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Resum

En general, els Majoranas són un tipus de part́ıcules caracteritzades per ser les
seves pròpies antipart́ıcules, per tant dues del mateix tipus juntes s’aniquilen l’una
a l’altra. Les part́ıcules de Majorana hereten el seu nom del notable f́ısic italià Et-
tore Majorana que va postular la seva existència al 1937. Malgrat no s’han trobat
part́ıcules fonamentals de Majorana a la natura el concepte ha guanyat una nova
vida al regne de la f́ısica de la matèria condensada. Es creu que és possible dissenyar
dispositius capaços de contenir Majoranas com excitacions col.lectives d’electrons.
Aquestes excitacions col.lectives tindrien la propietat fonamental dels Majoranas de
ser creades i aniquilades per parelles malgrat no serien fermions com el seus equiv-
alents en f́ısica de part́ıcules sinó anyons no abelians. El resultat del seu intercanvi
dependria de la orientació i l’ordre en el qual aquest es realitzi, propietat que podria
ser utilitzada per construir computadors quàntics.

De les moltes propostes de sistemes que poden contenir Majoranas aquesta tesi
es dedica al estudi dels modes de Majorana en nanofils h́ıbrids semiconductors-
superconductors. Un nanofil és una construcció 1d o quasi-1d on els Majoranas
poden aparèixer si es proveeixen els ingredients apropiats. En el context d’aquest
treball aquests ingredients són superconductivitat, acoblament spin orbita i un camp
magnètic extern, malgrat aquesta selecció no és única. Hem elegit aquest sistema
perquè és simple, això és un avantatge que permet models més realistes i propostes
pràctiques que poden dur a la realització de nous experiments.

Els Majoranas varen ser originalment teoritzats en nanofils tancats purament uni-
dimensionals però això pot ser dif́ıcil d’aconseguir en sistemes f́ısics reals. A més a
més, els Majoranas són molt dif́ıcils de detectar experimentalment perquè en aquest
context no tenen carrega, spin i són estats d’energia zero. Per aquestes raons, els ex-
periments que sostenen haver detectat Majoranas es basen principalment en les seves
propietats de transport. En aquesta tesi ens ocupem d’estendre el model 1d a altres
més generals que tenguin en consideració alguns efectes realistes i estudiam també
les propietats de transport dels Majoranas en si mateixos. Per fer això fem servir una
combinació de diferents mètods numérics i anaĺıtics que ens han permès descobrir
un nou conjunt de caracteŕıstiques dels Majoranas prèviament desconegudes.

Aquesta tesi està presentada como un compendi de publicacions on cada contribució
ha sigut publicada o está en preparació per ser publicada. Primer, dedicam la nostra

vii



viii

atenció a l’estudi d’unions suaus entre un nanofil de Majorana i un cable normal.
En aquest estudi les unions estan caracteritzades per les posicions i suavitats dels
interfaços de potencial i superconductor i es discuteix com aquestes caracteŕıstiques
afecten a la protecció dels modes de Majorana. A continuació, investigam els efectes
que la inclinació del camp magnètic té en els estats d’un nanofil purament unidimen-
sional. Particularment, estam interessats en les condicions d’existència dels modes
de Majorana. Hem descobert una nova relació anaĺıtica que restringeix els valors
dels paràmetres en els que una fase de Majorana és possible. En el mateix caṕıtol
també s’ha estudiat la f́ısica dels Majoranas en nanofils unidimensionals doblegats
en forma de L tractats com si fossin nanofils rectes, magnèticament inhomogenis
compostos per dos braços homogenis. L’espectre i la localització dels Majoranas en
aquests tipus de nanofils es discuteix àmpliament.

Després d’estudiar unions i fils unidimensionals enfocam la nostra atenció a la f́ısica
dels nanofils plans amb una amplada petita peró finita. Demostram que els Ma-
joranas sobreviuen a inclinacions considerables del camp magnètic en presència de
moviments orbitals causats per les components fora del pla d’aquest camp magnètic.
A més a més hem descobert un diagrama de fases caracteŕıstic dels Majoranas on
calculem en el ĺımit d’efectes orbitals forts les expressions anaĺıtiques de les fronteres
de les fases. Addicionalment, també obtenim els corrents locals i la secció transversal
d’absorbiment electromagnètic per al mateix tipus de nanofil. D’aquesta manera,
proposam un mètode alternatiu per la detecció de Majoranas complementari a les
mesures de transport. Mostram como la presència de modes de Majorana té una
manifestació a l’espectre d’absorbiment quan el camp eletromagnètic incident està
polaritzat en la direcció transversal al nanofil. A continuació també discutim la
robustesa dels modes de vora de Majorana en la superf́ıcie de nanofils quàntics finits
de forma ciĺındrica. Més espećıficament, discutim la robustesa dels Majorana per
diferents inclinacions del camp magnètic extern. A més a més, investigam com la
presència dels modes de Majorana depèn del radi del nanofil ciĺındric.

Finalment, usant un model de “tight binding” i el formalisme de Keldysh per a
funcions de Green derivam les expressions per a las corrents elèctrica i d’energia en
un circuit que conté un nanofil de Majorana. El nostre resultat principal informa
d’un comportament singular dels Majorana en les admitàncies elèctriques i d’energia.

En el seu conjunt, els treballs publicats que formen aquesta tesi incrementen el nos-
tre coneixement sobre els modes de Majorana en nanofils amb potencials aplicacions
en experiments i també donen un nou enteniment de les propietats de transport dels
Majorana. Els experiments proposats poden ser implementats amb la tecnologia
actual i algunes de les tècniques numèriques poden ser generalitzades a altres prob-
lemes.



Resumen

En general, los Majoranas son un tipo de part́ıculas caracterizadas por ser sus propias
antipart́ıculas, por tanto dos del mismo tipo juntas se aniquilan la una a la otra. Las
part́ıculas de Majorana heredan su nombre del notable f́ısico italiano Ettore Majo-
rana que postuló su existencia en 1937. Aunque no se han encontrado part́ıculas
fundamentales de Majorana en la naturaleza el concepto ha ganado una nueva vida
en el reino de la f́ısica de la materia condensada. Se cree que es posible diseñar dis-
positivos capaces de contener Majoranas como excitaciones colectivas de electrones.
Estas excitaciones colectivas tendŕıan la propiedad fundamental de los Majoranas
de ser creadas y aniquiladas por parejas aunque no seŕıan fermiones como sus equiv-
alentes en f́ısica de part́ıculas sino anyones no abelianos. El resultado de su inter-
cambio dependeŕıa de la orientación y el orden en que este se realice, propiedad que
podŕıa ser usada para construir computadores cuánticos.

De las muchas propuestas capaces de contener Majoranas esta tesis se dedica
al estudio de los modos de Majorana en nanohilos h́ıbridos semiconductores-
superconductores. Un nanohilo es una construcción 1d o quasi-1d donde los Majo-
ranas pueden aparecer si se proveen los ingredientes apropiados. En el contexto de
este trabajo estos ingredientes son superconductividad, acoplamiento spin órbita y
un campo magnético externo, aunque esta selección no es única. Hemos elegido este
sistema porque es simple, esto es una ventaja que permite modelos más realistas y
propuestas prácticas que puedan llevar a la realización de nuevos experimentos.

Los Majoranas fueron originalmente teorizados en nanohilos cerrados puramente
unidimensionales pero esto puede ser dif́ıcil de conseguir en sistemas f́ısicos reales.
Además, los Majoranas son muy dif́ıciles de detectar experimentalmente porque en
este contexto no tienen carga, spin y son estados de enerǵıa cero. Por estas razones,
los experimentos que sostienen haber detectado Majoranas se basan principalmente
en sus propiedades de transporte. En esta tesis nos ocupamos de extender el modelo
1d a otros más generales que tomen en consideración algunos efectos realistas y estu-
diamos también las propiedades de transporte de los Majoranas en si mismas. Para
hacer eso usamos una combinación de diferentes métodos numéricos y anaĺıticos que
nos han permitido descubrir un nuevo conjunto de caracteŕısticas de los Majorana
previamente desconocidas.

Esta tesis esta presentada como un compendio de publicaciones donde cada con-
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tribución ha sido publicada o está en preparación para ser publicada. Primero,
prestamos nuestra atención al estudio de uniones suaves entre un nanohilo de Ma-
jorana y un cable normal. En este estudio las uniones están caracterizadas por las
posiciones y suavidad de las interfaces de potencial y superconductora y se discute
como estas caracteŕısticas afectan a la protección de los modos de Majorana. A
continuación, investigamos los efectos que la inclinación del campo magnético tiene
en los estados de un nanohilo puramente unidimensional. Particularmente, estamos
interesados en las condiciones de existencia de los modos de Majorana. Descubrimos
una nueva relación anaĺıtica que restringe los valores de los parámetros en los que
una fase de Majorana es posible. En el mismo caṕıtulo también se estudian la f́ısica
de los Majoranas en nanohilos unidimensionales doblados en forma de L tratados
como si fueran nanohilos rectos magnéticamente inhomogéneos compuestos por dos
brazos homogéneos. El espectro y la localización de los Majoranas en este tipo de
nanohilos se discute ampliamente.

Después de estudiar uniones e hilos unidimensionales enfocamos nuestra atención
en la f́ısica de los nanohilos planos con una anchura pequeña pero finita. De-
mostramos que los Majoranas sobreviven a inclinaciones considerables del campo
magnético en presencia de movimientos orbitales causados por las componentes
fuera del plano de ese campo magnético. Además hemos descubierto un diagrama
de fases caracteŕıstico de los Majoranas donde calculamos en el ĺımite de efectos
orbitales fuertes las expresiones anaĺıticas de las fronteras de las fases. Adicional-
mente, también obtenemos las corrientes locales y la sección transversal de absorción
electromagnética para el mismo tipo de nanohilo. De este modo proponemos un
método alternativo para la detección de Majoranas complementario a las medidas
de transporte. Mostramos como la presencia de modos de Majorana tiene una man-
ifestación en el espectro de absorción cuando el campo eletromagnético incidente
está polarizado en la dirección transversal al nanohilo. A continuación también dis-
cutimos la robustez de los modos de borde de Majorana en la superficie de nanohilos
cuánticos finitos de forma ciĺındrica. Más espećıficamente, discutimos la robustez de
los Majorana para diferentes inclinaciones del campo magnético externo. Además,
investigamos como la presencia de los modos de Majorana depende del radio del
nanohilo ciĺındrico.

Finalmente, usando un modelo de “tight binding” y el formalismo de Keldysh para
funciones de Green derivamos las expresiones para las corrientes eléctrica y de en-
erǵıa en un circuito que contiene un nanohilo de Majorana. Nuestro resultado prin-
cipal informa de un comportamiento singular de los Majorana en las admitancias
eléctricas y de enerǵıa.

En su conjunto, los trabajos publicados que forman esta tesis incrementan nuestro
conocimiento sobre los modos de Majorana en nanohilos con potenciales aplicaciones
en experimentos y también dan un nuevo entendimiento de las propiedades de trans-
porte de los Majorana. Los experimentos propuestos pueden ser implementados con
la tecnoloǵıa actual y algunas de las técnicas numéricas pueden ser generalizadas a
otros problemas.



Abstract

In general, Majoranas are a kind of particles that are their own antiparticles; there-
fore two of the same kind put together annihilate each other. Majorana particles
inherited their name from the notable italian physicist Ettore Majorana who pos-
tulated their existence in 1937. Although no Majorana fundamental particles have
been found in nature the concept has gained a new life in the realm of condensed
matter physics. It is believed that it is possible to engineer devices able to hold Ma-
joranas in the form of collective electronic excitations. These collective excitations
would have the fundamental Majorana property of being created and annihilated in
equal pairs albeit they would not be fermions like their particle physics equivalents
but non-abelian anyons. The result of their interchange depends on the orientation
and order of such interchange, a property that could be used to build quantum
computers.

From the many theoretical proposals of systems able to hold Majoranas this thesis
is devoted to the study of Majorana modes in hybrid semiconductor-superconductor
nanowires. A nanowire is a 1d or quasi-1d construct where Majoranas can appear
if the proper ingredients are provided. In the context of this work these ingredients
are superconductivity, spin orbit coupling and an external magnetic field, although
this selection is not unique. We have chosen this system because of its simplicity,
an advantage that allows for more realistic models and feasible proposals that can
lead to new experiments.

Majoranas were originally theorized for purely 1d closed nanowires but this can not
be easily achieved in real physical systems. Furthermore, Majoranas are very difficult
to be detected experimentally because in this context they are chargeless, spinless,
zero energy states. For this reason, experiments claiming Majorana detection are
mainly based on their transport properties. In this thesis we take care of extending
the 1d model to more general ones that take into consideration some realistic effects
and we also study the Majorana transport properties in themselves. To do this we
use a combination of different numerical and analytical methods that have allowed
us to uncover a whole new set of Majorana features previously unknown.

This thesis is presented as a compendium of publications where each contribution
has been published or is in preparation to be published. First, we will focus on the
study of smooth junctions between a Majorana nanowire and a normal lead. In this
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study the junctions are characterized by the potential and superconductor interface
position and softness and it is discussed how this features affect the protection of the
Majorana modes. Next, we investigate the effect that a tilting of the magnetic field
has on the states of a purely 1d Majorana nanowire. Particularly, we are interested
in the conditions of existence of the Majorana zero modes. We uncover a new
analytical relation that restricts the parameter values in which a Majorana phase is
possible. In the same chapter, we have also studied the Majorana physics of bent
L-shaped 1d nanowires treated as if they were magnetically inhomogeneous straight
nanowires composed of two homogeneous arms. The spectrum and the localization
of Majoranas in this kind of nanowires are thoroughly discussed.

After studying 1d junctions and wires we move on to the study of Majorana physics
of planar nanowires with a small but finite width. We demonstrate that Majo-
ranas survive sizable vertical field tiltings of the external magnetic field in presence
of the orbital motion caused by off plane components of this same magnetic field.
Furthermore, we uncover a characteristic phase diagram for Majoranas where the
analytical expressions of the phase boundaries are calculated for the limit of strong
orbital effects. Additionally, we also obtain for the same kind of nanowire the local
currents and the electromagnetic absorption cross section. This way we propose an
alternative method of Majorana detection but complementary to transport measure-
ments. We show how the presence of Majorana modes have a manifestation in the
absorption spectra when the incident electromagnetic field is polarized in a trans-
verse direction to the nanowire. Next, we also discuss the robustness of Majorana
edge modes in the surface of finite quantum nanowires of cylindrical shape. More
specifically we discuss the Majorana robustness for different external magnetic field
tiltings. Furthermore, we investigate how the presence of Majorana modes depends
on the radius of the nanowire cylinder.

Finally, using a tight binding model and the Keldysh-Green function formalism we
derive the time dependent electrical and energy currents in a circuit that contains
a Majorana nanowire. Our main results for the AC transport report a singular
behavior of the Majorana for the energy and electrical current admittances.

Taken together, the published works that form this thesis increase our knowledge
of the Majorana modes in nanowires with potential applications in experiments
and also give a new insight of the Majorana transport properties. The experiments
proposed can be implemented with the present technology and some of the numerical
techniques can be generalized to non Majorana problems.
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Chapter 1
Introduction

1.1 Motivation

In its simpler definition a Majorana is a particle that is its own antiparticle. We
can find the origin of this term in the realm of particle physics when in 1937 italian
physicist Ettore Majorana discovered real solutions of Dirac equation for relativis-
tic electrons and positrons [1]. This discovery implied the theoretical prediction of
neutral particles that are their own antiparticles. In particular, Ettore Majorana
proposed this model for neutrinos. Many particles have been discovered since Ma-
jorana’s breakthrough, although none has been found to obey Majorana physics up
to the present date, although the debate on neutrinos and other yet undiscovered
particles is still open. However, the possibility of Majorana modes as new emergent
quantum states in condensed matter systems has drawn broad interest in the Physics
community. Majorana modes theorized in condensed matter devices arise as collec-
tive excitations caused by many body electronic interactions. Furthermore, in this
context they are not fermions but chargeless, spinless, zero energy quasi-particles
that exist as topological states in superconductors [2–4]. A consequence of the Ma-
jorana’s topological nature is their resilience to local sources of noise. This is caused
by the energy separation between the topological Majorana states and the bulk ones
and the impossibility to lift the Majorana states from zero energy because of their
symmetry protection. In general, topological states are zero-temperature states that
appear localized in the limits of their corresponding physical system [5,6]. This kind
of states also represent ordered phases of matter that can not be characterized by
local order parameters because their orderings are global system properties.

Majoranas non-abelian statistics and their inherent robustness to noise makes them
ideal candidates for quantum computation. Two Majoranas circulating around each
other will acquire a non trivial phase that depends on the circulation direction. How-
ever, the non-abelian nature of Majoranas is not violating the spin-statistics theo-
rem because the theorem is restricted to localized particles not attached to a domain
wall. The non commuting interchanges of Majoranas allows to perform quantum
computation and store quantum information by braiding them; i.e., manipulating

1
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the Majoranas space-time trajectories. The available operations and algorithms can
be found in knot theory [5]. Despite braiding requires a 2d system it can also be
performed in networks of more simple 1d nanowires as proposed in Ref. [7].

The fact that Majoranas can be engineered in relatively cheap solid state devices of-
fers the opportunity to study new physics traditionally reserved to expensive radio-
telescopes and particle accelerators. Currently, there are several theoretical pro-
posals for solid state devices able to support Majorana modes but their spinless
and chargeless nature hinders their detection. For example, Majoranas have been
predicted to appear in 2d Abrikosov vortices created in the surface of topological
insulators in contact with thin superconductor layers [8]. However, 1d systems have
the advantage to be the simplest ones that can hold Majoranas thus leading to more
feasible experimental setups. In this direction there are various theoretical pro-
posals to engineer Majoranas, like using the edges of topological insulators [9, 10],
nanowires made of 3D topological insulator inside and external magnetic field [11],
helical spin chains [12] and semiconductor quantum wires proximity coupled with a
superconductor [3, 4]. In fact, various experimental groups already claimed to have
detected Majorana modes using different experimental setups [13–24]. However, in
spite of the compelling evidence in favor of Majoranas, experimental results are not
yet conclusive.

Of the many proposals able to hold Majoranas, this thesis is devoted to the
study of Majorana modes in hybrid 1d and quasi-1d semiconductor-superconductor
nanowires. We have chosen these systems because, even though Majoranas are in
general exotic states, this kind of devices uses more common experimentally available
ingredients and there already exist experimental realizations [13–15, 17, 18]. These
ingredients are superconductivity [25], spin orbit interaction [26] (Rashba effect) and
an external magnetic field [27,28] (Zeeman effect). In those devices the experimental
signature of the Majorana is a peak in the conductance at zero bias named Zero
Bias Peak (ZBP). Although the obtained results are qualitatively consistent with a
Majorana mode there are alternative explanations to the ZBP that do not involve
Majoranas. To overcome this uncertainty, theoretical and experimental advances
are needed. From a experimental point of view, new more controlled experiments
are being performed [24]. On the other hand, a better theoretical knowledge is also
needed about the Majorana phases and their transport properties.

As explained below there is a gap of knowledge between the purely 1d closed-system
models and the real experimental setups. With the aim to fill this gap this thesis
is devoted to the theoretical study of Majorana nanowires with non-ideal normal-
superconductor NS junctions, quasi-1d planar and cylindrical nanowire geometries
and also to the study of different experimental setups, like the AC response of a
Majorana nanowire or its optical absorption properties. In the following subsections
the Majorana basic concepts, properties and applications will be introduced.
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1.2 Majoranas in solid state physics

It is widely accepted that nature is built up of two fundamental kinds of particles,
bosons and fermions, obeying two different kinds of statistics [29,30]. On one hand,
bosons are integer spin particles that fulfill the commutation relation

[
di , d

†
j

]
= δij , (1.1)

where d†i , di are the boson creation and annihilation operators in second quantization
formalism, respectively. This commutation relation requires a symmetric wavefunc-
tion and, as a consequence, there is no upper limit in the number of bosons that
can be stacked in one particular quantum state. On the other hand, fermions are
fractionary spin particles that fulfill the anti-commutation relation

{
ci , c

†
j

}
= δij , (1.2)

where c†i , ci are the corresponding fermion creation and annihilation operators. The
anti-commutation relation requires the fermion wavefunction to be anti-symmetric,
therefore not more than one fermion can be found in the same quantum state. How-
ever, quasi-particles present in low-dimensional nanostructures are not fundamental
particles and they are not bound by these two options.

