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Abstract

We obtain all the homogeneous pseudo-Riemannian structures on the
oscillator groups equipped with a family of left-invariant Lorentzian met-
rics. Moreover, in the 4-dimensional case we determine all the correspond-
ing reductive decompositions and groups of isometries.

1 Introduction

In [7] Medina proved that the oscillator groups are, except for direct exten-
sions with Euclidean groups, the only non-commutative simply connected solv-
able Lie groups which admit a bi-invariant Lorentzian metric. From the bi-
invariance of the metric, it turns out that the corresponding pseudo-Riemannian
spaces are symmetric. These groups also appear in various types of problems
which arise from mathematical physics. For instance, the Lie algebra of the
4-dimensional oscillator group is associated to the harmonic oscillator problem
(see Streater [11], where the group is so named because of this property) and,
on the other hand, this Lorentzian symmetric space-time has been found to be a
special case of solutions of the Einstein-Yang-Mills equations (see Levichev [5]).

It is a well-known fact that under certain topological conditions, a pseudo-
Riemannian symmetric space is characterized by the vanishing of the covariant
derivative of the curvature. In the homogeneous Riemannian case, Ambrose and
Singer [1] extended that characterization. They proved that a connected, simply
connected and complete Riemannian manifold (M, g) is homogeneous if and only
if there exists a (1, 2) tensor field S on M (called a homogeneous Riemannian
structure) satisfying certain properties (see (2.1)). In [2] we have extended the
Ambrose-Singer characterization to the case of pseudo-Riemannian manifolds,
introducing homogeneous pseudo-Riemannian structures. We proved that a con-
nected, simply connected and geodesically complete pseudo-Riemannian mani-
fold (M, g) admits a homogeneous pseudo-Riemannian structure if and only if
it is a reductive homogeneous pseudo-Riemannian space. Furthermore, in [3]
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we have obtained a classification of homogeneous pseudo-Riemannian structures
into eight classes similar to the Tricerri-Vanhecke classification [12] for the Rie-
mannian case. If the signature of the metric is (k, n − k), those classes are
defined by the subspaces of certain space S1⊕S2 ⊕S3 which are invariant under
the action of the pseudo-orthogonal group Ok(n). The trivial class corresponds
to the symmetric pseudo-Riemannian spaces.

In this paper, we consider a family of Lorentzian left-invariant metrics on
the oscillator groups which generalize those ones introduced by Levichev [6] in
his study of causal homogeneous Lorentzian 4-manifolds. All the corresponding
pseudo-Riemannian spaces except one are not symmetric, and our purpose is
to study their homogeneity by means of their homogeneous pseudo-Riemannian
structures. The contents of this paper are as follows. In §2 we recall some results
about homogeneous pseudo-Riemannian structures. In §3 we give the formu-
las for the Levi-Civita connections and curvatures of a family of left-invariant
Lorentzian metrics on the (2m+2)-dimensional oscillator group G(λ1, . . . , λm),
λ1, . . . , λm ∈ R+. In §4 we obtain the general expressions for the homogeneous
pseudo-Riemannian structures on these Lorentzian manifolds. Finally, in §5 we
determine all the reductive decompositions associated to each homogeneous Lo-
rentzian structure in the nonsymmetric 4-dimensional cases and we obtain all
the corresponding groups of isometries.

2 Homogeneous pseudo-Riemannian structures

Let (M, g) be a connected C∞ pseudo-Riemannian manifold of dimension n
and signature (k, n − k). Let ∇ be the Levi-Civita connection of g and R the
curvature tensor field, for which we adopt the conventions RXY Z = ∇[X,Y ]Z −
∇X∇Y Z + ∇Y ∇XZ, RXY ZW = g(RXY Z, W ), for X, Y, Z, W ∈ X(M).

A homogeneous pseudo-Riemannian structure on (M, g) is [2] a tensor field

S of type (1, 2) on M such that the connection ∇̃ = ∇− S satisfies

∇̃g = 0, ∇̃R = 0, ∇̃S = 0. (2.1)

If g is a Lorentzian metric (k = 1), we say that S is a homogeneous Lorentzian

structure. In [2] we have proved that if (M, g) is connected, simply connected
and geodesically complete then it admits a homogeneous pseudo-Riemannian
structure if and only if it is a reductive homogeneous pseudo-Riemannian man-
ifold.

