Seismic Oceanography in the Tyrrhenian Sea: Thermohaline Staircases, Eddies, and Internal Waves

G. G. Buffett1,2,3, G. Krahmann2, D. Klaeschen1, C. Papenberg2, C. R. Ranero5,6, V. Sallarès1, C. Schroeder4, and N. Zitellini7

1Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, Barcelona, Spain, 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 3Now at Terranova Scientific, Mascuqefa, Barcelona, Spain, 4CNR-ISMAR, Venice, Italy, 5Institute of Marine Sciences, ICM-CSIC, Barcelona, Spain, 6ICREA, Barcelona, Spain, 7CNR-ISMAR, Bologna, Italy

Key Points:
- For the first time, we are able to image oceanic fine structure in the Tyrrhenian Sea using seismic methods.
- We can confirm the horizontal continuity of extensive thermohaline staircases over more than 200 km.
- The internal wave field is anomalously weak in the center of the staircases and in the center of the Anticyclone eddy.
- The internal wave field is weaker, suggesting that other mixing processes such as double diffusion prevail.
- Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin, the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double diffusion prevail.

Abstract
We use seismic oceanography to document and analyze oceanic thermohaline fine structure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April–May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline fine structure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface mesoscale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS, we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse toward the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin, the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double diffusion prevail.

Plain Language Summary
We studied the internal temperature and salinity structure of the Tyrrhenian Sea (Mediterranean) using the multichannel seismic reflection method (the same used in the hydrocarbon industry). Low-frequency sound (seismic) waves are produced at the surface with an explosive air source and recorded by a towed cable containing hydrophones (underwater microphones). The data are processed to reveal “stratigraphy” that result from contrasts in density that are themselves caused by changes in temperature and salinity. In this way, we can map ocean circulation in two dimensions. We also deployed in situ oceanographic probes to measure temperature and salinity in order to corroborate and optimize the processing of the seismic data. We then quantified the internal gravity wave field by tracking the peaks of seismic trace wavelets. Our results show that the interior of the Tyrrhenian Sea is largely isolated from internal waves that are generated by a large cyclonic boundary current that contains waters from the Atlantic Ocean and other parts of the Mediterranean. This isolation allows the thermohaline fine structure to form, where small-scale vertical mixing processes are at play. Understanding these mixing processes will aid researchers study global ocean circulation and to add constraints that can help improve climate models.

1. Introduction
What are the mechanisms that are responsible for mixing in the ocean? Answering this question is currently one of the key tasks in ocean research because mixing of different water masses at the smallest scales helps drive global thermohaline circulation. Yet the various mixing processes are not fully understood. One of the reasons for this is because the small-scale and short-lived water mass variations that partially mix are
inherently difficult to determine; and usually a large number of observations is required to obtain representative numbers. In the last decade, a new technique called seismic oceanography (SO) was developed to image and investigate the properties of water masses using low-frequency acoustic methods. This technique is based on multichannel seismic (MCS) reflection profiling, and it has been shown to be a powerful tool to study temperature (and less so, salinity) contrasts associated with oceanic fine structure (Sallarès et al., 2009) in unprecedented horizontal resolution (e.g., Biscars et al., 2008; Buffett et al., 2010; Dagnino et al., 2016; Gonella & Michon, 1988; Holbrook et al., 2003).

In this paper, we map, describe, analyze, and interpret the thermohaline fine structure of the Tyrrhenian Sea derived from an SO investigation that was carried out in April–May 2010 with the R/V Sarmiento de Gamboa and the R/V Urania. The goals of the survey were first, to map the water mass distributions and second, to try to gain insights into the mechanisms which drive mixing in the basin and at its periphery.

The study of the Tyrrhenian Sea offers a unique location to analyze a constrained set of mixing processes. This is because it is a confined sea with distinct water masses where the general circulation pattern is well understood. It contains a large central volume of water with relatively static properties. The central basin is surrounded by a cyclonic boundary current with significantly different properties. Lateral exchange processes have been reported between the boundary currents and interior of the basin (Zodiatis & Gasparini, 1996). At its center, it is isolated from strong lateral mixing effects. Under such conditions, and due to the particular vertical water mass distribution (Budillon et al., 2009), a particular kind of diapycnal mixing—double diffusion—occurs.

In this work, we processed and interpreted nearly 1,000 km of MCS lines that were integrated with in situ oceanographic observations, including expendable bathythermographs (XBTs), conductivity-temperature-depth probes (CTDs), and for the first time in an SO survey, an autonomous glider. This data set allows us to define the geometry of the dynamic eddies and the quasi-permanent thermohaline staircases in the Tyrrhenian Sea. We mapped the boundaries and interfaces between different water masses in fine vertical and horizontal resolution and we characterized the dynamics and mixing of water masses in key areas by quantifying the internal wave field based on the methods of Holbrook and Fer (2005) and Krahmann et al. (2008).

2. Oceanographic Setting of the Tyrrhenian Sea

2.1. Origins and Characteristics of the Water Masses and Their Circulations

The Tyrrhenian basin is a deep, semiclosed basin within the Mediterranean that was formed as a result of the Late Miocene-to-Present E-SE retreat of the Apennines-Calabrian subduction system leading to back-arc extension and magmatism in the Tyrrhenian basin (Prada et al., 2016). It is bounded by Corsica, Sardinia, and Sicily to the west and south, and the Apennine peninsula to the east and north. The Tyrrhenian reaches a water depth of 3,600 m in the abyssal plains of Marsili and Vavilov and 3,400 m on the Cornaglia Terrace (Figure 1). The bathymetry of the basin restricts circulation to two main channels: the wide Sardinia Channel between Sardinia and Sicily (max. depth 1,900 m); and the narrower, shallower Corsica Channel between Corsica and mainland Italy (maximum depth, 400 m). The smaller and shallower straits of Bonifacio and Messina do not contribute significantly to the large-scale circulation (Artale et al., 1994). The circulation through the Sardinia Channel is part of a complex exchange of water masses between the central basin of the Western Mediterranean (WMED), the Eastern Mediterranean (EMED), and the Tyrrhenian Sea.

The Corsica Channel is too shallow to permit the exchange of deep water masses (with a sill depth of about 400 m), forcing much of the generally cyclonic circulation to turn southward (Figure 1) along the Sardinia coast. During their circulation, the water masses entering the Tyrrhenian Sea mix with resident water masses.

