng no more than 5 L of water. Results revealed a seasonal time pattern 
variation with peaks during late spring-early summer. The influence of “dead” Cl carried by (SW) 
winds from the Atlantic ocean is also shown. Furthermore, the authors found that the 36Cl total 
atmospheric deposition in the area was higher than expected from the known cosmogenic models 
for 36Cl production. This effect was previously discovered by Blinov et al. 2004. The authors 
measured the atmospheric 36Cl deposition worldwide and detected an systematic excess compared 
to the calculations from the known cosmogenic models. They attributed such effect to the retention 
of 36Cl bomb produced in the biosphere ad its afterward reintroduction in the atmosphere.The 
seasonal time variation has been confirmed by Tosaki et al 2014 with atmospheric samples taken at 
central Japan. In this publication measurements of 36Cl monthly flux over Japan have been carried 
out from 2004 to 2009. The influence of the sea spray is also demonstrated on the Cl content in the 
atmosphere.  

 
Pu-isotopes 
The importance of Pu isotopes in Radioecology is well known. The determination of Pu isotope 
ratios, mainly 240Pu/239Pu is, on the other hand of  paramount relevance to know the source term of 
Pu in a given environment. Efforts have been done to measure such ratios by  spectrometry but 
only in very special circumstances,and with the help of - spectra deconvultion codes,it has been 
posible. In addition,  spectrometry is time consuming with days of counting often necessary to 
determine Pu in environmental samples.  On the contrary, AMS is less time consuming and uses 
smaller amount of sample to get better precision. And, above all, it gives the 240Pu/239Pu isotope 
ratio. And without the need of large facilities in spite of the high mass of the Pu isotopic family. 
Fifield et al. 2004 demonstrated the possibility of measuring Pu isotopes with 300kV terminal 
voltage accelerators. 

In the CNA group an extensive development of methodology has been carried out for the 
determination of Pu isotopes in a variety of environmental samples. 

This way Pu isotopes and ratios have been determined in the Palomares environment, SE 
Spain, affected by an accident occurred in 1966 when the fuel from two termonuclear bombs spread 
in it. Previous studies have been carried out in the site by measuring 239+240Pu activity or 
238Pu/239+240Pu activity ratios but this has not shown to be enough to characterize and identify the 
dispersion of Pu originated in the accident. Chamizo et al. 2006 measured 240Pu/239Pu isotope ratio 
in soil samples from Palomares by Low Energy AMS (LEAMS). Small, 1-2 g of soil samples were 
measured with low and high level of contamination and the results compared to those found in soils 
from Sevilla affected only by fallout. Typical values for the atom ratio of around 17% was found for 
the Sevilla samples while a typical atom ratio of (6.57  0.06)% was measured for highly 
contaminated samples from Palomares, showing this way the utility of measuring the ratio to 
unambiguously assign the origin of Pu in the studied area. Later, Chamizo et al. 2010a were able to 
determine 240Pu/239Pu also by LEAMS in a sediment core taken offshore Palomares. Results shown 
that the sediment was affected by the releases from the accident since the ratio was found to be 11% 



 
 

in the average along the profile. Ratios close to 6% were found in the first cm of the profile where 
as calculated the majority of Pu coming from the accident accumulated. Results confirmed a land to 
sea transport of contamination in this case. 

The sensitivity of AMS made possible to measure the 240Pu/239Puisotope ratio in soils 
samples from Southern Hemisphere, specifically from Chile (Chamizo et al. 2011). It was possible 
to detect the influence of French tests in some of the samples by measuring the isotope ratio which 
values close to 4%. In other cases, ratios of 18%, the fallout signal in the area, were obtained. 

Also with the AMS sytem of the CNA, Chamizo et al. 2010b measured the temporal 
evolution of Pu-isotopes in surface air samples collected in Sevilla. On the average 6 g of aerosol, i. 
e. some 30.000 m3of filtered air, were enough to obtain Pu concentrations with uncertainties of 
some few % using counting times of 30 min. A seasonal pattern was found with maximun activites 
corresponding to the dry summer and minimum corresponding to the following autumn rainy 
period, this in agreement with the hypothesis of a soil resuspension effect as the origin of Pu in this 
area. Correlation was found of Pu concentrations with the aerosol mass and the content of Ti and 
Al. This indicated a possible modulation of the Pu-isotpes activities in the air of Seville by Saharian 
dust intrusion. 240Pu/239Pu ratio was typically of 14%, close to the expected fallout ratio in the 
region of around 18%. 

AMS has been shown to be a very important tool to meet, in a precise and realistic way, the 
measurement of 239Pu in human urine samplesfor routine monitoring of exposed workers. 
Traditionally this work is done by analysing large volumes of urine samples. Moreover the whole 
measurement by -spectrometry takes one week including the radiochemical separation of Pu. 
Hernández- Mendoza et al. 2010 developed a method using the CNA AMS system to analyse Pu in 
urine samples using only 1-2 L. The whole measurement takes 10 h including chemical processing. 

With regard also to the operation of nuclear power plants, it is important to have 
methodology for the classification of wastes in low, medium or high level. This is conventially done 
by studying the activites of long-lived radionulides in them by radiometric methods, which are time 
consuming, laborious and necessarily have to treat high volumeof samples, which means dangerous 
methods. As López-Gutiérrez et al. 2013demonstrated, AMS provides a fast and less laborious 
method using significantly less amount of sample. They measured 240Pu/239Pu and 129I in wastes 
from Spanish Nuclear Power Plants including materials from the decommissioning of one of them. 
They showed that meauring activity ratios can be give additional information about the history of 
the residue. 