Let V be a real vector space endowed with an inner product 〈 , 〉 of signature
(k, n−k). The space (V, 〈 , 〉) is the model for each tangent space TxM , x ∈ M ,
of a reductive homogeneous pseudo-Riemannian manifold of signature (k, n−k).
Consider the vector space S(V ) of tensors of type (0, 3) on (V, 〈 , 〉) satisfying
the same symmetries as those of a homogeneous pseudo-Riemannian structure
S, that is, S(V ) = {S ∈ ⊗3V ∗ : SXY Z = −SXZY , X, Y, Z ∈ V }, where
SXY Z = 〈SXY, Z〉. The inner product of V induces in a natural way an inner
product in S(V ), given by 〈S, S′〉 =

∑n
i,j,k=1 εiεjεk Seiejek

S′
eiejek

, where {ei} is
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an orthonormal basis of V , 〈ei, ei〉 = εi, εi = −1 if 1 ≤ i ≤ k, εi = 1 if k + 1 ≤
i ≤ n. In [3], we have established the decomposition of S(V ) into invariant and
irreducible subspaces under the action of the pseudo-orthogonal group Ok(n)
given by (aS)XY Z = Sa−1X a−1Y a−1Z, a ∈ Ok(n). If c12 : S(V ) → V ∗ is the
map defined by

c12(S)(Z) =

n∑

i=1

εiSeieiZ , Z ∈ V, (2.2)

where {ei} is an orthonormal basis of V as above, we have

Theorem 2.1. If dimV ≥ 3, then S(V ) decomposes into the orthogonal direct

sum of subspaces which are invariant and irreducible under the action of Ok(n),
S(V ) = S1(V ) ⊕ S2(V ) ⊕ S3(V ), where

S1(V ) = {S ∈ S(V ) : SXY Z = 〈X, Y 〉ω(Z) − 〈X, Z〉ω(Y ), ω ∈ V ∗},

S2(V ) = {S ∈ S(V ) : SXY ZSXY Z = 0, c12(S) = 0},

S3(V ) = {S ∈ S(V ) : SXY Z + SY XZ = 0}.

S1(V ) ⊕ S2(V ) = {S ∈ S(V ) : SXY ZSXY Z = 0},

S1(V ) ⊕ S3(V ) = {S ∈ S(V ) : SXY Z + SY XZ = 2〈X, Y 〉ω(Z)

− 〈X, Z〉ω(Y ) − 〈Y, Z〉ω(X), ω ∈ V ∗},

S2(V ) ⊕ S3(V ) = {S ∈ S(V ) : c12(S) = 0}.

Moreover, dimS1(V ) = n, dimS2(V ) = n(n2 − 4)/3, dimS3(V ) = n(n− 1)(n−
2)/6 and dimS(V ) = n2(n − 1)/2. If dimV = 2 then S(V ) = S1(V ).

We say that the homogeneous pseudo-Riemannian structure S on (M, g) is
of type {0}, Si (i = 1, 2, 3) or Si ⊕ Sj (1 ≤ i < j ≤ 3) if, for each point x ∈ M ,
S(x) ∈ S(TxM) belongs to {0}, Si(TxM) or (Si ⊕ Sj)(TxM), respectively.

3 The oscillator groups

Let λ1, . . . , λm be m positive real numbers and λ = (λ1, . . . , λm). The oscillator

algebra gm(λ) = g(λ1, . . . , λm) is defined as the real Lie algebra with 2m + 2
generators P, X1, . . . , Xm, Y1, . . . , Ym, Q, with nonzero brackets (see [7, 8, 10])

[Xj , Yj] = P, [Q, Xj] = λjYj, [Q, Yj] = −λjXj , 1 ≤ j ≤ m.

That is, gm(λ) is the semidirect product of the Heisenberg algebra hm generated
by P, X1, . . . , Xm, Y1, . . . , Ym, and the line generated by Q, under the homo-
morphism ad|hm

: 〈Q〉 → Der (hm). It is a solvable non-nilpotent Lie algebra
and the connected simply connected Lie group whose Lie algebra is gm(λ) is the
oscillator group Gm(λ) = G(λ1, . . . , λm).