The water masses of the Tyrrhenian Sea are commonly classified by their temperature and salinity characteristics and are mostly named after their place of origin, though they are significantly modified within the Tyrrhenian Sea and along their pathway to it. It is also important to note that the water masses are not separated by clear high-gradient boundaries but rather by up to several hundred-meter-thick boundary intervals. It is at these boundary intervals between the cores of the different water masses where most seismic reflectors are found.
The uppermost water mass is Atlantic Water (AW), which is present from the surface to approximately 200 m depth (core depth 0–100 m). As the name suggests it originates as the surface inflow of Atlantic Water into the Mediterranean through the Strait of Gibraltar (Millot, 1999; Víšcek et al., 1998). Its hydrographic properties become modified by evaporation and by the entrainment of Mediterranean water during its path along the North African coastline (Millot, 1999). The AW branches into two currents at the Sardinia Channel. One branch continues to the EMED basin through the Sicily Channel and the other enters the Tyrrenian Sea where it joins the cyclonic circulation. Here the AW has low (for the Mediterranean) absolute salinities ($36.5 < S < 37.5$ g kg$^{-1}$; throughout the manuscript we use absolute salinities) (Víšcek & Tintoré, 1995) with the lowest values in the southern part of the Sardinia Channel and then increasing along the large-scale cyclonic flow. Its near-surface temperatures vary substantially according to seas on. Below the mixed layer the AW temperatures are usually $14–15^\circ$C (Millot, 1999).

Directly beneath the AW, but still within the 0–200 m depth layer, sometimes a colder—but still relatively very fresh—layer is found (Budillon et al., 2009), which forms a local temperature minimum. This Winter Intermediate Water (WIW) has been documented to form in the northwestern part of the WMED Sea and it might subsequently be advected into the Tyrrhenian Sea (Juza et al., 2013); though some authors have hypothesized a local Tyrrenian origin (Budillon et al., 2009; Hopkins, 1988).

The Levantine Intermediate Water (LIW) has the highest salinities in the Tyrrenian Sea. It circulates approximately between 200 and 600 m depth (core depth 300–500 m). It is formed during winter in the eastern part of the EMED when dry, cold, and strong winds enhance mixing and evaporation leading to a vertical
convection process (Sparnocchia et al., 1999). The LIW then spreads out westward and is funneled into the Western Mediterranean via the Sicily Channel (Sparnocchia et al., 1999), near the west coast of Sicily. Moving into the Tyrrhenian basin, it follows the north coast of Sicily and flows directly below the AW and WIW in the cyclonic circulation. In the Sicily Channel, its salinities can reach about 38.8 g kg\(^{-1}\) with maximum temperatures of 15°C (Budillon et al., 2009). Like the AW/WIW, the LIW’s lowest salinity maximum occurs at the end of its cyclonic circulation—in the northern part of the Sardinia Channel (Astraldi & Gasparini, 1994).

In the deepest part of the Sicily Channel, another water mass of EMED origin finds its way into the Tyrrhenian Sea. The transitional Eastern Mediterranean Deep Water (tEMDW) forms in the deep area of the Sicily Channel between the Malta and Pantelleria troughs through a mixture of original Eastern Mediterranean Deep Water with the LIW (Bonanno et al., 2014). The tEMDW is characterized by somewhat lower salinities and temperatures than the LIW but it is still warmer and saltier than the Western Mediterranean Deep Water (WMDW). Both the tEMDW and the LIW have varying water mass properties (e.g., Cardin et al., 2015). Directly after passing the Sicily Channel, tEMDW cascades down the north slope of Sicily, where it mixes with the resident Tyrrhenian Sea water and settles at depths between 1,000 and 1,850 m (Sparnocchia et al., 1999). This water is usually included within the fairly broad range of waters called Tyrrhenian Deep Water (TDW).

Below these two water masses of EMED origin observations suggest that, especially at levels below 1,500 m, WMDW also enters the Tyrrhenian Sea (Millot, 1999; Rhein et al., 1999) and mixes with the resident water masses. While older observations (Millot, 1999) indicated that the resulting water mass filled the deeper parts of the basin as Tyrrhenian Deep Water (TDW), more recent observations show strong variations in the water mass properties below 1,500 m implying either a change in the source water masses, their mixing ratios, or a different formation process altogether (Fuda et al., 2002).

In summary, four water masses are thus usually distinguished in the Tyrrhenian Sea: basin-wide one finds AW as the uppermost fresh water mass at depths from 0 to 200 m; WIW is sometimes found underneath the AW as a fresh and cold water mass but still within the upper 200 m; LIW is the saltiest water mass in the basin covering the range from about 200 to 700 m with the highest salinities at the core depth of about 400–500 m; finally the TDW describes a very wide range of fresher and colder waters below 700 m with a core depth deeper than 1,500 m.

2.2. Mesoscale Eddies

Surface eddies are a regular feature in the Tyrrhenian Sea albeit at a much weaker level than in the rest of the Western Mediterranean Sea (Poulain et al., 2012). Some of these eddies are thought to translate from the Algero-Provencal Basin, entering the Tyrrhenian through the wide Sardinia-Sicily Channel (Bouzinac et al., 1999). This is probably aided by the flow of the AW into the basin. Budillon et al. (2009) surveyed the Tyrrhenian Sea using CTD measurements supplemented with satellite altimetry data, also finding mesoscale eddies. Rinaldi et al. (2010) reported an eddy pair for the northwestern part of the Tyrrhenian Sea. Driven by the typically westerly winds coming through the Strait of Bonifacio, these eddies are quasi-persistent (Artale et al., 1994). The northern eddy rotates in an anticlockwise direction and is known as the North Tyrrhenian Cyclone (NTC), while the southern one rotates in a clockwise direction and is known as North Tyrrhenian Anticyclone (NTA). Apart from these surface eddies, the Tyrrhenian Sea hosts subsurface eddies which are not easily detectable at the sea surface. These are typically formed by the intermediate water masses WIW and LIW and are also known as mode-water eddies (Budillon et al., 2009; Testor et al., 2005).

Eddies play an important role in mixing the different physical, chemical, and biological properties of water masses. They are therefore important to global ocean circulation. Eddies have been imaged and analyzed with seismic oceanography many times (e.g., Barbosa Aguiar et al., 2015; Biescas et al., 2008; Buffett et al., 2009, 2010; Holbrook et al., 2003; Klaeschen et al., 2009; Ménès et al., 2012; Quentel et al., 2010) but they have never before been seismically imaged in the Mediterranean Sea.