Indeed, Majoranas in solid state physics devices emerge as quasi-particles that fulfill
a new anti-commutation relation

{γi , γj} = 2δij , (1.3)

where γi is simultaneously the Majorana creation and annihilation operator in sec-
ond quantization. This new anti-commutation relation makes Majoranas different
from fermions and bosons reflecting the Majorana status as a particle that is its
own antiparticle. It is possible to stack as many Majoranas in the same quantum
state like bosons but they annihilate each other in pairs. As a consequence, we can
find only zero or one Majorana at a definite quantum state, like fermions. This fact
has important implications in the nature of the Majorana wavefunction. First, two
Majoranas can coexist only if they are completely uncoupled, any overlapping or
interaction between two Majoranas will result in their mutual annihilation. Second,
the spin statistical connection in low dimensional states is broken, in fact the Ma-
jorana state that we study in this thesis is effectively spinless. We will discuss a bit
more about these statements in the section Majorana properties that can be found
below. For the moment we will be satisfied to understand how Majorana fermions
arise in mesoscopic devices made of many electrons.

As reasoned in Ref. [6], in general one can perform a canonical transformation in
a way that any system of electrons can be formally recast in terms of Majorana
fermion states,

|γ1〉 =
1√
2

( |E〉+ |−E〉 ) , (1.4)

|γ2〉 =
i√
2

( |E〉 − |−E〉 ) , (1.5)
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where |γ1〉 and |γ2〉 are two Majorana states while |E〉 and |−E〉 are two fermionic
states at energies E and −E, respectively. The positive energy state is a particle
state while the negative energy one is a hole state. This occurs in many body
electron devices because two electrons can not be in the same state as imposed
by the Fermi exclusion principle. Therefore, electrons pile up in different states
until they reach the Fermi energy level that we label as our origin of energies by
convenience. Positive energy levels are excited states that arise from the addition of
an electron while negative energy ones arise from an electron removal from the Fermi
sea. In general, the transformations implied by Eqs. (1.4) and (1.5) only represent a
change in the point of view and usually is not even helpful in the analysis of a system
behavior. The physical reason is that Majorana states can only be stationary states
at zero energy. In general the Majorana wavefunctions overlap in space and there
is no advantage in a separate description. However, in certain devices Majoranas
are possible at zero energy and appear as two physically separated non-overlapping
topological solutions. In the particular case of 1d Majorana nanowires one Majorana
appears on each end of the nanowire. In those cases, the Majorana basis is the most
natural base and the one that better reflects the physics of the device.

1.3 Majorana properties

The implementation of a Majorana nanowire requires the use of superconductivity.
This is hinted in Eqs. (1.4) and (1.5), whereby Majoranas are created by means of
a coherent superposition of electron and hole degrees of freedom. Majorana modes
can appear as device eigenstates due to the superconductor coupling; hence, Majo-
rana modes are protected by particle hole symmetry (PHS). In general, topological
states are symmetry protected and can be classified by their symmetries [5, 31, 32].
Symmetries are non-local properties, each one related to its own non-local operator.
In particular, PHS imposes a restriction in the superconductor spectrum, requiring
that every positive-energy E particle state has a negative energy −E anti-state. As
a consequence, Majorana states are very robust against local noise and decoherence
because they appear at the middle of the superconductor energy gap and can not
be lifted from zero energy due to the PHS. As mentioned above, their robustness
to noise and their particular statistics are specially useful for topological quantum
computation schemes [5, 7, 33].

Devices in strict 1d with PHS have only two possible phases, the trivial and the
topological one [32]. Therefore, in a purely 1d nanowire it is not possible to have
more than one Majorana at each nanowire end. Two Majoranas on the same end
of the nanowire would result in their mutual annihilation. This is the reason why
Majoranas exist only in spinless or effectively spinless nanowires. Spin degeneracy
would lead to the creation of two Majoranas on the same end that would destroy
each other becoming a fermion.

Taken together, the above characteristics of Majoranas as topological states are a
mixture of properties, some of them general to all topological states and others
particular to Majorana states only. For the sake of clarity of exposition we now list



1.3. Majorana properties 5

and summarize these properties:

1. Majoranas are edge states. By definition, topological states arise on a device
physical limits or are associated to imperfections and impurities. This must
not be confused with Anderson localized states where the localization is caused
by the cumulative effect of extended disorder. In 1d or quasi-1d nanowires
Majoranas appear on the nanowire ends.

2. Majoranas are zero energy states. In any particle-hole symmetric system each
state at positive energy has its anti-state at negative energy. Therefore, in or-
der to have Majoranas that are particles identical with their own antiparticles
they must exist at zero energy.

3. Majorana modes are spinless states. Majoranas are spatially separated and
attached to different edges of the device, provided there is no spin degeneracy.
If spin degeneracy is present then two identical Majoranas would appear at
the same edge, with an overlapping wavefunction. This way, the formation of
two Majoranas is prevented as they would become fermion states with their
energy lifted from zero.

4. Majoranas appear inside a gap. This is a common feature to all topological
states. It arises from the practical need to maintain an energy separation of the
topological states from the non-topological ones. Differently from the topo-
logical states, local noise introduces uncontrolled dynamics in a device bulk
states above the gap. Furthermore, for large enough levels of noise, a topo-
logical device can jump from its topological ground state to a non topological
bulk state out of the energy gap. Hence, to avoid this situation it is required
to have the Majoranas states isolated inside a gap as large as possible.

5. Majoranas appear in pairs. Single unpaired Majoranas can live only in semi-
infinite systems. In general, it is assumed that the second Majorana of the
pair is attached to a second edge lying at infinite distance from the first one.
On the other hand, in systems of finite size Majoranas appear in pairs, each
one located on a different edge.

6. Majoranas have non-abelian statistics. The exchange of two Majoranas gives
as a result a fractional complex phase. Furthermore, this phase depends on
the Majoranas interchange direction. This feature can be profited to perform
topological quantum computation and quantum storage of information.

In order to engineer a Majorana 1d or quasi-1d nanowire we will need supercon-
ductivity and a mechanism to avoid the inherent spin degeneracy of real electronic
devices. In this thesis the mechanism considered is the simultaneous use of an exter-
nal magnetic field (Zeeman effect) in combination with the effective magnetic field
caused by the intrinsic spin orbit interaction (Rashba effect). Superconductivity,
Zeeman and Rashba effects are next presented in more detail.
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1.4 Bogoliubov-deGennes equations and super-

conductivity

In this thesis we work with an effective single quasiparticle model having a supercon-
ductive term that couples particle and hole degrees of freedom. The mixing between
them allows for the existence of a neutral Majorana quasiparticle. In general, su-
perconducting materials are metals where electrons feel an effective attractive force
between them [34]. Furthermore, if the temperature is low enough this force is
strong enough to pair the electrons into Cooper pairs causing the superconducting
behavior to appear. Below the critical temperature the superconducting phase exists
while above this temperature a superconductor behaves like a normal metal [35,36].
The superconducting behavior is characterized by zero resistivity [36, 37] and zero
magnetic field inside the superconductor [38, 39] among other properties. More im-
portantly for us, in superconductors the density of states has an energy gap at the
Fermi level. This gap is important to grant the Majorana mode robustness against
noise.

There are several superconducting mechanism of different physical origin but we will
focus on s-wave superconductivity. The reason is that s-wave superconductivity was
the first kind of superconductivity discovered, therefore, it is the one that can be
found in the more common superconductors like Al, Nb, Pb, Sn. As a consequence,
s-wave superconductivity is easy to be achieved in a laboratory and is better known
than more exotic p-wave or d-wave high temperature superconductors. S-wave su-
perconductivity arises from a phonon assisted attractive force between electrons [25].
In more plain words, we can model a superconductor as a free electron gas like in
metals plus an electron-electron interaction caused by the atomic network vibration.
That is,

H =
∑

k,σ

εk c
†
k,σck,σ +

∑

k,k′,σ,σ′,q

Veff (q) c†k+q,σc
+
k′−q,σ′ck′,σ′ck,σ , (1.6)

where c†k,σ and ck,σ are the electron creation and annihilation operators in second
quantization, εk = ~k2/2m is the kinetic energy of a normal metal, k and k′ are
the electron wavenumbers, q is the atomic network phonon momentum, m is the
effective electron mass and Veff is the effective attractive phonon-mediated interac-
tion between electrons. Veff (q) is an attractive potential for low q values while it
is repulsive for higher q. This attractive potential causes the electron pairing into
Cooper pairs. Veff (q) can be calculated with a microscopic model, however its exact
dependence with q is not necessary to understand the essentials of superconductivity.

In the BCS model of superconductivity a series of approximations are done for
superconductors of weak coupling, weak shielding and weak interaction potential.
Essentially, we restrict ourselves to lattice vibration energies under a particular value
where the potential is attractive and then we approximate the potential as a con-
stant for those energies. This way the potential is greatly simplified and becomes
manageable analytically. Furthermore, we consider only interactions between elec-
trons with opposite momentum and spin because Cooper pairs total momentum has
been theorized to be zero and no macroscopic magnetization has been observed in a
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superconductor [34]. As a consequence, Cooper pairs are singlet states. With these
approximations the Hamiltonian is simplified into

H =
∑

k,σ

εk c
†
kσckσ − V0

∑

k,k′

c†k′↑c
†
−k′↓c−k↓ck↑ , (1.7)

where V0 is the ideal constant magnitude of the attractive potential in this model.

At this point, the Hamiltonian in Eq. (1.7) can be further simplified using a mean
field approximation into

H =
∑

kσ

εk c
†
kσckσ +

∑

k

(
∆∗ c−k↓ck↑ + ∆ c†−k↑c

†
k↓

)
, (1.8)

with
∆ ≡ −V0

∑

k′

〈c−k′↓ck′↑〉 = V0
∑

k′′

〈c−k′′↑ck′′↓〉 , (1.9)

where ↑ and ↓ indicate the spin up and down degrees of freedom. The rest of
the symbols have the same meaning of the Hamiltonian in Eq. (1.7). In this ap-
proximation the two-body interaction is reduced to a single body self-interaction,
like an external field. Eq. (1.8) Hamiltonian is given referred to a ground state
of Cooper pairs presented below. The propagating bands of this Hamiltonian are
shown in Fig. 1.1. They can be interpreted physically as the excitation energies
of the quasiparticles not bounded to a Cooper pair (where ∆ is the Cooper pair
breaking energy). These quasiparticles have simultaneous nonzero components of
the particle and hole degrees of freedom. An electron-like quasiparticle has a greater
electronic component while in a hole-like one is the other way around. No propa-
gating states are found inside the gap because in non-topological superconductors
no quasiparticle excitations can be found for energies lower than the Cooper pair
binding energy. Superconductivity in combination with the Rashba and Zeeman
effects will make the superconductor topological allowing a perfect mixture of both
degrees of freedom at zero energy. In this manner, the Majorana neutral quasi-
particle can be obtained. The kind of Hamiltonian presented in Eq. (1.8) is called
Bogoliubov-deGennes Hamiltonian. Here, it is written using second quantization
notation although it is equivalent up to a basis change to the more familiar version
shown below in Eq. (1.12).

As stated above, in BCS formalism the Hamiltonian is expressed in relation of a
reference state of Cooper pairs. This reference state is postulated under the same
arguments and approximations used above to derive the Hamiltonian in Eq. (1.8).
Cooper pairs are assumed to be singlet states of definite momentum independent of
each other. This approximation is fairly good because of the good localization of
the states in momentum space. On the other hand, if we consider each pair inde-
pendently then each one is subjected to the same mean field . Therefore, the overall
wavefunction of the BCS reference state |ψBCS 〉 can be rewritten as a multiplication
of every independent pair

|ψBCS 〉 =
∏

k

(
uk + vk c

†
k↑c
†
−k↓

)
|0〉 , (1.10)
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Figure 1.1: Schematic of the propagating bands of a 1d s-wave supercon-
ductor modeled by the Hamiltonian in Eq. (1.8) for a particular case where
µ/∆ > 1. Excitation energies of electron-like quasiparticles are shown in blue
while the energies of hole-like ones are shown in red. The superconductor gap
∆ separates the two bands. The particular choice of the chemical potential µ
has been based in aesthetic reasons with the intention to ease the distinction
between electron and hole-like excitations in the schematic.

where uk is the amplitude of probability to have and empty Cooper pair state while
vk is the amplitude of probability to have this same state occupied. This expression
is equivalent to

|ψBCS〉 =
∑

N

λN |ΨN〉 , (1.11)

where |ΨN〉 is a reference state made of N Cooper pairs. In general, the ground
state of Eq. (1.8) has an undefined number of zero energy Cooper pairs.

As an alternative to the above formulation, it is possible to write the Hamiltonian of
Eq. (1.8) without second quantization notation. Making the projection of Eq. (1.8)
in the basis of spatial degrees of freedom the Hamiltonian is written as

HBdG =

(
p2x
2m
− µ

)
τz + ∆ τx, (1.12)

where px = −i~∂x, µ is the nanowire chemical potential and ∆ is the constant
s-wave superconductor coupling introduced above. It is usual to work with an ab-
breviated notation that makes use of the Pauli matrices τx, τy and τz for the isospin
(particle and hole) degrees of freedom. Note also that we take the superconductor
coupling ∆ as a real number. The superconductor phase is not relevant in single su-
perconductor or normal-superconductor interface problems. Phase is only relevant
in superconductor-superconductor interfaces not discussed in this thesis.

To obtain the eigenenergies and eigenstates of the Bogoliubov-deGennes Hamilto-
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nian (Eq. (1.12)) we solve the corresponding energy eigenstate equationHBdGΨ(x) =
EΨ(x) where Ψ(x) = (f(x), g(x)). This equation has the same mathematical form
and can be solved in the same ways than a Schrödinger equation but here the energy
E does not represent the system absolute energy but its excitation energy instead.
The same equation can be written as the two more familiar coupled Bogoliubov-
deGennes equations. Each one of these equations are functions of the spatially
varying electron and hole degrees of freedom f(x) and g(x),

+

(
−~2∇2

2m
− µ

)
f(x) + ∆ g(x) = Ef , (1.13)

−
(
−~2∇2

2m
− µ

)
g(x) + ∆ f(x) = Eg , (1.14)

where µ is the nanowire chemical potential and ∆ is the constant s-wave supercon-
ductor coupling introduced above.

As explained below, the Majorana nanowires are not made of a superconducting
material themselves but superconductivity is achieved by means of the proximity
effect [40]. When a superconductor is placed in close contact with a thin layer of
a normal non-superconductor material the latter becomes also a superconductor.
This is called the proximity effect or the Holm-Meissner effect and it is caused by
the leaking of Cooper pairs from the superconductor into the normal material. If the
normal material thickness is smaller than the Cooper pairs coherence length then this
leakage is enough to change its nature into a superconductive one. Independently
of the origin of the superconductivity, the resulting hybrid system is modeled with
a superconductor coupling of the kind present in Eq. (1.12).

1.5 Zeeman effect

The theoretical justification of the spin as an actual degree of freedom can be found
in the four component vector solutions of the Dirac equation. In these solutions each
of the components are labeled by a two valued spin and isospin quantum numbers
[41]. However, the spin was known even before Dirac equation was theorized. For
example, in 1922 Stern and Gerlach carried out an experiment devised by Stern
the year before [30, 42–44] where it was demonstrated that the spatial orientation
of the angular momentum is quantized. The experiment consisted in sending silver
atoms through a non-homogeneous magnetic field which deflected their straight
trajectories before impacting in a detector screen. The main point is that the silver
atom electrons are known to have a zero orbital angular momentum. Furthermore,
the number of electrons of silver is 47, an odd number, therefore the total angular
momentum of the whole atom is roughly the intrinsic angular momentum of one
electron. The working principle of this experiment is the coupling of the magnetic
field with the spin of the electron to separate silver atoms in two beams of opposite
1/2 and −1/2 values of their spin projection. This coupling is postulated to be

HZ = ∆B ~n · ~S , (1.15)
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where ∆B = gµBB, ~S = 1
2
~σ and ~n is the direction of the magnetic field created by

the magnet. At the same time, in these expressions g is the gyromagnetic factor of
the electron, µB = e~/2me is the Bohr magneton, e is the electron charge and me is
the electron bare mass.

The Hamiltonian in Eq. (1.15) is called Zeeman term after the famous physicist
who explained the splitting of the spectral lines of the hydrogen atom using an
interaction of this kind [27]. In this thesis, we will not study such atomic systems
but 1d and quasi-1d hybrid nanowires where we use this term to model the coupling
between the magnetic field and the spin degrees of freedom. As stated above the
coupling depends on the gyromagnetic factor g. The coupling between the magnetic
field and the spin lead to an effective material dependent value of g different from
vacuum conditions. For instance, it takes the values 0.44 (GaAs), 15 (InAs), 52
(InSb) [45]. As explained in the next section, in order to have have Majorana the
magnetic coupling must be comparable with the Rashba coupling. For this reason
we will consider hybrid semiconductor-superconductor nanowires with metallic-like
behavior made of high g materials like InSb or InAs.

In a metallic-like material all the atoms share the conduction bands, therefore elec-
trons move in the same way as in a free electron gas where the electron dispersion
relation is parabolic. We consider nanowires much longer than wide or high, thus
quasiparticle motion is almost free along the longitudinal axis of the nanowire but
is quantized in the transversal directions. On a first approximation, the transversal
confinement energies become constants that we can ignore by a proper tuning of the
chemical potential. Therefore, we can devise a purely 1d model of a nanowire inside
an external magnetic field devoid of any geometric consideration,

H =

(
p2x
2m
− µ

)
τz + ∆B ~n · ~σ , (1.16)

where ~σ is the vector of Pauli matrices ~σ = (σx, σy, σz) and the rest of the symbols
have the same meaning as in previous equations.

Equation (1.16) is a Hamiltonian of a 1d system, hence there are no terms related
with the transversal motion of quasiparticles. In some parts of the thesis we will
consider not only 1d wires but also quasi-1d planar nanowires with some width.
In quasi-1d nanowires it is also possible the coupling of the magnetic field with
the spatial degrees of freedom of the electron. This coupling is introduced in the
Hamiltonian by means of the substitution

~p→ ~p− e

c
~A(r, t) , (1.17)

as indicated, e.g., in Ref. [30], where e is the electron charge, c is the velocity of

light and ~A(r, t) is the magnetic field vector potential. If we consider Eq. (1.17)
substitution in the kinetic energy of a free electron we obtain

− ~2

2m
∇2Ψ→ − ~2

2m
∇2Ψ− ie~

mc
~A · ∇Ψ +

e2

2mc2
A2Ψ . (1.18)

For the same physical problem the vector potential can be written in many different
ways depending on the gauge choice. In our case, we will usually turn to the Landau



1.6. Rashba effect 11

gauge with the origin at the center of the nanowire, because it is the one that is
better adapted to the geometry of our problem

~A = (0,−Bzy, 0) , (1.19)

where Bz is the out-of-plane component in a planar Majorana nanowire. In this
gauge the Hamiltonian terms in Eq. (1.18) become

Horb = − ~2

2m
∇2 +

~2

2ml4z
y2 − ~

ml2z
ypx . (1.20)

where l2z = ~c/eBz. The first term is the usual kinetic energy term while the second
one has the mathematical form of an effective quantum oscillator potential. The
remaining term is also a Zeeman term that couples the magnetic field with the
orbital motion. As a side note, in spherical or cylindrical systems this last term
becomes proportional to the angular momentum ~L and takes a mathematical form
similar to Eq. (1.15).

