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Abstract11
12

Sea surface salinity (SSS) retrieved from SMAP radiometer measurements is validated 13

with in situ salinity measurements collected from Argo floats, tropical moored buoys and 14

ship-based thermosalinograph (TSG) data. SMAPSSSachievedaccuracyof0.2PSUon a15

monthlybasisincomparisonwithArgogriddeddata inthetropicsandmid16

latitudes.In tropical oceans, time series comparison of salinity measured at 1 m by 17

moored buoys indicates that SMAP can track large salinity changes occurred within a 18

month. Synergetic analysis of SMAP, SMOS and Argo data allows us to identify and 19

exclude erroneousjumps ordriftinsomerealtimebuoydata fromassessmentof20

satelliteretrieval.TheresultingSMAPbuoymatchupanalysisleadsto an average 21

standard deviation of 0.22 PSU and correlation coefficient of 0.73 on weekly scale; the 22

average standard deviation reduced to 0.17 PSU and the correlation improved to 0.8 on 23

monthly scale. SMAP L3 daily maps reveals salty water intrusion from the Arabian Sea 24

into the Bay of Bengal during the Indian summer monsoon, consistent with the daily 25
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measurements collected from floats deployed during the Bay of Bengal Boundary Layer 26

Experiment (BoBBLE) project field campaign. In the Mediterranean Sea, the spatial 27

pattern of SSS from SMAP is confirmed by the ship-based TSG data.28

29

Key Words: SMAP, Sea Surface Salinity, Argo float, moored buoy30
31
32
33
34
35



3

1. Introduction36
37

The spacebased observation of sea surface salinity (SSS) is crucial for the global water 38

cycle studies. The L-band microwave technology has been used to measure the sea 39

surface salinity (SSS) on two satellite missions: the NASA�s Aquarius [Le Vine et al., 40

2007; Lagerloef et al., 2008] and the ESA�s Soil Moisture and Ocean Salinity (SMOS) 41

[Kerr et al., 2010; Font et al., 2010]. The third satellite carrying L-band instruments, the 42

NASA Soil Moisture Active Passive (SMAP) observatory, is designed to measure the soil 43

moisture over land [Entekhabi et al., 2010]. Although the primary goal of SMAP is over 44

land, its measurements can also be used to retrieve SSS. 45

The measurement principle is based on the L-band microwave sensitivity to water 46

salinity, which influences the water dielectric constant and consequently the sea surface 47

emissivity measured as surface brightness temperature (TB) by radiometer. To accurately 48

retrieve SSS from measured TB, other factors which also contribute to the surface 49

emissivity need to be accurately accounted for through the so-called �roughness 50

correction�. This is achieved through a geophysical model function (GMF) that links the 51

excess surface emissivity to ancillary geophysical parameters, including surface wind 52

speed, direction, significant wave height (SWH), and sea surface temperature (SST). The 53

L-band radar on board of Aquarius played a significant role in the roughness correction 54

as implemented in the combined active and passive (CAP) retrieval algorithm [Yueh et 55

al., 2013; Yueh et al., 2014; Tang et al., 2013; Tang et al. 2015]. The challenge for the 56

operational SMAP SSS retrieval is that it has to rely on radiometer measurements only, 57

after the unfortunate failure of SMAP radar in July 2015, a few months after launch.58
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The algorithm to retrieve SSS from SMAP radiometer data has been developed at 59

the Jet Propulsion Laboratory (JPL) [Fore et al., 2016]. Analyzing available SMAP and 60

matchup ancillary data, it is found that SMAP TB well corroborates the Aquarius GMFs61

for wind speed up to at least 40 m s-1 [Yueh et al., 2016]. Therefore, the roughness 62

correction which removes excess surface emissivity from SMAP-measured TB is 63

currently based on the Aquarius radiometer GMF. The JPL SMAP TB-only processing 64

uses a maximum-likelihood method to minimize the objective function, which is the 65

square sum of the differences between measured and modeled TB for each �flavor� (i.e. 66

H-fore, H-aft, V-fore, and V-aft) [Eq. (1) in Fore et al. 2016]. An additional term is 67

included in the objective function to constrain the wind speed within a certain range of 68

ancillary wind speed from the National Centers for Environmental Prediction (NCEP).  69

