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Abstract

Mutualistic interactions conform the skeleton of many systems widespread in nature, with abundant
examples ranging from the economical context to the biological world. The paradigmatic case of
study -and ours- is ecological networks. The singular composition of their interactions is known
to exhibit unique resilient features, playing a critical role to the preservation of earth’s biodiversity
and ecosystem’s robustness. However, the extent to which the so-called mutualistic networks might
be affected by global change has still not been well-established. Accordingly, in this Master Thesis
we attempt to measure the robustness of a plant-pollinator community to shifts in their life cycles
(phenologies). By borrowing tools from population dynamics and statistical mechanics, we characterise
a phase transition triggered by phenological noise in a non-spatially extended model. Our results
suggest the existence of a second order non-equilibrium phase transition. Moreover, simulations on an
empirically-based network successfully reproduce some previously known ecological traits. All in all,
many critical features attributed to second-order transitions such as scaling or universality remained
to be asserted, thus demanding for further investigations.
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Chapter 1

Introduction

1.1 Mutualistic networks in a nutshell

Our understanding of the way in which mutualistic interactions are capable to shape the structure and
function of ecosystems has undergone a unique, and almost revolutionary evolution during the last
two decades. Such progress responds to a great extent to a transformation of the paradigm in which
mutualism is conceived: instead of centering the attention on the details of how a single one-to-one
interplay may occur, the focus has been placed on capturing the essentials of the whole network of
interactions. This change of perspective, that encounters analogues in many other fields from sociology
to systems biology, permitted to unveil a profound and vital connection between the organisation of
mutualistic links and elementary ecological features, such as biodiversity maintenance or ecosystem’s
robustness.

In this section we present the framework in which this novel paradigm of mutualistic networks is
embedded, as well as the main results of the research carried out, principally by J. Bascompte and
colleagues. We start explaining the construction of a mutualistic network and characterising one of its
essential features: nestedness. Secondly, we turn our attention to the key ecological properties related
to nestedness and, of particular importance for our work, its repercussions on network’s robustness.

Mutualistic communities are usually depicted
using bipartite networks. This type of network
is formed by two different set of nodes repre-
senting the two classes of agents involved in the
mutualistic relationship (which can range from
plants and their pollinators to manufacturers and
contractors). For models that are not spatially-
extended like ours, each node portraits a popula-
tion’s specie, while links depict the interactions
with their counterparts, as shown in Fig. 1.1. In
addition, edges might be weighted when the ben-
efit that each specie obtains from the interaction
is known or is being modelled.

Figure 1.1: Representation in a bipartite network of a This translation of an ecological system into
small plant-pollinator mutualistic community. Width of the language of networks permitted to address
links represents its variable weight. the question of how links are organised, reveal-
ing a highly non-random pattern of interaction.
Indeed, Bascompte et al. [1] demonstrated that empirical networks are strongly nested. Nestedness
is a global measure of structure, that estimates what distance separates a specific distribution under
study (for instance Fig. 1.2b), from an ideal composition in which species with large degrees (gener-
alists) do not exclusively associate among them but also contain a subset of links to low-degree nodes
(specialists), resulting in a macroscopic configuration of the sort shown in Fig. 1.2a.
As already outlined in [1], from these remarkably non-trivial configurations we might expect special
dynamical properties. For instance, the existence of a cohesive core of generalists (see Fig. 1.2a) should
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(a) Perfectly nested community. (b) Poorly nested community.

Figure 1.2: Two communities of plants and pollinators, one of them perfectly nested (a), and the other one
with a randomised distribution of interactions (b). Plants and animals are labelled with their rank, being 1 the
specie with more interactions and 10 the one with less. Black squares are placed when there is an interaction.
Finally, the box in a frames the core of the network, formed by species interacting all-to-all. Pictures extracted
from [1].

provide enhanced robustness, as well as warrant a greater change of survival to specialist species
attached to it.

In fact, this finding triggered a sequence of fundamental discoveries, aimed at constructing a bridge
between the observed structural pattern and other essential ecological measures. For instance, it was
shown that biodiversity maintenance is enhanced both by an asymmetric nature of the interactions [2]
and a palliation of interespecific competition due to a nested organization [3]. Besides, coextinction
cascades were found to occur in a structured manner, depending strongly in their phylogenetic history
together with the network architecture [4].

Finally, a crucial question that arises from this discussion is what the stability of a mutualistic
network is, and how much it is conditioned by the nature of the interactions and its assemblage. This
might be of special importance for our work, in which the stability of a plant-pollinator network is
threatened by the presence of phenological noise. In this sense, Thébault and Fontaine [5] proved that
a nested architecture favours the resilience of networks subject to mutualism, but instead diminishes
the dynamical stability of other models such as trophic communities.

Among other relevant results that we could no sum up here, these ideas might give a taste of
the type of research that have been developed on mutualistic networks over recent years, and how
they have shed light on many unknown connections between ecological macroscopic properties such
as biodiversity, and the unique composition formed by mutualistic interactions.

1.2 The fate of mutualism

Given the vital role that mutualism plays in maintaining biodiversity as well as in warranting some
communities’ stability, it is inevitable to ask whether such type of networks are resilient to exter-
nal perturbations, and in general, how they may respond to them. Nowadays, climate change is a
worldwide threat from whose effects plant-pollinator networks will be most probably unable to scape.
Actually, some of the first consequences of global warming on the functioning of biological communities
have already been reported, as we now expose.

The repercussions of climate change can not always be easily unravelled, and indeed different
factors might act synergetically leading to an enhanced stress than the one caused from their individual
actions. However, as exposed by Hegland et al. [6], in plant-pollinators systems the most significant
alterations appear on species’ abundance and distribution, and secondly on the cycles of flowering
and birth (whose study is usually known as phenology). Because we are concerned with a non-spatial
model, we will focus primarily on phenological perturbations.
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Numerous empirical studies have asserted the fact that species’ phenology can be greatly affected

by an environmental warming [6].

In particular, both the onset of flowering and the date of first

emergence of insects seem to be positively correlated with temperature, exhibiting an almost linear
response for plants and bees (see Fig. 1.3), as well as a singular connection with the previous-month
temperature in the case of butterflies. Also the period of activity appears to be altered, yet no clear
consensus has been reached since observations are controversial among them.

An immediate consequence of these pheno-
logical perturbations -usually called phenological
shifts- is the possibility that periods of activity
desynchronise between interacting agents, result-
ing in what is known as phenological mismatches.
From this, two fundamental questions naturally
arise: first, what is the gravity of the damage
that such loss of overlap may cause on the com-
munity? Second, what is the future of pheno-
logical mismatches? Are they destined to keep
increasing due to a persistence of the linear ten-
dency to shift, or will they be damped at some
moment by a coevolutionary feedback from the
community (see Fig. 1.3)7 On these two issues
relies, to a great extent, the fate of mutualism.