2.3. Thermohaline Staircases

Thermohaline staircases in the Tyrrhenian Sea have long been reported for the depth interval of 500–2500 m (e.g., Johannessen & Lee, 1974; Tait & Howe, 1971). Certain combinations of the vertical stratification of heat and salt allow for particular exchange processes between the water masses (Ruddick & Gargett, 2003). Driven by the different molecular diffusivities of heat and salt, the diapycnal exchange is locally...
enhanced and gives rise to the thermohaline staircases. In the Tyrhenian Sea, the most ubiquitous form of double diffusion (salt-fingering) occurs—where a warm and salty layer initially lies above a colder and fresher layer (Stern, 1960). Williams (1975), by measuring refractive indices, observed salt fingers at the interfaces of Tyrhenian Sea staircases. In the ocean, the results of these processes appear as horizontal layers with staircase-like shapes of temperature and salinity when plotted as a function of depth. Between a few-meter-thick interfaces with strong thermohaline gradients, there are well-mixed layers that are several tens of meters thick (e.g., Radko, 2005; Schmitt et al., 1987, 1994; Schmitt, et al., 2005). Observations have shown that the Tyrhenian hosts up to 10 largely homogenous layers with thicknesses of 50 to more than 500 m (Zodiatis & Gasparini, 1996). These layers are separated by steps in temperature and salinity of 0.04–0.17°C and 0.01–0.04 g kg\(^{-1}\), respectively. Zodiatis and Gasparini (1996) also report that over the period from 1973 to 1992 the general presence of the staircases persisted but the number reduced from 8–10 to only 4.

The detection and quantitative description of thermohaline staircases has conventionally been carried out by analyzing data from multiple adjacent CTD stations, with Schmitt et al. (1987) first showing T-S changes within the staircase layers. In the Tyrrenian Sea, CTD locations—which may be separated by up to 200 km (when drawn in a waterfall diagram)—suggest laterally continuous well-mixed layers (Zodiatis & Gasparini, 1996; Figure 5 therein). In a h-S diagram the potential temperatures and salinities from the layers form distinct clusters or even linear segments in cases of variations along the well-mixed layers. However, the exact process through which the layers connect over a distance of up to 200 km is not well understood.

Since double-diffusive processes by themselves would erode vertical gradients of temperature and salinity over time, a permanent resupply of heat and salt to the warm and salty water mass above, and a permanent thermohaline sink for the colder and fresher water mass below, are required to maintain the staircase structure. Horizontal advection of heat and salt by a slow-moving current through the well-mixed layers between the staircase steps has been proposed as the most likely candidate (Zodiatis & Gasparini, 1996). In the case of the Tyrhenian Sea then, it is the cyclonic intermediate LIW boundary current that supplies heat and salt to the system of thermohaline staircases. The layer underneath the staircases, the TDW, should in turn act as a thermohaline sink. For the system to be quasi-stationary the TDW-WMDW exchange with the Algero-Provençal Basin through the Sardinia Channel must remove the downward salt and heat flux inside the Tyrhenian Sea. The interplay between the boundary currents and the persistent staircases in the center of the basin, and the balance of the vertical fluxes between the two water masses at the top and at the bottom of the staircases, is however still poorly studied and documented because the heat and salt fluxes are small and therefore are difficult to determine.

Thermohaline staircases have been imaged using SO by numerous authors including Biescas et al. (2008), Krahmann et al. (2008), Buffett et al. (2009), Biescas et al. (2010), Fer et al. (2010), and Quentel et al. (2010). Fer et al. (2010) documented an anomalously low internal wave field for staircases in comparison with adjacent measurements (e.g., for more dynamic regions such as eddies/meddies).

3. Data and Methods

3.1. Seismic Data

The seismic data were acquired as part of the MEDOC-2010 survey (Ranero & The MEDOC Team, 2010), completed in April–May 2010, with the Spanish vessel R/V Sarmiento de Gamboa. It was a project designed to address the geological formation of rifted tectonic margins by utilizing both refraction and reflection seismology (e.g., Moeller et al., 2014; Prada et al., 2014). Seismic acquisition parameters are shown in Table S1 in Supporting Information S1.

The MCS acquisition configuration consisted of a towed impulsive air source and a cable hosting the hydrophones (a “streamer”) deployed at a depth of several meters. The signal of the source’s wave front is recorded by the hydrophones after reflecting from acoustic impedance contrasts within the ocean and the solid earth. It is important to note that due to the fact that the seismic oceanography component of this survey was a secondary objective, we could not customize the acquisition parameters for oceanographic targets. As a caveat then, the most prominent shortcoming of data quality is the “wrap-around multiple” noise that was a result of the close shot spacing. That is, for a given “shot record” from a single impulsive air source, the
sound propagating in the water column from the previous shot did not have sufficient time to dissipate before the next shot started recording.

True amplitude seismic data processing was carried out postcruise at GEOMAR. Technical details can be found in Appendix A.

3.2. Oceanographic Data

During seismic acquisition, we deployed 192 Lockheed Martin Sippican® T5 XBT probes along track from the R/V Sarmiento de Gamboa. XBTs have a vertical resolution of 65 cm and an absolute temperature accuracy of ±0.07°C (Boyd & Linzell, 1993). We planned the deployment of the XBTs to sample the temperature structure of the central portion of the basin, where thermohaline staircases had been previously reported (Zodiatis & Gasparini, 1996). The XBT probes were launched starting on 28 April 2010 being deployed in six segments across the three seismic sections—two segments per line covering the deepest parts of the Tyrrhenian basin (Figure 1 and Table S1 in Supporting Information S1). Within each segment, probes were launched at 15 min intervals (approximately every 2.25 km).

As part of the OSMART (Oceanografía Sísmica en el MAR Tirreno) complementary action to the MEDOC-2010 experiment, but not precisely simultaneous or coincident with the seismic reflection acquisition, we also deployed CTDs from the vessel R/V Urania (Ranero & The MEDOC Team, 2010). The salinity measurements from the CTD data provide an extra constraint to improve the accuracy of the sound speed model for seismic data processing. Following the procedure outlined by Papenberg et al. (2010), the CTD data were also used to derive salinity values for the XBT profiles, which in turn allowed us to calculate potential temperatures that remove the pressure effect on temperature.

Finally, in conjunction with the seismic, XBT and CTD acquisitions, we deployed an autonomous underwater glider, manufactured by Teledyne Webb Research. The deep Slocum glider (provided by GEOMAR) was used to measure temperature and salinity (and other variables). It was released on 21 April 2010 off Naples, Italy, from a locally rented boat. The glider was steered in a westerly direction about 1.6 km north of seismic section EF (XBT segment EF-2). It reversed course on 27 April 2010 being overtaken by the R/V Sarmiento de Gamboa on 28 April 2010. It finished the section on 2 May 2010 (Table S1 in Supporting Information S1) to be recovered eleven days later off Naples. The autonomous glider was programmed to dive to its maximum depth of 1,000 m to cover as much of the staircases as possible. Collecting data during descents and ascents, a horizontal resolution of about one slanted profile every 3 km was achieved. The glider’s CTD data were postprocessed following the procedures documented in Thomsen et al. (2016).