If we identify the (2m+1)-dimensional Heisenberg group Hm with the man-
ifold R × Cm equipped with the product

(p, z1, . . . , zm)(p′, z′1, . . . , z
′
m) = (p + p′ + 1

2

m∑

j=1

Im(z̄jz
′
j), z1 + z′1, . . . , zm + z′m),
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then the oscillator group Gm(λ) may be described as the semidirect product
Hm ×α R, where the action α : Hm × R → Hm is given by αq(p, z1, . . . , zm) =
(p, eiλ1qz1, . . . , eiλmqzm), q ∈ R. Thus, the group operation in Gm(λ) is

(p, z1, . . . , zm, q) (p′, z′1, . . . , z
′
m, q′) =

(p + p′ + 1
2

m∑

j=1

Im(z̄je
iλjqz′j), z1 + eiλ1qz′1, . . . , zm + eiλmqz′m, q + q′).

We consider on Gm(λ) the family of left-invariant Lorentzian metrics gε,
−1 < ε < 1, with nonvanishing inner products 〈 , 〉ε on gm(λ) given by

〈P, P 〉ε = 〈Q, Q〉ε = ε, 〈P, Q〉ε = 1, 〈Xi, Xj〉ε = 〈Yi, Yj〉ε = δij . (3.1)

If ε = 0 and λi = 1 for each i = 1, . . . , m, the corresponding Lorentzian metric
is also right-invariant. In the other cases, gε is not bi-invariant.

The Levi-Civita connection is given by 2〈∇UV, W 〉ε = 〈[U, V ], W 〉ε−〈[V, W ],
U〉ε + 〈[W, U ], V 〉ε for all U, V, W ∈ gm(λ). So, we obtain that the not always
null covariant derivatives between generators are

∇P Xj = −ε
2

Yj = ∇Xj
P, ∇Xj

Q = −1
2

Yj, ∇QXj = (λj −
1
2
)Yj ,

∇P Yj = ε
2

Xj = ∇Yj
P, ∇Yj

Q = 1
2

Xj, ∇QYj = −(λj −
1
2
)Xj ,

∇Xj
Yk = 1

2
δjkP = −∇Yk

Xj ,

and the not always null components of the curvature tensor field are given by

RPXj
P = ε2

4 Xj , RPYj
P = ε2

4 Yj,

RPXj
Xk = −ε

4 δjk P, RPYj
Yk = −ε

4 δjk P,

RPXj
Q = ε

4
Xj , RPYj

Q = ε
4

Yj,

RXjQP = −ε
4 Xj, RYjQP = −ε

4 Yj ,

RXjQXk = 1
4 δjkP, RYjQYk = 1

4 δjkP,

RXjQQ = −1
4

Xj , RYjQQ = −1
4

Yj ,

RXiXj
Yk = ε

4 (δjkYi − δikYj), RYiYj
Xk = ε

4 (δjkXi − δikXj),

RXjYk
Xi = −ε

2 (δjkYi + 1
2 δikYj),

RXjYk
Yi = ε

2 (δjkXi + 1
2 δijXk).

4 Homogeneous Lorentzian structures on Gm(λ)

We shall determine the homogeneous Lorentzian structures on Gm(λ) in terms of
the basis {η, α1, . . . , αm, β1 . . . , βm, ξ} dual to {P, X1, . . . , Xm, Y1, . . . , Ym, Q}.

If S is a homogeneous Lorentzian structure on (Gm(λ), gε) and ∇̃ = ∇ − S,

then the condition ∇̃g = 0 in (2.1) is equivalent to SWUV + SWV U = 0 for all
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W, U, V ∈ gm(λ). Moreover, ∇̃R = 0 is equivalent to the condition

(∇WR)(V1, V2, V3, V4) = −R(SW V1, V2, V3, V4) − R(V1, SW V2, V3, V4)

−R(V1 , V2, SWV3, V4) − R(V1, V2, V3, SW V4),
(4.1)

for all W, V1, V2, V3, V4 ∈ gm(λ). Substituting (V1, V2, V3, V4) by (P, Xj, P, Q),
(Xj , Yj, Yj, Q), (P, Yj, P, Q) and (Xj , Yj, Xj , Q), we obtain, respectively,

εSWPXj
+ ε2SWXj Q = 0, SWPXj

− 3εSWXj Q = 2εβj (W ),

εSWPYj
+ ε2SWYjQ = 0, SWPYj

− 3εSWYjQ = −2εαj(W ) .