Consequently, over the last ten years re-
searchers have struggled to provide a definitive
answer, both experimentally and theoretically.
Our aim in this thesis is to address the first sub-
ject, on which much light has already been shed.
To start with, Memmott et al.[7] showed by simu-
lating phenological shifts on an empirical network
that, if the current observed shifting tendency is
maintained, then the amount of overlap do cer-
tainly decrease, eventually risking the survival of
its species. Indeed, Burkle et. al. [8], analysed
a large historical data set and concluded that
phenological shifts may account, together with
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Figure 1.3: Response of plants and pollinators to

temperature increase. The observed response is in-
ferred from experimental findings, and phenological mis-
matches (marked by the doble arrow) may occur due
to a different slope in the linear response to tempera-
ture increase. The right part of the plot depicts var-
ious plausible scenarios. If the observed tendency is
maintained, phenological mismatches will imperatively
increase (large doble arrow). Instead, if coevolutionary
processes counteract phenological shifts, then the result-
ing mismatch might be diminished. Plot borrowed from

[6].

species extirpation and habitat loss, for a severe degradation of the network structure leading to less
resilient configurations. Apart from these two examples, not few others exist, though we are not able
to review them all. For our purpose it will be enough to state that in general, both empirical and
modelling approaches seem to converge to the idea that perturbations in phenology significantly affect

the functioning of the mutualistic newtork [6].
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Chapter 2

Methods

In this chapter we present the methods implemented to model, simulate and measure the effects of
phenological mismatches on a mutualistic network. First, we introduce the model used to reproduce
population growth in presence of mutualistic interactions and the algorithm for its integration. Next,
we illustrate how phenological mismatches can be included into the dynamics of a plant-pollinator
system. Then follows the description of the procedure applied to characterise the observed phase
transition, and finally we pay some attention to the ecological data used for our calculations, as well
as to the parameters’ choice.

2.1 Deterministic model with mutualistic interaction

We start by constructing a mutualistic community embedded in a bipartite network like the one we
have described before. The theoretical network used in many of our calculations -from now on, unless
when stated otherwise- is depicted in Fig. 2.1.

plant 4

pol 5

Figure 2.1: Representation of a theoretical network of plant-pollinators. Interactions and parameters as proposed
by Garcia-Algarra et al.[9].

The variable in which we are interested is the number of individuals on each node. Therefore, we
need of a set of equations that calculates a species’ population as a function of the state of the rest of
the network, that is, a dynamic equation of population growth. Following the discussion by [9], here
we use the present dynamical equations for the growth of plants and pollinators:

1 dN® o 2

Na dtl =7r; + Z bijNJp — | o+ Z biijp NZ, (2.1)
i j=1 j=1
1 dN? Tla Tla

Widt] =r;+ Z bjiNia — | aj+c¢ Z bjiNia ij (2.2)
J =1 =1

where the superindex p refers to plants, while, to avoid confusion, a stands for animals (pollinators).
The intrinsic growth is represented by r, and « acts as a friction term -which, in biological terms, is a
consequence of intraespecific competition- that prevents the system from unbounded growth. Finally,
mutualism is enclosed in the factors bg;, which represent the benefit obtained by each specie thanks
to its interactions with their counterparts.

11



12 CHAPTER 2. METHODS

As can be seen, both the positive and the negative terms contributing to population growth show
a dependence on the mutualistic benefit. As discussed in [9], the underlying motivation of this model
is similar to the one for the logistic equation: mutualistic components add positively to population
growth but are also object of competition, thus needing to be present in the friction part as well. With
this idea in mind, Garcia-Algarra et al. showed that such equations can lead to identical dynamical
scenarios to the ones produced by the Type II model, whereas allowing a less intricate analytical
analysis.

In particular, the stability analysis revealed that there are three possible final regimes for the
system: total extinction -all plant and pollinators species die-, partial extinction -a part of the species
die, but the rest survive- or full system capacity -all species achieve their carrying capacity limit. When
mutualism is facultative for all species (r; > 0, Vi) the only stable fixed point is full system capacity,
and total extinction and partial extinctions are unstable points. If mutualism turns obligatory for one
of the species (r; < 0 and r; > 0 Vi # j) then total extinction becomes a saddle point. However,
the most interesting situation to us is when mutualism is obligatory to all species (r; < 0, Vi). In
that case, both total extinction and full system capacity are stable fixed points and the phase space
is separating its two basins of attraction by a survival watershed, which includes partial extinction as
a saddle-node. This means that depending on the initial population values the system will be driven
to survival (see Fig. 2.2) or to extinction (see Fig. 2.3).

Population evolution Population evolution
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Figure 2.2: Temporal evolution of the system when working in the parameter region of complete extinction.
In (a), plant populations. In (b), pollinator populations. Integration has been done performing with a RGK4
algorithm over the theoretical network in Fig. 2.1 and using the parameters for full extinction provided in [9],
that can be found in Appendix A.
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Figure 2.3: Temporal evolution of the system in the parameter region of full capacity. In (a), plant populations.
In (b), pollinator populations. Integration has been performed as in Fig. 2.2, with the parameters that lead to
full capacity (see Appendix A).

As outlined by Garcia-Algarra et al., it is significant to recall that for multispecies communities
(more than two), partial extinctions consist in projecting the original system to a new point in the flow
diagram that, relevantly, may belong to the extinction basin or to the survival one. This means that
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partial extinctions may lead the system to an actually surviving state -and possibily more resilient, if
its nestedness has increased- or contrarily to a cascade of extinctions, if the reduction of dimensionality
repeatedly projects the system on the basin of attraction of the full extinction fixed point. This result
is very important to us, since the phase transition will be very much conditioned by the way in which
the system collapses after partial extinctions.

In conclusion, we will work with a model of population dynamics inspired on logistic growth in
which mutualism regulates both the growth rate and the friction component. We set mutualism
being obligatory, so that our parameter space corresponds to a phase space with remarkable richness,
including scenarios of total extinction, partial extinction and full survival. This will allow us to
simulate transitions between these regimes, relying on the number of individuals of each species as the
order parameter.