The salinity is unconstrained except to restrict the valid retrieval between 0 and 40 PSU70

(practical salinity unit). The SMAP SSS product is available for publicly access71

(ftp://sealion.jpl.nasa.gov/pub/outgoing/smap/v3.0 or ourcoean.jpl.nasa.gov).72

In this paper, we validate JPL SMAP SSS product by comparison with in situ 73

measurements, which are described in Section 2. Validation results are presented in 74

Section 3 and conclusion given in Section 4. 75

76
2. Data77

78
The SMAP SSS product analyzed in this study is the version v3.0 Level 3 (L3) 79

data produced by the radiometer TB-only processing [Fore et al., 2016]. The SMAP Level 80

2 (L2) SSS and wind speed are retrieved at each of the salinity-wind-cell (SWC) defined 81

along the satellite swath with 1624x76 cells along/cross track per satellite revolution. The 82

L2 data covers global ocean in 8 days with a spatial resolution of ~40 km. There are two 83
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L3 products, monthly and 8-days, both on 0.25°x0.25° grid.  The 8-days product is 84

created daily by averaging 8 days of L2 data centered at noon UTC (Coordinated 85

Universal Time) of the day with a search radius of 45 km and Gaussian weighting half-86

power distance of 30 km. 87

The Argo array has approximately 3700 floats in the global ocean measuring 88

salinity and temperature profiles [Roemmich and the Argo Team, 2009], with data made 89

freely available by the International Argo Program (see Acknowledgement for data links). 90

We use two objectively interpolated (OI) gridded monthly Argo dataset produced,91

respectively from the Scripps Institution of Oceanography (SIO) 92

(http://www.argo.ucsd.edu/Gridded_fields.html) and from the Asia-Pacific Data-93

Research Center (APDRC) of the International Pacific Research Center (IPRC) at the 94

University of Hawaii (http://apdrc.soest.hawaii.edu). The SMAP L3 monthly data is 95

compared with Argo OI salinity at the shallowest depth (2.5 m) produced using individual 96

float measurements within 5 m from the surface.97

The moored buoy arrays provide salinity measurements close to the surface (~ 98

1m) at high temporal resolution in tropical oceans, which include the Tropical 99

Atmosphere Ocean (TAO)/TRITON array in the Pacific [McPhaden, 1995; McPhaden et 100

al., 1998], the Pilot Research Moored Array in the Tropical Atlantic (PIRATA) [Servain 101

et al., 1998; Bourles et al., 2008], and the Research Moored Array for Africa-Asian-102

Australian Monsoon Analysis and Pre- diction (RAMA) in the Indian Ocean [McPhaden 103

et al., 2009]. The buoy salinity sensors record temperature and conductivity data at 10-104

minute intervals, which are used to compute hourly averaged salinity with an accuracy of 105

0.02 PSU [Freitag et al., 1999]. The depths at which salinity measurements are available 106
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vary with buoy locations. In this study, we only use the salinity measurements obtained 107

within 1 m from the surface to assess whether SMAP L3 SSS accurately depict the 108

changes occurred at weekly time scales to complement the analysis based on monthly 109

Argo-gridded products.110

We also explore other in situ salinity measurements in the SMAP period particularly 111

in coastal oceans and marginal seas to complement Argo floats and moored buoys. One 112

such source is the salinity data collected by ships assembled by the Global Ocean Surface 113

Underway Data (GOSUD) Project (http://gosud.org) under the Intergovernmental 114

Oceanographic Commission (IOC). Specifically valuable to this study is the large amount 115

of salinity data made available by GOSUD in the Mediterranean Sea where SMAP 116

appears to be able to provide SSS retrievals. We also examined the in situ measurements 117

in the Mediterranean Sea available from the Copernicus (HCMR), an earth observing 118

data center under the European Commission (http://copernicus.eu). 119

Another special data set recently made available to us is from the Bay of Bengal 120

Boundary Layer Experiment (BoBBLE) project field campaign, which took place June-121

July 2016 [Matthews et al., 2015]. During this field campaign, 7 Argo floats were 122

deployed in the southern Bay of Bengal along 8°N, between 85.3°E and 89°E. Of 123

particular interest to this study is the daily near surface salinity measurements from the124