1.6 Rashba effect

The spin orbit interaction is the coupling between the electron spin and its own
momentum in presence of an external electric field [30]. Although its physical origin
must be searched in the series expansion of the electron relativistic energy, it can
also be reasoned physically. The Hamiltonian of spin orbit interaction (SOI) is a
Zeeman like term caused by the presence of an effective magnetic field Beff . This
magnetic field is the one that an electron perceives in its own frame of motion when
it is moving inside an external electric field (see Fig. 1.2a). It can be written as

HSOI ∝ ~σ · ~Beff (~k ) , (1.21)

where ~σ is a vector of Pauli matrices (as in the preceding section). The magnetic
field can be expressed as

~Beff = − 1

c2
(~v × ~E ) , (1.22)

where c is the light velocity, ~v is the electron velocity and ~E is the electric field.
The Rashba effect is the momentum dependent splitting of the spin bands in a low
dimensional condensed matter system due to this spin orbit interaction [46] (see
Fig. 1.2b). Rigorously, in condensed matter systems Rashba spin orbit interaction
emerges from an approximation to a more complicated Kane Hamiltonian for crys-
talline solids [45]. In this case, the spin orbit interaction arises by an asymmetry in
the growth direction of the semiconductor. In other words, an electric field appears
because there is an asymmetry in the confining potential that gives rise to an electric
field ~E = −∇V (~r ).

Making the substitution of the effective magnetic field of Eq. (1.22) in the Hamilto-
nian of Eq. (1.21) we obtain the electric field dependent expression for the Hamil-
tonian Rashba term

HSOI ∝ ~σ ·
(
~E × ~p

)
, (1.23)
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where ~p is the electron momentum and the rest of the symbols have the same meaning
as in Eq. (1.22).

The Rashba effect is closely related to the Dresselhaus effect [47]. In the Dresselhaus
effect the asymmetry is found in the semiconductor crystal structure that does not
have an space inversion center. Depending on the selected semiconductor material
it is possible to find the dominance of one effect (Rashba or Dresselhaus) over the
other, or the coexistence between the two. In our particular case, we are going to
consider materials where the Rashba effect dominates over the Dresselhaus one, in
such a way that the Dresselhaus effect becomes negligible. This is justified for the
choice of InSb semiconductor as the building material of Majorana nanowires in the
experiments of Refs. [13, 24]. On the other hand, we want to stress that the choice
of InSb and similar materials is motivated by its simultaneously large gyromagnetic
factor and spin orbit coupling strength. That does not mean that from a theoretical
point of view the Dresselhaus effect is not suited to obtain Majorana zero modes.
Dresshelhaus and Rashba Hamiltonians are equivalent in 1d models although the
Majorana phase will appear for a different range of values of the magnetic field
orientation. Furthermore, theoretical predictions of Majorana modes making use of
the Dresselhaus effect in 2d devices have also been claimed [48].

Figure 1.2: a) Diagram of the forces, velocities and fields involved in the
Rasba spin orbit coupling. b) Schematic of the propagating bands of a 1d
Rashba semiconductor. The two colors (red and blue) indicate different spin
components.
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After some algebraic manipulation the Rashba term can be written as

HR =
α

~
(~σ × ~p ) · ẑ , (1.24)

where

α ∝ E0 , (1.25)

is the spin orbit coupling strength and E0 = |~E| the electric field magnitude. We
have assumed here that ẑ is the growth direction where the confinement asymmetry
is present. In a 2d system this model leads to a coordinate dependent expression,

HR = −α
~

(pxσy − pyσx) , (1.26)

where px and py are the x̂ and ŷ components of the momentum and σx and σy the
corresponding Pauli matrices. Equation (1.26) is the sum of the one dimensional
Rashba term (≈ pxσy) and the Rashba mixing term (≈ pyσx). The one dimensional
Rashba term is the only one to appear in a purely 1d system. This term is the
responsible of the splitting of the one dimensional semiconductor dispersion equation
into two spin dependent parabolas, one for spin up and one for spin down (see Fig.
1.2b). Furthermore, the momentum dependent Rashba coupling in combination
with an external Zeeman field leads to a spatial spin precession in the Hamiltonian
eigenstates. In this manner, different spatial positions of the same eigenstate will
have a different spin projection because the spin acquires an spatial helicity, this way
the eigenstate becomes effectively spinless. On the other hand, the Rashba mixing
term αpyσx is called this way because it couples the quantized nanowire transverse
modes and it only appears in 2d or quasi-1d models. Its role in the Majorana
formation will be further discussed below in Chap. 4.

1.7 Experimental setups

Although Majoranas can be found in different systems, those in 1d have the advan-
tage to be the simplest able to hold Majorana modes. In this thesis we focus on the
hybrid semiconductor-superconductor quantum wires because they can be built us-
ing the already known technological background developed for the implementation of
electronic semiconductor devices. The use of hybrid semiconductor-superconductor
1d nanowires was initially proposed in Refs. [3, 4] and finally experimentally tested
in Ref. [13] and later on in Refs. [14–18,24].

A semiconductor with strong spin orbit coupling (like InSb or InAs) is deposited on
the surface of an s-wave superconductor becoming a hybrid semi-superconductor.
As explained above in Sec. 1.4, from an experimental point of view it is preferable
the use of well known s-wave superconductivity than an exotic p-wave topological
superconductor. Superconductivity is achieved in the semiconductor by means of
the proximity effect that is the tunneling of Cooper pairs from a superconductor to a
close semiconductor device. If the height of the semiconductor device is smaller than
the coherence length of the Cooper pairs the semiconductor becomes an effective
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superconductor metal. However, the presence of spin in a superconductor causes
all bands to be double degenerate thus preventing the formation of an uncoupled
Majorana mode. Nevertheless, a hybrid semiconductor-superconductor nanowire
retains the strong spin orbit coupling strength characteristic of the semiconductor
material. An external magnetic field breaks the time reversal symmetry and in
combination with the spin orbit coupling the Hamiltonian eigenstates acquire a spin
precession, this way becoming effectively spinless states. This is the kind of hybrid
system modeled by the Bogoliubov-deGennes Hamiltonian

HBdG =

(
p2x
2m

+ V (x)− µ
)
τz + ∆B σx + ∆ τx +

α

~
pxσyτz , (1.27)

where the combination of s-wave superconductivity, Rashba and Zeeman effecs in a
1d ballistic nanowire makes possible the existence of Majorana states.

The nanowire is in a Majorana topological phase when the magnetic field strength
∆B exceeds a particular limit, ∆B >

√
∆2 + µ2, determined by the superconductor

coupling ∆ and the chemical potential µ [4]. The constant α characterizes the spin
orbit strength and the potential V (x) models the nanowire edges where Majoranas
need to be located. In general, we will find a Majorana edge state in a finite or
semi-infinite nanowire if its corresponding (i.e., same Hamiltonian except for the
confinement) infinite edgeless nanowire is in a topological phase, this is called the
bulk to edge correspondence principle. The Hamiltonian of Eq. (1.27) has been
proposed as a model for very thin semiconductor nanowires in the mesoscopic scale,
proximity coupled to a metallic superconductor.

Currently, the greatest progress in Majorana detection in solid state devices has
been achieved in hybrid nanowires. The biggest challenge in Majorana detection
is that Majoranas are zero energy, chargeless, spinless modes, therefore no experi-
ment relying on those properties can be performed. With the intention of detecting
Majorana states, in the experiment of Ref. [13] a Majorana nanowire is attached
to a normal reservoir with the objective of detecting a zero bias peak (ZBP) in the
electrical conductance, g(V ) = dI/dV (see Figs. 1.3a and 1.3b). A Majorana mode
transport signature is a conductance peak at zero energy due to Andreev reflection
like the one of Fig. 1.3c. As shown in Fig. 1.3b, a gate is used to create a tunnel
barrier between the normal and superconductor contacts. The barrier is important
not only to provide an edge where the Majorana can arise, but also to observe the
Majorana transport properties. In a normal-superconductor junction electrons are
reflected into holes naturally by Andreev reflection, therefore the barrier also takes
the role of frustrate all the Andreev reflection of non-Majorana origin. The external
magnetic fields applied here are of the order 100 mT while the nanowire length is
of the order of various µm.

In our opinion, there is a gap of knowledge between the purely 1d closed models
and real experimental setups. Actual mesoscopic semiconductor wires are not really
one dimensional but, at most, they are quasi-1d. These nanowires width and height
may be orders of magnitude smaller than their length, but still finite. Furthermore,
they can be manufactured with different geometries, in the particular case of the
experiment of Ref. [13] it was used an approximately cylindrical nanowire. Therefore,
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Figure 1.3: a) Implemented version of the theoretical proposals. Scanning
electron microscope image of the device with normal (N) and superconducting
(S) contacts. The S contact only covers the right part of the nanowire. The
underlying gates, numbered 1 to 4, are covered with a dielectric. b) Schematic
of the device. The green rectangle indicates the tunnel barrier separating the
normal part of the nanowire on the left from the wire section with induced
superconducting gap ∆. An external voltage V applied between N and S drops
across the tunnel barrier. Only the left Majorana is probed in this experiment.
Figure and caption taken from Ref. [13].

there is the possibility that some theoretical predictions for 1d wires may or may not
be fulfilled in quasi-1d nanowires or even if they are qualitatively fulfilled, important
changes in the phase diagram boundaries may arise. On the other hand, real wire
junctions are not perfect either, the smoothness of the potential and deviations from
ideal behaviors at the superconductor interfaces may affect the junction behavior.

Furthermore, although the ZBP detection has been reproduced by several groups,
it has been noted that ZBP’s can be obtained in superconductor systems in the
same experimental conditions by other non Majorana sources. Disorder or trapped
magnetic impurities are some of the other plausible explanations given to the same
experimental results. In order to discard some of these alternative explanations
Ref. [24] experiment reproduces the results of Ref. [13] using a cleaner nanowire and
more controlled experimental conditions. An special effort is done to demonstrate
the absence of disorder in the nanowire. In general, nanowire experiments reproduce
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qualitatively well the behavior expected by a Majorana zero mode. A ZBP arises
when particular magnetic field magnitudes are achieved and disappears when the
orientation of the magnetic field is perpendicular to the nanowire. Nevertheless,
in order to be sure of the relation of the peak with a Majorana phase a better
knowledge of the phase boundaries is also needed.

This thesis focuses on many of the above issues from a theoretical point of view, like
non ideal junctions, quasi-1d nanowires or geometry considerations to cite a few.
Different experimental setups, like the AC response of Majorana nanowires or their
optical absorption properties, are also studied. We will take too a closer look to the
influence of the orbital motion of the electrons caused by the external magnetic field
in arbitrary orientation.

1.8 Outline of this thesis

This thesis is presented as a compendium of publications where each work has
been published independently; with the exception of Chap. 8 that is in preparation
for publication. Each article is grounded in the conclusions of the previous ones,
creating as a whole an homogeneous and consistent set of knowledge. Furthermore,
each article will be preceded by an introductory text that will include a divulgative
description of the objectives and results obtained in each article, a brief description
of the methodology and occasionally some clarifications, remarks or discussions not
suited for an article but useful in their reading.

First, we will study different Majorana properties in general and their phase di-
agram in particular with the aim to generate knowledge potentially useful in the
identification of Majorana modes. We will be mainly concerned on how certain re-
alistic effects change the Majorana phase boundaries. Later on, we will study the
Majorana transport properties themselves and the optical absorption spectra of a
Majorana nanowire. A more detailed chapter-oriented outline is:

• In Chap. 2, junctions between a Majorana nanowire and a normal lead are
studied in detail. We consider non-ideal junctions with a certain distance
between the two different interfaces, the potential interface and the super-
conductor interface. Both interfaces are considered to be soft with a smooth
transition between their minimum and maximum values.

• In Chap. 3, the robustness of a Majorana mode to the tilting of the magnetic
field with respect to the nanowire direction is investigated. This study is per-
formed in a purely 1d nanowire. In the same chapter L-shaped 1d nanowires
are modeled as magnetically inhomogeneous straight nanowires. Different is-
sues related to this nanowire geometry are addressed, of particular interest is
how a Majorana gets delocalized when one arm does not fulfill all the Majorana
conditions while at the same time the other arm does.

• In Chap. 4, the Majorana phase diagram is determined for planar quasi-1d hy-
brid nanowires where the motion of quasiparticles is modified by orbital effects
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caused by off plane magnetic field components. This calculation is performed
using a novel efficient and accurate numerical method. A new method is also
used to calculate the Majorana wavefunction with unprecedented spatial res-
olution.

• In Chap. 5, quasi-particle local currents are obtained using the high resolu-
tion Majorana wavefunction calculated in Chap. 4. It is demonstrated that
different flows of local currents appear in presence or absence of perpendicular
components of the magnetic field.

• In Chap. 6, the electromagnetic absorption cross section is calculated on the
same kind of the quasi-1d nanowires of Chaps. 4 and 5. The dipole absorption
cross section is computed taking into account quasi-particle transitions from
negative to positive energy eigenstates of the Bogoliubov-deGennes Hamilto-
nian. The presence of a Majorana mode can be observed in the absorption
spectra for particular polarizations of the external electromagnetic field.

• In Chap. 7, the robustness of Majorana edge modes are discussed for a fi-
nite quantum nanowire of cylindrical shape in presence of orbital effects. The
Hamiltonian is numerically diagonalized to obtain the spectra for different
experimental configurations. The robustness of the Majorana modes are dis-
cussed for these configurations and, in particular, their dependence with vary-
ing orientations of the external magnetic field.

• In Chap. 8, time dependent electrical and energy current expressions are ob-
tained for a Majorana nanowire connected to one or two reservoirs using a tight
binding 1d model. We use the Keldysh-Green function formalism to study the
response of a nanowire to an AC driving potential applied to one reservoir
whereas the Majorana nanowire is kept grounded. We give an analysis of the
DC and AC current responses depending on the voltage drop configuration in
the leads.

• In Chap. 9, the last chapter, the concluding remarks are presented. The main
results of this thesis are summarized and related with each other. Finally,
some future work proposals are presented and possible investigation directions
on Majorana modes are discussed.
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Majorana modes in smooth
normal-superconductor nanowire junctions
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2.1 Objectives

It is well known that Majoranas localize on the two ends of a finite nanowire [13,14].
In a semi-infinite nanowire, however, we consider a single edge (left) where a Majo-
rana state is located. It is assumed that a second Majorana will be located on the
second edge (right) at infinity. The left edge is usually modeled as a perfect abrupt
interface while some softness in the potential is likely to be found in real physical
devices.

At the same time, it is also usually assumed that superconductivity terminates
abruptly at the end of the nanowire. In nanowires superconductivity is induced by
proximity; therefore a superconductor soft interface is also something likely to be
found. Furthermore, in a normal superconductor junction the potential edge may be
located far away from the place where superconductivity starts to decrease (i.e., the
superconductor interface). The objective of this chapter is to clarify the junction
physics and its effects on the Majorana robustness. With this purpose, the potential
and superconductor softness interfaces and distance between them are parametrized
and the resulting junctions are classified in different categories. The junction is
modeled as a system of equations that is solved for each case, then the energy
spectrum of the junction and the Majorana density function are both analyzed.
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2.2 Methodology

The used methodology requires the numerical resolution of large and sparse linear
systems of equations. The junction is spatially discretized in a grid and in each
grid point we impose either the Bogoliubov-deGennes equation or the asymptotic
boundary behavior. The energy is treated as a parameter and the wavefunction
components at each grid site are the unknowns of the linear system. The resulting
set of equations can be written in the mathematical form A~Ψ = ~b for each of the grid
points, where ~Ψ represents the unknown column vector and A is a sparse matrix (in

our particular case it is ~b = 0). In this work, we have used the Harwell library [39] to
solve large systems of equations encoded in sparse matrices. The equations are solved
by the routine library using a back substitution algorithm in a triangular matrix.
The computational order of this method is O(n2) that represents and advantage
over the direct numerical diagonalization methods of order O(n3) where n is the
number of grid points. Furthermore, we solve the system of equations using infinite
homogeneous regions as open boundaries therefore we do not restrict ourselves to
closed nanowires.

The first part of the article focuses on the characteristic modes of the junction when
no open incident propagating modes are considered. In this case, the trivial empty
~Ψ = ~0 solution is a solution that has to be avoided. Therefore, an extra mechanism
is needed to obtain a nonzero solution from the devised numerical method. We
choose an arbitrary spin and isospin component of an arbitrary point and impose a
non-zero condition for this component instead of the corresponding BdG equation.
This is equivalent to a normalization condition of the wavefunction. The removal of
an equation implies that we need to check afterwards the obtained solution. This
check is on the continuity at the point and component forced to be non-zero. As
a consequence, the resulting wavefunction will be only a physical solution if the
wavefunction and its derivatives are continuous at that point.

The second part of the article is focused on the behavior of the junction when
external open channels are active. In other words, if there is a propagating incident
mode in one of the homogeneous boundaries. An open incident channel set to a
non-zero value is already a normalization component, thus no additional mechanism
is needed to avoid the trivial solution in presence of open channels.

In order to work with a numerical algorithm we use dimensionless units. In 1d
nanowires the only possible characteristic length is given by the length of spin pre-
cession. This length may be difficult to calculate and is not used directly, however
it is set indirectly by the Rashba spin orbit coupling strength α. Furthermore, as
demonstrated in Ref. [23] a high Rashba strength enhances the Majorana localiza-
tion. The length and energy units of this work depend on α and on the effective
mass of the electron for the considered materials. In InAs and InSb based nanowires
the Rashba coupling is α ≈ 30 meVnm while the electron effective masses are re-
spectively 0.033me and 0.015me, where me is the bare electron mass. That makes
the length and energy units to be Lso = 77 nm and Eso = 0.39 meV for InAs; and
Lso = 170 nm and Eso = 0.18 meV for InSb. Therefore, the typical values of the
superconductor gap (typically ∆ ≈ meV) in dimensionless units are smaller or equal
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to ∆ = 0.25Eso . Although we do not mention any particular superconductor mate-
rial this value for the superconductivity is realistic for many s-wave superconductors
at finite temperature. Furthermore, the proximity contact of the superconductor
with the semiconductor nanowire changes the superconductor gap in the bulk of the
nanowire with respect to the pure isolated superconductor energy gap.

2.3 Conclusions and remarks

With this method we first confirm the appearance of Majorana modes at the
nanowire edge when a critical magnetic field is surpassed. Only two topological
phases are found, trivial (where no Majorana is found) and topological (where a
Majorana is found) as expected for a class D nanowire. In the periodic table for
topological insulators and superconductors a device is classified into class D if it has
particle hole symmetry but not time reversal and chiral symmetries [41].

Second, we determine that if there is enough distance between the potential and the
superconductor interfaces, Andreev resonant states can be formed in this region.
The protection of the Majorana regarding these states is affected by the distance
between the two interfaces and by their softness.

On the other hand, we need to overcome a critical potential value in order to have an
edge where the Majorana can be localized. The appearance of the Majorana peak
with the potential is an abrupt phenomenon. Any infinitesimal deviation below the
critical value of the potential will not lead to a Majorana.

As an additional comment on the paper, the potential and chemical potential take an
analogous role to the Majorana mass in the Kitaev chain model where Majoranas
are localized at the points where the mass changes sign. Note that the critical
value of the potential imposes some constraints in the design of a braiding scheme.
No matter how slow you approach the potential critical point a Majorana will not
exist until the critical value is reached. Then this critical value will represent a
singular point in the evolution if we want to split a nanowire o create a new couple
of Majoranas. In short, manipulating Majoranas may be done adiabatically but
their creation or destruction manipulating the barrier height will be a non adiabatic
process.