2.2 New stochastic model

In order to obtain a hopefully more accurate description of our mutualistic system, we propose a new
stochastic model which reproduces in the mean-field limit the deterministic behaviour of the model
by Garcia-Algarra et al. We propose the existence of two elementary microscopic processes for each
species: death or reproduction. Summing over all species, there are 2(N, + N,) possibilities in total.
Let us illustrate it for a plant labelled k. The events that could happen concerning the population of
plant k are:

N{ — N7 +1 reproduction, (2.3)
N{ — N7 —1 death (2.4)
and we propose a model where each of them occurs with the rate:
QUNY,...,NP, . N{,...) = (NV,..,Nl+1,..,N7,..)) = N} <rk + ZbkiN¢a> 7 (2.5)
i=1
QNP ., NP NE L) — (NP NP =1, NELL)) = (NF)? <ak + e ZbkiNi‘l> (2.6)
i=1

To integrate these dynamical equations we implement the Gillespie algorithm [10]. This method
provides an exact integration, involving the generation of two random numbers as we now explain (see
also [11]):

First, we compute the time interval for the next event to occur as log(u)/W (Np, Ng), where N,
and N, are the total number of plants and pollinators. Here u is a U(0,1) random number while
W (Np, Ng) is the total rate, that is basically the sum of the right hand-side of Eq. 2.1 multiplied by
N} and sumed over all animal species, added to the sum of the right hand-side of Eq. 2.2 multiplied
by NP and over all plant species. As can be seen, the larger the rate the smaller the average of the
interevent time distribution and hence the quicker the system will be evolving in time.

Next, we calculate what of the potential events will be taking place so that the probability that,
let’s say, plant k reproduces, is its rate €2 divided by the total rate W. Handling the probabilities for
all the possible processes and drawing a second random number, we can chose which event will occur.
Intuitively we observe again that the greater the rate for one process, the more probable that it will
happen.

With this algorithm we obtain an exact integration based on the microscopic dynamics of the
system (see Fig. 2.4 and compare with Fig. 2.2). It offers us significant features compared to a
deterministic model, such as the existence of absorbing states and the exact representation of the
discrete character of populations. Indeed, these turn out to be relevant processes in the context of
small populations, which is in fact the scenario that we will found when approaching extinction.

To finish, it is interesting to remark that the step from the deterministic model to a set of micro-
scopic processes is not unique nor unidirectional, and we could have proposed as well other microscopic
models reproducing the same mean field features. In the end, the election of one model over another
should be related to its accuracy in biological terms, that is, to the realism of the chosen representation.
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Figure 2.4: Temporal evolution of the system when working in the parameter region of complete extinction,
using the same parameters as in Fig. 2.2. In (a), plant populations. In (b), pollinator populations. Integration
has been performed using Gillespie algorithm.

2.3 Simulation of phenological mismatches

As we have discussed before, phenological mismatches occur when the period of flowering of a plant
and the period of activity of its pollinator fail to overlap, partly or entirely. In consequence, if they do
not coincide in time, mutualistic partners are unable to interact and their dynamics should be affected
somehow.

One possibility to model the effects of such mismatch could be to simulate the desynchronization
of the temporal dynamics explicitly, that is, to switch off the link of interaction while they do not
coincide, and switch them on again (preserving their normal weight) at the moment there is overlap.
However, such procedure assumes that the equation is microscopically exact, which is something, as
we have suggested previously, not completely assured.

Therefore, we adopt the approach of considering the coefficients under a mean-field perspective,
not only regarding the nature of the interaction but also in a temporal sense. This means that the
effect of diminishing the overlap during one spring is represented by a reduction on the mutualistic
coefficient for that interaction (b;j, see Eqgs. 2.1-2.2) in the whole year. In this sense, we consider
that failing to interact does not have an immediate consequence, but a time-distributed response.
In the network language this would correspond, instead to connecting and disconnecting links, to a
continuous variation of the link’s weights.

Knowing this, the detailed calculation of the coefficients for mutualistic benefit is as follows:

Initially, the matrix b;; is set so that all species work on the regime of full capacity. Each specie
has a period of activity assigned, and the initial time of flowering (for the plants) and birth (for the
pollinators) is such that the overlap is maximum (later on we explain how we generate those times).
This initial time corresponds to t; ¢ on Fig. 2.5.

tio period

— & " ——— e ——>

tjvo period t ti,new t

Figure 2.5: Representation of the process of construction of the new phenology. On the left, initial flow-
ering/birth time, ¢;, and the period of activity. The red point indicates a random number drawn from a
Gaussian distribution around the original initial time. On the right, shifted phenology due to relocation of the
period of activity, starting then on #; new.

Then, we introduce the phenological shift by generating a new initial time (in days) of flowering
or birth (¢; pew on Fig. 2.5). This new time is obtained from a Gaussian distribution of standard
deviation o (measured in days) and centred on ¢; 9. Next, we move the period of activity in time while
keeping, for simplicity, its duration unchanged. This leads to a new phenological overlap between
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the two species, that may correspond to any of the three situations depicted in Fig. 2.6: full overlap,
partial overlap or no overlap.

According to the final quantity of overlap, we set the value of the mutualistic benefit as the portion
of actual period of coincidence, divided by the maximum possible period of coincidence (which is the
length of the shortest of the two periods). This offers a continuous range of variation for b;;, from its
maximum value -when there is full overlap- to zero -when there is absolutely no coincidence-.

()

Figure 2.6: Qualitative cases of overlap. In (a), full coincidence when the shortest period falls inside the period
of its partner specie. In (b), partial overlap when the shortest period falls partly out of the largest period. In
(c), no overlap at all. Pollinator’s periods of activity do not necessarily need to be shorter than plant’s ones,
although being the case in this example.

Initial time distribution

A key element of this procedure is the generation of a set of initial times of birth and flowering which
fulfil that the overlap between all species is maximum. Because of the complexity of the networks of
interaction, this optimizing problem has non-unique solutions.

The trivial solution is a distribution in which all times are centred around the same value, in other
words, when all the middle times of activity coincide (see Fig. 2.7). We can construct such distribution
by assigning an initial time zero to the specie with the longest period. Then, the rest of initial times
are immediately set using the same center time. This procedure ensures that all species overlap among
them.

longest period

>

t central
time

Figure 2.7: In pink, longest period of activity. Its middle time is marked in dark red. This is also the center
time around which the rest of periods are located.

Nonetheless, in the construction of this solution we pay the price of presuming some rigid charac-
teristics that, as we will discuss in the next chapter, might not be empirically faithful. Thus, we now
explain how to generate other solutions using a numerical method that does not require any limiting
assumption.