BoBBLE floats equipped with SeaBird (SBE) 41-CP Conductivity, Temperature and 125

Depth (CTD) sensor and Surface Temperature Salinity (STS) sensor, which is a126

secondary free-flushed conductivity sensor used in conjunction with the CTD for 127

extending the temperature and salinity measurements through the sea surface [Larson et 128

al., 2008]. The STS returns very high-resolution salinity profile with multiple 129
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measurements at 0.1 dbar pressure increment in the top one meter from the surface. For 130

this study, we average measurements obtained at pressure less than 0.5 dbar.131

SMOS SSS, which was validated [Boutin et al, 2012; Boutin et al., 2016], is used as 132

an independent dataset for comparison in this study. We obtained SMOS salinity data 133

from the Ocean Salinity Expertise Center (CECOS) of the CNES-IFREMER, France. 134

SMOS L3 gridded data is available in 10 Days/monthly composites. SMOS data used in 135

this study is the �research� product before May 2015, and �operational� product 136

afterwards. 137

138
3. Results139

140

Figure 1 presents the monthly SSS maps of May 2015 for SMAP, Aquarius, 141

SMOS and SIO Argo. The large-scale features of the salinity fields agree very well 142

Figure 1. Global maps of sea surface salinity from (a) SMAP, (b) Aquarius (CAP), (c) 
SMOS and (d) Argo from SIO for the month of May 2015.
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between satellites and Argo. We note some new details that SMAP SSS can provide close 143

to land due to its higher spatial resolution than Aquarius and Argo and better built-in 144

radio frequency interference (RFI) detection than Aquarius and SMOS [Mohammed et al., 145

2016]. Many places where no valid data from Aquarius or SMOS gridded products or 146

Argo OI products, SMAP appears to depict reasonable SSS structure, for example, the 147

extremely salty Mediterranean, Red Sea and the northern tip of the Arabian Sea, the fresh 148

water on the west side of Pacific along the Kuroshio current, the northward diffusion of 149

the Amazon river runoff plume, and the major river outflows into the coastal regions of 150

Gulf of Mexico [Fournier et al., 2016].  151

Figure 2. Sea surface salinity in the Mediterranean Sea from (a) SMAP and (b) in 
situ measurements bin-averaged on 0.25°grid for the period from April 1, 2015 to 
September 30, 2016. (c) The difference of SMAP minus in situ. (d) Scatter plot of 
SMAP vs. in situ over collocated grid points.
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The potential of SMAP for SSS retrieval in the Mediterranean Sea is indicated in 152

Fig. 2. The known regions with persistent RFI are on the eastern part of the 153

Mediterranean adjacent to Syria, Lebanon and Israel and the coast of Libya near Tripoli 154

(See Fig. 13 in Mohammed et al., 2016), which cause lower than expected SMAP 155

salinities (color coded as light or deep blue in Fig. 2a). Searching through the GOSUD 156

database, we found more than 300,000 sea surface salinity measurements from TSG 157

along ship trajectories in the Mediterranean Sea for the period from April 2015 to Sept. 158

2016, most of them concentrated in the western Mediterranean with two tracks across the 159

basin. We also found some glider and moored buoy data from the Copernicus marine 160

database, which extended the in situ data coverage in the eastern Mediterranean Sea.  161

Combining data from GOSUD and Copernicus, we created the daily bin-average of the in 162

situ data in the domain on 0.25°x0.25° grid. Figure 2 shows the mean SSS from SMAP 163

L3 and in situ data averaged over the period from April 2015 to Sept. 2016. SMAP SSS 164

agrees reasonably well with in situ, depicting the relatively fresh water in the western 165

Mediterranean in Balearic Sea, with increased salinity moving eastward into Tyrrhenian 166

Sea, and becoming extremely salty along the tracks from Sicily to Suez Canal. The 167

correlation between SMAP and ship data over collocated grid points is 0.78 with bias of 168