From these equations we have

SWPXj
=

ε

2
βj(W ), SWPYj

= −
ε

2
αj(W ), (4.2)

ε(SWXj Q +
1

2
βj(W )) = 0, ε(SWYjQ −

1

2
αj(W )) = 0. (4.3)

Replacing (V1, V2, V3, V4) in (4.1) by (Xj , Xk, Xj, Yj) and (Xi, Xj, Yi, Yk), with
j 6= k, we obtain, respectively,

ε(SWXj Yk
− SWXk Yj

) = 0, ε(SWXj Xk
− SWYjYk

) = 0. (4.4)

Finally, replacing (V1, V2, V3, V4) in (4.1) by (Xj , Q, Xj, Q), we obtain

SWPQ = 0. (4.5)

It is easy to see that the condition ∇̃R = 0 in (2.1) is satisfied if and only if the
equations (4.2), (4.3), (4.4) and (4.5) are satisfied for all W ∈ gm(λ). We put

θjk(W ) = SWXj Yk
, µjk(W ) = SWXj Xk

, νjk(W ) = SWYjYk
, (4.6)

ρj(W ) = SWXjQ, σj(W ) = SWYjQ, (4.7)

for 1 ≤ j, k ≤ m. We have µjk = −µkj and νjk = −νkj. Now, we shall
determine the conditions for the 1-forms θjk, µjk, νjk, ρj and σj under which

the condition ∇̃S = 0 in (2.1) is satisfied.

By (4.2), (4.5), (4.6) and (4.7), the connection ∇̃ = ∇− S is given by

∇̃ZP = 0, ∇̃ZQ =
P

i
(ρi + 1

2
βi)(Z)Xi +

P

i
(σi −

1

2
αi)(Z)Yi,

∇̃ZXj = −(ρj +
1

2
βj)(Z)P +

P

i
µij(Z)Xi −

P

i
θji(Z)Yi + ((λj −

1

2
)ξ − ε

2
η)(Z)Yj ,

∇̃ZYj = −(σj −
1

2
α

j)(Z)P +
P

iθij(Z)Xi + ( ε
2
η − (λj −

1

2
)ξ)(Z)Xj +

P

iνij(Z)Yi,

for every Z ∈ gm(λ). Then, replacing (V1, V2) in the equation (∇̃ZS)(W, V1, V2)
= 0 by (Xj , Yk), (Xj , Xk), (Yj, Yk), (Xj , Q) and (Yj , Q) we obtain, respectively,
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being Λj = λj −
1
2 ,

∇̃θjk =
∑

i(θik ∧ µji + νik ∧ θji) + Λjξ ⊗ νjk − Λkξ ⊗ µjk, (4.8)

∇̃µjk =
∑

i(µik ∧ µji + θji ∧ θki) + Λkξ ⊗ θjk − Λjξ ⊗ θkj, (4.9)

∇̃νjk =
∑

i(νik ∧ νji + θij ∧ θik) + Λkξ ⊗ θkj − Λjξ ⊗ θjk, (4.10)

∇̃ρj =
∑

i(ρi ∧ µji + σi ∧ θji) + 1
2

∑
i(β

i ⊗ µji − αi ⊗ θji) + (Λjξ −
ε
2
η) ⊗ σj ,

(4.11)

∇̃σj =
∑

i(σi ∧ νji − ρi ∧ θij) + 1
2

∑
i(α

i ⊗ νij − βi ⊗ θij)− (Λjξ −
ε
2
η) ⊗ ρj .

(4.12)

In the case of the bi-invariant metric (ε = 0 and λi = 1 for each i = 1, . . . , m),
the oscillator group is a Lorentzian symmetric space and the tensor field S = 0
is a homogeneous Lorentzian structure on (Gm(λ), g0). Moreover, from (4.2),
(4.5), (4.6) and (4.7), we deduce

Theorem 4.1. All the homogeneous Lorentzian structures on the oscillator

group Gm(λ) with the left-invariant Lorentzian metric g0 are given by

S =

m∑

i=1

(ρi ⊗ (αi ∧ ξ) + σi ⊗ (βi ∧ ξ)) +

m∑

j,k=1

θjk ⊗ (αj ∧ βk)

+
∑

j<k

(µjk ⊗ (αj ∧ αk) + νjk ⊗ (βj ∧ βk)),

where θjk, µjk, νjk, ρj , σj (1 ≤ j, k ≤ m), are left-invariant 1-forms on Gm(λ)
satisfying µjk = −µkj, νjk = −νkj and the equations (4.8), (4.9), (4.10), (4.11)
and (4.12) with ε = 0.