Herein we follow oceanographic convention and refer to a “profile” as a one-dimensional measurement or data set along the vertical axis and “section” for a set of horizontally consecutive profiles. Therefore, we refer to the seismic data as sections, not profiles, or lines, as is convention in seismology.

4. Results

The seismic sections cover the four water masses outlined in section 2.1: AW, WIW, LIW, and TDW (Figure 2). Geologically, they span the Western Tyrrhenian Passive Margin, the Central and Southern Tyrrhenian Oceanized Crust, and the Eastern Tyrrhenian Passive Margin (Marani et al., 2004). The center of the basin is floored by exhumed mantle rocks that are covered by Plio-Quaternary sediments (Prada et al., 2015). The Tyrrhenian basin is a region of well-known recent tectonic activity with an elevated crustal heat flux (Davies & Davies, 2010).

The imaging of the AW nearest to the surface is limited by the acquisition configuration (towed at a fixed depth), and by the imperfect attenuation of the direct wave. To optimally image the shallowest waters (less than 50 m), one needs to employ a customized acquisition system (e.g., Plêté et al., 2013; Sallarès et al., 2016).

We acquired the seismic sections and the along-track XBT profiles accounting for marine operational logistics. Thus, sections EF and U happened to be acquired from west to east, whereas GH was acquired east to west. This is worth noting because, unlike a seismic image of the solid earth, the ocean circulates during acquisition (Buffett et al., 2012; Klaeschen et al., 2009), making the seismic image only a quasi-instantaneous snapshot of the subsurface. For the particular case of our survey, we expect that most
dynamics occur in the upper waters, where circulation is faster and more widespread. In contrast, due to the nature of the deeper thermohaline staircases, we consider them to be for the most part stationary (Zodiatis & Gasparini, 1996) with respect to the vertical and horizontal scales imaged and at an acquisition rate of about 2.5 m/s. For comparison, a high-resolution reanalysis of the Mediterranean Sea (Pinardi et al., 2015) indicates maximum velocities of 0.3 m/s near the surface and 0.05 m/s at the depth of the staircases. All seismic sections contain some vertical noise banding (see sections 3.1 and Appendix A), which overprint the oceanic signals in some areas (e.g., directly under km-10 in section EF).

In the following subsections, we describe the three seismic sections from north to south (EF, IJ and GH, respectively; Figures 1 and 2). We describe each section from west to east, divided into zones that are based on gross changes in thermohaline fine structure (see Figure 2). The intensity of the seismic reflectors in the images represents the amplitude of seismic wavelet peaks or troughs; higher intensity means more reflected energy. Energy is reflected more efficiently from sharper acoustic impedance contrasts—that is, sharper thermohaline gradients.

4.1. Seismic Section EF

Zone 1 is characterized by near-horizontal wavy reflectors that appear to interact with the Baronie Seamount (e.g., near km-26). The shallowest reflectors become more horizontal in the east (km-40 to km-60). There is a V-shaped band of moderate energy reflectivity (km 40–70, depth 400–1100 m) that spans into Zone 2. In the deepest parts of Zone 1, there is only very weak reflectivity.

In Zone 2, we observe a large eddy at the surface that is centered at km-105. It has a maximum depth of 800 m and a diameter of about 90 km. The location of this eddy coincides with the location of the NTA (Rinaldi et al., 2010). The strongest reflections of the eddy (at a depth of 350 m at km-100) are very laterally coherent. There is low reflectivity in the eddy’s core (Figure 3a), similar to what is observed in...
Mediterranean Water Eddies (Meddies) in the open North Atlantic Ocean (Biescas et al., 2008). Also noteworthy is the drop in reflector strength and lateral coherency at the base of the eddy (at about 700 m), possibly an indication of mixing with the underlying LIW layer.

In Zone 3, at AW depths (0–200 m), there are strong near-horizontal-to-horizontal reflections. This AW overlies a seismically semitransparent depth interval that extends from 200 to about 550 m. It shows both higher temperatures and salinities (Figure 4 and Section 4.4), corresponding well to the depth range of the LIW core. Below 550 m depth, there are at least six to seven continuous reflectors at depths of approximately 550, 600, 700, 800, 950, and 1,200 m that outline the thermohaline staircases. They vary in intensity from very weak to moderate. The staircase steps increase in separation as a function of depth (Figure 4). This increasing separation has been documented by Zodiatis and Gasparini (1996). Also in agreement with Zodiatis and Gasparini (1996), we find that the reflectors are less continuous near the continental margins. Beneath the eddy, we note very weak-to-vanishing staircases (Figure 2).

Figure 3. (a) A portion of seismic section EF showing a near-surface eddy, (b) part of seismic section IJ showing the same eddy, and a smaller eddy to the west. Shown in black and white shading are the seismic reflection data and in color the XBT temperature observations. Spatial scales and longitude coordinates are indicated. Lateral extents of eddies shown in this figure are depicted as white segments in the inset of Figure 1.
XBT (Figure 4) and glider data (section 4.4) indicate that these uppermost reflectors are caused by the halocline between the fresher AW and/or WIW and the saltier LIW. While there are also temperature gradients at the same depth, the reflectivity here is mostly caused by the strong salinity difference between the water masses. The XBT measurements collected together with the seismic data show that the eddy core is composed of relatively cold waters (Figure 3a); about 0.8°C colder than the surrounding waters. The XBT data for segment EF-2 (Figure 4) shows a colder layer at about 80 m depth (km-197 to km-212) that likely represents the WIW. It spatially correlates to an area of weaker reflectivity below in the upper three to four staircase layers, and there is subtle evidence of an eddy-shaped structure here. Note here the downdipping reflectors under km-180, and the updipping reflectors at the top of the staircase layers. On the other side (under km-215), there is a similar pattern. To the east of km-215, there are several other small zones of what must be warmer LIW eroding the upper staircase reflectors; they also have some correspondence with a cooler (WIW) layer above.

4.2. Seismic Section IJ

Zone 1 is characterized by sloping reflectors on the continental shelf of Sardinia and a deep eddy-like structure in the deeper Sardinia basin. The interface between AW/WIW and LIW is visible as nearly continuous high amplitude reflectors. Strongly sloping reflectors are located on the shelf break at depths of 400–800 m (km-15). Reflectors with the opposite slope are visible at about km-23 and possibly at km-43. We interpret these as signs of an intermediate boundary current of LIW and an offshore return flow; though this could also be a mode-water eddy formed by LIW. Unfortunately, we lack other measurements in order to determine its zonal range.