0.12 PSU and the standard deviation and Root Mean Square Difference (RMSD) of about 169

0.5 PSU (Table 1).170

Table 1. Statistical differences between SMAP L3 daily SSS and in situ data in the 171
Mediterranean.172
In situ Bias Standard deviation RMSD Correlation
GOSUD/HMCR 0.12 0.51 0.52 0.78
Argo -0.29 0.50 0.58 0.70
Argo-Zone 1 0.02 0.47 0.47 0.55
Argo-Zone 2 -0.78 0.41 0.89 0.11
Argo-Zone 3 -0.48 0.39 0.62 0.33
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173

We have compared the daily SMAP L3 SSS with Argo SSS (closest to surface, 174

cut-off at 10m and collocated with 0.25°x0.25° grid cell within 8 days) in the 175

Mediterranean Sea during one year (from April 4, 2015 until April 3, 2016). This is a 176

region strongly affected by RFI. Nevertheless, only a 2.8% of the SMAP-Argo177

comparisons can be considered as outliers [Tukey, 1977] and are mainly concentrated in 178

the Levantine basin and in the south of the Adriatic Sea (Fig. 3a). By neglecting outlier 179

measurements, the correlation between SMAP and Argo profiles data is about 0.70 with 180

bias of -0.29 PSU, the standard deviation about 0.50 and RMS difference of about 0.58181

(Fig. 3b). These values are consistent with the statistical differences from GOSUD and 182

HCMR data (Table 1). It is worth noting that the Argo distribution is conditioned by the 183

bathymetry, showing a lack of measurements in the Sea of Sicily and the Aegean Sea.184

Figure 3. Comparison of SMAP L3 daily and Argo SSS in the Mediterranean during April 
4, 2015 and April 3, 2016. (a) Difference map and (b) Density plot. The Mediterranean 
Sea is divided in the three zones indicated in the figure: Occidental region (zone 1), 
Adriatic Sea (zone 2) and oriental region (zone 3). Only measurements meeting the 
constraint: Q1 - 1.5 x IQR < | SMAP -Argo | < Q3 + 1.5 x IQR are used to compute 
statistics. Q1 and Q3 are the first and third quartile and IQR is the interquartile range 
(IQR=Q3-Q1). Measurements out of this range are considered as outliers,The data from 
the whole year are used to compute outliers.
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Three regions can be identified depending on the differences between SMAP and 185

Argo. These regions are shown in Fig. 3a. Inspection of this figure shows that bias of 186

occidental (zone 1) and oriental (zone 3) regions are different, being larger in the oriental 187

one. In the oriental region SMAP provides smaller salinity values than Argo. This 188

difference between three zones is quantified in Fig. 4. The bias in the occidental part is 189

very small (0.02 PSU) with a standard deviation and an RMSD of 0.47, whereas the 190

values of the bias, standard deviation and RMSD increase in the oriental region (-0.48, 191

0.39 and 0.62, respectively).  The cause of this difference could be the concentration of 192

RFI sources in the oriental Mediterranean which is larger than in the occidental region. 193

The comparison in the Adriatic Sea (zone 2) provide poor results (bias of -0.78, RMSD194

of 0.88 and correlation of -0.11), probably due to the fact that it is a coastal sea and land 195

contamination effects are difficult to correct. A future adjustment of the SMAP RFI 196

mitigation algorithms and land contamination correction could provide better values in197

zones 2 and 3. 198

199
3.1 Comparison with global monthly gridded Argo data200

201

(a) Zone 1 (b) Zone 2 (c) Zone 3
Figure 4. Density plot of SMAP L3 daily maps in front of the corresponding ARGO values 
for the three regions of the Mediterranean Sea. Data correspond to the period from April 
4, 2015 to April 3, 2016. 



12

We compare the monthly SMAP L3 SSS with Argo gridded salinity from SIO and 202

APDRC for the period from April 2015 to September 2016. Fig. 5 shows the global203

Figure5.Comparison of SMAP SSS with monthly Argo from SIO (left) and APDRC 
(right): (a & b) Biases, (c & d) standard deviation, (e & f) RMS difference and (g & h) 
correlation coefficients. 
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maps of the mean, standard deviation and Root-Mean-Square (RMS) difference of SMAP204

minus Argo and their correlation coefficients. In the majority part of the tropical oceans205

away from the coast, SMAP show small error (< 0.2 PSU) and high correlation (> 0.7) 206

with respect to (w.r.t.) Argo data. 207

We can identify several regions where there are noticeable large differences 208

between SMAP and Argo OI products. First in the high latitudes (40° poleward) there is 209

large RMSD or standard deviation (> 0.5 PSU) coincident with low correlation (< 0.5).  210