In particular, putting θjk = µjk = νjk = ρj = σj = 0 in the above theorem,
we obtain that S = 0 is a homogeneous Lorentzian structure on (Gm(λ), g0)
and hence we have

Corollary 4.2. For each λ = (λ1, . . . , λm), (Gm(λ), g0) is a Lorentzian sym-

metric space.

If ε 6= 0, equations (4.3) and (4.4) are equivalent respectively to

ρj = −βj/2, σj = αj/2, (4.13)

θjk = θkj , µjk = νjk. (4.14)

By using (4.2), (4.5), (4.6), (4.7), (4.8), (4.9), (4.13) and (4.14), we obtain

Theorem 4.3. All the homogeneous Lorentzian structures on the oscillator

group Gm(λ) with the left-invariant Lorentzian metric gε defined by (3.1), ε 6= 0,

6



are given by

S =
ε

2

m∑

i=1

(βi ⊗ (η ∧αi)−αi ⊗ (η ∧βi))+
1

2

m∑

i=1

(αi ⊗ (βi ∧ ξ)− βi ⊗ (αi ∧ ξ))

+

m∑

j,k=1

θjk ⊗ (αj ∧ βk) +
∑

j<k

µjk ⊗ (αj ∧ αk + βj ∧ βk),

where θjk and µjk (1 ≤ j, k ≤ m) are left-invariant 1-forms on Gm(λ) satisfying

θjk = θkj, µjk = −µkj, and, being ∇̃ = ∇− S,

∇̃θjk =
∑

i

(θik ∧ µji + µik ∧ θji) + (λj − λk)ξ ⊗ µjk,

∇̃µjk =
∑

i

(µik ∧ µji + θji ∧ θki) + (λk − λj)ξ ⊗ θjk.

Remark 4.4. If a connected pseudo-Riemannian manifold admits a nonzero
homogeneous pseudo-Riemannian structure of type S1 then it must have con-
stant curvature (see [3] and [9]). Thus (Gm(λ), gε), ε 6= 0, does not admit any
homogeneous Lorentzian structure of type S1. The Lorentzian symmetric space
(Gm(λ), g0) does not admit nonzero homogeneous Lorentzian structures of type
S1 either, since (Gm(λ), g0) has not constant curvature.

An orthonormal basis of (gm(λ), 〈 , 〉ε) is {(2− 2ε)−1/2(P −Q), X1, . . . , Xm,
Y1, . . . , Ym, (2 + 2ε)−1/2(P + Q)}. Suppose ε 6= 0. By (2.2),

c12(S)(Z) = −
1

2 − 2ε
SP−Q,P−Q,Z +

m
X

j=1

(SXjXjZ + SYjYjZ) +
1

2 + 2ε
SP+Q,P+Q,Z

=
m

X

j,k=1

`

µjk(Xj)α
k(Z) + θjk(Xj)β

k(Z) − θjk(Yj)α
k(Z) + µjk(Yj)β

k(Z)
´

.

for all Z ∈ gm(λ). We have (compare with [4, Prop. 2.1] for Heisenberg groups).

Proposition 4.5. A homogeneous Lorentzian structure on (Gm(λ), gε), ε 6= 0,
is of type S2 ⊕ S3 if and only if

m∑

j=1

(µjk(Xj) − θjk(Yj)) =

m∑

j=1

(θjk(Xj) + µjk(Yj)) = 0, 1 ≤ k ≤ m.

5 Reductive decompositions and groups of iso-

metries of the 4-dimensional oscillator group

For each λ ∈ R, we can consider the Lie algebra g1(λ) with generators P, X, Y, Q,
and structure equations [X, Y ] = P , [Q, X] = λY , [Q, Y ] = −λX.
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In particular, g1(0) is the direct product of the 3-dimensional Heisenberg
algebra and R. If λ 6= 0, then g1(λ) is isomorphic to g = g1(1) and the corre-
sponding Lie group G1(λ) is isomorphic to G = G1(1).

Let {η, α, β, ξ} be the basis dual to {P, X, Y, Q}. We have

Theorem 5.1. All the homogeneous Lorentzian structures on the 4-dimensional
oscillator group (G, gε), −1 < ε < 1, ε 6= 0, are given by

S =
ε

2
β ⊗ (η ∧ α)−

ε

2
α⊗ (η ∧ β)−

1

2
β ⊗ (α∧ ξ)+

1

2
α⊗ (β ∧ ξ)+ θ ⊗ (α∧ β), (5.1)

where θ = a η + b ξ, a, b ∈ R.