The method used is the package Differential Evolution from the SciPy library by Python [12]. The
algorithm minimises a given function (which in our case is 1 —p, where p is the normalised sum over all
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overlaps) in a given interval (which we set as the spring season), by iteratively improving a candidate
solution. Without entering in much detail, this is achieved by comparing a first candidate -drawn
from a random choice over the whole population- with a trial vector -formed by random mutations
over the candidate-, and then selecting the best out of the two as the new candidate. This process is
iterated until an optimal solution is found.

One of the drawbacks of this method is that convergence is slow and requires a larger number of
evaluations of the optimizable function than other numerical algorithms. Anyhow, since the distribu-
tions of times need to be generated only once, this is not a computational inconvenience for us. On the
contrary, the method offers great advantages such as not relying on a gradient for the optimisation as
well as being stochastic in nature, which permits us to explore the solution space and thus to generate
different pseudo-optimal solutions.

Long runs

Up to now we have exposed a manner of simulating an isolated phenological shift. In reality, we
are interested in measuring the response of the network to continuous perturbations of its species’
phenology, since momentary mismatches are most probably unable to bring the system to a collapse.

To test the resilience of the system to repeated phenological mismatches, we first integrate the
dynamics of the network without noise, until each specie has reached its carrying capacity limit. This
thermalizing period corresponds to the first stage observed in Fig. 2.9 (up to t = 500 years), and
we can check that it is independent of the value of 0. Next, we introduce the phenological shifts as
discussed above, and recalculate accordingly the values of b;;. The perturbed coefficients are used to
integrate the dynamics during the time corresponding to a whole year, and then new phenological
shifts are generated using the same standard deviation. For simplicity, we assign an identical o value
to all species in the network.

In this second stage, the system is driven to a new steady state, as can be observed in Fig. 2.9.
Furthermore, a comparison among those single runs suggests that increasing the value of ¢ leads the
system from species survival to their extinction. These preliminary results are the first indication of
the presence of a phase transition, and consequently of the existence of a critical value of ¢ beyond
which the network collapses.

2.4 Characterisation of the phase transition

In order to assert the existence of a phase transition, we need an accurate measure of the steady state
in presence of noise.

Due to the stochastic nature of the integration method as well as of the phenological shifts, we first
perform an average over various runs. Not only the processes but also inter-event times are stochastic.
Thus, the average is carried out by coarse-graining the trajectories on a grid of width 6t = 1.0 years,
as shown in Fig. 2.8, and then averaging over the states of the system at the intersections with the
grid, which are the grey points on ¢y, to, ... of Fig. 2.8.

1JLJ l |
1. o I

t, t, t; ty

o~

Figure 2.8: In pink and green, two single stochastic trajectories. Grey points represent the points to be averaged,
that are defined by the last event before the intersection with the grid.

To obtain a proper measure of the steady state we need to pay an special attention to the problems
that arise around the critical region. In particular, there are two main issues to take into account in a
second-order non-equilibrium phase transition (as we will prove that we have): increase of fluctuations
and finite size effects.
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Figure 2.9: Single runs of the time evolution of plants and pollinators for different amplitudes of phenological
noise o.
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As outlined by [13], the increase of fluctuations is due to the relation between the response function
and the statistical error of the order parameter. In a second-order non-equilibrium phase transition,
response functions diverge at the critical point and so does the variance of the order parameter, which
in our case is the total population. In fact, because of finite-size effects, such fluctuations can not
actually diverge, yet they become large enough to lead the system to absorbing states. In order to
solve these problems, we perform the average only over the active runs (Nge), discarding from the
normalisation the absorbed runs that do not respond to real extinctions but are a consequence of
finite-size effects. Moreover, we increase the number of iterations close to the critical zone in order
to reduce statistical error. All in all, the sampling is constricted by the size of the network, because
larger networks demand a much longer computational time, which limit in practice the number of
doable repetitions.

As shown in Fig. 2.10, the total population rapidly evolves to a new steady state at which remains
almost constant, while the number of active runs exponentially decays to zero. It can also be noticed
that when N, becomes very small, the fluctuations of the order parameter increase since the sampling
size of runs is significantly lower.
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Figure 2.10: Total population and number of active runs as a function of time for a value of the phenological
noise o = 12.50.

In consequence, the optimal region to perform the measures is that in which we have already
reached the steady state but the number of alive runs is still large. Observing Fig. 2.10, we can
conclude that integrating until ¢,,4, = 10* we accomplish these conditions. Finally, the definitive
value of the order parameter in the steady state is calculated by performing a temporal average over
the points in the range ¢ € (9-103,10%).

2.5 Parameters and data

To finish, we briefly expose the choice of parameters and data for the dynamical integration. Indeed,
the elements that we need to provide are: i) birth and death rates, ) mutualistic coefficients, i)
initial population, iv) periods of activity and v) structure of the network.

The first three items are extracted from the parameters used by Garcia-Algarra et al. [9], in their
integration of the dynamical equations. Although such parameters are not empirical, their order of
magnitude is chosen as to ensure an ecologically realistic value for the growth and carrying capacity of
the species. Some tables containing these quantities can be found in Appendix A. In the simulations on
the real network and when testing the scaling behaviour, we employ variations over these parameters
while keeping its order of magnitude.

Besides, for the period of activity we use two sources of data. In the simulation on the theoretical
network we employ a non-empirical yet realistic set of periods, that can be found in Appendix A.
Instead, for the real network and the scaling test we use empirical data of periods provided by [8].

Finally, concerning the network structure (apart from the theoretical one, that we have already
introduced) we employ the ecological data on mutualistic interactions provided Burkle et al. [8], that
will allow us to construct the real network. For the scaling we were inspired in the network compiled
by Arroyo et al. [14], available on the ecological network database Web of Life [15].



Chapter 3

Results and Discussion

In the previous chapter, a preliminary result suggested that by increasing the strength of the phe-
nological noise we can cause partial extinctions, eventually triggering a transition from a scenario of
full survival to one of complete extinction. Motivated by these findings, we now aim to systematically
examine the nature of such phase transition.

The discussion is mainly divided in two sections. First, we will attempt to characterise the phase
transition by measuring the steady state of the order parameter as a function of the strength of the
phenological noise, as well as by performing a test of finite size scaling. Secondly, we study the phase
transition on a real network (constructed with empirical data) in order to obtain various measures
that allow us to explore the implications of our findings to other relevant biological indicators, such
as biodiversity or ecosystem’s robustness.