In addition to large instrument measurement error and significantly reduced L-band 211

radiometer sensitivity to salinity signal in cold water, this may also be caused by the 212

degradation in performance of TB-only retrieval algorithm under the influence of strong 213

wind and high wave without the use of radar data to assist the roughness correction of 214

excess surface emissivity.215

Second, large RMS difference are observed in the regions adjacent to land, 216

particularly noticeable along the west coast of Africa and South America, east of North 217

America and Asia, and near Amazon. The substantial negative bias in the coastal oceans 218

of China could be the result of un-mitigated RFI [Mohammed et al., 2016]. Part of those 219

differences could be caused by the error in Argo OI products due to the under-sampling 220

by Argo floats in regions significantly influenced by the spatiotemporal variability 221

associated with boundary currents, river plumes, upwelling, etc.. Along the South222

America coast near Chili, although RMSD (Fig. 5e & f) is large but the standard 223

deviation (Fig.5c & d) is less than 0.2 PSU. This may suggest error caused by the bias224

due to the residual error in land contamination correction on SMAP�s radiometer data. 225

Third area with large difference is where there could be significant near surface 226
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salinity stratification, such as in the Eastern Pacific Fresh Pool (EPFP) where Argo OI 227

error is small but RMSD/std are large. This is because satellite measures salinity at 1-2 228

cm near the surface while the majority of Argo floats were turned off within 2-5 m near 229

the surface. Discrepancy is expected between salinity measured by satellite and Argo 230

particularly under persistent rainy conditions [Boutin et al., 2015; Tang et al. 2014]. 231

Figure 6. Monthly mean (top), standard deviation (middle) and RMS difference (bottom) 
between SMAP and Argo from SIO (black) and APDRC (red).
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In summary, the comparison with Argo monthly gridded data identified regions 232

where (1) satellite retrieval needs improvements (high latitudes), (2) Argo-gridded data is 233

unreliable to be used for assessment (coastal regions), and (3) SMAP SSS differ from 234

salinity measured by Argo due to near-surface stratification. Excluding those areas, we 235

obtain the monthly error assessment between 40°S and 40°N latitudes as shown in Fig. 6. 236

Averaged over the whole period, the bias between SMAP and Argo is near zero with 237

RMS difference around 0.2 PSU.238

3.2 Comparison with moored buoys in the tropics239
240

Moored buoy arrays in tropical oceans provide daily salinity measurements at 1 m 241

depth. Daily sampling of buoy data allows us to validate the SMAP data at weekly-242

biweekly time scale. We extract the time series of data from L3 SMAP and SMOS243

products at each buoy locations, with a 7-day moving average applied to the time series 244

of each collocation. As an example, Fig. 7 illustrates the time series at the TAO buoy 245

located at 5°N, 95°W and the RAMA buoy at 0°N, 90°E. It demonstrates that SMAP and 246

SMOS SSS products agree well with each other and depict salinity fluctuations very 247

close to the buoy 1 m salinity. Particularly interesting is that SMAP SSS not only closely 248

agrees with buoy data in depicting the more than 2 PSU freshening peaked in Feb. 2016 249

at TAO buoy and Nov. 2015 at RAMA buoy, respectively, but also the timing of rapid 250

fluctuations during the course of salt recovering afterwards. The monthly APDRC and 251

SIO SSS in general corroborate the mean of the SMAP and SMOS SSS. However, they 252

missed or underestimated the fluctuations with time scales shorter than about two months, 253

which are signals that SMAP, SMOS, and mooring data show reasonable agreement. 254

Note that there is a time-varying bias of about 0.1 to 0.5 PSU between APDRC and SIO 255
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256

(a)

(b)