2.4 Published paper
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A numerical method to obtain the spectrum of smooth normal-superconductor junctions in nanowires, able
to host Majorana zero modes, is presented. Softness in the potential and superconductor interfaces yields
opposite effects on the protection of Majorana modes. While a soft potential is a hindrance for protection, a soft
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states when propagating modes are active far from the junction, although this requires equal incident fluxes in all
open channels.
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I. INTRODUCTION

In 1936, Ettore Majorana theorized the existence of
elementary particles, now called Majorana fermions, that
coincide with their own antiparticles.1 The implementation
of quasiparticle excitations having a similar property, called
Majorana states, is currently attracting much interest in
condensed matter systems in general,2–12 and in nanowires
in particular.13–26 Interest has been further fueled by recent
experimental evidences of these Majorana states in quantum
wires.27–31 They are also known as Majorana zero modes
(MZM) and, in essence, they are topological zero-energy states
living close to the system edges or interfaces. The existence
of an energy gap between the MZM and nearby excitations
protects the former from decoherence. These properties make
MZM’s interesting not only for their exotic fundamental
physics but also for their potential use in future topological
quantum-computing applications.32,33

Majorana modes can be implemented in a superconductor
wire by the combined action of superconductivity, Rashba
spin-orbit coupling, and Zeeman magnetic effect. In a su-
perconductor, nanowire electrons play the role of particles,
while holes of opposite charge and spin perform the role of
antiparticles. Superconductivity leads to a charge symmetry
breaking and allows quasiparticles without a good isospin
number. On the other hand, the Rashba effect is a direct result
of an inversion asymmetry caused by an electric field in a
direction perpendicular to the propagation while the Zeeman
magnetic field breaks the spin rotation symmetry of the system.
The combined action of both couplings can create effective
spinless Majorana states.

It is known that in semiconductor nanowires having a region
of induced superconductivity, Majorana edge states are formed
in the junction between the superconductor and the normal side
of the nanowire. This work addresses the physics of soft-edge
junctions, where both superconductivity and potential barrier
characterizing the edge vary smoothly as one moves from
the normal to the superconductor side. The inset in Fig. 1
sketches the physical system we have in mind. As suggested
in the figure, the potential smoothness could be electrically
manipulated by gates while the induced superconductivity
crossover might be controlled by spatially modulating the
distance between nanowire and underlying superconductor.
This latter effect is represented by an intermediate wedge of

insulating material. It is worth mentioning that our model could
also represent an intrinsic smoothness due to uncontrolled
effects in the device fabrication, such as, e.g., shape distortions
or impurity migration.

Previous works on nanowire Majorana physics assumed
abrupt transitions, with a few exceptions. In Refs. 34 and
35, smooth 1D models were considered, emphasizing how
smooth edge potentials possess eigenstates at very low (but
finite) energies that, in practice, imply a loss of protection
for the MZM. Similar conclusions were found with 2D
models of tight-binding chains in Refs. 36 and 37. Our
work generalizes those studies by focusing on the role of
a diffuse superconductivity edge placed either at the same
or at different position of the potential barrier. We find a
strong influence of the superconductivity smoothness on the
finite-energy Andreev states occurring in between potential
and superconductivity edges. This is relevant for the protection
of MZM’s as it is affected in opposite ways by the smoothness
in potential and superconductivity: protection is hindered by a
smooth potential (also discussed in Ref. 35) and, remarkably,
it is favored by a smooth superconductivity.

This work is divided in six sections. In Sec. II, the physical
system is introduced, and in Sec. III, the numerical method
is explained. Section IV contains different results for bound
and resonant states in different kinds of junctions, in absence
of any input flux. Section V is devoted to an extension for
junctions under an input flux, demonstrating that in this case
extended MZM’s are possible, as opposed to the localized ones
of preceding sections. The conclusions are drawn in Sec. IV.

II. PHYSICAL SYSTEM

We consider a purely 1D nanowire model with spin-orbit
interaction inside a homogenous Zeeman magnetic field as
in Ref. 38. The system is described by a Hamiltonian of the
Bogoliubov-deGennes kind,

HBdG =
(

p2
x

2m
+ V (x) − μ

)
τz + �B �σ · n̂

+�(x) τx + α

h
pxσyτz, (1)

where the Pauli operator for spin is represented by �σ , while
the operator for isospin (electron/hole charge) is represented

144512-11098-0121/2013/88(14)/144512(9) ©2013 American Physical Society
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Δ

FIG. 1. (Color online) NS junction of an infinite nanowire. The
black curve is the nanowire potential V (x) created by nearby gates,
while the gray curve is the superconductor gap induced by proximity
with an s-wave superconductor. The inset sketches the physical
system. The normal contact (x < xL) is characterized by a potential
V0 and the superconducting one (x > xR) by a gap �0. A smooth
variation of V (x) and �(x) occurs at transition points x1 and x2,
respectively. A Zeeman magnetic field is applied homogenously along
the entire nanowire pointing in x direction, while the Rashba SOI
effective magnetic field points perpendicularly in y direction. The
numerical method uses a grid as indicated schematically by the dots
on the x axis.

by �τ . The successive energy contributions in Eq. (1) are the
following (in left to right order): kinetic, electric potential,
chemical potential, Zeeman, superconduction, and the Rashba
term. The latter arises from the self-interaction between an
electron (or hole) spin with its own motion due to the
presence of a transverse electric field, perceived as an effective
magnetic field in the rest frame of the quasiparticle. On the
other hand, the Zeeman effect is the band splitting caused
by the application of an external magnetic field. Rashba
spin-orbit and Zeeman effects depend on the parameters α

and �B , respectively. Since we consider a nanowire made
of a homogenous material inside a constant magnetic field,
these parameters are assumed homogenous. The magnetic field
points in the x̂ direction, parallel to the propagation direction
and perpendicular to the spin-orbit effective magnetic field
direction ŷ. The superconduction term arises from a mean-field
approximation over the phonon assisted attractive interaction
between electrons. This leads to the coupling of the opposite
states of charge of the base and the creation of Cooper pairs
whose breaking energy is the energy gap �(x). The remaining
terms in Eq. (1) are the potential term V (x) created by the
presence of a metallic gate over the nanowire and the chemical
potential term μ.

The nanowire smooth junction is sketched in Fig. 1,
with left (x < xL) and right (x > xR) contacts corresponding
to the normal and superconductive sides, respectively. The
normal contact is characterized by a bulk potential V0 and
the superconducting one by a gap �0. Superconduction in
a semiconductor nanowire region is achieved by maintaining
that region in contact with a 3D superconductor. In the junction
region between the two asymptotic behaviors, xL < x < xR ,
a smooth transition is described by the potential V (x) and gap
�(x) functions of the position x.

The transitions between bulk values in V (x) and �(x) are
modeled with two soft Fermi functions centered at x1 and x2,
respectively. Their softness is controlled with parameters s1

and s2. A zero softness means a step interface, while a high
value implies a smooth one. These two functions read

V (x) = V0

1 + e(x−x1)/s1
, (2)

�(x) = �0

[
1 − 1

1 + e(x−x2)/s2

]
. (3)

III. NUMERICAL METHOD

The energy eigenstates fulfill the time independent
Schrödinger equation with the Bolgoliubov-deGennes Hamil-
tonian,

(HBdG − E) �(x,ησ ,ητ ) = 0, (4)

where the wave function variables are the spatial coordinate
x ∈ (−∞,∞), the spin ησ ∈ {↑,↓}, and the isospin ητ ∈
{⇑,⇓}. The basis projection for spin and isospin is taken in
ẑ orientation, with isospin up and down representing electron
and hole quasiparticles, respectively. We expand next the wave
function in spin and isospin spinors,

�(x,ησ ,ητ ) =
∑
sσ sτ

�sσ sτ
(x) χsσ

(ησ ) χsτ
(ητ ), (5)

with the quantum numbers sσ = ± and sτ = ±. The spin and
isospin states fulfill

�σ · n̂ χsσ
(ησ ) = sσχsσ

(ησ ), (6)

τz χsσ
(ησ ) = sτχsτ

(ητ ). (7)

We numerically obtain the wave function amplitudes
�sσ sτ

(x) on the set of N grid points, qualitatively sketched
in Fig. 1 (N is actually much larger than shown in the figure).
In our approach, the energy E is given, and we determine
whether a physical solution exists or not for that energy. In
particular, MZM’s will be found for values of E equal to zero.
Using n-point finite difference formulas for the x derivatives,
Eq. (4) transforms on the grid into a matrix linear equation of
homogenous type.

The solution must be compatible with the bulk boundary
conditions for grid points in the normal (x < xL) and su-
perconductor contacts (x > xR). In these asymptotic regions,
the solutions, at the desired energy E, are given by a linear
combination of bulk eigensolutions 	

(c)
k (x,ησ ,ητ ), each one

characterized by a wave number k and c = L,R being a generic
label for the contact,

�(x,ησ ,ητ ) =
∑

k

C
(c)
k 	

(c)
k (x,ησ ,ητ ) . (8)

The bulk eigensolutions are expressed in terms of exponentials:

	
(c)
k (x,ησ ,ητ ) =

∑
sσ sτ

	
(c)
ksσ sτ

eik(x−xc)χsσ
(ησ )χsτ

(ητ ) . (9)

The set of wave numbers and state coefficients {k,	
(c)
ksσ sτ

}
characterizing the solutions in contact c must be known in
advance in order to proceed with the numerical calculations.
These coefficients can be obtained for the homogenous and
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infinite problem either analytically or by means of additional
numerical methods.14,38 Equation (8) must be fulfilled in
replacement of Eq. (4) for grid points in the asymptotic regions.
Notice that they are local relations in x and, therefore do not
involve wave function amplitudes on points located further to
the left or right of the grid ends.

Due to symmetries, there are always four bulk wave num-
bers per contact in outward direction. By outward direction
we mean either exponentially decaying from the junction, in
case of evanescent modes, or moving away from it, in case
of propagating modes. Notice that for propagating modes, the
flux direction is parallel and antiparallel to the corresponding
real k for quasiparticles of electron and hole type, respectively.
A closed linear system for the set of 4N + 4 + 4 unknowns
{�sσ sτ

(x),C(L)
k ,C

(R)
k } is easily obtained from Eqs. (4) and (8).

A final complication, however, is found in the homogenous
character of this linear system mathematically admitting the
trivial solution of all unknowns equal to zero.

We discard the trivial solution by introducing an arbitrary
matching point xm as well as a specific pair of spin-isospin
components (s,t). Assuming �st (xm) does not identically
vanish, we can arbitrarily impose

�st (xm) = 1, (10)
(

d (L)

dx
− d (R)

dx

)
�sσ sτ

(xm) = 0, (sσ ,sτ ) 	= (s,t). (11)

Equations (10) and (11) are four equations that we require at xm

in place of the Bogoliubov-deGennes one. Thanks to Eq. (10)
the resulting system is no longer homogenous. In Eq. (11),
d (L)/dx and d (R)/dx indicate grid derivatives using only left
or right grid neighbors. Crossing the matching point is actually
avoided using noncentered finite difference formulas. With this
substitution of one equation the resulting linear system admits
a nontrivial solution, robust with respect to changes in the
arbitrary choices: xm, (s,t).

By means of Eq. (11) our algorithm ensures the conti-
nuity at the matching point of the first derivative for all
spin-isospin components, with the exception of the arbitrar-
ily chosen (s,t). This relaxation of one condition makes
the algorithm numerically robust and free from singulari-
ties. The mathematical solutions can be discriminated by
defining the physical measure

F =
∣∣∣∣
(

d (L)

dx
− d (R)

dx

)
�st (xm)

∣∣∣∣
2

. (12)

Only those results with F = 0 are true physical solutions but
this can be tested afterwards, at the end of the algorithm.
Varying the energy E or the Hamiltonian parameters the
method allows the exploration of the topological phases.

The resulting system of equations is solved with a sparse-
matrix linear algebra package.39 As in Refs. 14 and 38,
the numerical algorithm works in adimensional units, using
the Rashba spin-orbit interaction (SOI) as a reference. The
corresponding length and energy units read

Lso = h̄2

αm
, (13)

Eso = α2m

h̄2 . (14)

Assuming, for instance, an InAs-based nanowire with m =
0.033me and α = 30 meVnm, the physical units are Lso =
77 nm and Eso = 0.39 meV. For an InSb nanowire with m =
0.015me and the same α, the corresponding values would be
Lso = 170 nm and Eso = 0.18 meV. In the rest of this work,
all results will be referred to this material-dependent units.

The strict 1D character of our model represents the low-
energy limit of laterally confined additional dimensions, when
only the lowest transverse mode is allowed. A generalization
of the present numerical method to a multimode situation is
possible with the use of the higher-dimensional complex band
structure, discussed in Ref. 38 for 2D. Notice, however, that
this generalization would also require modifying the present
matching algorithm and it would be computationally much
more demanding.

IV. RESULTS WITHOUT INPUT FLUX

We study first the physics of the junction in absence of any
input fluxes. Physically, this situation occurs when propagating
modes in both contacts are either not active or, at most,
they carry flux only in outwards direction from the junction.
This behavior is expected in presence of purely absorbing
(reflectionless) contacts. It is well known that in absence of
propagating modes bounded MZM’s may exist in some cases.
The allowed asymptotic wave numbers have an imaginary
component causing the wave functions to decay away from
the junction. As a consequence, the main characteristic of
these bounded MZM’s is that they are confined in a particular
region of space. We will first check our method comparing
with the analytical limits of Klinovaja and Loss,23 extending
later the analysis to other results not obtainable analytically.
These results range from the formation of Majorana modes in
soft edge junctions of different kinds, to the influence of the
edge on the MZM localization and protection.

A. Comparison with analytical expressions

Reference 23 provides analytical expressions for MZM’s
in a sharp NS junction, in a semi-infinite system. They are
approximations valid deep into the topological phase �B 
√

�2
o + μ2. The approximations are done for both strong SOI

(Eso 
 �B) and weak SOI (Eso � �B) regimes. In the strong
SOI regime, the Rashba spin-orbit effect is the dominating term
while the magnetic field and the superconductivity are treated
as small perturbations. On the other hand, in the weak SOI
regime, the magnetic field term dominates. In Fig. 2, density
distributions for NS junctions in a semi-infinite nanowire
are shown for the strong and weak SOI regimes, as well as
for an intermediate situation. The strong- and weak-regime
numerical solutions (in dark blue) are compared with their
analytical counterparts (in light green). The exclusion effect
on the hard edge on the left is achieved in the numerical
method by putting a very high sharp potential step at x =
−L, while the sharp superconductor interface is located
at x = 0.

The strong SOI Majorana density function is characterized
by the combination of an oscillatory behavior modulated by
exponential bounds in the normal side of the junction while,
on the other hand, the weak SOI density is characterized
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FIG. 2. (Color online) Density distributions of MZM’s obtained
with our numerical method (dark gray or blue) and with an-
alytical approximations (light gray or green).23 (a) Strong SOI
regime Eso 
 �B : �B = 0.09Eso, �0 = 0.06Eso, and L = 50Lso.
(b) Intermediate regime Eso = �B : �0 = 0.2Eso, L = 20Lso. In
this case, the analytical result is not known. (c) Weak SOI regime
Eso � �B : �B = 10Eso, �0 = 4Eso, and L = 5Lso.

by constant oscillations up to the NS interface. Entering the
superconductor contact both densities decay, although in a
more oscillatory way for the weak SOI. Note also that the
intermediate regime Eso ≈ �B represents a sort of mixed
situation with a first density peak near the x = −L edge
followed by regular oscillations of constant amplitude up to
the NS junction. The theoretical and numerical results agree
well in their corresponding regimes (but for some fine effects).
However, the analytical solutions are not applicable out of their
regimes of approximation. Therefore a numerical approach
is potentially very useful in order to predict MZM’s density
distributions in many realistic physical realizations that can be
out of the strong and weak regimes in a varying degree.

B. Soft edge junction results

Assume now the normal side contains a soft potential step
characterized by a finite V0, allowing some penetration. As can
be seen in Fig. 3, this implies the appearance of a maximum
in the density distribution near the potential edge followed by
regular oscillations of decreasing amplitude. The density starts
decaying exponentially in the superconductor interface until it
vanishes well inside the superconductor side of the system.

The present method allows us to obtain the solutions not
only for E = 0 but for any arbitrary value of E. Figure 4

FIG. 3. (Color online) MZM density (thick curve) in arbitrary
scale when the potential interface is located at x1 = 10Lso with a
softness parameter s1 = 0.2Lso and the superconductor gap interface
is located at x2 = 30Lso with softness s2 = 0.2Lso. The rest of
parameters are Vo = 2Eso, �o = 0.25Eso, �B = 0.4Eso, and μ =
0.1Eso. The position dependent potential and superconductor gap are
shown by the thin black and gray curves, respectively.

shows the location of the eigenstates in a �B-E plane.
They are signaled by the zeros of the function F [cf.
Eq. (12)], represented here in a color (gray scale) plot. Black
and white curves in Fig. 4 inform us on the presence of
propagating modes in the superconductor and normal sides,
respectively. That is, for energies above the curve, propagating
modes are possible in the superconductor (black) and normal
(white) contacts. When propagating modes become possible
asymptotically, the zeros of F no longer represent bounded
states, but purely outgoing resonances created by the junction.

FIG. 4. (Color online) (a) Junction spectrum for different values
of the magnetic field. The same parameters of Fig. 3 have been used.
The colors represent the values of the function F . Note that a solution
exists when F = 0 (in dark blue). Above the black line, propagating
modes exist in the superconductor side of the junction, while above
the white line, the propagating modes exist in the normal side.
(b) Zoom of the spectrum showing the formation of the Majorana zero
mode when the magnetic field becomes high enough for the system
to perform a transition to the topological phase. �B = 0.27Eso is the
topological critical value of the Zeeman field.
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In this case, there is no violation of charge conservation since
outgoing electron and hole equal fluxes imply zero currents.

For Zeeman energies lower than the critical value �
(c)
B ≡√

�2
0 + μ2 no MZM exists but, instead, finite energy subgap

fermions may be found. Only those at positive energies are
shown in Fig. 4, but the spectrum is exactly symmetrical
for negative energies. When the magnetic field energy equals
�

(c)
B the gap closes in the superconductor side. This is hinted

in Fig. 4 by the presence of propagating modes in the
superconductor side of the junction even at zero energies
for this specific magnetic field. For higher fields, the gap
immediately reopens in the supercoductor region and the
junction enters the topological phase with an E = 0 solution,
a MZM. In this phase, finite-energy resonant Andreev states
can be found as well. The energy difference between the MZM
and the finite-energy states is a measure of the protection of
the MZM. The greater the energy difference the greater the
protection of the Majorana. Increasing further the magnetic
field the MZM is finally destroyed due to the closing of the
gap in the normal side of the junction. This is signaled by the
appearance of propagating modes in this side of the junction
even at zero energy. When the state at zero energy becomes
propagating the bounded Majorana zero modes can not exist.
All these results are in agreement with the present knowledge
on MZM’s and represent a further check on our numerical
method.

C. Softness effects

This section is devoted to the study of effects that changes
in the softness parameter of the potential and superconductor
interfaces cause on the Majorana density function and on
the junction spectrum. In general, the shape of the density
function is robust to moderate changes in the softness of the

FIG. 5. (Color online) (a) Same as in Fig. 3 but with a softer
superconductivity interface s2 = Lso. (b) Same as in Fig. 2 and (a)
but with an even softer, almost linear, superconductivity interface
s2 = 5Lso.

FIG. 6. (Color online) (a) Same as in Fig. 3 but with a potential
softness parameter s1 = Lso while the superconductor gap interface
has a softness parameter s2 = 0.2Lso. (b) Same as (a) but with a
potential softness parameter s1 = 5Lso.

superconductor gap interface [see Fig. 5(a)]. If we replace
the sharp superconductor interface by a region of a gradually
increasing superconductivity, the Majorana wave function is
not greatly affected. However, if we assume a very soft (almost
linear) increase in superconductivity, it is possible to see how
the density tail of the MZM adapts to the appearance of the
superconductivity [see Fig. 5(b)].

The MZM is also robust with changes of the potential
interface softness [see Fig. 6(a)]. Again, only with an almost
linear decrease of the junction potential a sizable reduction
of the density tail towards the supercoductor side can be seen
with respect to the result for an abrupt potential. We also notice
a slight increase in the width of the density peak as well as a
change in the peak position [see Fig. 6(b)]. Combining the two
effects, if the softness of both potential and superconducting
interfaces is high enough, an MZM with a well localized
density peak is found [see Fig. 7(a)].