3.1 Characterisation of the phase transition

3.1.1 Steady state of the order parameter

Proceeding as explained in Methods, we obtain the steady state of the total population ng as a
function of o, as can be seen in Fig. 3.1. The figure clearly suggests the existence of second-order
phase transition, since ng changes continuously in the transition. Indeed, we might define ng as the
order parameter, because it fulfils properly the classical conditions of being a positive quantity before
the critical point and zero beyond [16].
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Figure 3.1: ng as a function of o. The simulation has been realised averaging over 10* runs far from criticality
and 10° runs in the critical region. The integration time is ¢,,4, = 10%, and the steady state has been calculated
averaging over the last 10% points of the averaged trajectory.
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However, here the notion of order and disorder is not exact. What we actually observe is not a
transition from an ordered to a disordered phase, but between an alive, fluctuating state and a dead,
absorbing configuration from which the system is unable to scape. This characterises a non-equilibrium
phase transition, precisely what is known as an absorbing phase transition [13].

Let us be more detailed about this. The equilibrium condition is not fulfilled because, as outlined
by [13], the presence of absorbing states breaks the detailed balance condition, placing the process
in the land of out-of-equilibrium phenomena. Another way to see it is that, in principle, we can
imagine our system to be described by a Langevin equation, in which the phenological mismatch has
been introduced as a mutiplicative (and positive) noise affecting the mutualistic coefficients b;;. This
should allow for the construction of a time-dependent probabilistic distribution, in the fashion of a
Fokker-Planck equation [17] -yet if, as we discussed previously, the treatment of microscopic processes
deserves in our case a special care-. Although we will not explore such alternative here, it could be a
direction for future investigation.

Non-equilibrium systems are prolific in nature and have been the object of intense study during
the last decades [17] [18] [19] [13]. Indeed, it has been shown that some of the essential elements
of second-order equilibrium phase transitions, like scaling behaviour or the existence of universality
classes, encounter their analogue in non-equilibrium second order phase transitions. Relevantly, among
absorbing phase transitions has been found a large universality class called Directed Percolation, that
gathers models as disparate as epidemic spreading or forest fire, to mention only a few. In the next
section we will attempt to perform a finite size scaling on the system, to assert the second-order
nature of our transition. Before that, we test the robustness of our result with respect to one of the
key modelling aspects: the distribution of initial times.

Effect of the distribution of initial times

In the Methods chapter we exposed how one of the important steps of our modelling consists in finding
a distribution of initial times for which the overlap is maximum, ensuring that the system reaches
the carrying capacity limit. Nonetheless, we could expect that some initial conditions distributions -
intuitively, the centred one- will be more resilient to phenological shift than sparser solutions. Therefore
it is convenient to test that our results are qualitatively robust regardless of the election of the initial
time distribution.

To assert this, in Fig.3.2 we compare three simulations: one with a pseudo-optimal distributions
of initial times (produced as explained in section 2.3.), a second one with centred times and a last
one averaged over 10?2 different pseudo-optimal initial configurations. Moreover, in the three cases
phenological shifts occur only for plants. Observing the figures we can conclude that:

(i) The type of transition is independent of the initial configuration of times, since in the three cases
we observe a continuous phase transition. Nonetheless, it does affect the position of the critical
point. This should not surprise us, given that this quantity generally depends on the microscopic
details of the system [13].

(ii) Centred configuration are more robust (exhibit a larger critical point) than pseudo-optimal ones.
This suggests that there must exist a counter-acting factor that favours the sparseness among
the periods of activity, probably related to inter-species competition. We will explore further
this possibility in the section devoted to the real network.

(iii) Figs. 3.2b and 3.2c are almost identical. In principle, we should expect that the centred direction
is the most robust of all. This disagreement with our finding could indicate that the pseudo-
optimal distributions are centred in average, yet it is something that should be checked in the
future.

(iv) Finally, comparing Fig. 3.2a to Fig. 3.1 we can assert that submitting to phenological noise
only a subset of species (plants, in our case) does also produce a second-order phase transition.
However, once again the position of the critical point changes and in particular, we encounter
the critical region earlier in Fig. 3.1 (that is, if phenological noise affects the whole population).
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Consequently, we confirm that our results are robust with respect to the election of the initial
configuration of times, ensuring that our findings are not an artefact resulting from a particular choice
of initial conditions.
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Figure 3.2: Simulations for three different sets of initial times configurations. The steady state has been
calculated running 10° iterations in the critical region and 10* elsewhere. In ¢, we go over 102 different pseudo-
optimal configurations, meaning that we performed 10? repetitions for each set far from the critical region and
103 close to it. The rest of parameters, structure of the network and integration time are set as in Fig. 3.1.

3.1.2 Finite size scaling

Our previous analysis suggests that the phase transition that arises due to phenological noise is of
second-order type. To assert this result, we now attempt to test whether one of the fundamental
features of second-order non-equilibrium phase transitions is fulfilled: specifically, scaling. Owing to
the fact that our networks are far from being an infinite-size system, we need to take into account
finite-size effects and hence we will perform a finite-size scaling.

Methods

To carry out such analysis we need a set of networks that obey the same dynamical rules but differ
in their size. In order to warranty such dynamical invariance, we require a null-model network, in
which correlations have been erased thus ensuring that its subnetworks will exhibit, in average, the
same statistical properties. Since we expect a power-law behaviour, it is convenient that sizes are
increasing powers of the same basis. In our case we define the size L as the total number of species
L =N = Np+ N4, an employ a two-basis sequence L = 2,4, 8,16, 32, 64.
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To generate the null-network of largest size (L = 64) we implement a configuration model without
parallel-edges or self-loops. In particular, we use the bipartite package from the NetworkX library
in Python (see [20]). Its configuration-model algorithm takes as an input the number of nodes and
its degree distribution and then randomly assigns the edges among the bipartite network so as to
reproduce the given degree sequence.

In particular, we employ a semi-empirical degree distribution constructed as follows:

e First, we extract the exact degree sequence from the plant-pollinator network collected by Ar-
royo et al. [14] (available at [15]) formed by 61 species (36 plants and 25 pollinators) and 81
interactions.

e Then, we add three more species (1 plant and 2 pollinators) and 5 more interactions (in order to
keep constant the average degree), thus obtaining the desired network with a total of 64 species
and 86 interactions.

The subnetworks of smaller size are then obtained as partial extractions of this null-model. For
each size, we select randomly a set of L nodes keeping the appropriate links, and repeat the process
until finding a connected subnetwork. This process warrants that there are no isolated nodes, that
will surely get extinct. With this we obtain the structures for sizes L = 32 (formed by 18 plants and
14 pollinators), L = 16 (9 plants and 7 pollinators), L = 8 (5 plants and 3 pollinators), L = 4 (3
plants and 1 pollinator) and L = 2 (1 plant and 1 pollinator).