Figure 7. Time series of buoy salinity at 1m depth (black) and collocated SMAP (red) 
and SMOS (cyan) SSS at (a) TAO buoy location 5°N, 95°W and (b) RAMA buoy location 
0°N, 90°E, from April 1, 2015 to Sept. 30, 2016, with 7-day moving average applied, 
over plotted with monthly Argo data from SIO (green) and APDRC (blue).
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at 5°N, 95°W, indicating the uncertainty of Argo-gridded products. The agreement 257

between SMAP, SMOS and buoy SSS demonstrates that SMAP salinity has very good 258
skill to track large change of salinity at about weekly time scale.259

We examined the daily 1 m salinity measured at each moored buoy locations 260
from TAO, PIRATA and RAMA arrays. There are total of 97 buoys each with at least 261
100 daily records collocated with SMAP period. Figure 8 shows the color-coded means, 262
standard deviations, RMS differences and Pearson correlation coefficients between 263
SMAP and buoy. Note the number of collocated pairs between buoy and SMAP varies 264
with locations. SMAP SSS generally agree well with buoys, with temporal correlation at 265
77 out of 97 buoys locations exceeding 0.6, all of which are statistically significant with 266
p-value less than 0.001. 267

There are several buoy sites where large biases and RMSD are observed, 268

including the three locations along 180° in the central Pacific, a few locations in the 269

eastern equatorial Pacific fresh pool and in the BOB along 90°E. At these locations, RFI 270
contamination is not likely to be the main error source as indicated by the RFI probability 271
maps [Mohammed et al., 2016]. We suggest two possible causes for the large discrepancy 272
observed. First it may reflect the expected difference between the point-wise in situ 273
measurements and the satellite observations that represent the averages over its footprints 274
[Vinogradova and Ponte, 2013, Boutin et al. 2015]. For example for the several RAMA 275

buoys along 90°E, the agreement between SMAP and buoys are excellent at three 276

southern locations away from the land (1.5°S, 0°, and 4°N) with RMSD ~0.2 PSU and 277
correlation ~ 0.8, but moving northward into BOB the discrepancy becomes larger with 278
RMSD increased to 0.4 PSU and correlation reduced to 0.6. It is likely that in the BOB 279
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where SSS structure is dominated by small spatial variability under the influence of river 280
runoffs and meso- and submesoscale variability, there can be a larger difference between 281
the spatial average for satellite measurements with the footprint (~ 40km) and point 282

Figure 8.  Comparison of SMAP SSS with salinity measured by moored buoys at 1 m 
depth: (a) Biases, (b) standard deviation, (c) RMS difference and (d) correlation 
coefficients. 
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measurements by buoy. 283
The second possibility is malfunctioning of buoy salinity sensor and the corrupted 284

real time data were not flagged. One such example is the time series of TAO buoy at 5°N, 285

110°W (Fig.9a), where the real time 1-m salinity from buoy agrees with SMAP and 286

SMOS SSS until Dec. 2015 (the delayed-mode buoy salinity data that have better quality-287
control flags are not yet available). After Dec. 2015, the mooring salinity became 288
progressively higher. This increase in mooring salinity is inconsistent with the satellite 289
SSS (from SMAP and SMOS) or the Argo products (SIO and APDRC). While buoy 290
salinity drifted away from satellite data by about 1 PSU, it is also interesting to note that 291
the buoy SSS remained to have temporal variation with similar amplitude to SMAP and 292

SMOS. Another example is at TAO location 5°S, 125°W where buoy data suddenly 293
jumped by more than 1 PSU in Sept. 2015 and stay higher than satellite and Argo 294
measurements for the following six months. After March 2016, the buoy salinity values 295
returned to the level agree with all other measurements after the salinity sensor was 296
replaced on March 5, 2016 (Karen Grissom, National Buoy Data Center, personal 297
communication). Clearly, the large standard deviation of the SMAP and buoy differences298
are essentially caused by the large discrepancy during those periods when buoy data 299
showed suspicious abnormal behavior.300
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(a)

(b)

Figure 9. Time series of buoy salinity at 1m depth (black) and collocated SMAP (red) and 
SMOS (cyan) SSS at TAO buoy location (a) 5°N, 110°W and (b) 5°S, 125°W from April 1, 
2015 to Sept. 30, 2016, with 7-day moving average applied, over plotted with monthly 
Argo data from SIO (green) and APDRC (blue).
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Table 2. StatisticaldifferencesbetweenSMAPL3,SMOS,ArgofromSIO,Argofrom302
APDRCandsalinitymeasuredat1mbymooredbuoys.303
Dataset 7-day average 30-day average