Proof. By Theorem 4.3, all the Lorentzian homogeneous structures on G are

given by (5.1), where θ is a 1-form on G satisfying ∇̃θ = 0. In this case,

∇̃Zθ = θ(X)( − θ(Z) +
1

2
ξ(Z) −

ε

2
η(Z))β + θ(Y )(θ(Z) +

ε

2
η(Z) −

1

2
ξ(Z))α.

Replacing Z by X and Y , the condition ∇̃θ = 0 implies θ(X) = 0 and θ(Y ) = 0,

respectively. Then θ = a η+b ξ, a, b ∈ R. Conversely, if θ = a η+b ξ then ∇̃θ = 0,
which proves the theorem.

The nonvanishing components of the (1, 2) tensor field corresponding to the
tensor field S in (5.1) are given by

SXP = −ε
2
Y, SP X = aY, SP Y = −aX, SXQ = −1

2
Y,

SY P = ε
2X, SY X = −1

2P, SXY = 1
2P, SY Q = 1

2X,

SQX = bY, SQY = −bX.

From Proposition 4.5, the definitions of the classes in §2, and the character-
ization of connected simply connected pseudo-Riemannian naturally reductive
spaces in [3], we deduce

Proposition 5.2. For every a, b ∈ R, the homogeneous Lorentzian structure

S = S(a,b) on the 4-dimensional oscillator group (G, gε), ε 6= 0, given by (5.1) is

of type S2⊕S3. Moreover, S(a,b) is of type S2 if and only if a = −ε and b = −1,
and of type S3 if and only if a = ε/2 and b = 1/2. In particular, (G, gε) is a

naturally reductive Lorentzian space.

The metric gε is geodesically complete (see [6]) and thus every homogeneous
Lorentzian structure S(a,b) on (G, gε) has a corresponding group of isometries

G̃(a,b) acting transitively and effectively on G, and an associated reductive de-

composition g̃(a,b) ≡ h̃(a,b) ⊕ g, where h̃(a,b) is the Lie algebra (isomorphic to

the holonomy algebra of the connection ∇̃(a,b) = ∇ − S(a,b)) generated by the

curvature operators (R̃(a,b))ZW ∈ so1(g), Z, W ∈ g. Here, so1(g) is the alge-
bra (isomorphic to so1(4)) of skew-symmetric endomorphisms of (g, 〈 , 〉ε). The
structure of Lie algebra of g̃(a,b) is given by

[A, A′] = AA′ − A′A, A, A′ ∈ h̃(a,b), [A, Z] = A(Z), A ∈ h̃(a,b), Z ∈ g,

[Z, W ] = (R̃(a,b))ZW + (S(a,b))ZW − (S(a,b))W Z, Z, W ∈ g.
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With respect to the basis {P, X, Y, Q} of g, the connection ∇̃ = ∇̃(a,b) is
given by

∇̃P X = −( ε
2 + a)Y, ∇̃P Y = ( ε

2 + a)X, ∇̃QX = (1
2 − b)Y, ∇̃QY = (b − 1

2)X,

with the rest vanishing. Hence, the only nonvanishing component of the cur-
vature tensor field is R̃XY = ( ε

2 + a)(β ⊗ X − α ⊗ Y ). First, we shall suppose

that a = −ε/2. In this case, the holonomy algebra of ∇̃ is trivial and the reduc-
tive decomposition associated to the homogeneous Lorentzian structure given
by (5.1) is g̃ = {0}⊕ g with structure equations [X, Y ] = P , [Q, X] = (b + 1

2)Y ,
[Q, Y ] = −(b + 1

2 )X. Then g̃(− ε
2
,b) = g1(b + 1

2 ) and we have

Theorem 5.3. Let S = S(a,b) be the homogeneous Lorentzian structure on the

4-dimensional oscillator group G = G1(1) defined by (5.1) and a = −ε/2. For

b = −1/2 the corresponding group of isometries G̃(− ε
2
,−1

2
) is the direct product

G1(0) of the 3-dimensional Heisenberg group and R and for b 6= −1/2 it is the

oscillator group G1(b+ 1
2 ); in particular, if b = 1/2 then the group of isometries

is G itself. For each b ∈ R, G̃(− ε
2
,b) = G1(b + 1

2 ) acts simply transitively on the

left on G, for p, q, p′, q′ ∈ R, z, z′ ∈ C, by

(p, z, q) · (p′, z′, q′) = (p + p′ + 1
2 Im(z̄eiq(b+ 1

2
)z′), z + eiq(b+ 1

2
)z′, q + q′).