A similar robustness against softness is found in the
junction energy spectrum. Figure 8(a) shows the spectrum
of eigenenergies, containing the MZM at zero energy and its
closest excited bound and resonant states at finite energies.
As before, the location of the eigenenergies is signaled by
the zeros of the function F (in black). Note that although
the function F is not symmetrical with respect to E = 0, the
position of the zeros indeed is. The particular shape of F is
actually irrelevant and only the position of its zeros bears a
physical meaning. The blue staircase curve informs us about
the number of propagating modes in the superconductor side
of the junction. The protection of the MZM, proportional
to the energy gap with its nearby eigenenergies, does not
change significantly for moderate values of the softness of the
superconductor and potential interfaces. On the other hand, for
high enough values of the softness, interesting results arise.
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FIG. 7. (Color online) (a) MZM density when the potential
interface is located at x1 = 10Lso while the superconductor interface
is located at x2 = 30Lso, both with a softness parameter s1 =
s2 = 10Lso. The rest of parameters are Vo = 2Eso, �o = 0.25Eso,
�B = 0.4Eso, and μ = 0.1Eso. (b) Energy spectrum of the junction
in (a). As before the function F is shown in black, while the number
of propagating modes in the superconductor side of the junction is
shown in blue gray. Zeros in F indicate the existence of a solution
with the corresponding energy E.

For high values of the superconductor interface softness,
shown in Fig. 8(b), the protection of the MZM is increased
since its neighboring eigenenergies are repelled from zero. In
this case, the finite energy modes get closer to the activation
energy of the propagating modes, i.e., to the energy gap on
the superconductor side of the junction. On the contrary, the
increase of the potential softness introduces more excited
states inside the superconductor energy gap, thus getting
closer to the MZM energy [see Fig. 8(c)]. The appearance of
low-energy states in a soft potential interface is in agreement
with the results of Ref. 35. The characteristic features of these
low-energy states in tunneling conductance experiments were
discussed in Ref. 40.

When both interfaces are made soft the two effects on
the spectrum we have just discussed compete. That is, the
higher softness of the potential introduces more bound states
inside the superconductor energy gap, while the softness of
the superconducting interface tries to push them apart from
the MZM. The result is that many excited states get densely
packed near the superconducting gap energy [see Fig. 7(b)].

D. MZM’s in different kinds of junctions

Up to this point, it has been assumed that the position of
the potential interface x1 and the superconduction interface
x2 are such that x1 < x2, i.e., they do not overlap. In this
subsection we consider a more general situation, defining two
kind of junctions: type I junctions without overlapping region
(x1 < x2) and type II junctions in the opposite case (x1 > x2).

FIG. 8. (Color online) (a) Junction spectrum when the potential
interface is located at x1 = 10Lso while the superconductor gap
interface is located at x2 = 30Lso both with softness parameters s1 =
s2 = 0.2Lso. The rest of parameters are V0 = 2Eso, �o = 0.25Eso,
�B = 0.4Eso, and μ = 0. The function F is shown in black, while
the number of propagating modes in the superconductor side of the
junction is shown in blue gray. Each step corresponds to the activation
of a propagating mode. The zeros of F indicate the existence of a
solution with the corresponding energy E. (b) Same as (a) but with a
superconductor gap interface softness s2 = 10Lso while the potential
softness is s1 = 0.2Lso. (c) Same as (a) and (b) but this time with
a potential interface softness s1 = 10Lso and a superconductor gap
interface softness s2 = 0.2Lso.

Figure 9 shows a comparison between both types, as well as the
limiting intermediate situation. In type I junctions, the MZM
density behaves as in previous sections, with a density peak
localized on the potential edge followed by regular oscillations
and a decaying behavior inside the superconductor region.
On the other hand, type II junctions just show an oscillatory
density whose amplitude decays as the function penetrates
the superconductor region. The limiting case x1 = x2 behaves
similarly to the type II junction.

We also notice from Fig. 9 that the density peak is always
found close to the potential interface. That is, the MZM is
located on the potential step and not on the superconductivity
interface. Superconductivity is a necessary ingredient for
the formation of the MZM but, in practice, its maximum
probability can be located quite far from the superconductor
interface.
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FIG. 9. (Color online) Different kinds of soft NS junctions
in an infinite nanowire. The used parameters are Vo = 2Eso,
�o = 0.25Eso, �B = 0.4Eso, and μ = 0.1Eso. (a) Type I junc-
tion, with nonoverlapping high-potential and superconductivity
regions. (c) For a type II junction, it is just the opposite.
(b) This is the limiting case between the two when the po-
tential and superconductor interfaces are located at the same
point.

As shown in Fig. 8(a), bounded states are found in type
I junctions at energies different from zero. We believe these
states are Andreev resonant states formed in the region between
the two interfaces. This statement is confirmed by means of
a change in the superconductor bulk value �0. As shown in
Fig. 10, out of the topological regime, the MZM splits into
two subgap fermionic states but the Andreev resonant states
remain almost with the same eigenenergies. Notice also that the
number of Andreev states is larger and their energies are closer
to zero in type I junctions with a large nonoverlapping region,
i.e., large d = x2 − x1 [see Fig. 11(a)]. On the contrary, if d is
diminished the number of Andreev resonant states diminishes
and their energies fall apart from zero. In the limiting case
when d is zero, the Andreev resonant states disappear and the
protection of the MZM is determined by the amplitude of the
gap on the superconductor side of the junction as shown in
Fig. 11(b). The same happens for type II junctions with d < 0.
Furthermore, in this case (d � 0), the junction spectrum is
even more resilient to changes in the softness of the interfaces,
being almost insensitive to them.

FIG. 10. (Color online) Junction spectrum out of the topological
phase. In this regime, the MZM is split into two subgap fermions.
The used parameters are Vo = 2Eso, �o = 0.6Eso, �B = 0.4Eso, and
μ = 0.

The distinction between genuine MZM’s and split
fermionic states out of the topological regime can be experi-
mentally very challenging for type I junctions. As can be seen
in the lower panel of Fig. 4, for values of the magnetic field
�B > 0.15Eso, the first eigenvalue quickly moves near zero
energy as the magnetic field increases. If the experimental
resolution is not high enough, these two states (recall that
the spectrum is symmetric for negative energies) could be
perceived as a single one and their sudden displacement
near zero energy misinterpreted as a topological transition;
the actual transition being for �B > 0.27Eso. This effect
of proximity to zero energy of fermionic states out of the
topological phase is exclusive of d > 0 (type I) junctions. In
d � 0 (type II) junctions, these states do not get close to zero
energy until the true topological transition.

FIG. 11. (Color online) Spectra for different kinds of junc-
tions. The used parameters are Vo = 2Eso, �o = 0.25Eso, �B =
0.4Eso, and μ = 0. (a) Type I junction with a long separation
between potential and superconductor interfaces (d = 30Lso), while
(b) corresponds to the limiting case between type I and type II
junctions when both interfaces are located on the same position
(d = 0). Like in preceding figures, the zeros of F indicate the
existence of a solution with the corresponding energy E.
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JAVIER OSCA AND LLORENÇ SERRA PHYSICAL REVIEW B 88, 144512 (2013)

V. RESULTS WITH INPUT FLUX

Decreasing the potential V0, for a fixed �B , �0, and zero
energy, wave functions characterized by real wave numbers
arise in the bulk normal side of the junction. When this occurs,
bounded MZM’s no longer exist due to their coupling with
propagating modes. In the preceding section, we assumed that
if propagating modes were present, they only carried outgoing
flux. In this section, we explore the influence of incident fluxes
on the junction. The same numerical method explained above
can be used here, disregarding the use of the matching point and
just fixing the coefficients Ck of the input modes as this already
yields a nonhomogenous linear system. We only consider input
modes from the normal side of the junction, given by electron
states of positive k and hole states of negative k. Furthermore,
it is also assumed that all propagating input modes impinge on
the junction with exactly the same flux.

Following the sequence from high to low values of V0,
the system evolves from no propagating modes at high V0

to four input modes (with two different k’s) for moderately
low values of the potential V0. In this case, the resulting
zero-mode density is characterized by a beating pattern of a
large wavelength modulated by a smaller one [see Fig. 12(b)].
For �0 = 0.25Eso and �B = 0.4Eso, this regime ranges from
V0 = 0.68Eso, where the propagating modes arise, down to
V0 = 0.50Eso. Above V0 = 0.68Eso, only evanescent modes
are possible [see Fig. 12(a)]. The zero-mode solution obtained
in this range does not represent a MZM since its wave function
components do not fulfill the requirement

�sσ sτ
(x) = (−1)

sσ −sτ
2 �∗

−sσ −sτ
(x). (15)

For V0 < 0.50Eso, half of the normal side allowed wave
numbers become purely imaginary, thus leading to an evanes-

FIG. 12. (Color online) (a) Majorana bounded state found for
Vo = 0.69Eso, �o = 0.25Eso, �B = 0.4Eso, and μ = 0.1Eso. Po-
tential and superconductor interfaces are located at x1 = 10Lso and
x2 = 30Lso, respectively, and their softness parameters are s1 = s2 =
0.5Lso. (b) Zero-energy non-Majorana extended state. The figure is
shown for the same parameters as in (a) but with V0 = 0.67Eso.

FIG. 13. (Color online) (a) Non-Majorana bounded state found
for V0 = 0.51Eso, �o = 0.25Eso, �B = 0.4Eso, and μ = 0.1Eso.
Excluding V0 these are the same parameters as in Figs. 12(a)
and 12(b). (b) Density for an MZM extended state. The figure is
shown for the same parameters as in (a) but with V0 = 0.49Eso.

cent contribution to the boundary condition. As a consequence,
there are only two modes (with the same k) and the resulting
density has a single period of oscillation [see Fig. 13(b)]. In
this case, the wave function represents an MZM since it fulfills
Eq. (15). This example of extended MZM’s demonstrates that
their existence is not limited to bounded states.

Physically, the distinction between extended and bounded
MZM’s is that the former require input fluxes from the
asymptotic contacts to the junction, while the latter do not.
This definition has no ambiguity when junction and contacts
are properly defined. For these extended states the assumption
of equal incident flux in electron and hole channels is crucial.
If the input is prepared in a specific electron or hole state of a
given spin, the MZM condition Eq. (15) is lost for low values
of the bulk potential. Therefore extended MZM’s are possible
albeit for a particular superposition of input states only.

VI. CONCLUSIONS

A numerical method to calculate the wave function of
MZM’s in presence of a soft normal-superconductor junction
has been developed. This method is able to detect whether a
particular energy E is an eigenenergy or not of the junction and,
when it is the case, obtain the corresponding wave function.
The junction is described by smooth functions of position
in a 1D nanowire with the Rashba spin-orbit interaction, the
Zeeman magnetic field, and superconductivity. It has been
applied to a semi-infinite abrupt nanowire junction in order to
compare its results with those obtained analytically, as well
as to infinite soft junctions in order to study the dependence
to different parameters of the MZM density and its protection
from energetically alike excited states.

We have proven the resilience of the MZM density to
the softness parameters and studied the dependence of its
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localization with the potential interface position. This latter
feature hints the possibility of manipulating the position of
the Majorana modes in order to perform topological quantum
operations. We have found the remarkable result of an increase
in the protection of the MZM for high values of the softness of
the superconductor gap interface, while high values of the
softness of the potential interface have an opposite effect.
Finally, we have shown the existence of extended MZM’s,
albeit limited to feed the junction with a particular set of
propagating input states. This result demonstrates that MZM’s
are not always restricted to bounded states.

The verification of our predictions would require experi-
mental manipulation of the junction smoothness. Qualitatively,
it has been suggested that this could be accomplished with

gates for the electrical potential and with an insulating wedge
for the induced superconductivity, modulating the distance to
the nearby superconductor. Our model could also represent an
intrinsic smoothness due to uncontrolled effects in the device
fabrication. Extending the present analysis to multimode
nanowires might reveal interesting effects from the combina-
tion of junction smoothness and mode-mode competition.15,24
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Chapter 3
Effects of tilting the magnetic field in 1d
Majorana nanowires

Javier Osca, Daniel Ruiz and Llorenç Serra
Phys. Rev. B 89, 245405. Published 5 June 2014

3.1 Objectives

As discussed in Chap. 1, to find Majorana modes in a 1d nanowire we need the
simultaneous action of s-wave superconductivity, Rashba spin orbit interaction and
an external magnetic field. In the literature it is usual to consider the external
magnetic field pointing either along the longitudinal direction of the nanowire or in
a perpendicular direction to the nanowire and to the effective spin orbit magnetic
field. No spin precession can be achieved if both magnetic fields (the external and
the spin orbit effective one) point in the same direction because in that case there is
a privileged direction of spin quantization. However, it remained unanswered what
is the critical tilting angle separating a Majorana from a non Majorana phase of a
nanowire.

The article of this chapter is divided into two parts, with two different objectives.
In the first part the objective is to study the effect of the magnetic field tilting on
the spectrum and the Majorana phase of a straight 1d nanowire. In other words, we
search for the critical angle mentioned above and we give an analytical expression
for it. On the other hand, the second part of the article is focused on L-shaped
nanowires inside an homogeneous magnetic field. They are modeled as straight
nanowires inside an inhomogeneous magnetic field. Here, we focus on the question
of what happens if half of a nanowire fulfills all the Majorana conditions and the
other half does not. At this point it is important to remark that a wavefunction can
not be separated in Majorana and non Majorana regions. The property of being a
Majorana is a topological feature and therefore it is a global property fulfilled for
the Majorana wavefunction globally, at every point of space.
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3.2 Methodology

In the first part of the paper we use the complex band structure of the quantum wire
to determine the Majorana phase diagram in a parameter space. This parameter
space includes the magnetic field strength ∆B, its tilting (θ, φ) (see Fig. 1 of the arti-
cle) with respect to the nanowire longitudinal direction and the superconductor gap
∆s. A mathematical relationship is established between the complex band structure
of an infinite nanowire with the Majorana physics that arises if we introduce an
edge on the same nanowire. In other words, to have a Majorana in a semi-infinite
nanowire the equivalent infinite homogeneous nanowire (with the edges removed)
must not have any real wavenumber. Furthermore the equation Ψ(xe) = 0, where
xe is the edge position, must have a nontrivial solution. The main point here is
that this equation may be expressed as a linear combination of the homogeneous
nanowire solutions. These conditions are an explicit mathematical formulation of
the more general bulk-to-edge correspondence principle, ensuring that edge states
will appear in the limits of any physical system if the bulk is in a topological phase.

To check phase boundary predictions and with the objective of study L-shaped
nanowires we also make use of a direct numerical diagonalization method. First, we
discretize the nanowire into a grid. The Hamiltonian is then defined for each site and
each component of spin and isospin. This results in a large and sparse Hamiltonian
matrix to be diagonalized. This is done using again a Harwell library module, like
in Chap. 2. In this case it calculates n real eigenvalues of the equation A~Ψ = E~Ψ,
where ~Ψ is a vector of unknowns, E is now the eigenvalue to be determined and A is a
large real and symmetric matrix. The method yields the n real eigenvalues closer to
a given reference value, in our case zero. We use a real diagonalization procedure to
obtain the eigenvalues of a complex set of equations, the eigensolutions are separated
in real and imaginary parts and the number of Hamiltonian equations for each of
the lattice sites are doubled. This results in a larger but solvable matrix A.

3.3 Conclusions and remarks

In this chapter we have determined that in straight nanowires the Majorana phase
is restricted by two independent rules and we can relate them with properties of the
bulk nanowire. Only one of these rules was already known while the other one has
been reported for the first time. First, to be in a Majorana phase the magnetic field
must overcome a critical value,

∆B >
√

∆2
s + µ2 , (3.1)

where ∆B is the magnetic field magnitude, ∆s the superconductor gap and µ the
chemical potential. Although this expression was already known in itself we would
like to claim here a generalization and, therefore, a certain degree of novelty. In
previous works the magnetic field was not considered in arbitrary directions. That
is, to have a Majorana the magnetic field was studied in the longitudinal direction
(x̂ direction for us) or in a direction perpendicular to the the nanowire and to the
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spin orbit coupling effective magnetic field (ẑ direction for us). In this context, Eq.
(3.1) was assumed equivalent to ∆Bx,Bz >

√
∆2
s + µ2 where only one component

of the magnetic field is present (either x̂ or ẑ). In our opinion, it was not clear
which component or components of the magnetic field were going to be involved in
the calculation of the critical magnetic field for an arbitrary orientation of the same
field. In Eq. (3.1) it is clarified that the relevant magnitude is the modulus of the
magnetic field, the orientation of the magnetic field being irrelevant for this rule in
particular.

In order to know how the magnetic field orientation affects the Majorana phase it
is necessary to take into consideration a second rule that we named the projection
rule. In this work we demonstrate that the external magnetic field component in
the direction of the spin orbit effective field (∆By = ∆B sin θ sinφ) can not exceed
the value of the superconductor gap,

|∆B sin θ sinφ| < ∆s . (3.2)

Note that we assume without loss of generality that the effective spin orbit magnetic
field points in ŷ direction. The absolute value in this expression generalizes the paper
projection rule inequality where φ was assumed not to exceed 180◦.

In the second part of the paper we deal with L-shaped nanowires, modeled as inho-
mogeneous magnetic fields. Although strictly speaking some additional terms should
be added to the Hamiltonian, they are negligible at the mesoscopic scale. Here, we
have determined that the Majorana can be delocalized if half of the nanowire fulfills
all the Majorana conditions while the other half does not fulfill them. However, the
resulting wavefunction continues to be the one of a Majorana state. Finally, we also
study how the relative position of the magnetic orientation interface with respect to
the nanowire edges affects the localization of the Majorana state.

3.4 Published paper
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Effects of tilting the magnetic field in one-dimensional Majorana nanowires
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We investigate the effects that a tilting of the magnetic field from the parallel direction has on the states of
a one-dimensional Majorana nanowire. Particularly, we focus on the conditions for the existence of Majorana
zero modes, uncovering an analytical relation (the projection rule) between the field orientation relative to the
wire, its magnitude, and the superconducting parameter of the material. The study is then extended to junctions
of nanowires, treated as magnetically inhomogeneous straight nanowires composed of two homogeneous arms.
It is shown that their spectrum can be explained in terms of the spectra of two independent arms. Finally, we
investigate how the localization of the Majorana mode is transferred from the magnetic interface at the corner of
the junction to the end of the nanowire when increasing the arm length.

DOI: 10.1103/PhysRevB.89.245405 PACS number(s): 73.63.Nm, 74.45.+c

I. INTRODUCTION

In 2003, Kitaev pointed out the usefulness of topological
states for quantum computing operations [1]. Essentially,
topological states are quantum states with a hidden internal
symmetry [2]. They are usually localized close to the system
edges or interfaces and their nonlocal nature gives them a
certain degree of immunity against local sources of noise. A
subset of this kind of states called Majorana edge states is
attracting much interest in condensed matter physics [3–13].
Majorana states are effectively chargeless zero-energy states
that behave as localized non-Abelian anyons. It is theorized
that nontrivial phases arise from their mutual interchange,
caused by their nonlocal properties [14,15]. Furthermore, these
states have the property of being their own antistates, giving
rise to statistical behavior that is neither fermionic nor bosonic.
Instead, the creation of two Majorana quasiparticle excitations
in the same state returns the system to its equilibrium state.
This kind of quasiparticle inherits its name from Majorana who
theorized the existence of fundamental particles with similar
statistical properties [16].

Majorana states have been theoretically predicted in many
different systems, and some of them have been realized
experimentally. In particular, evidences of their formation at
the ends of semiconductor quantum wires inside a magnetic
field with strong spin-orbit interaction and in close proximity to
a superconductor have been seen in Refs. [17–21]. Supercon-
ductivity breaks the charge symmetry creating quasiparticle
states without a defined charge that are a mixture of electron
and hole excitations. On the other hand, the spin-orbit Rashba
effect is caused by an electric field perpendicular to the
propagation direction that breaks the inversion symmetry
of the system while the external magnetic field breaks the
spin-rotation symmetry of the nanowire. The combined action
of both effects makes the resulting state effectively spinless
and, including superconductivity, also effectively chargeless
and energyless [22–41].