Bias Standard 
deviation

RMSD Correlation Bias Standard 
deviation

RMSD Correlation

SMAP 0.07 0.22 0.26 0.73 0.05 0.17 0.22 0.80
SMOS -0.15 0.26 0.26 0.63 -0.16 0.22 0.32 0.71
ARGOSIO 0.04 0.19 0.21 0.72 0.03 0.16 0.19 0.79
ARGOAPDRC 0.03 0.20 0.24 0.66 0.03 0.17 0.21 0.71

304
305

After inspecting the time series of all 97 buoys, we found 10 of them have large 306

drift or jump in the 1-m salinity time series, in disagreement with SMAP, SMOS and 307

Argo from SIO or APDRC. These suspicious buoy data, most likely due to malfunctioned 308

mooring salinity sensors (Meghan Cronin, NOAA/Pacific Marine Environmental 309

Laboratory, personal communication), were excluded from SMAP SSS assessment.  As 310

listed in Table 2, the bias, standard deviation and RMS difference averaged over the 311

remain 87 buoys are 0.07, 0.22 and 0.26 PSU on 8-day (~weekly) scale and reduces to 312

0.05, 0.17 and 0.22 PSU on monthly scale (with 30-days moving average applied). Table 313

2 also summarizes similar statistical comparisons between moored buoys with SMAP, 314

SMOS, Argo from SIO and APDRC respectively. Averaged over 87 buoys, SMAP and 315

Argo products show small biases and similar statistics. The standard deviation and 316

RMSD between SMAP and buoy is slightly higher than that between Argo and buoy by 317

less than 0.05 PSU, while the correlation between SMAP and buoy is slightly better than 318

Argo-gridded on both weekly and monthly scales.319

The ability of satellite SSS to identify suspicious mooring salinity data as 320

discussed in relation to Fig. 9 suggests that satellite SSS can be used to perform real-time 321

quality control (QC) of mooring salinity data. While Argo OI products can also be 322

potentially used for this purpose, these products missed or underestimated many shorter-323



22

term fluctuations (as discussed earlier). This, compounded by the smaller amount of real-324

time Argo data volume, limits the potential utility of Argo data for real-time QC of 325

mooring salinity.326

327

3.3 Comparison with STS floats in BOB328

Figure 10 shows STS salinity on top of SMAP L3 SSS from July 2 to August 12, 329

2016, the period when BoBBLE STS data is available. Collocated data is shown in six 330

consecutive plots, each represents one week of SMAP and STS measurements. The daily 331

STS data are matched up with the closest SMAP L3 grid point and over plotted on the 332

Figure10.TheArgoSTSsurfacesalinitydatacollectedduringBoBBLE fieldcampaign
fromJuly2toAugust12,2016areshownwithSMAPL3SSSforthesameperiod.Each
panelcontains7daysofSTSdatafromfourArgofloats(colorcircle)plottedontopof
SMAPL3SSS(colorcodedcontours,offsetby0.4PSU)andOSCARcurrents(black
arrows)forthecorrespondingweek.
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weekly SMAP SSS data, which is produced from SMAP L2 data for the same period. 333

Also shown is the near surface ocean currents from OSCAR (Ocean Surface Current 334

Analysis Real-time, available from http://podaac.jpl.nasa.gov).   It appears that both 335

SMAP and Argo depicted the salty water intrusion from Arabian Sea to the Bay of 336

Bengal during the Indian Summer Monsoon. The surface salinity in the region jumped 337

about 2 PSU in a few weeks when the salty water entered from the southern BOB in 338

middle of July, transported northward, and spread over the region in early August. SMAP 339

and Argo consistently captured the evolvement of rapid salinity change associated with 340

the event. In the third week of July (Fig.10c), SMAP observed the sharp fronts of 341

incoming salty water in southern BOB, when Argo floats happening to be near the fronts 342

showed similar salinity values. The week after (Fig.10d), SMAP showed one patch of 343

salty water moving northward, followed by a new patch of salty water input, while Argo 344

floats situated in between the two patches. From late July to early August, the two 345

patches merged when the floats were in the center of salinity maximum. 346

Figure 11 shows the scatter plots of collocated SMAP SSS and Argo salinity returned 347

respectively by STS and 41-CP, which is averaged from measurements within 5 meters348

from surface. The comparison between SMAP and STS or 41-CP are quite similar with a 349

standard deviation of about 0.2, RMSD of about 0.5 PSU and correlation exceeding 0.8. 350