Now, suppose that a 6= −ε/2. Then U = R̃XY = ( ε
2 + a)(X ⊗ β − Y ⊗ α)

generates the holonomy algebra h̃(a,b) of ∇̃(a,b) and the reductive decomposition

associated to the homogeneous Lorentzian structure S(a,b) is g̃(a,b) ≡ h̃(a,b)⊕g =
〈{U, P, X, Y, Q}〉 with nonvanishing brackets

[U, X] = −( ε
2 + a)Y, [X, Y ] = U + P, [P, Y ] = −( ε

2 + a)X,

[P, X] = ( ε
2 + a)Y, [U, Y ] = ( ε

2 + a)X, [Q, Y ] = −(b + 1
2)X,

[Q, X] = (b + 1
2
)Y.

If we put T = U+P then with respect to the basis {T, X, Y, Q, U} of g̃(a,b) the

nonvanishing brackets are [X, Y ] = T , [Q, X] = (b + 1
2)Y , [Q, Y ] = −(b + 1

2)X,
[U, X] = −( ε

2 + a)Y , [U, Y ] = ( ε
2 + a)X. If b = −1/2 then g̃(a,b) is the direct

product of the oscillator algebra g1(−( ε
2 + a)) generated by {T, X, Y, U} and

the line generated by Q. If b 6= −1
2 then g̃(a,b) is the semidirect product of the

oscillator algebra g1(b + 1
2 ) generated by {T, X, Y, Q} and the line generated by

U under the homomorphism ad|g1(b+
1

2
) : 〈U〉 → Der (g1(b + 1

2
)). In both cases,

g̃(a,b) may also be considered a semidirect product of the 3-dimensional Heisen-
berg algebra generated by {T, X, Y } and the plane generated by {Q, U}. The
corresponding connected simply connected Lie group is the semidirect product
H1 ×γ R2, where γ is the action of the additive group R2 on the 3-dimensional

Heisenberg group H1, given by γ(q,u)(t, z) = (t, ei((b+ 1

2
)q−( ε

2
+a)u)z). If the man-

ifold Ĝ(a,b) = C×R3 is equipped with the group operation such that the bijection

(z, p, q, u) ∈ Ĝ(a,b) 7→ ((p, z), (q, u−p)) ∈ H1×γ R2 is a group isomorphism, then

9



Ĝ(a,b) acts transitively and almost effectively in a natural way on G as a group

of isometries. The normal subgroup of elements of Ĝ(a,b) which act as the iden-

tity transformation on G is the discrete subspace N = {(0, 0, 0, 4πk
ε+2a ) : k ∈ Z},

and the quotient group G̃(a,b) = Ĝ(a,b)/N acts transitively and effectively on G.

The group operation of G̃(a,b) ≡ C × R
2 × S

1 is given by

(z, p, q, eiu)(z′, p′, q′, eiu′

) = (z + exp
(
i((

ε

2
+ a)p + (b +

1

2
)q + u)

)
z′,

p + p′ +
1

2
Im(z̄ exp

(
i((

ε

2
+ a)p + (b +

1

2
)q + u)

)
z′), q + q′,

exp
(
i(u + u′ −

ε + 2a

4
Im(z̄ exp

(
i((

ε

2
+ a)p + (b +

1

2
)q + u)

)
z′))

)
, (5.2)

and we conclude

Theorem 5.4. Let S = S(a,b) be the homogeneous Lorentzian structure on the

4-dimensional oscillator group G = G1(1) defined by (5.1) and a 6= −ε/2. The

corresponding group of isometries is G̃(a,b) = C × R2 × S1 with the operation

defined by (5.2), which acts transitively and effectively on G by

(z, p, q, eiu) · (p′, z′, q′) = (p+p′+
1

2
Im(z̄ exp

(
i((

ε

2
+a)p+(b+

1

2
)q +u)

)
z′),

z + exp
(
i((

ε

2
+ a)p + (b +

1

2
)q + u)

)
z′, q + q′), z, z′ ∈ C, p, q, p′, q′, u ∈ R.
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