Zone 2 is dominated by vertically depressed, high amplitude AW/WIW-LIW boundary reflections that can be subdivided into two eddies at around km-100. The western eddy is smaller with a size of about 40 km at this latitude, reaching a maximum depth of 500–550 m. This eddy has depressed reflectors at its lower side but uplifted reflectors at its upper side, which classifies it as a mode-water eddy. The eastern eddy has a size of about 75 km and does not show any reflectors at its top, indicating a regular surface eddy. It is still laterally coherent at depths of 600 m. In the depth interval from 600 to 1,000 m, there is some weak-to-moderate reflectivity that seems to be the disrupted continuation of the dipping reflectors at the western and eastern edges of this eddy. Within the same depth interval and further down, there is a weak impression of reflectors that might be the continuation of the regular staircase reflectors in Zone 3. These appear to follow the bowl shape depression of the strong reflectors above 600 m depth.

In Zone 3, we see near-horizontal-to-horizontal high energy reflectors that are generally confined to the upper 200 m of the water column, delineating the lower boundary of AW. At these shallow levels, there is an obvious change: from km-175 to km-205 the near-surface waters are very horizontal and do not quite
reach 200 m depth. Below this layer, there is barely any discernible reflectivity until about 700 m where there are weak-to-vanishing near-horizontal staircase reflectors. These weak reflectors appear to be pushed down similar to what seems to occur below the large eddy. At km-205, there is an abrupt change in reflectivity dip in the shallow waters (which continue with slightly less horizontal coherency until km-290); it spatially correlates to a sharp increase in reflector energy and lateral coherency for the depths of 600–1,300 m. This change coincides with the peak of the De Marchi seamount. At km-220, again the staircase reflectors are barely detectable, but they do seem to be vertically depressed in the center (km-227), and they correlate with the peak of the Gortani Ridge. Biescas et al. (2010) document the interaction of staircase layers at the top of the Gorringe Bank in the North Atlantic, although at much closer scales. In our study, the spatial correlation of the seamounts to the staircase coherency and amplitude raises the question of whether interaction with these features could possibly disturb the staircases at this depth. At about km-232, the staircase reflectors steepen moderately to join with high amplitude, high laterally coherent staircase reflectors, which are observed to continue until km-290—but with the upper reflectors more degraded. The prominent reflector at almost 1,200 m depth is split into two or more reflectors in some places. There is a weaker, double reflector with a lateral coherency of only 20 km.

The near-surface reflectors in the depth interval from 50 to 200 m (lower boundary of AW) show the same bimodal arrangement as section U (eddies in the west/staircases in the east). EF and U bisect two large adjacent surface eddies (Figures 3a and 3b), which, given their cold cores (below 13.4°C) and locations, seem to neatly outline the NTA. In the upper 700 m of the water column of section U (Figure 3b), like section EF, we observe the lower boundaries of AW and WIW as a package of high acoustic impedance reflectors, which vary in intensity and depth. The corresponding XBT data reveal an abrupt increase in temperature of 1.0°C until a maximum depth of about 700 m at the center of the eddy. Temperatures then decrease with depth until at least the bottom of the XBT profiles at about 1,600 m. Section U shows a deeper eddy, suggesting that it has been bisected closer to its center (assuming it is symmetrical). This is also in agreement with chlorophyll satellite data acquired during the same period (Table S2 in Supporting Information S1).

As with section EF, the LIW core does not exhibit strong reflectivity across the whole section. In the depth interval from 600 to 1,500 m between the LIW and TDW cores, there is little reflectivity under the eddies; the reflectivity becomes much more apparent in the eastern portion of the section, between km-220 and the continental shelf. Across that same zonal range, the staircases are more continuous and coherent than section EF. However, the steps do also increase in separation as a function of depth.

XBT segment U-2, like EF-2 shows warmer shallow waters as well as temperature steps corresponding to the thermohaline staircases. There is a notably warmer layer (+0.2°C) that protrudes into the top of the staircases between km-223 and km-236, an area with very low seismic reflectivity (Figure 5). The MCS data here show clear indicators of a symmetrical eddy-like shape (note the updipping and downdipping reflectors below approximately km-210 and km-245 seen at this vertical exaggeration, which give the eddy a circular shape). Above this warm area, the XBT data have a distinctly cooler layer centered around 100 m, probably WIW. Again, like section EF (Figure 4), there is a spatial correlation between the location of the WIW layer and the warmer, deeper layer that protrudes into and seems to erode the staircases; in this case, the erosion is much more obvious than in section EF. Elsewhere there is a good correlation between the XBT temperature data and the staircase steps (Figure 5).

4.3. Seismic Section GH

In the vicinity of the Sardinia margin, the upper AW waters of Zone 1 (within the upper 200 m) are characterized by high energy, laterally discontinuous, near-horizontal reflectors, which become progressively continuous going eastward. Toward the eastern portion of Zone 1, the AW reflectors reach depths of up to 400 m, possibly demarcating the southern flank of the eddies seen in EF and U. Here there are also near-continuous downsloping filaments of reflectivity that reach to depths of up to 800 m and make contact with weak-to-moderate energy staircase reflectors. Without other corroborating data, it is unclear what thermohaline boundary causes these sloping reflectors. The weakly visible regular staircases in Zone 1 decrease in amplitude toward the western continental slope, where they are barely detectable.

Zone 2 defines the location of the most reflective and laterally coherent staircases of all three seismic sections. Like sections EF and U, they are characterized by increasing step separation as a function of depth. Of the six to seven staircase steps, the most reflective ones occur between km-235 and km-290 at depths of 600–
At 1,200 m. In this part of the staircases, one of the deeper reflectors (1,000–1,200 m) splits into two. The eastern part of these staircases (between about km-260 and km-285) appears to rise over the Flavio Gioia seamount.

Zone 3 is defined based on the abrupt drop in both reflectivity and lateral coherency of the staircase steps. In Zone 3, the staircases are barely detectable, being weaker at the top than at the bottom, and they appear to be vertically depressed toward the eastern edge (km-330). Further eastward of km-340, over the continental shelf, the staircases are no longer detectable. This is possibly the result of the more variable topography on which the boundary current would create a turbulent regime that is not conducive to the formation of staircases.

The XBT segment GH-1 (not shown) barely outlines the edge of the cold-core eddy. But there is some correspondence between temperature and the dipping filaments. GH-1 shows the warmer near-surface waters and is relatively laterally uniform. There is a good agreement between the XBT-derived temperature and the thermohaline staircase stratification of the seismic data.

The XBT and CTD data for segment GH-2 show an excellent correlation with the seismic staircase steps, having an approximately 0.2°C difference between adjacent mixed layers. In the same zonal range as IJ-2, there is a cooler layer at about 100 m depth. There is minimal disturbance of the staircases in what seems to be the most quiescent part of the sea that we observed.