This work addresses the physics of one-dimensional (1D)
nanowires with varying relative orientations between the

*javier@ifisc.uib-csic.es

external magnetic field and the nanowire (see Fig. 1). This
physics is of relevance, e.g., for the exchange of Majoranas
on networks of 1D wires, where it has been suggested
that Majoranas can be braided by manipulating the wire
shapes and orientations [42–44]. The Hamiltonian of the
system is expressed in the continuum and the analysis is
performed using two complementary approaches: the complex
band structure of the homogeneous wire and the numerical
diagonalization for finite systems. The complex band structure
allows a precise characterization of the parameter regions of
the semi-infinite wire where Majoranas, if present, are not
distorted by finite-size effects. On the contrary, numerical
diagonalizations of finite systems, even though reflecting
the same underlying physics, yield smoothened transitions
between different physical regions of parameter space.

For the semi-infinite system, we uncover an analytical law
limiting the existence of Majorana modes below critical values
of the angles between the magnetic field and the nanowire. This
law, referred to in this paper as the projection rule, is shown
to be approximately valid in finite systems too. We find a
correspondence of the finite-system spectrum with its infinite
wire counterpart, explaining this way its distinctive features
and regimes in simplest terms. Our work is related to Ref. [31],
which proved the influence of a transverse component of the
field to be consistent with the experimental observations of
Ref. [17].

The results for the homogeneous nanowire are subsequently
used to explain the spectrum of a junction of two nanowires
with arbitrary angle. The junction is modeled as a nonhomo-
geneous straight nanowire with two regions characterized by
different magnetic field orientations [see Fig. 1(b)]. While the
magnetic field remains parallel to the nanowire in one arm, we
study the spectrum variation when changing the magnetic field
angles in the other. Similarities between the homogeneous and
inhomogeneous nanowire spectra allow us to explain many
of the features of the latter in terms of those of the former.
Finally, we investigate the dependence with the distance of the
magnetic interface (the corner of the junction) to the end of the
nanowire, finding a transfer phenomenon where the Majoranas
change localization from the interface for a short arm to the
nanowire end as the arm length is increased.

1098-0121/2014/89(24)/245405(10) 245405-1 ©2014 American Physical Society
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(a)

(b)

FIG. 1. (Color online) Sketches of the physical systems consid-
ered in this work. (a) Straight nanowire on the x axis in a homogeneous
magnetic field characterized by spherical angles θ and φ. (b) Junction
of two nanowires in a uniform magnetic field (left) represented as a
straight nanowire with a magnetic inhomogeneity (right).

This work is organized as follows. In Sec. II, the physical
model is introduced and Sec. III presents the above-mentioned
projection rule. In Sec. IV, we discuss the spectrum of excited
states of a homogeneous nanowire, while in Sec. V we address
an inhomogeneous system representing a nanowire junction.
We study changes in the spectrum due to the tilting (Sec. V A)
and stretching (Sec. V B) of one of the junction arms. Finally,
the conclusions of the work can be found in Sec. VI.

II. PHYSICAL MODEL

We assume a one-dimensional model of a semiconduc-
tor nanowire as a low-energy representation of a higher-
dimensional wire with lateral extension, when only the first
transverse mode is active. The system is described by a
Hamiltonian of the Bogoliubov–de Gennes kind

HBdG =
(

p2
x

2m
+ V (x) − μ

)
τz

+�B (sin θ cos φ σx + sin θ sin φ σy + cos θ σz)

+�s τx + α

h
pxσyτz, (1)

where the different terms are, in left to right order, kinetic,
electric, and chemical potential, Zeeman, superconducting,
and Rashba spin-orbit terms. The Pauli operators for spin are
represented by σx,y,z while those for isospin are given by τx,y,z.
Superconductivity is modeled as an s-wave superconductive
term that couples different states of charge.

The superconductor term in Eq. (1) is an effective mean
field approximation to a more complicated phonon-assisted
attractive interaction between electrons. This interaction leads
to the formation of Cooper pairs with breakup energy �s .
Experimentally, superconductivity can be achieved by close
proximity between the semiconductor nanowire and a metal
superconductor. The semiconductor wire becomes supercon-
ducting when its width is smaller than the coherence length
of the Cooper pairs. On the other hand, the Rashba spin-orbit
term arises from the self-interaction between an electron (or

hole) spin with its own motion. This self-interaction is due to
the presence of a transverse electric field that is perceived as an
effective magnetic field in the rest frame of the quasiparticle.
This electric field can be induced externally but, usually, is a
by-product of an internal asymmetry of the nanostructure. In
the Hamiltonian (1), we have taken x̂ as the orientation of the
1D nanowire while an effective spin-orbit magnetic field �Bso

pointing along ŷ may be defined due to the coupling of the
Rashba term with the y component of the spin.

We consider the nanowire in an external magnetic field,
giving spin splittings through the Zeeman term in Eq. (1).
In this paper, we assume the magnetic field in arbitrary
direction, including the possibility of being inhomogeneous
in space for some setups. The direction of the magnetic field
is parametrized by the spherical polar and azimuthal angles θ

and φ. These two angles are constant for a homogeneous wire
[Fig. 1(a)] and they change smoothly from one to the other
arm in a nanowire junction [Fig. 1(b)].

Summarizing, superconductor, Rashba spin-orbit, and Zee-
man effects are parametrized in Eq. (1) by �s , α, and �B ,
respectively. These parameters are taken constant because the
nanowire is considered to be made of a homogeneous material.
The only inhomogeneity allowed in certain cases is a change
in the magnetic field direction at a single magnetic interface
between two homogeneous regions.

Along this work the Hamiltonian of Eq. (1) is solved for
homogeneous parameters in the infinite, semi-infinite, and
finite wires, as well as for the inhomogeneous finite case,
using different approaches. When a direct diagonalization of
the Hamiltonian for a finite system is performed, soft potential
edges and magnetic interface are used. The shape of the
potential edges is modeled as Fermi-type functions centered
on those edges. High potential is imposed outside the nanowire
while low potential (usually zero) is assumed inside. When a
magnetic interface is present, a smooth variation in the field
angles is modeled in the same way. Specifically, those smooth
functions read as

V (x) = V0[1 + F(x; xL,sv) − F(x; xR,sv)], (2)

θ (x) = θL + (θR − θL)[1 − F(x; xm,sm)], (3)

φ(x) = φL + (φR − φL)[1 − F(x; xm,sm)] (4)

for the potential and the field polar and azimuthal angles,
respectively. The Fermi function F is defined as

F(x; x0,s) = 1

1 + e(x−x0)/s
. (5)

In Eq. (2) V0 is the value of the potential outside the nanowire,
while θL/R and φL/R are the field angles at left and right of
the magnetic interface. The potential left and right edges are
centered on xL and xR and the magnetic interface is centered
on xm. Their softness is controlled by the parameters sv and sm,
where zero softness means a steep interface and a high value
implies a smooth one.

The numerical results of this work are presented in special
units obtained by taking �, m, and the Rashba spin-orbit

245405-2
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interaction α as reference values. That is, our length and energy
units are

Lso = �2

αm
, (6)

Eso = α2m

�2
. (7)

III. A PROJECTION RULE

Let us consider a nanowire in a uniform magnetic field
with θ = 90◦ and an arbitrary φ [see Fig. 1(a)]. A direct
diagonalization of Eq. (1) for a finite length of the wire and
φ = 15◦ yields the spectrum depicted in Fig. 2 as a function
of the magnetic field intensity. A main feature of this figure is
the existence of a Majorana mode, lying very near zero energy,
but only for a particular range of values of the magnetic field.
For the parameters of the figure, the Majorana mode is created
around �B = 0.3Eso and destroyed in a rather abrupt way
around �B = Eso.

It is well known that Majorana wave functions decay
to zero towards the nanowire interior. We can therefore
analyze the creation and destruction of Majoranas in the
semi-infinite system and use those results to understand the
physics of Majoranas in a finite system. In this approach,
we eliminate from the analysis the finite-size effects caused
by the overlapping of the Majorana wave functions at both
ends of a finite nanowire. Although it is obvious that for long
enough wires the size effect becomes negligible, disentangling
finite-size behavior from intrinsic Majorana physics using
calculations of only finite systems is much less obvious.

Majorana mode creation has been understood as a phase
transition of the lowest-excited state, signaled by the closing
and reopening of a gap in the infinite nanowire band spectrum
[23], as shown in Figs. 3(a) and 3(b). The phase transition
follows in this case a well-known law, requiring high-enough
fields for Majoranas to exist:

�B �
√

�2
s + μ2. (8)

FIG. 2. (Color online) Spectrum of a finite-length nanowire with
L = 50Lso as a function of the external magnetic field magnitude
�B . Other nanowire parameters are �s = 0.25Eso and μ = 0. The
magnetic field angles are θ = 90◦ and φ = 15◦. Only the eight states
lying closer to zero energy are displayed. Note that a zero-energy
Majorana mode is created at around �B = 0.3Eso and destroyed for
values of �B near one unit. The vertical lines (dots) indicate the onset
and destruction of the Majorana mode as predicted by Eqs. (8) and
(13), respectively.

FIG. 3. Band structure of the infinite homogeneous nanowire
with �s = 0.25Eso and μ = 0 for (a) parallel field (θ,φ) = (90◦,0◦)
with �B = 0.4Eso, (b) the same as (a) but on the phase transition
point �B = 0.25Eso, (c) tilted field (θ,φ) = (90◦,38.68◦) with �B =
0.4Eso.

Notice that, as mentioned, for the equality in Eq. (8) a gap
closes for k = 0 in Fig. 3(b). It is also worth stressing that
Eq. (8) depends on the full Zeeman energy �B and not just the
partial contribution due to the parallel field �B sin θ cos φ, as
one might naively assume.

In Ref. [38], Eq. (8) was derived, in an alternative way,
from the analysis of the complex-k solutions compatible
with the boundary condition of a semi-infinite nanowire in
a parallel field. This approach relies on the property that the
complex band structure (allowing an imaginary part in k) of
the homogeneous wire contains all the information about all
possible eigenstates of any piecewise homogeneous wire. In
general, an eigenstate of the infinite homogeneous wire with a
given arbitrary k can be expressed as

�(k)(x,ησ ,ητ ) =
∑
sσ ,sτ

�(k)
sσ sτ

eikx χsσ
(ησ )χsτ

(ητ ), (9)
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where �(k)
sσ sτ

are state amplitudes and the quantum numbers
are sσ = ± and sτ = ±. In Eq. (9), η = ↑,↓ indicate bivalued
variables for spin (ησ ) and isospin (ητ ). The corresponding
spinors are denoted by χ (η) [38]. It is worth stressing here
that analytical treatments in the limits of very weak and very
strong Rashba couplings were discussed in Refs. [34,45]. We
follow a general approach, at the price of being numerical.

The sharp semi-infinite wire with x > 0 is obviously
piecewise homogeneous, implying that the Majorana solution
allowed by the existence of an edge at x = 0 must be a linear
superposition of the homogeneous nanowire eigenstates of
complex wave number with Im(k) > 0, otherwise, it could not
be a localized state. The resulting restriction is∑

k, Im(k)>0

Ck�
(k)
sσ sτ

= 0, (10)

where the Ck’s are complex numbers characterizing the
superposition of state amplitudes. The allowed wave numbers
are calculated solving the determinant

det{Hsσ sτ ,s ′
σ s ′

τ
(k) − E 1} = 0, (11)

for E = 0. In fact, the allowed k’s can be calculated for any
energy, but we are interested in particular in those at zero
energy corresponding to Majorana solutions.

The wave-number dependence on magnetic field is depicted
in Fig. 4(a) for a selected case. For a fixed energy E, there
are always eight possible wave numbers, but only those with
Im(k) > 0 are displayed in Fig. 4(a). In this representation, the
closing of the k = 0 gap in Fig. 3(b) corresponds to a node of

FIG. 4. Imaginary parts of the wave numbers (only positive ones)
in an infinite homogeneous nanowire with �s = 0.25Eso and μ = 0
as function of (a) the value of the longitudinally oriented magnetic
field, (b) the azimuthal angle φ of a magnetic field with �B = 0.4Eso

and polar angle θ = 90◦. Gray color is used for nondegenerate modes
while black is indicating degeneracy with two or more modes actually
having the same Im(k).

Im(k) in Fig. 4(a). In order to be able to hold a Majorana,
a semi-infinite nanowire has to fulfill two simultaneous
requirements. First, the nanowire must have four complex
wave numbers with Im(k) > 0 allowed at zero energy; and
second, a solution different from zero (nontrivial) must be
possible for the Ck’s in Eq. (10). That is, interpreting the
state amplitudes �(k)

sσ sτ
as a 4 × 4 matrix where the four k’s

correspond for instance to rows and the four spin-isospin
values {++ , +−, −+, −−} to columns, the condition for
a nontrivial solution is

det
{
�(k)

sσ sτ

} = 0. (12)

In a parallel field, this condition is fulfilled only above a critical
value of the magnetic field �

(c)
B =

√
�2 + μ2, but not under

this quantity, thus leading to Eq. (8). Further details on the
methodology can be found in Ref. [38]. Here, we want to
use this approach to determine whether a similar condition on
the field orientation, with critical values of the angles, exists
or not.

Figure 4(b) shows the evolution of the wave numbers when
increasing φ while maintaining θ = 90◦, i.e., maintaining the
magnetic field in the plane formed by the nanowire direction
and the effective spin-orbit magnetic field direction �Bso. This
means that for φ = 0◦, the magnetic field is aligned with the
nanowire, while for φ = 90◦ it is completely perpendicular to it
and parallel to �Bso. In Fig. 4(b), care has been taken to choose a
value of �B that fulfills the Majorana condition for the parallel
φ = 0 orientation Eq. (8). We can see that for φ = 40.1◦ two
of the complex wave numbers become real, thus destroying
the Majorana mode for azimuthal angles above this value.

The physical behavior implied by Fig. 4(b) is a sudden loss
of the Majorana mode as the tilting angle φ exceeds a critical
value, due to the system no longer having the required four
evanescent modes with Im(k) > 0. The evanescent modes are
lost because of the closing of the gap between states of opposite
wave numbers [k ≈ ±2L−1

so for the particular case shown in
Fig. 3(c)]. We characterize next the dependence of the critical
angle on �B and �s . In Fig. 5(a), we can see a contour plot of
Im(k) as a function of φ and the ratio �s/�B for an external
branch wave number [34], corresponding to the lower black
line of Fig. 4(b). The values where Im(k) vanish separate the
plot into two regions: the lower one where the Majorana is
allowed and the upper (white) where no Majorana can exist.
Although Eq. (11) can be solved analytically, the angles where
Im

[
k(φ,�s/�B)

]
vanishes can be obtained only numerically

because φ appears as argument of sine and cosine functions
and no isolation is possible. As a consequence, the values
of φ where the wave number first reaches zero have been
found numerically and are plotted in Fig. 5(c) against the
test function arcsin(�s/�B). The perfect coincidence between
the two results within computer precision demonstrates that a
Majorana can not exist for angles such that sin φ > �s/�B ,
provided θ = 90◦.

Figure 5(b) shows a contour plot of Im(k) for an internal
branch wave number [34], corresponding to the upper mode
in Fig. 4(b). In this plot, the φ roots of Im(k) lie inside an
upper and lower bounded region around 0.95Eso < �B <

Eso. In fact, two of the wave numbers become real in the
white region of the contour plot. Note that this region lies
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FIG. 5. (a) Contour plot of Im(k) for the external branch of the
nanowire propagating bands. The horizontal axis contains the ratio
�s/�B and the vertical one the azimuthal angle φ. The polar angle
is fixed to θ = 90◦ and μ = 0. (b) Contour plot of Im(k) for the
internal branch of the nanowire propagating bands. The horizontal
axis shows �B and the vertical one the azimuthal angle φ. The polar
angle is fixed to θ = 90◦, �s = 0.8Eso, and μ = 0. (c) Plot of the
azimuthal critical angle where Im(k) vanishes in the upper left panel
as function of �s/�B (points) checked against the projection-rule
prediction (13). Aside from the θ = 90◦ case of the upper left panel,
the figure also contains the comparison for other values of θ . The
value of the chemical potential can be taken arbitrarily since it is
irrelevant for this comparison.

in the non-Majorana sector, above the transition discussed
in Fig. 5(a) which is now signaled by the dotted line.
Theoretically, the existence of this region determines two
different fermionic regimes: one where a fermion mode at
zero energy is constructed of plane waves with two complex
and two real wave numbers and another one made of a full
set of real wave numbers. Since we assume bound states in
order to extrapolate the results to finite systems, these cases
have no relevance to us. Nevertheless, the underlying causes
for the existence of this region will be relevant in the study of
the excited states of the finite nanowire. This will be further
developed in Sec. IV.

Repeating the analysis for different polar angles θ , as shown
in Fig. 5(c), we conclude that the angular restriction for the
existence of Majoranas is

�B sin θ sin φ < �s. (13)

In other words, the projection of the magnetic field energy
parameter into the spin-orbit effective magnetic field �Bso needs
to be smaller than the superconductor gap energy in order
to have Majoranas in a semi-infinite wire. We refer to this

condition as the projection rule. Notice that Eq. (13) is not a
generalization of Eq. (8), but an additional law. Both Eqs. (8)
and (13) have to be simultaneously met for the existence of a
Majorana mode in a semi-infinite wire. Finding this projection
rule using a complex band-structure approach is the main result
of this work.

In general, the projection rule (13) yields an extra bound
to be considered when identifying regions of Majoranas in
parameter space. For instance, assuming fixed angles (θ,φ)
and varying �B , there is a lower bound on �B from Eq. (8)
and an upper bound from the projection rule. Analogously, if
for a fixed �B the Majorana is allowed by Eq. (8) at φ = 0◦ and
and we increase φ, the projection rule yields an upper bound
on φ. Therefore, as explained, both equations must be met
simultaneously to obtain a Majorana mode. Furthermore, after
some parameter testing we have determined that the projection
rule is not affected by the value of the chemical potential μ.
This means that the overall dependence on μ for the existence
of Majorana modes in the semi-infinite nanowire is completely
covered by Eq. (8).

The disappearance of the Majorana when increasing φ is
not a phase transition in the sense that no imaginary part of
a mode wave number crosses zero in-between two regions
with non-null values. As shown in Fig. 4(b) for the polar
angle θ = 90◦, above the critical φ the value of Im(k) remains
stuck at zero value. The main difference between the phase
transition law in Eq. (8) and the projection rule (13) lies in
the different type of gap closing for both cases. As shown in
Fig. 3(b), the phase transition delimited by Eq. (8) is caused by
a gap closing and reopening on a single wave number k = 0
(labeled as interior branches of the spectrum). In the language
of semiconductor band-structure physics, we may call this
the closing of a direct gap. Oppositely, the projection rule is
caused by the closing of an indirect gap for k ≈ ±kf (labeled
as exterior branches of the spectrum), as shown in Fig. 3(c)
for a selected case. This indirect gap remains closed if φ is
further increased beyond a critical value [Fig. 4(b)], a sign of
the metallic character of the new phase.

We have checked these laws against the direct numerical
diagonalization for a finite nanowire, finding a reasonable
agreement as shown in Figs. 2 and 6. In Fig. 2, the magnetic
field orientation is kept fixed to a tilted orientation while the
field magnitude is changed and in Fig. 6 the magnitude is
fixed while the orientation is changed. The main difference
between the precise laws for the semi-infinite model and the
finite-system results is in the smoothness of the spectrum
evolution around the transition points. While in the semi-
infinite model the transition between fermionic modes to
Majorana modes and vice versa happens at a single point in
the parameter space, in the finite system we can see these
transitions smoothed. This occurs due to the finite-size effects,
i.e., the little overlap of Majoranas on opposite ends of the
nanowire. Furthermore, while Majoranas lie at exactly zero
energy in the semi-infinite model, this small interaction makes
the finite system Majoranas to have a finite small energy ε.