Finally, we need to assign the dynamical parameters ensuring that all subnetworks work in the
full-survival regime and no extinctions occur. To achieve this, we select the parameters randomly from
the theoretical values used in the previous chapter (see Appendix A). Then, we tune some of them
-yet keeping its order of magnitude- until in all networks every specie attains its full-capacity limit.
Crucially, these parameters must be preserved across scales, in order to warrant, as much as possible,
the same dynamical conditions. In other words, this means that the final assignment of parameters is
inherent to each node and link, and saved across subnetworks.

Results

Our hypothesis is that the system exhibits a second-order phase transition and thus some quantities,
as explained by [13], behave peculiarly around the critical point o.. For instance, in an infinite system
the order parameter ng should exhibit a power-law dependence:

Ngt x| 0c — 0 |B (3.1)

Being 8 the so-called order parameter critical exponent. Also, like in second-order equilibrium
transitions, the spatial correlation length £, diverges with the exponent v :

§Loc|oe—o | (3.2)

In addition, in a non-equilibrium phase transition time is also degree of freedom. Thus we need to
consider the divergence of a second correlation length |, now of temporal nature:

§ocfoe—a |77 (3.3)

Which would allow as well for a dynamic scaling analysis [13]. Anyway, we are now interested in
the scaling of the steady state of the order parameter, that is, in testing the validity of Eq. 3.1. For
this, we need to bear in mind that the mentioned relations are thought for an infinite system.

In a finite size network like ours, the spatial correlation length can not actually diverge but is
restricted by the extension of the system. This means that when we are sufficiently near to the critical
point, L an £ may become comparable and all our measures will be conditioned by the particular size
of the system. Hopefully, not everything is lost and we can appeal to the finite-size scaling hypothesis.
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It consists in assuming that all quantities depend actually in the variable: | o, — o | LYY+ Therefore
the steady state can be expressed as a function of both the distance to the critical point and the size
as:

nst(o, L) o< L™ f((0 — o) LY7) (3.4)

And so when we are on the critical point we obtain:

nst(oe, L) o LB/vL (3.5)

Which is once again a power-law dependence. In a similar fashion to the analysis of the critical
behaviour of the pair-contact process by Jensen [21], we plot the density steady state of the system as
a function of L, for different values of our control parameter o. In a log-log plot, this should lead us
to a straight line when we are exactly on the critical point, as indicates Eq. 3.5. In the region where
o > 0., we expect that the points will decay faster than a power-law, since all sizes have entered the
absorbing state. For o < o, the steady state should not depend on the size of the system if L > &,
thus leading to a flat behaviour. Crucially, systems with L ~ &, will enter the absorbing state even
for 0 < o.. Given that our systems sizes are small, this is an essential source of error to take into
account.

In order to be able to compare the measures of ng across different scales, we define the intensive
quantity ps;.- This density is calculated by dividing the steady population as explained in Methods,
by the total carrying capacity of the system at that size, that is: psy = ngt/neqr. Intuitively, ps; can
be understood as a measure of the concentration, that is, the total number of occupied sites (alive
individuals) over the total number of available sites (carrying capacity).
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Figure 3.3: Density of the steady state ps; as a function of the network size for different values of o. The point
for L = 2 was finally not included since it was not significant. The number of iterations performed was 103 for
L = 4,8, 10* for L = 16,32, and finally 5 - 10? for L = 64. Points are united among them by lines in order to
facilite the understanding of the tendency.

In Fig. 3.3 we show the log-log plot of py versus L. From this result, our first conclusion is that
the scaling behaviour can not be asserted. According to the theory of finite size scaling the critical
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point has approximately the value o ~ 275.0 days, which is the point at which the absorbing state
has been reached in all sizes and we get a straight line. However, this value differs strongly among
smaller systems, that can be observed to reach the absorbing state much earlier.

This divergence could be due to a variety of reasons. First and most relevantly, the system sizes
were probably too small for our purpose, leading to rapid absorptions and not fulfilling that L > £ .
Secondly and related to this, measuring the steady state accurately was incredibly difficult. The
population dynamics exhibits critical slowing down near the critical point, meaning that different
species (coming from different carrying capacities) reach their steady state at different points, as seen
in Fig. 3.4a. Adding to this the fact that the system gets absorbed rather quickly, we often encountered
a situation where some species had yet not reached its steady state, while others have already been
absorbed (see Fig. 3.4b). In this scenario, discerning between a genuine absorbing steady state and
an small but still active state that has been absorbed due to fluctuations becomes impossible. In the
whole, all this makes the analysis considerably intricate and poorly systematic.
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(a) Averaged trajectories for plants with L = 32 (b) Averaged trajectories for plants with L = 32
and o = 155. and o = 275.

Figure 3.4: In a, time evolution of the averaged trajectories for plant species, showing that those coming from
larger carrying capacities take more time to reach the steady state. Near the critical point, this effect is enhanced
due to critical slowing down. In b , trajectories for plant species showing absorptions at different times.

Nevertheless, in perspective the results are not so discouraging. In this section we showed that
the system exhibits a phase transition when subject to an increasing phenological noise. The phase
transition seems to be of second-order type, and we have proposed a way to analyse its critical
behaviour. Although our results regarding scaling are not conclusive, they may serve to learn how
to enhance the quality of our measures, opening the door to further research. Beyond this finite-size
scaling there is left to explore a whole world of critical exponents and universality classes. Indeed, fully
characterising this phase transition might be an interesting question not only regarding its ecological
implications, but also from the physical point of view of non-equillibrium phase transitions, which are
nowadays object of a lively interest.
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3.2 Phase transition on a real network

In this section we analyse the phase transition and its ecological consequences on a network constructed
using the empirical data collected by Burkle et. al [8], available at [22].

This dataset comprehends information about a community of plant-pollinators in a temperate
forest in Illinois, USA. As we mentioned in the introduction, Burkle et al. recorded the phenology and
structure of interactions among forbs and bees in 2009-2010, and then compared it with a historical
dataset gathered, on the same region, by Charles Robertson in the late 1800s. Their published data
contains the following information: network structure of interactions in 2009-2010 and edge’s weight
(number of visits observed per link), dates of start and end of activity in 2009-2010 and start and end
dates in Robertson times.
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Figure 3.5: Graphical representation of the real network. Above, bee species labelled by a picture of the
Halicatus Rubicundus, one of the involved pollinators. Below, plants nodes and a picture of the Geranium
maculatum, one of the forbs’ species forming part of the network. The color range used to represent the weight
of the link b;; is in logarithmic scale, in particular we mapped log(107 - bi;) to the colors.