4.4. Autonomous Glider Results

We make use of glider data to corroborate the seismic data with in situ measurements of salinity (Figure 7). Although the glider used here unfortunately was not designed to reach the depths of the deepest thermohaline staircases in the Tyrrhenian Sea, it was able to reach the upper four steps. The glider’s CTD provided local and near-simultaneous measurements of salinity that were in good agreement with ship-based CTD measurements of salinity used to calculate the sound speed distribution. Figure 7 shows glider-observed salinities overlaid on seismic data for the eastern part of seismic section EF. The data show a low salinity zone (36.9–38.2 g kg⁻¹; mean 37.9 g kg⁻¹) that corresponds to the AW in the upper approximately 200 m. The LIW displays the highest salinity values in this section, reaching as high as 38.75 g kg⁻¹. As already described, there is only weak seismic reflectivity within the LIW layer. Below the LIW, the glider salinity values correspond well with the reflective staircase boundaries, showing step-like decreases of salinity, and of course temperature (not shown), at the interfaces between the well-mixed layers.

5. Discussion

5.1. Mesoscale Eddies

Eddies have previously been observed in the Tyrrhenian Sea (e.g., Budillon et al., 2009; Iacono et al., 2013). We observe two connected anticyclonic eddies reaching down to at least 400 m (Figures 3a and 3b), one of
which we identify as part of the quasi-permanent NTA (Iacono et al., 2013; Rinaldi et al., 2010). The eddies are outlined best in seismic sections EF and IJ. With just three seismic sections separated by 20–30 km, we have limited north-south spatial resolution. Yet two joined structures are clearly visible in section U (Figure 3b). The larger of the two is also present in the seismic data of section EF. There is no clear bowl-shaped signature of it in section GH, but it possibly samples the southern edge of the NTA (e.g., between km-30 and km-170). At the corresponding longitude range of the NTA, there are some filament structures that contact the staircase layers, and we speculate that they may have been induced by the eddy.

Assuming a symmetrical shape for the eddy, we estimate its center to be located between sections EF and IJ, somewhat closer to IJ. Satellite imagery of a zone of low chlorophyll concentration at the sea surface (Table S2 in Supporting Information S1) shows a good spatial correlation with the eddy in the seismic data. The chlorophyll anomaly is an average of five 8 day mean fields around the time of the seismic surveys and shows an anticyclonic circulation shape. It appears that north of the low chlorophyll concentrations, a high chlorophyll anomaly is being dragged from the coast of Sardinia into the eddy. Both the chlorophyll and the seismic data suggest a diameter of at least 70 km. The seismic data of section U near the eddy’s center show the first reflectors at about 300 m depth whereas in the noneddy parts of the section they occur at about 100 m depth. This is a clear sign that the eddy’s core was formed by a thickened rather homogeneous layer of WIW. Below this core, we find a nearly 300 m-thick layer with reflectors that all appear to follow the classical bowl shape of an anticyclonic surface eddy. This uppermost layer of reflectors is significantly thicker than in the noneddy parts of the sections. This is likely caused by the strong temperature gradient between the very cold WIW of the eddy cores and the underlying warm LIW layer. In the remainder of the sections, no cold WIW layer is present and the vertical temperature gradient between AW at the surface and LIW is much weaker, thereby reducing one of the possible causes for the reflectors. The bowl-shaped reflecting layers of the eddy reach depths of 700 m. In Zone 3 of the same section, we find clean horizontal staircases at that depth. There appear to be some traces of staircases at the western side of the eddy but they are more diffuse. This suggests that the eddy’s advection has an adverse effect on the horizontal continuity of the double-diffusive staircases.

5.2. Thermohaline Staircases

The seismic data of the staircase depth interval are shown in Figures 4, 5, and 6 for sections EF, IJ, and GH, respectively. The depths of the temperature steps observed on the XBT, CTD, and glider data match the depths of the high acoustic impedance contrasts that reflect sound between approximately 600 m and 1,900 m. This confirms that these horizontally extensive seismic contrasts are in fact a result of thermohaline staircases. Zodiatis and Gasparini (1996) previously documented the horizontal extension of the Tyrrenian thermohaline staircase area to be at least 150 km. Their study was based on a set of CTD profiles and they were able to infer the horizontal coherency of the staircases only through the consistent water mass properties within the well-mixed layers in profiles that were located tens of kilometers apart. With the seismic data, we are able to clearly prove their continuous coherency for up to 200 km with a profile (seismic trace) spacing of only 6.25 m. The very high horizontal sampling of the seismic data exposes small features such as the splitting and recombination of steps over horizontal scales of just a few kilometers.

In general, the staircases are more laterally coherent toward the center of the Vavilov Basin (e.g., the central part of section GH) and less so at the basin’s margins, again confirming the findings of Zodiatis and Gasparini (1996). This distribution mirrors the general strength of ocean currents at the depth of the staircases. Near the margins, the generally cyclonic circulation of the basin is found in the form of boundary currents. In contrast, the central basin has only weak circulation and thus persistent staircases can form. It appears therefore that the boundary circulation prevents the extension of the staircases right up to the margins.

We also note that in the region of the most prominent staircases, the upper and lower reflective steps tend to be more diffuse. This is simply a result of the weaker vertical temperature and salinity gradients at the top and the bottom of the staircase depth interval (see salinity profile in Figure 4). It contrasts with the staircases’ center region over the deepest part of the basin, where the reflectors form sharper boundaries. Toward the continental shelf, reflectors are more diffuse. But in that case we think that turbulence generated by the boundary current is the cause.
5.3. Internal Waves

Internal waves are a nearly ubiquitous feature of the oceans (Garrett & Munk, 1975, 1979). Created by tides or atmosphere-ocean interaction, they can persist for long times and travel great distances. Measurements in the open ocean have found a consistent shape of the frequency and wave number spectra of internal waves.

Figure 6. Tyrrhenian Sea thermohaline staircases for XBT zone GH-2 and (left) the nearest CTD profile showing a correlation with the thermohaline staircase steps. Red line indicates corresponding longitude of CTD; for its precise location refer to Table S1 in Supporting Information S1. Shown in black and white shading are the seismic reflection data and in color the XBT temperature observations. Spatial scales and longitude coordinates are indicated. See also Figure 1.