A close inspection of the projection rule (13) reveals that
there exist critical values for θ and φ such that if they are not
surpassed, a Majorana is always allowed, independently of the
value of the other angle [provided Eq. (8) is fulfilled], that
is, below the critical angle a projection into �Bso is never high
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FIG. 6. (Color online) (a) Spectrum of a nanowire of length L =
50Lso with �s = 0.8Eso and μ = 0 as a function of φ with a fixed
θ = 90◦ and �B = 0.9Eso. Note the spectrum change at the angle
predicted by the projection rule (dotted line) as well as the spectrum
collapse for values of φ close to 90◦. For values of φ above 90◦, the
spectrum is given by the mirror image of the shown values. (b) The
same as (a) but for a fixed magnetic field value �B = 1.1Eso. Note
that for values of φ close to 90◦, now the two modes closer to zero
are fermionic modes separated from each other by an energy gap.

enough to break the Majorana. In practice, if the Majorana is
allowed by Eq. (8), it will survive for any φ provided θ < θc

or, alternatively, for any θ provided φ < φc. These critical
angles are

θc = φc = arcsin

(
�s

�B

)
. (14)

Tilting the magnetic field has been investigated in the
experiment of Ref. [17], where the variation of differential
conductance when rotating the magnetic field in the xz and
yz planes (with the definitions of Fig. 1) has been followed
in detail. A transition angle from presence to absence of zero
bias anomaly is observed for yz rotation, while no transition
is found for xz rotation. This is fully consistent with the
projection rule [31], but the observed transition angle for yz

rotation seems to be smaller by a factor ≈2 with respect to
the theoretical prediction (14). We think this may be due to
differences between our closed nanowire and the necessarily
open experimental one, as well as to temperature effects [31].
In any case, an experimental confirmation of the critical angles
in the sense of Eq. (14) would lend additional support to the
Majorana scenario.

IV. EXCITED STATES

While in the preceding section we focused on the physics
of the Majoranas at zero energy, comparing semi-infinite and
finite nanowires, in this section we address the spectrum of
excited states. The main effect of the boundary conditions
is to allow only a discrete set of wave numbers instead of

FIG. 7. Spectrum obtained from the homogeneous nanowire band
energies at selected wave numbers, displayed as tracers as a function
of φ. Panel (a) corresponds to the same parameters of Fig. 6(a). Note
that qualitatively similar regions occur for increasing angles in both
figures. In particular, the spectrum nearly collapses for values of φ

close to 90◦. Panel (b) shows the same as (a) but for the parameters of
Fig. 6(b). Note that for values of φ close to 90◦, the two lower states
(closer to zero energy) are fermionic modes separated by a gap as in
Fig. 6(b).

a continuous one. What we have done is sketch the finite
nanowire spectrum by selecting wave numbers at regular in-
tervals and tracking the evolution of their energy levels with an
increasing angle φ. For these examples, we maintain the polar
angle θ = 90◦ because this is the most physically interesting
configuration due to the possibility of aligning external and
spin-orbit magnetic fields; nevertheless, analogous plots can
be done for different values of θ . The resulting spectrum,
shown in Fig. 7, explains the main features of the numerical
diagonalization results of Fig. 6 for the same parameters.

In principle, we could also set the boundary conditions
exactly as we did in Eq. (10), but we have found this approach
impossible to follow on a practical level. The resulting set of
equations reads as∑

k

C
(L)
k �(k)

sσ sτ
e−ikL/2 = 0,

(15)∑
k

C
(R)
k �(k)

sσ sτ
eikL/2 = 0,

where C
(L)
k and C

(R)
k are the coefficients at the left and right

nanowire ends, respectively. Basically, the resulting matrix
from Eq. (15) is ill defined since it contains very large and
very small matrix elements.

The spectra of both panels of Fig. 7 can be divided into
three different regions depending on the angle φ. First, for low
values of φ there is a region where a Majorana mode exists
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FIG. 8. Approximate spectrum of a finite nanowire in a particular
configuration of the external magnetic field. (a) With only two positive
real wave numbers. (b) With four positive real wave numbers.

and is topologically protected. In Fig. 7, the Majorana is not
seen since only excited states of real wave number are shown,
but we can see the corresponding gap. For values of φ above
those determined by the projection rule, the Majorana mode
is destroyed and we can see a region of many level crossings.
This behavior of the spectrum is explained by the gap closing
of the external branches of the conduction band noticing that
in the finite model only some discrete values are allowed, as
sketched in Fig. 8. Finally, for higher angular values, the region
of zero crossings finishes and a third region arises with two
possible behaviors.

As shown in Figs. 6 and 7 for high φ angles (near 90◦),
depending on the parameters the spectrum either opens a gap
or collapses near zero energy. The behavior depends on the
way the internal branches of the band cross the zero-energy
value for those angles. The internal branches of the band can
cross the zero-energy level for high angles in one k > 0 point,
like in Fig. 8(a), thus leading (jointly with the external branch
crossing point) to four real and four complex wave numbers
or, alternatively, the interior branch can cross zero energy in
more than one k > 0 point, like in Fig. 8(b), leading to wave
functions characterized by eight real wave numbers. In the
latter case, there is a wave-number range where the band
spectrum lies very close to zero energy, yielding this way
a collapse of the finite wire spectrum. The particular set of
parameters where one or the other situation happens depends
on the behavior of the internal branches of the band structure
and it is not as easily predictable as the behavior of the external
branches that led to the projection rule. The region of values
where this collapse arises coincides with the region where
the allowed solutions at zero energy are made of real wave
numbers only and it was already presented in Fig. 5(a) for the
μ = 0 case.

V. MAGNETIC INHOMOGENEITY MODELS

In this section, we explore the physics of a junction of
two straight nanowires with a certain angle in presence of
a homogeneous magnetic field parallel to one of the arms,
as sketched in Fig. 1(b). We assume a representation of the
system as a single straight 1D nanowire containing a magnetic
interface. The inhomogeneity separates two homogeneous
regions with different directions (but the same magnitude)
of the external magnetic field. The system is solved by
numerical diagonalization, assuming a soft magnetic interface,
interpreting the results by comparing with the homogeneous
nanowire discussed in the preceding section. We focus on two
specific effects: tilting and stretching of one of the two junction
arms. Other nanowire junction properties have been discussed
in Refs. [39,46,47].

A. Arm tilting

The magnetic field is aligned with the left arm and the
spectrum of the nanowire is computed for varying orientations
of the field in the the right arm (see Fig. 9). As mentioned,
this model represents under certain approximations a bent
nanowire in a homogeneous magnetic field. It was shown
in Ref. [48] that bent nanowires can be approximated by
1D models with a potential well simulating the effect of
the bending. Here, we have only considered the magnetic
field change of direction as the main inhomogeneity source,
disregarding the electrical potential effects of the bending.

The spectrum of the inhomogeneous nanowire can be
explained in terms of the homogeneous one for a tilted
magnetic field. Figure 9 compares the inhomogeneous (upper)

FIG. 9. (Color online) (a) Nanowire spectrum for �s = 0.8Eso

and μ = 0 with a magnetic inhomogeneity at its center as a function
of the tilting angle φ. On the left side of the nanowire the magnetic
field is parallel, while on the right side its angles are (θ = 90◦,φ).
The magnetic field strength is constant in both sides and equal to
�B = Eso. (b) Spectrum of a nanowire in a homogeneous magnetic
field with angles (θ = 90◦,φ) and with the rest of parameters as
in (a).
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FIG. 10. Majorana density function of an inhomogeneous
nanowire similar to the one described in Fig. 9(a). The magnetic field
azimuthal angles in the two arms are φL = 0◦ and φR = 90◦, while
all along the nanowire it is θ = 90◦. Other parameters are �B = 0.4,
�s = 0.25.

with the homogeneous (lower) nanowire spectrum for the
same set of parameters, showing that both results share the
same essential features. More precisely, three φ regions can
be found in both cases, but with two main differences. First,
while for the homogeneous nanowire increasing φ leads
to the destruction of the Majoranas on both ends, for the
inhomogeneous nanowire only the localization of the right
side Majorana is destroyed, leading to a spread state (Fig. 10).
This spread state retains characteristic Majorana properties
such as a nearly zero eigenenergy [Fig. 9(a)] and the typical
relation of wave-function components. As a consequence, the
bent junction holds only one localized Majorana mode in the
left side of the inhomogeneity. The density of the Majorana
for the inhomogeneous nanowire is shown in Figs. 10 and 11
for selected values of the parameters.

A second difference between upper and lower panels of
Fig. 9 is that the spectrum for the inhomogeneous nanowire
is not symmetric with respect to φ = 90◦, in contrast with the
homogeneous nanowire. A zero-energy crossing localized in
the inhomogeneity interface arises at φ = 145◦ for the selected
parameters in Figs. 9(a) and 11. The corresponding bound state
originates in the second excited state of the system and it is
not Majorana in nature. Furthermore, this localized state is
caused completely by the magnetic inhomogeneity and has
no relationship with the localized states found in the bending
region in Ref. [48] because we have disregarded those effects.

FIG. 11. Density function of the first excited state of the inhomo-
geneous nanowire of Fig. 9(a). This state becomes localized at the
magnetic inhomogeneity for an azimuthal angle φ = 145◦ (and polar
angle θ = 90◦).

FIG. 12. Density distributions of the Majorana mode in a finite
nanowire with a magnetic inhomogeneity. We used �s = 0.25Eso,
μ = 0, and a magnetic field of magnitude �B = 0.4Eso oriented
parallel in the left side of the magnetic interface and antiparallel in
the right side. In each panel, the potential well and the position of the
magnetic interface are shown. The latter corresponds to a Fermi-type
function whose position shifts to the right following the sequence
from upper to lower panels.

Although we know these states are related with the magnetic
inhomogeneity, a deep understanding of their causes and the
particular set of parameters leading to their enhancement or
quenching is yet to be understood.

B. Arm stretching

We study now the behavior of the Majorana modes in
the nanowire as a function of the inhomogeneity distance to
the nanowire end. The magnetic field directions are fixed at
θ = 90◦,φ = 0◦ on the left end and θ = 90◦,φ = 180◦ on the
right end of the nanowire. This is a particularly interesting
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FIG. 13. (Color online) Spectrum of the nanowire described in
the caption of Fig. 12 as a function the magnetic interface position.

configuration as it is the only setup where both ends lie inside
a longitudinal magnetic field, apart from the homogeneous
case. This way, all the observed effects must be caused by
the inhomogeneity and its distance with respect to the left
nanowire end.

Figure 12 shows the probability densities of the zero-energy
state at different positions of the magnetic interface with
respect to the left side of the nanowire. From upper to lower
panels of Fig. 12 we may follow the evolution as the distance of
the magnetic interface to the left end of the system is increased.
Most remarkably, for short distance, the left Majorana is not
peaked on the left end, but remains stuck on the magnetic
interface (upper panels). If the distance is increased, however,
the Majorana is eventually transferred to the left nanowire end
after some critical distance (lower panels). This transfer is seen
as a smooth decrease of the density maximum at the magnetic
interface accompanied by an increase at the left end. Finally,
when the interface is on the middle point of the nanowire,
both Majoranas are located at their corresponding ends. It
is also worth noticing that this Majorana transfer does not
imply a departure of the mode from zero energy because the
Majorana on the other end of the nanowire is not affected (see
Fig. 13). Additionally, the transfer phenomenon is not caused
by finite-size effects since we have checked that it happens for
the same characteristic distance when the right end is further
displaced to the right.

VI. CONCLUSIONS

In this work, we have studied the spectra of 1D nanowires
for arbitrary orientation of the magnetic field, focusing in

particular on the conditions leading to a Majorana mode.
This study has been realized from different perspectives
and methods in an effort to explain the variety of observed
phenomena. We have combined the complex band-structure
techniques of infinite homogeneous nanowires with numerical
diagonalizations of finite systems.

We have demonstrated an additional condition, aside from
the well-known topological transition law, that needs to be
taken into account in order to predict the regimes of existence
of Majorana modes with tilted fields. We have named this
additional condition the projection rule. The projection rule
predicts an upper bound on the magnetic field at which
Majoranas are to be found in a 1D wire with tilted field. We
have stressed that the topological transition law with tilted
fields depends on the full-field Zeeman energy and not just on
the contribution of the magnetic field component parallel to the
wire. When the topological law is fulfilled, the projection rule
leads to critical values of the field angles θc and φc, such that
a Majorana mode is always found for any φ provided θ < θc

or, alternatively, for any θ provided φ < φc.
We have extended our analysis to nanowire junctions with

an arbitrary angle, modeled as magnetically inhomogeneous
nanowires, explaining most of their properties in terms of
the behavior of its homogeneous parts. We have focused,
particularly, on the role of tilting and stretching of one
of the junction arms. We also reported the existence of a
bound non-Majorana state located on the magnetic inho-
mogeneity. Finally, we have studied the Majorana transfer
phenomenon as the distance of the magnetic inhomogeneity
to the nanowire end is increased. Testing these predictions
would require experiments of nanowires in inhomogeneous
magnetic fields. Alternatively, it has been suggested in this
work that a bent nanowire in a homogeneous field should
display similar phenomena, while being more feasible in
practice. As an interesting continuation of this work we are
presently analyzing the validity of the projection rule in
higher-dimensional nanowires, where the transverse degrees
of freedom require a multimode description of the electronic
states.
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motion in planar hybrid nanowires
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4.1 Objectives

In the preceding chapters we have analyzed different aspects of 1d Majorana
nanowires. In this chapter we introduce for the first time in this thesis a nanowire
with a finite width. In the context of mesoscopic semiconductor devices, 1d
nanowires are simplified approximations to real nanowires of finite non-zero dimen-
sions. The objective of this chapter is then analyzing more realistic nanowires by
introducing a finite transverse dimension. With this objective in mind we obtain
the phase diagram of planar quasi-1d nanowires. We consider planar nanowires of
rectangular shape, but they are still much longer than wider. No experiments have
been done yet with this kind of geometry but, instead, with a hexagonal and cylin-
drical 3d geometries. Nevertheless, we think it is an interesting proposal because it
is the simpler non 1d geometry that can be devised and it already contains a new
set of physical effects.

A finite width not only introduces the physics arising from the transverse confine-
ment, but also the orbital motion of quasiparticles due to the perpendicular com-
ponent of the magnetic field. Hence, the Hamiltonian will contain additional terms
coupling the magnetic field with the spatial degrees of freedom of the Majorana
wavefunction. In the Landau gauge these terms are

Horb =
~2

2ml4z
y2τz −

~
ml2z

ypx , (4.1)
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plus a Rashba orbital term,

HR,orb = −α
l2z
yσy , (4.2)

where l2z ≡ ~c/eBz is the magnetic length and τz is the Pauli matrix for the isospin
(particle and hole) degrees of freedom. Here, Bz is the component of the magnetic
field perpendicular to the nanowire plane, c is the speed of light and e is the charge of
the electron. The two new terms in Eq. (4.1) arise from the substitution ~p→ ~p−e ~A/c
in the kinetic energy, while the Rashba orbital term given in Eq. (4.2) arises from
the same substitution in the Rashba term. In this work we show how this three
terms modify the Majorana phase diagram in characteristic ways and discuss their
effect on the Majorana density function.

4.2 Methodology and clarifications

In order to uncover the Majorana phase diagram of a planar nanowire we use the
combination of two main methods. The first one is the complex band analysis
already introduced in Chap. 2 while the second one is the generalization to 2d of
the computer efficient method to solve 1d Hamiltonians given in Chap. 3.

As discussed in Chap. 3, a Majorana requires the presence of an edge. However, the
complex band analysis of the equivalent homogeneous infinite nanowire provides all
the information needed to determine if the nanowire is in a topological or in a trivial
phase. In plain words, we know that in pure 1d nanowires the closing and reopening
at k = 0 of the infinite nanowire propagating bands signal the phase transition [8].
It can be reasoned that the additional terms from the increase in dimensions do not
change the Majorana topological mechanism. In fact, we will make this reasoning
in the remarks section below. However, the article of this chapter does not take this
result for granted. In the article we first assume, as a working hypothesis, that the
closing and reopening of the Majorana nanowire energy gap at k = 0 signals the
Majorana phase boundaries also in a quasi-1d nanowire. With this hypothesis we
generate the Majorana phase diagram and in the second part of the article we check
the validity of our assumption solving the Hamiltonian for particular values, in two
different ways. We develop a numerically precise and computer efficient method
for semi-infinite nanowires, and a less precise but well known direct diagonalization
method for finite length nanowires.

The avid reader may be questioning himself/herself where topology intervenes in this
problem and about the fundamental reasons for the closing and reopening of the gap
at k = 0. In general, by means of the bulk to boundary correspondence principle
we need a non trivial change of the propagating bands in the corresponding infinite
nanowire in order to enter a topological phase. This change must necessarily imply
a closing and reopening of the gap at some point because a smooth transformation
of a system spectrum does not imply a topological transition. A well known method
(but not the only one) is to calculate the so-called topological invariant by means
of the calculation of the Pfaffian in highly symmetric points [37]. For example,
in topological insulators with time reversal symmetry these points are called Time
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Reversal Invariant Momenta points or TRIM. The Pfaffian can be calculated in these
points because the Hamiltonian becomes anti-symmetric on them [37]. However,
in continuous nanowires with particle hole symmetry but without time reversal
symmetry the only point where the Hamiltonian becomes antisymmetric is k = 0.
The Pfaffian at this point gives us the topological invariant and the closing and
reopening of the gap will signal the phase transition. Therefore, obtaining the
change of the topological invariant and the gap closing at k = 0 are equivalent
approaches. We want to stress at this point that this link between them makes
unnecessary the actual calculation of the topological invariant unless the study is
focused on its particular properties. On a practical basis, our objective here is to
calculate the Majorana phase diagram in an hybrid nanowire in presence of orbital
effects and we propose a numerically efficient method to do it tracking the closings
and reopenings of the gap.

The main technical point of the paper is that direct diagonalization of a finite
nanowire is an ineffective method to calculate the overall Majorana phase diagram,
in the whole space of parameters. This is because of the following drawbacks of the
finite system diagonalization method:

1. It is imprecise. Providing different values of the parameters to a numerical
diagonalization method and checking whether a zero mode appears or not
is imprecise. In a finite nanowire Majoranas have associated an hybridiza-
tion energy caused by a little overlapping between them in the middle of the
nanowire. This makes difficult to determine the phase boundaries with high
precision because the Majorana energy in finite nanowires is never exactly zero
and it is difficult to pinpoint the exact transition value (although it can be
done with some error).

2. It is resource inefficient. We do not need to know any finite portion of the
nanowire spectrum. All the information we need is encoded around wavenum-
ber zero. Therefore, it is not necessary to calculate and store parts of the
spectrum and their corresponding eigensolutions.

3. It is time consuming. The full Hamiltonian diagonalization for a particular set
of parameter is time consuming even for a coarse spatial discretization of the
nanowire. That makes this method simply impractical to calculate the phase
diagram over a wide region of the space of parameters.

From complex band analysis we know than in a semi-infinite nanowire the Majorana
solution will be a linear combination of the equivalent infinite nanowire eigensolu-
tions

Ψ(x, y, ησ, ητ ) =
∑

k

Ck Ψk(x, y, ησ, ητ ) , (4.3)

where Ψk is an homogeneous nanowire eigensolution and Ck is its corresponding
probability amplitude. Each one of the infinite nanowire solutions has a wavenum-
ber k as a good quantum number. By means of the separation of variables the
longitudinal and transverse dependences of Ψk can be written as a product of a
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plane wave in x and a transverse function,

Ψk(x, y, ησ, ητ ) =
∑

sσsτ

Ψ(k)
sσsτ (y) eikx χsσ(ησ)χsτ (ητ ) , (4.4)

where Ψ
(k)
sσsτ (y) is now the transverse component of the homogeneous nanowire eigen-

solution and χsσ(ησ) and χsτ (ητ ) are the basis spinors for spin and isospin (sσ = ±,
sτ = ±). Using this separation of variables the infinite nanowire eigenvalue equation
for each k reads

(h− E)
∑

sσsτ

Ψ(k)
sσsτ (y)χsσ(ησ)χsτ (ητ ) = 0 , (4.5)

where

h =

(
~2k2

2m
+

p2y
2m

+ V (y)− µ
)
τz + ∆s τx − iαkσyτz −

α

~
pyσxτz

+∆B σ̂ · n̂+
~2

2ml4z
y2τz −

α

l2z
yσy , (4.6)

and the different symbols have the same meaning as in Chap. 1. As stated above, a
topological transition occurs for certain parameters when the gap closes and reopens
at zero energy and wavenumber. When this condition is met Eq. (4.5) will have a
solution for E = 0 and k = 0. A key point is that Eq. (4.5) is a 1d equation that only
depends on the y coordinate. Therefore, a dimensional reduction of the problem has
been achieved and we need to solve this new equation only at zero energy and wave
number. The solution of this equation can be obtained using the matching method
already presented in Chap. 2.