To construct the network we used the set of interactions as registered in 2009-2010, formed by 24
species of plants and 54 species of bees (see Fig. 3.4). Unfortunately, the corresponding phenological
information from 2009-2010 is insufficient for our purpose, since some of the end dates in the available
data are missing. Given that we need the period of activity, we employed instead the phenologies
for the same species as recorded by Robertson in 1800s. This is not the optimal procedure, since the
perfect coherence with the empirical network is lost. All in all, the impact on our results should not
be severe. Considering that Burkle et al. showed that periods were longer in the 1800’s, the expected
effect is only a moderate enhancement of the resilience to phenological shifts.

About the dynamical parameters, we set the growth rates and the initial populations by randomly
selecting among the dynamical values used for the theoretical integration (see tables in Appendix A),
and then tuning some of them -yet keeping its order of magnitude- so as to guarantee the dynamical
regime of full capacity. Mutualistic coefficients b;; were assigned by converting to a realistic order of
magnitude (107°-107%) the number of observed pollinator’s visits per interaction. This does not mean
that the weights of the links are empirical, but at least they are inspired on the experimental data.

In the end, this provides us with a network constructed from a real set of interactions and periods.
Our aim is to simulate its dynamics under the effect of phenological noise and, more importantly, to
interpret biologically our results in order to understand its ecological significance and relate it with
the current discussion on mutualistic networks.
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3.2.1 Discussion on the transition

We start by obtaining the steady state of the total population ng as a function of the strength of the
phenological noise o, following the procedure described in Methods. This leads us to a non-equilibrium
phase transition to an absorbing state, as we can observe in Fig. 3.6.
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Figure 3.6: Steady state of the total population as a function of the noise amplitude o. Simulations performed
on the real network shown in Fig.3.3. I carried out 103 iteration per point and the final integration time is
t = 10* years. The configuration of initial times is a pseudo-optimal solution of the optimizing period.

The figure suggests once again that the phase transition is of second-order type. Despite the fact
that we could not confirm this result convincingly in the previous section, we still can explore what
physical and biological explanations may support the existence of this type of transition. In particular,
for a non-spatially extended like ours, there are mainly two elements conditioning the way in which a
network collapses: i) the dynamics of interaction and i) the topology of links.

From (i), the dynamical point of view, the existence of a continuous critical transition seems
to be a plausible possibility. A first reason is that our interactive scheme presents some resemblance
with the Pair-Contact process [23]. In such system, pairs of particles may encounter each other so
as to either annihilate one another, either reproduce by filling a vacant nearest neighbour. However,
there are also some significant differences that could completely invalidate our analogy, in short: the
bipartite nature of mutualistic interaction, the existence of intraespecific competition and the non-
random structure of interactions.

The second argument is related with universal classes in non-equilibrium systems. As we men-
tioned in the previous section, absorbing phase transitions contain a huge universality class called
Directed percolation. The variety of disparate models belonging to this same universality class was so
outstanding, that eventually it was proposed the so-called DP-conjecture. It states that a given model
will generally belong to the DP- class when it fulfils that:

1. It exhibits a second-order phase transition between a fluctuating active phase and a unique
absorbing state

2. Its order parameter is non-negative and one-component
3. Dynamic rules are short-ranged
4. The system shows no special attributes such as unconventional symmetries or conservation laws

In our model, the second item is satisfied. The third point is not fullfilled since mutualistic
interactions involve many partners, thus resulting in non-local dynamics with long-range effects. Also,
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the fourth point might be violated by the embedding of our system in a network of interactions. Still,
other processes also framed in networks such as epidemic spreading proved to belong anyway to the
DP-class, revealing that this condition is not strictly necessary. About the first item, the transition
to an absorbing state was fulfilled, but we could not assert its scaling behaviour. On the whole, what
we alm to suggest is that our system possesses many common features with other models exhibiting
second order-transitions. Even if, obviously, this does not allow us to state that the transition is
actually of second order (even less to say it belongs to the DP-class), the encountered similarities
provide, not blindly, a certain plausibility of obtaining such solution.

Factor (ii), the topology of links, offers counteracting arguments. On the one hand, the distri-
butions of links is known to hold a scaling behaviour, in particular due to a truncated power-law [24].
Returning again to the percolation analogue but now in scale-free networks, we can recall that it re-
sults as well in a continuous phase transition. On the other hand, the singular correlations underlying
mutualistic network’s structure may encode essential information such as the phylogenetic signal, that
cause structured cascade of extinctions and besides highly non-linear responses. This might eventually
lead to abrupt evolutions indicating the existence of tipping-points and a first order transition.

In the end, this discussion is not aimed at more than providing a rather speculative overview of
the type of arguments that might support one type of transition or the other. Eventually, the final
answer can only be attested by further evidence on the scaling behaviour.

3.2.2 Reencounter of relevant ecological traits

Our aim is now to adopt a biologically focused perspective, carrying out a broader analysis that allows
to recognise typical patterns and features of plant-pollinators networks. With this idea in mind, we
plot, first, the number of alive species in the steady state versus the strength of the phenological noise
o, found in Fig. 3.7. Then, the nestedness of the steady network at a certain value of o, as shows
Fig. 3.8. And finally in Fig. 3.9, the degree of a node versus the value of sigma at which it gets extinct
for the first time. The three measures where performed on the data obtained by the simulation of
Fig. 3.6. From the comparison among the different results for the real network, we may drive the
following bare observations (which we will later discuss and justify):

(i) The evolution of the steady state shows a sort of plateau before its critical transition. Such
region coincides with a period of absence of extinctions and, crucially, a significant recovery of
the nestedness of the network (with respect to immediately precedent configurations).

(ii) The extinction of large-degree nodes seem to obey a positive correlation with o. On the contrary,
low-degree nodes get extinct quite uniformly through the transition

(iii) The critical transition occurs at the same o, at which a massive extinction of nodes occurs
(involving large-degree species), coinciding as well with a sharp drop of the nestedness

The first conclusion that arises from finding (i) is the fact that local extinctions do not necessarily
need to drive the network to less resilient configurations, but might occasionally collapse to more
nested structures. This possibility was already conceived by Garcia-Algarra et al. [9], as we reviewed
in Methods. Such result outlines how nestedness accounts for a genuinely global quality of the system,
that might be recovered even after partial extirpations of the network, thus suggesting the existence
of structural self-similarity at various scales.