Figure 7. Salinity data from autonomous glider mapped over gray scale seismic data. Top figure is outbound measurement. Bottom figure is inbound measurement. See Figures 1 and 2 and Table S1 in Supporting Information S1 for location.
waves (Garrett & Munk, 1975, 1979). Wave-wave interaction is assumed to transfer energy from long wave lengths and periods to shorter ones until they become unstable and break (Müller et al., 1986; Sallarès et al., 2016; Thorpe, 1975), ultimately contributing to diapycnal mixing in the form of small-scale turbulence. Seismic reflection data have been shown to be a useful tool to observe the vertical undulations of internal gravity waves and to derive spectra of their strength (Holbrook & Fer, 2005). Horizontal wave number spectra of the energy density of these undulations agree well with the spectrum found by Garrett and Munk (1975, 1979). Krahmann et al. (2008) applied the approach of Holbrook and Fer (2005) to data off the Iberian Peninsula and differentiated the results in the horizontal. There it showed that topographic and hydrographic features modified the overall strength of the internal wave field.

Here we performed the same analyses. The automated tracking algorithm of Krahmann et al. (2008) was run over all three seismic sections. To improve tracking in the relatively noisy seismic data a 9 CDP (56.25 m) running mean was applied in the horizontal direction. The algorithm identified 3545 (EF), 4357 (IJ), and 2996 (GH) traces of 256-CDP (1,600 m long) reflective layers—longer segments were separated into pieces—for the three sections, respectively. Comparable to Krahmann et al. (2008), we found track excursions at less than 50 m vertical separation to be significantly correlated (not shown). Accordingly, we reduced the number of independent tracks used in the uncertainty calculation. As the vertical excursions caused by internal gravity waves depend on the local vertical density gradient, a normalization is required to make the spectra at different locations comparable. We derived the normalization factor, the buoyancy frequency \(N \), from the collected CTD data and applied it to the wave

![Figure 8](image1.png)

Figure 8. Smoothed buoyancy frequency profiles calculated from R/V Urania CTD data and from WOA13 climatological data (Locarnini et al., 2013; Zweng et al., 2013). The blue profile was used to normalize the energy density spectra of vertical excursions of the reflectors.

![Figure 9](image2.png)

Figure 9. Average horizontal wave number spectra of normalized internal wave energy density for the three sections. Also shown is the internal wave spectrum expected for open ocean conditions, black line (Garrett & Munk, 1975; Katz & Briscoe, 1979) for the latitude range of the three sections and for a buoyancy frequency of 2.0 cph. The gray area marks the interval over which the spectra were integrated for the energy level comparisons.
number spectra calculated from the raw depths of the tracks. In contrast to the data from Krahmann et al. (2008), the reflection data presented here covers a larger depth range and also shows reflectors in the upper water column. Since the buoyancy frequency varied significantly with depth (Figure 8), we found normalization factors ranging from 0.3 cph at 1,500 m depth to 3.3 cph at 100 m depth (compare that to 1.4 cph in Krahmann et al. (2008)). A single smoothed buoyancy frequency profile was therefore derived to normalize the spectra at different depths. The buoyancy frequency quite likely also varied along the sections, particularly in the upper water column. Unfortunately, we do not have the required horizontally resolved CTD data to create a horizontally variable normalization. The averaged normalized wave spectra for the
three sections are shown in Figure 9. The spectra are remarkably consistent between the three sections and agree well with the shape expected from the Garrett and Munk (1975) model. In contrast to the spectra reported by Holbrook and Fer (2005) and Krahmann et al. (2008), all three show internal wave energy levels significantly below the open ocean values of the Garrett and Munk (1975) model. The likely cause is that, compared to other oceans, the weak tidal field in the Mediterranean Sea creates only a relatively weak internal gravity wave field. More recent work by Holbrook et al. (2013) has shown that the horizontal wave number spectra from seismic oceanography sections can be used to estimate mixing rates. The relatively high levels of noise in our data however do prevent such calculations.

To further analyze the internal wave energies, we integrated the energy over the interval from 100 to 400 m long waves. For each 256-CDP long tracked segment, this gives an energy level of the internal waves. We then averaged these energy levels over 6.25 km long and 100 m-thick intervals to determine possible regional variations (see Figure 10). Indeed, we were able to determine such variations. When shown together with the seismic reflection data the variations in internal wave energy suggest connections with oceanographic features. However, due to the lack of corroborating physical measurements and the limited horizontal extent of our data, these connections are only circumstantial.

In particular, we find in each of the three sections two regions with low internal wave energy levels. The first is the larger eddy in the western half of sections EF and IJ and to a lesser extent in GH (marked by red boxes in Figure 10). There the energy levels are only about 70% of the full-section averages (see Table S3 in Supporting Information S1). Even lower energy levels are present in the deeper part of all three sections below 600 m where the continuous thermohaline staircases are found (marked by green boxes in Figure 10). There the energy levels drop to 40% of the full-section averages. In contrast to these low energy regions, we find slightly elevated energy levels (140% of the section averages) on the western side of the sections close to the coast of Sardinia (marked by blue boxes in Figure 10). Unfortunately, the sections were terminated on their eastern ends before the shelf break was reached. Thus, we are not able to confirm that the elevated energy levels on the western shelf break have counterparts on the eastern side where the cyclonic boundary currents are also present.

Figure 11. Average normalized internal wave energy levels of the three sections plotted against depth showing a distinct vertical variation.
When plotted against depth (Figure 11), the energy levels of all three sections show a significant decrease as a function of depth. Little difference can be seen between the sections. If there are any differences, they can be explained by the presence of the eddy with low energy levels. The vertical variation in the energy level we find here cannot be explained by the vertically varying vertical density gradient because the spectra have been normalized by the depth-dependent buoyancy frequency. Without corroborating measurements we are however not able to determine the cause for the vertical variation.

The depth intervals and regions with thermohaline staircases (below 600 m in the central part of section GH and the eastern parts of sections EF and IJ) show particularly low energy levels with values of 0.3–0.7 m2 h$^{-1}$ (see Figure 9 and Table S3 in Supporting Information S1). Compare that to the normalized value from Garrett and Munk (1975) for the latitude of 40°N of 2.5 m2 h$^{-1}$.

Elevated energy levels are found at the western ends of the sections close to the coast of Sardinia (see Figure 10 and Table S3 in Supporting Information S1). Unfortunately, the sections were terminated on their eastern ends before the shelf break was reached. Thus, we are not able to confirm that the elevated energy levels close to the coast are caused by the cyclonic boundary currents.

6. Conclusions

We acquired and analyzed seismic oceanography data from the Tyrrhenian Sea and found several distinct shallow and deep features that have never been shown before in such high lateral detail. The images clearly delineate the boundaries between AW and LIW and between LIW and TDW.

In the northwestern part of the seismic sections, we see two cold-core anticyclonic eddies likely formed of WIW. The larger of these eddies has been documented before as the NTA. The core of this eddy has a thickness of about 200–300 m and contains relatively few reflectors. Strong reflectors are found underneath the eddies down to about 700 m depth. Satellite images acquired during the period of the seismic acquisition show a chlorophyll minimum at the position of the larger eddy, in good agreement with our observations.