Pu speciation studies are possible with AMS. Skipperud et al. 2009 presented Pu speciation 
studies in waters and sediments from the Ob and Yenisey rivers and estuaries in Russia. Knowledge 
of chemical association of the Pu isotopes gives unvaluable information on their transfer, fate and 
environmental impact in the Baltic Sea in that case. The authors found that more than 80% of the Pu 
in the Yenisey river is very weakly bound, i.e. associated to organic compunds. This pattern 
changes when going from the riverine to estuarine area, where Pu is more strongly and irreversibly 
bound. 
 
236U 
236U is a very new member of the AMS family. In fact, only few years ago 236U has been recognised 
as a good tracer for marine dynamics or others environmental processes. Nevertheless, the 
measurement of 236U is impossible by radiometric methods and it is a very challenging isotope for 
AMS. In spite of that the amount of literature on AMS of 236Uhas increased during the last years. 

Sakaguchi et al. 2010 reported a study of the fallout from the Hiroshima bomb by using 236U 
together with other nuclides. Its presence at the site was expected from the fast neutron activation 
reaction 235U(n,) occurred during the detonation of the A-bomb.Data obtained shown that it was 
not posible to distinguish between global 236U falloutand the current level found for it at the zone. 



 
 

The authors concluded that less than 1% of the 236U produced in the detonation deposited in the 
area. 

The global 236U fallout signal has been measured by Srncik et al. 2011 in soils collected 
from a remote clean air area in the La Palma Isle in Canary Islands, Spain. Some few grams per 
sample were analyzed and counting times of around 30-60 min were typically used. 236U 
concentrates in the first cm of the soil profile. The atom ratio 236U/238U ranges from 10-7 to 10-9. The 
global fallout U-isotope ratio is sparce according to the authors in soils. 

Eigl et al. 2013 measured 236U in seawater and river waters (only 2 L). 236U/238Uratios were 
found of 10-9 in marine and 10-8 in river waters. The authors atributted to global fallout such results.  
More recently, Srncik et al. 2014 were able to determine 236U in soils of the Southern hemisphere 
from unaffected areas. The atuhors provide results on the 236U inventory in the Southern 
Hemisphere, which is found to be 8.4x1011, one order of magnitude lower than in the Northern 
Hemisphere. The ratio 236U/239Pu was 0.08 clearly lower than the ratio at the Northern Hemisphere, 
typically 0.2.Related to this work, Froehlich et al. 2016 studied the uptake of 236U by plants in the 
Southern Hemisphere by AMS. Compared to 239Pu, 236U seems to be uptaken preferentially by 
vegetation. 

In Chamizo et al. 2016a, data are presented on 236U in a peatbog core collected at 
Madagascar. Ratios ranging from 0.02 to 0.29 are found for 236U/239Pu which complete the datafile 
for these nuclides in the Southern Hemisphere. 

Documentation is already published on the 236U dynamics and presence in oceans. Eigl et al. 
2016, presented results of 236U depth water profiles from the Northeast Pacific Oceans. They obtain 
very precise data with only 1 L sample volumen. 236U concentrations are higher in surface samples 
than in deep waters. This reflecting, according to the authors, the low vertical transport of waters in 
this region, and consequently the large age of deep waters. 236U/238U ratio is also higher at the 
surface, ranging from 10-9 at the surface to 10-10 at 1500 m and deeper. Villa et al. 2016, on the 
other hand, present in these Proceedings results on 236U in the Equatorial area of the Pacific 
Ocean.Also based in measurements carried out in the AMS CNA system, López-Lora et al. 2016, 
have measured 236U  in South Atlantic water samples. 236U/238U ratios of some 10-10 are obtained 
lower than those presented by Eigl et al. 2016 of 10-9 for North Atlantic samples which points to an 
influence in this region of a local contamination coming from the nuclear reprocessing plants.The 
same CNA group together with that from IAEA-Environment Laboratory at Monaco (Chamizo et 
al. 2016b) have determined 236U in the Northwestern Mediterranean area. In this case the236U/238U 
atom ratio reached a value of 10-9 indicating that anthropogenic 236U dominates the whole water 
column. Some 5 l samples were used and around 25 min was the counting time per sample. The 
236U inventory in the water column is 2 times higher than expected in this area. The authors 
consider that several additional sources to global fallout has to be taken into account to explain the 
ratio, such as French Nuclear Power Plants, remaining traces from Chernobyl and even Sahara 
dusts. Interesting to say is that the CNA measurements have been done by a Low Energy AMS 
(LEAMS). A full account of the method is given in Chamizo et al. 2015b. In fact, the possibility of 
measuring 236U by LEAMS was propossed by Vockenhuber et al. 2011. It made available the 
technique to many groups. 
 
Others 
Non regular applications of AMS to interesting isotopes for radioecology can be found in literature. 

99Tc has been investigated by AMS. Its determination in the environment by AMS was 
reported by Fifield et al. 2000. A technical effort was done in the paper to separate 99Tc from 99Ru 
and AMS was shown to be able to determine it at fg levels. Some first measurements were done in 
seaweed intercalibration samples.The method was refined by Wacker et al. 2004. Close in the time 
Bergquist et al. 2000 published another AMS 99Tc method. Good separation from 99Ru and 
molecular backgrounds was obtained by the authors with MeV beam energies. The method was 
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