In addition, such special organization of links reveals once again to provide an enhanced resilience
to the system. Indeed, specialist species are capable of resisting intense perturbations thanks to their
interactions with highly stable generalist species, as suggested in [1], as here we observed in (7). In the
end, the disappearance of the residual core of generalists and its attached species results in the decisive
transition to the global absorbing state (%ii). This suits the idea from Jordano et al. [24] that thanks
to the truncated power-law that follow the distribution of links, plant-pollinator networks manifest
a featured robustness similarly to scale-free networks. Actually, as outlined by [24], even enhanced
by a natural mechanism that restricts the formation of hubs, which would dramatically increase the
vulnerability of the network to targeted attacks.
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Figure 3.7: Number of alive species in the steady state as a function of the phenological noise applied to the
network.
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Figure 3.8: Nestedness of the steady network as a function of the strength of the phenological noise. To calculate
the nestedness of the networks we employed the program BINMATNEST [25] .
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Figure 3.9: Degree of a node (initial) versus sigma at which it gets extinct for the first time.
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Crucially, such reproduction of well-known ecological properties provides an indirect assurance of
the solid grounds underlying our procedure. Knowing this, our next section will be devoted to making
some further considerations on the information provided by the transition, now regarding quantitative
predictions.

3.2.3 Quantitative significance of the results

Given that we have employed a combination of experimental and realistic (yet theoretical) parameters,
we might expect our findings to be empirically faithful, at least in its order of magnitude. The most
relevant quantity related to the observed phase transition is the critical point, .. From Fig. 3.6
we obtain an estimated value of o, = 300 days. Strikingly, this means that in order to trigger a
complete extinction of the network under our study, we would require a phenological variability with
an amplitude longer than three quarter parts of a year. Namely, the disappearance of seasonality.

In fact, this quantity can by no means be considered universal, since the critical point is in general
sensitive to the concrete arrangements of a system. In spite of that, this outcome poses the question
of what dependence exists between the parameter region used for our simulation and the quantitative
behaviour of our system. To address this question extensive explorations of the parameter space would
be needed, which unfortunately we did not have time to perform.

3.2.4 Beyond mutualism: interspecific competitions

Finally, we close this section together with the chapter by presenting a collateral observation on the
data, connected with an earlier exploration on the theoretical network that concerned the distribution
of initial times.

Specifically, we previously showed that non-random patterns in the configuration of the birth and
flowering dates lead, on otherwise identical networks, to diverging values of the critical point. Centred
distributions offer an enhanced robustness, whereas single random configurations are more vulnerable
to phenological noise.
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Figure 3.10: Histograms of the distributions of the middle time of activity for plants and its pollinators, extracted
from the historic data set by [8].

We would expect that if no other interactions apart from mutualism are relevant, then initial
time configurations should be centred, because such arrangement is optimal with regard to resilience
to phenological shifts. On the contrary, the empirical distributions extracted from the network by
Burkle et al.[8] do certainly not posses such centred pattern, as reveal Fig 3.10a and Fig. 3.10b.

This suggests that interactions of a distinctive nature might be contributing to the peculiar organi-
zation of species’ phenology. In other words, there must exist a counter-interaction harmful for species
activity, whose effect is palliated by the sparness of phenologies. Thus the observed distribution might
result from a balance between the decrease in resilience and a mitigation of this damaging factor. At
first sight, the most probable candidate for such role is a competitive interaction.

In fact, in the beginning we reviewed how interspecific competitions are an unavoidable component
to understand the assemblage of nested structures [3]. In light of our results, they might also be related
with why species tend to act dispersedly in time rather than fully synchronised.
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Chapter 4

Conclusions and Perspectives

The results of this Master Thesis assert that systems undergoing mutualistic alterations due to the
presence of phenological noise eventually suffer a transition into global extinction. Moreover, it was
suggested that such transition of of second-order type thanks to the characterisation of the steady
state of the order parameter as a function of the noise strength. Yet, our test of finite size scaling was
not concluding, and therefore we could not entirely confirm whether this was certainly the nature of
the transition.

Additionally, we carried out the simulations and analysis on an empirically constructed network,
that lead as well to a continuous phase transition. Besides, we extended our study in order to depict
the evolution of some characteristic network’s features, such as the nestedness and the degree of the
nodes. This procedure permitted us to recover essential ecological traits, thus building a first bridge
between the dynamical description provided by our model and some well-established properties of
mutualistic networks.

During the discussion, many directions of future exploration have already been suggested. The
most pressing and probably prolific one is the full characterisation of the phase transition. Indeed,
proving scaling would have strong implications on our understanding of the critical behaviour of the
system, opening the door to the measurement of critical exponents and even a classification within
universality classes. Without going that far, other perspectives of investigation may include studying
the dependence to the parameters or testing more sophisticated models of interaction, for instance,
one accounting for inter-specific competition.

In more general terms, an alternative path for developing the methodology here presented is to
detach the notion of noise from the particular framework of phenological shifts. Instead, we could
study the robustness of the network to a generalised stochastic degradation of mutualistic interactions.
Technically, both approaches are exactly equivalent. Nevertheless, this change of interpretation might
bring to the discussion new ideas and perspectives.
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Appendix A

Tables of parameters

H H Plant 1 Plant 2 Plant 3 Plant 4 H

Pol 1| (14,1) (12,12) (2,12) (10,16)
Pol 2 || (13,12) (6,4)  (5,11)  (1,0)
Pol 3 || (10,12) (1,10)  (1,0) (0,0
Pol4 || (10,6) (10,10) (0,0)  (0,0)
Pol 5 || (20,10) (0,0)  (0,0) (0, 0)

Table A.1: Matrix of the benefit due to mutalistic interactions by;(107%). As can be observed, the matrix is
not symmetric. The left term inside the brackets, b;;, represents the benefit reported to pollinator i due to
its interaction with plant j. The second term, b;;, represents the benefit to plant j due to its interaction with
pollinator 7.

T a (107%) c (107 ‘
Pol 1 -0.016 10 1
Pol 2 -0.038 10 1
Pol 3 -0.015 8 1
Pol 4 -0.014 10 1
Pol 5 -0.018 30 1
Plant 1 | -0.001 7 1
Plant 2 -0.03 12 1
Plant 3 -0.04 12 1
Plant 4 | -0.0005 10 1

Table A.2: Parameters of growth r, intraespecies competition v and the coefficient for the frictional dependence
with mutualism c.
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APPENDIX A. TABLES OF PARAMETERS

Pol 1 Pol 2 Pol 3 Pol4 Polb
N; 500 300 500 200 150
Plant 1 Plant 2 Plant 3 Plant 4
N; 700 600 500 200

Table A.3: Initial values of the populations in the case of complete extinction.

Pol 1 Pol 2 Pol 3 Pol 4 Pol 5
N; 700 600 1000 700 500
Plant 1 Plant 2 Plant 3 Plant 4
N; 1500 2000 1200 1500

Table A.4: Initial values of the populations in the case of full capacity.
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