It is noted that the agreement with 41-CP is slightly better than STS. It should also be 351

noted that a major part of RMSD is caused by a bias of about 0.45 PSU. We have 352

examined the difference between SMAP and the RAMA buoy located at 8°N and 90°E, 353

which is located slightly to the east of the domain indicated in Fig. 10; we found a small354

bias of 0.08 PSU at this RAMA buoy location (Fig. 12), much 355
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smaller than the 0.5 PSU bias with respect to the STS or 41-CP. This suggests that there 356

was a near surface salinity stratification with a horizontal gradient from east to west.357

358
4. Conclusions359

360

The SSS retrieved from the SMAP TB has been validated with in situ measurements 361

from Argo floats, moored buoys, and TSG data collected by ships on various time scales.  362

We conclude that SMAP SSS retrieved from L-band radiometer has achieved an accuracy 363

of 0.2 PSU globally between 40°S and 40°N on a monthly basis through comparison with 364

Argo gridded data. In tropical oceans, salinity measured at 1 m by moored buoys 365

indicate SMAP is able to track large salinity changes occurred within month, with RMSD 366

of 0.26 PSU on weekly scale, which reduced to 0.22 PSU on monthly scale. 367

Figure11.ScatterplotofSMAPSSSandcollocatedArgosurfacesalinityfromSTS
(black)and41CP (red).
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The unique capability of SMAP to observe salinity signals in coastal oceans and 368

marginal seas is demonstrated through an assessment using TSG data along ship tracks in 369

the Mediterranean Sea and data collected from floats equipped with STS in BOB. SMAP 370

reveals features consistent with the in situ measurements: the salinity spatial structure 371

across the Mediterranean Sea, and sub-monthly evolution of Arabian salty water intrusion 372

into BOB. The slightly higher RMSD (~0.5 PSU) observed in Mediterranean Sea and 373

BOB may not only result from the land and RFI contamination on SSS retrieval, but also 374

due to the limited number of matchups in these regions. A validation with the much more 375

matchups of SMAP and in situ data, as well as process oriented studies such as 376

demonstrated in Servain et a. [2016] are needed to provide systematic assessment of 377

SMAP SSS retrieval in marginal seas and near coast.  378

Figure 12. Time series of buoy salinity at 1m depth (black) and collocated SMAP (red) 
and SMOS (cyan) SSS at TAO buoy location 8°N, 90°E from April 1, 2015 to Sept. 30, 
2016, with 7-day moving average applied, over plotted with monthly Argo data from 
SIO (green) and APDRC (blue). 
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The validation identified areas with relatively large discrepancy between SMAP and 379

in situ measurements, suggesting future improvements of the TB-only SMAP retrieval 380

algorithm in the cold water, which tends to be under the influence of strong wind and 381

high wave. 382

Note that the statistics of the differences of SMAP SSS from in-situ salinity 383

measurements not only reflect the uncertainties of SMAP SSS, but also include other 384

factors. These factors include (1) the uncertainties of the Argo IO products (e.g., Lee 385

2016), (2) near-surface salinity stratification (e.g., Boutin et al. 2015), and (3) scale-386

mismatch between averages on the satellite footprint and point-wise in-situ measurements 387

(e.g., Vinogradova et al. 2013, Boutin et al. 2015). 388

Our time series comparison for SMAP, SMOS, Argo OI products, and mooring data 389

suggest that the satellite SSS have the potential to be used for real-time QC of mooring 390

salinity data to detect measurements that are significantly affected by issues such as 391

biofouling. Satellites, Argo, moorings, and ships provide complementary platforms to 392

monitor global ocean salinity and to assess the associated measurement and sampling 393

errors from different platforms.394
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