In the transition zone between LIW and TDW, vast areas of thermohaline staircases are imaged in unprecedented lateral resolution (6.25 m) continuously over the whole central Tyrrhenian basin. Their appearance is due to the pronounced temperature and salinity differences between the water masses that cause sound-reflecting impedance contrasts. Coincident XBT temperature, as well as temperature and salinity observations from both CTD and glider observations, match well with the seismic images, outlining the main water masses. We are able to trace seismic reflectors over distances of up to 200 km. These reflectors are caused by locally strong vertical impedance gradients. In the case of the staircase reflectors in the Tyrrhenian Sea (a regime with salt-fingering as the primary formation mechanism), we confirm that the impedance gradients are caused by temperature and salinity contrasts, with temperature being the dominant contributor as previously suggested elsewhere (e.g., Ruddick et al., 2009; Sallarès et al., 2009).

We find that some regions are better resolved than others, partially due to the fact that the high shot rate of the acquisition configuration introduced wrap-around multiple reflections that could not be fully removed without also degrading the overall data quality. Apart from this technical cause, for poorly resolved regions we find weak-to-vanishing staircase reflectors along the boundaries of the surveyed northern half of the Vavilov Basin, while the reflectors in the center of the basin are the best resolved. Because circulation in the deep Tyrrhenian Sea is dominated by cyclonic currents limited to the basin boundary, our results suggest that circulation inhibits the formation and/or persistence of thermohaline staircases. However, the boundary circulation also resupplies the Tyrrhenian Sea with the heat and salt that is required to balance the downward flux in the basin interior.

The analysis of the vertical excursions of the reflectors adds a second view, independent of the coherency of the reflectors. When analyzed for the spatial variation in internal wave energy we found distinct regional differences. Wherever coherent thermohaline staircases were present we found very low energy levels. This supports the view of a quiescent environment required for the staircase formation and preservation. Elevated energy levels were found near the boundaries of the basin and near the eddies, where water masses are more dynamic.
Our results show that horizontal exchange between the boundary and the interior region must obviously occur. It is however still unclear how exactly this takes place. The seismic, temperature and salinity data clearly show that in the center of the basin a very quiescent environment is conducive to the double-diffusive processes that form the extensive thermohaline staircases. However, to improve our understanding of the system, further analyses or new measurements of boundary current water masses feeding into the interior are required.

Appendix A: Seismic Data Processing

Digital seismic data processing is a series of mathematical operations that manipulate seismic traces (time series) to image the subsurface (see Yilmaz, 2001, for a complete discussion). For the data sets used in this study, we first designed a back projection algorithm to arrive at an optimal geometry configuration. This accounted for small deviations in the streamer’s position due to forcing by surface currents (so-called “feathering”). This was done by tracking along near-offset streamer positions, which are at a comparatively fixed lateral offset from the GPS-determined shot point positions. In contrast, the recording channels near the end of the streamer may be laterally offset by tens-to-hundreds of meters. Next, we applied a bulk shift of -64 ms to correct for a recording time delay that results from the source and receiver being towed at a depth of a few meters. We then applied a high-pass band pass filter at 3 Hz (with a taper of 18 dB/octave) to remove low-frequency swell noise. One effect of the band pass filter is to limit the effective resolution of the data set. Our filter gave a dominant frequency of 60 Hz, which corresponds to a dominant wavelength of about 25 m. In studies of the solid earth, the Rayleigh criterion is often used to deduce the maximum vertical resolution as one-quarter of the dominant wavelength. However, unlike rocks, heat and mass diffusion across water mass boundaries produces a gradual change in acoustic impedance (Hobbs et al., 2009). So we conservatively put our maximum vertical resolution at 10 m. The effective horizontal resolution is determined by the common-midpoint (CMP) spacing, which was 6.25 m.

To attenuate the direct wave noise (the acoustic wave which travels directly between source and receiver without reflecting—along the streamer cable), we applied a linear moveout correction using an optimal sound speed of 1,509 m/s that was determined empirically by ensuring that the direct wave was horizontally aligned. Next, we applied a trace mix with a weighting across 69 traces followed by adaptive subtraction of the direct wave energy. Finally, the linear moveout correction was restored.

We used a multichannel dip filter with removable automatic gain control (AGC) to reject energy with negative dips in order to minimize the strongest wrap-around multiple noise. Next, we applied a normal moveout correction (NMO) using a location-dependent sound speed function derived from colocated XBT temperature data. Salinity information for this calculation was obtained from a depth-dependent temperature-salinity relationship that was derived from nearby CTD data (Papenberg et al., 2010)—a valid approach in cases when at most two water masses are present at any depth so that a nonambiguous linear relationship between salinity and temperature can be derived. We then used two different dip filter designs to remove energy outside the maximum expected reflector dip in the sections. A linear radon velocity filter with a maximum dip of ± 300 ms at 3,600 m offset, as well as a radial prediction filter with a correlation length of five traces and a scan width of ± 5 ms improved trace-to-trace signal coherency in the shot gather. A final band-pass filter of 5–90 Hz with high-pass and low-pass tapered slopes of 18 and 57 dB/octave, respectively, completed the preprocessing.

We sorted the data by CMP location, stacked them, applied an amplitude preserving poststack Kirchhoff time migration, and converted two-way time (vertical axis) to depth using an average sound speed of 1,509 m/s. Lastly, for display we applied a poststack running trace mix to improve lateral coherency by removing random noise.

Appendix B: High-Resolution Seismic Sections

High-resolution seismic sections of Figure 2 are available as a PDF file in A3 format (Supporting Information, Figure S1).
Acknowledgments
This research was funded by the MEDOC project (seismic and oceanographic acquisition); Spanish Plan Nacional: CTM2007-66179-C02-01/MAR (Principal Investigators: C. R. Ranero and V. Hallarés) and Spanish Acción Complementaria OSMART CTM2009-07772-E (Principal Investigator: Francisco Machin); Grant George Buffet was funded through a Marie Curie Intra-European Fellowship (IEF): FP7-PEOPLE-2010-IEF. The glider operation was funded by the Deutsche Forschungsgemeinschaft (grant KI 3488/1-1). The authors would like to extend thanks to the captains and crews of the Spanish vessel R/V Sarmiento de Gamboa and the Italian vessels R/V Urania (Chief Scientist: Nevio Zittlin; Chief Scientist of oceanographic acquisition: Simón Ruiz) and Corno Monaro V. Thanks to Richard W. Hobbs and Ekaterina Vsemirnova for enlightening suggestions on an earlier version of the manuscript.

References

Ranero, C. R., & The MEDOC Team. (2010).