The continuity of the derivatives of the solution at zero energy and wavenumber at
the matching point will signal when a particular solution of Eq. (4.5) is physical
or not. As explained in Chap. 2 this continuity is measured by the function F .
Therefore, when F is zero then Eq. (4.5) has a physical solution and that means
that the gap of the overall two dimensional Hamiltonian is closed at k = 0 and the
system is in a phase transition point. The overall method is computer efficient since
a simple sweep of parameter will give us the phase diagram in a time efficient way.

The same approach can be used to obtain the complex wave numbers at a given
energy (E = 0) of the homogeneous nanowire. Once we have enough of them we
can solve the equation Ψ(0, y, ησ, ητ ) = 0 to obtain the set of values of Ck’s. With
this information the Majorana wavefunction is then calculated using Eq. (4.3). Note
that the obtained solution will be an approximation because of the truncation of
the solution to a finite number of wavenumbers. However, this is a very good ap-
proximation if we take first the wavenumbers with the smallest imaginary part. The
homogeneous nanowire eigensolutions with big imaginary wavenumbers are highly
evanescent and therefore they will have a small contribution to the Majorana edge
state wavefunction. This method is used to check the phase diagram predictions.
We only have Majorana solutions in the parameter regions pointed by the phase
diagram.

This method has the advantage, as compared with direct diagonalization methods,
to provide wavefunctions with very high resolutions. While direct diagonalization
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methods are able to solve spatial grids of 100×100 points at most, with this method
the transverse resolution can be of various thousands of points. Furthermore, the
semi-analytic nature of the solution provides an arbitrary resolution in the longitu-
dinal direction.

Finally, the phase diagram is also checked against direct diagonalization of a finite
nanowire for selected values. The direct diagonalization method performs poorly
in time, even at low spatial resolutions, but is a well known and widely accepted
method, and thus useful for checking purposes. The diagonalization method used
here is the same of Chap. 2, but for a 2d wavefunction implies a larger number of
components.

To use the different numerical algorithms we use the nanowire width as the unit
length, this also determines the energy scale

LU ≡ ly , (4.7)

EU ≡ ~2/ml2y . (4.8)

This is a better choice of units for this particular kind of nanowire than the more
usual selection based on the Rashba spin orbit coupling strength (as in Chaps. 2 and
3). In 1d nanowires the only characteristic dimension of the problem is the Rashba
length lα = ~2/mα. Length units based on α are then used for nanowires of higher
dimensions to make an easy comparison. However, as proven in this work, the phase
diagrams depends on one hand on the relationship between the Rashba length lα and
the nanowire width ly while, on the other hand, it also depends on the relationship
between the nanowire width and the magnetic length lz. The nanowire width ly will
be key to the scaling reasonings and therefore is the more useful selection of units
for this case.

A realistic nanowire 150 nm wide made of InAs will have a Rashba spin orbit
coupling strength of α = 30 meVnm, in characteristic units this is about α ≈
2 EULU . As shown in the article, this corresponds to an almost ideal phase diagram
behavior depicted in Fig. 2b. In this context ideal means that the phase boundaries
closely follow the analytical expression of the limits. Phase diagrams are drawn
for a Zeeman energy between 0EU and 25EU , that for this nanowire correspond to
values between 0 and 6 Tesla. Therefore, we can find Majorana phases for values of
the magnetic field in the range of the current technology. Finally we have also used
a superconductor gap ∆ = 3EU that for this particular nanowire is equivalent to
0.3 meV. In the same vein of previous chapters, this does not precisely correspond
to the bulk value of any particular superconductor material but we believe it is a
value within a realistic range.

4.3 Conclusions and remarks

In this chapter we obtain the phase diagram for a planar nanowire of finite width
in presence of orbital effects and we check the validity of such diagram. Majorana
phases are located as a function of the magnitude and orientation of the external
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magnetic field for different values of the Rashba spin orbit strength. If we restrict
ourselves to in-plane magnetic fields, the Majorana phase boundaries are determined
by critical magnetic field strengths. However, magnetic fields with out-plane com-
ponents, in presence of orbital effects, change the Majorana phase boundaries into
critical angles. Analytical expressions for the critical magnetic fields and angles can
be given for some particular limits. The Rashba coupling strength has a role adding
further corrections that modify the phase diagram away from the ideal analytical
conditions.

Physically, adding a second dimension introduces six new terms in the nanowire
Hamiltonian with respect the 1d one used in previous chapters. The first two ones
are the py dependent kinetic energy and the transverse component of the confinement

H2d =
p2y
2m

+ V (y) . (4.9)

These two terms are responsible for the quantization of the nanowire in the trans-
verse direction creating many transverse modes. In absence of a Rashba mixing term
these transverse modes would behave like independent 1d nanowires, each one with
its own Majorana critical field. The different transverse modes get coupled by the
Rashba mixing term, that is also responsible of the alternation of the Majorana and
trivial phases. This happens because two Majoranas annihilate each other in pairs
becoming a fermion and lifting their energy away from zero. This in agreement with
Ref. [38] discussion for class D systems that do not fulfill time reversal symmetry.
The Rashba mixing term,

HR,m = −α
~
pyσxτz , (4.10)

has the same origin of the 1d Rashba term. α is the same spin orbit coupling
strength, py is the momentum on the ŷ direction and τz is a Pauli matrix for the
isospin degrees of freedom.

Finally, the last new three terms are the orbital ones already given in Eqs. (4.1) and
(4.2), these are the terms whose physical effect are analyzed in detail in the article
that follows. In general, the two first orbital terms, Eq. (4.1), provide an additional
effective parabolic confinement that depends on the magnetic field strength. These
terms introduce critical angles in the phase diagram. On the other hand, the Rashba
orbital term presented in Eq. (4.2) only becomes non-negligible when the Rashba
coupling is very strong. It has the mathematical form of an inhomogeneous magnetic
field effectively reducing the magnetic field tilting. This effective reduction leads to
a change in the Majorana phase diagram.

In short, the Rashba mixing term couples different transverse bands allowing only
one Majorana at each edge and the orbital terms behave as an effective transverse
confinement, or as an inhomogeneous magnetic field, changing the phase boundaries
but none of them produces a non-trivial change in the propagating bands of the
quasi-1d homogeneous nanowire. This means that the quasi-1d nanowire is topo-
logically equivalent to the 1d nanowire. Therefore, as stated above the closing and
reopening of the gap at zero wavenumber signals the Majorana phase transition in
the same way as in a 1d nanowire.
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As a final side note, see that in this work the typical values for InAs imply α/EULU =
Ly/Lso = 2, therefore our result lie in a regime where Ly > Lso. In this paper we
take the width of the nanowire as length unit Ly = LU by the reasons given above.
Nevertheless, to diminish Ly would be equivalent to diminish α. Trivially, at α = 0
all the transverse bands get decoupled but Majoranas get delocalized to a point in
which they does not exist anymore. Remember that the greater α the more localized
Majoranas become. In fact for α = 0 there is no gap in the parameter regions able to
hold Majoranas because ∆B > ∆o. Increasing, α will restore again the Majoranas
for the appropriate regions of the phase diagram but also the repulsion between
Majoranas in the non Majorana phases. Strictly speaking, in the terms presented
in this work this repulsion grows progressively. However, it has been noted that it
remains small if Ly << Lso [39]. In this case it can be considered that increasing
the magnetic field from zero will add up, in an approximate way, a new Majorana
mode for each phase boundary crossed. This approximation may be not noticeable
in finite nanowires if the repulsion energy is of the order of the hybridization one
but strictly speaking topological differences can be found between this limit case
and semi-infinite devices having multiple modes exactly at zero energy (a so-called
Z topological invariant).

4.4 Published paper
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The Majorana phase boundaries in planar 2D hybrid (semiconductor-superconductor) nanowires are modified
by orbital effects due to off plane magnetic components. We show that Majorana zero modes survive sizable
vertical field tiltings, uncovering a remarkable phase diagram. Analytical expressions of the phase boundaries
are given for the strong orbital limit. These phase boundaries can be fulfilled with attainable setups, such as an
InAs nanowire of 150 nm in transverse width.

DOI: 10.1103/PhysRevB.91.235417 PACS number(s): 73.63.Nm, 74.45.+c

I. INTRODUCTION

The physics of 2D electron gases in magnetic fields has
proved invaluable for the condensed matter field with, e.g., the
celebrated quantum Hall effect [1] as well as with many devices
based on quantum wells, wires, and dots [2]. On the other hand,
Majorana zero modes in quasi-1D wires have recently attracted
strong interest, both as exotic quasiparticles and as candidates
for topological quantum computing [3–6]. In this article we
relate 2D-gas properties and Majorana physics, showing the
remarkable role of the orbital motions characteristic of 2D
systems in magnetic fields.

Majorana modes in quasi-1D wires are effectively charge-
less, zero-energy quasiparticles. They arise from the splitting,
through a phase transition, of bulk electronic states into pairs
of quasiparticles on the wire ends, each one being its own
antiparticle [7–18]. An important feature of the Majorana
mode is that it appears only when a critical value of the
external magnetic field, a phase-transition threshold, has been
surpassed. Several experiments with hybrid superconductor-
semiconductor nanowires using tunneling spectroscopy from
a normal conductor to the nanowire have observed a zero
bias peak consistent with a Majorana state [19–22]. The
observed peak height is, however, an order of magnitude lower
than the quantized value 2e2/h. This discrepancy is not yet
well understood, as it might be due to effects ranging from
finite temperature, experimental, and tunneling resolutions
to other low-energy subgap states and possible inelastic and
renormalization processes [23,24].

In practice, distinguishing zero-bias peaks due to Majorana
modes from other potential sources relies on the detailed
knowledge of the phase diagram in each particular physical
realization. Therefore, it is highly relevant knowing how
Majorana physics is affected by the extra dimension in 2D, with
respect to 1D. This question has been addressed with quasi-
1D multiband wires [25–28], modeling transverse modes as
mutually coupled 1D wires. This leads to essentially the 1D
physics with only one Majorana mode at each nanowire end
when an odd number of transverse modes are above their
critical magnetic field. However, the role of the magnetic
orbital motion has been usually disregarded. Addressing
Majorana physics in 2D systems with orbital motion is

*javier@ifisc.uib-csic.es

therefore relevant as a way to discard alternative scenarios
that have been suggested, such as attributing the observ-
ations to Kondo-like interaction effects [28]. We want to
clarify too that the above mentioned experiments [19–22] used
cylindrical nanowires, for which the orbital effects may be
different from those discussed here.

In this article we show that in a planar nanowire the
orbital motion strongly affects the phase transition boundaries.
We show how the Majorana phase survives sizable vertical
field tiltings (Fig. 1), even reaching the purely perpendicular
orientation in some cases. This is not an intuitive result since
the electronic orbital motion might lead to a gap closing,
allowing edge propagating solutions, or it might totally change
the character of the topological states. In this sense we note
that the s-wave nanowires inside a magnetic field have an
associated directionality with their Majoranas located at the
left and right edges (Fig. 1), while a 2D p-wave nanowire has
their edge states located all along the 1D perimeter.

In the strong orbital limit, the phase transitions occur for
critical values of the polar angle, following a simple analytical
law that does not depend on sample details. With parallel (x)
field orientation the transition law is also analytical, while
for intermediate regimes the phase transitions are obtained
numerically. We assess the consistency between the phase
diagram and direct calculations of the Majorana modes in
semi-infinite and finite 2D wires, emphasizing the importance
of covariant grid discretizations for the latter [29,30].

The work is organized as follows. Section II introduces the
physical system in detail, while Sec. III contains the algorithm
used to determine the phase-transition boundaries. In Sec. IV
we discuss the phase diagrams for out-of-plane tiltings of
the magnetic field with different strengths of the spin-orbit
coupling. Sections V and VI deal with the actual Majorana
solutions in semi-infinite and finite 2D Majorana nanowires,
respectively. Section VII contains the conclusions of the work.

II. PHYSICAL MODEL

The combination of s-wave superconductivity, Rashba in-
teraction, and an external magnetic field is a well known source
of Majorana fermions [7]. We consider electronic motion
restricted to the x̂ (longitudinal) and ŷ (transverse) directions
in the presence of these three effects. The homogeneous
magnetic field points in an arbitrary direction and the edges are

1098-0121/2015/91(23)/235417(8) 235417-1 ©2015 American Physical Society
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FIG. 1. (Color online) Schematic of a 2D planar nanowire show-
ing the axis definitions. A magnetic field in a tilted direction is
included. The density distribution of Majorana modes on the wire
ends is qualitatively shown.

modeled as infinite square well potentials in the longitudinal
and transverse directions (Fig. 1).

The nanowire physics is described by a Hamiltonian of the
Bogoliubov–de Gennes kind, split in the following way:

HBdG = H0 + HZ + HR + Horb. (1)

The successive contributions to Eq. (1) are the zero-field and
superconducting energies

H0 =
(

p2
x + p2

y

2m
+ V (x,y) − μ

)
τz + �sτx, (2)

the Zeeman term

HZ = �B(sin θ cos φ σx + sin θ sin φ σy + cos θ σz), (3)

the Rashba coupling term

HR = α

�
(pxσy − pyσx)τz, (4)

and, finally, the magnetic orbital terms

Horb = �2

2ml4
z

y2τz − �
ml2

z

ypx − α

l2
z

yσy. (5)

In Eqs. (2)–(5) we used the following Nambu-spinor conven-
tion, relating discrete components with spin (↑↓) and isospin
(⇑⇓) as � ≡ (�↑⇑,�↓⇑,�↓⇓, − �↑⇓)T .

The contributions in Eq. (2) are, in left to right order,
the kinetic, electrical potential V , chemical potential μ, and
superconducting �s energies. The Pauli operators for isospin
(particle-hole) are represented by τx,y,z, while those for spin are
σx,y,z. The superconductor term represents an effective mean
field approximation to more complicated interactions with a
nearby s-wave superconductor. The Zeeman term, Eq. (3),
depends on parameter �B and models the coupling of the spin
with a magnetic field of arbitrary polar and azimuthal angles
(θ,φ) ≡ n̂.

The Rashba coupling Eq. (4) is the result of the self-
interaction between the quasiparticle spin with its own motion.
This interaction is due to the presence of a transverse electric
field representing an internal asymmetry in the confinement
along z that may be either intrinsic or externally induced. The
first Rashba contribution, depending on pxσy , is called the 1D
Rashba term while the second one, pyσx , is the Rashba mixing
term.

The joint effects of superconductivity, Zeeman, and 1D
Rashba terms give rise to independent Majorana states, one

from each transverse band like in the 1D model. Each one
of the modes has a different critical magnetic field �

(c)
B,n =

[(μ − εn)2 + �2
s ]1/2, with n = 1,2, . . . , and εn the transverse

mode energies. Adding the Rashba mixing term to this scenario
changes the critical fields due to the coupling between different
transverse bands. It effectively allows only one Majorana zero
mode in parameter regions where the 1D Rashba term would
yield an odd number of them (even-odd effect) [27,31]. This is
further discussed in the Appendix as a particular analytical
limit of the most general case presented below. Besides,
in 1D wires the effect of tilting the magnetic field implies
the additional requirement of the so-called projection rule
�B sin θ sin φ < �s [32,33]. This is due to the indirect gap
closing of the infinite wire energy bands at ±kc due to the tilted
field, where kc is a nonvanishing wave number. As discussed
in Sec. IV, in 2D nanowires we find strong modifications of
the critical magnetic fields, but the projection rule still applies.

In a planar nanowire the perpendicular component of
the magnetic field induces orbital motions of the nanowire
quasiparticles. The magnetic orbital terms, Eq. (5), describe
this motion and their effect on the Majorana states is the central
point of this article. These terms depend on the magnetic
length lz, defined as l2

z = �c/eBz, and they stem from the
kinetic and Rashba energies with the magnetic substitution
px → px − �y/l2

z and adding the required Pauli matrix τz

for proper particle-hole symmetry. In Eq. (5) we assumed the
Landau gauge centered on yc = 0, although our results are
independent on this choice as discussed below.

All parameters of the complete Hamiltonian are constant
inside the nanowire, modeled as a perfectly confining box with
Lx � Ly . The numerical results of this work are presented in
characteristic units of the problem obtained by taking �, m and
the width of the nanowire Ly as reference values. That is, our
length and energy units are, respectively, LU ≡ Ly and EU ≡
�2/mL2

y . A spin-orbit length Lso is usually defined as Lso =
�2/mα but, as explained below, the Hamiltonian orbital terms
will introduce an effective transversal confinement. Therefore,
the comparison between its characteristic length and the one
of the nanowire real confinement is relevant. We notice that, in
our convention, the numerical value of α is precisely the ratio
of transverse and spin-orbit lengths, α/EULU = Ly/Lso.

III. MATCHING METHOD

In topological systems it is in general possible to relate the
states of the bulk with those at the boundaries, a consequence
of the bulk-to-edge correspondence principle. In our particular
case this means that the semi-infinite Majorana solution �

will be expressed as a linear superposition of the infinite-
nanowire eigensolutions �(k) (i.e., for the same Hamiltonian
but disregarding the left and right edges),

�(x,y,ησ ,ητ ) =
∑

k

Ck�
(k)(x,y,ησ ,ητ ), (6)

where spin and isospin variables are indicated with ησ and ητ ,
respectively. Notice that the infinite-nanowire solutions �(k)

are characterized by a wave number k that, accounting for
evanescent waves, may be a complex quantity. In a given spin-
isospin basis, χsσ

(ησ ) and χsτ
(ητ ), with sσ = ± and sτ = ±,
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the infinite-wire solutions read

�(k)(x,y,ησ ,ητ ) =
∑
sσ sτ

�(k)
sσ sτ

(y)eikxχsσ
(ησ )χsτ

(ητ ), (7)

where �(k)
sσ sτ

(y) is a 1D four-component spinor characteristic
of the infinite-wire solution with wave number k.

It has been demonstrated that a Majorana phase transition
occurs in a semi-infinite nanowire when the propagating bands
for the corresponding infinite nanowire perform a gap closing
and reopening when increasing the magnetic field, at vanishing
energy and wave number [8,32]. Therefore, to determine
the phase boundaries we only need to investigate the band
structure at k = 0 and E = 0. However, a full determination
of the band spectrum for every set of Hamiltonian parameters
by diagonalization is time consuming and computationally
ineffective. In accordance with this, it has been pointed out
that in spite of the nonlocality of the topological states a full
knowledge of the band spectrum is not necessary in general
to determine the phase of a topological system, but the only
relevant regions are those near the Dirac cones that appear at
the phase transitions [34]. In our case, this implies searching
the solutions of∑

s ′
σ s ′

τ

〈sσ sτ |h|s ′
σ s ′

τ 〉�(0)
s ′
σ s ′

τ
(y) = 0, (8)

where h is obtained neglecting all px-dependent terms in
Eq. (1),

h =
(

p2
y

2m
+ V (y) − μ

)
τz + �sτx − α

h
pyσxτz

+�Bσ̂ · n̂ + �2

2ml4
z

y2τz − α

l2
z

yσy. (9)

Notice that with Eq. (8) we achieved a reduction to an effective
1D problem.

We can use the algorithm devised in Refs. [31,35] to
study the solutions of Eq. (8). The particular parameter
sets allowing such a solution will signal the gap closing of
the original 2D Hamiltonian of Eq. (1) and thus the phase
transition we are looking for. The algorithm consists in solving
Eq. (8) in a 1D grid as a linear system, assuming vanishing
boundary conditions at y = 0 and y = Ly . However, due to the
homogeneous character of this linear system the trivial solution
�(0)

sσ sτ
(y) = 0 is always possible. The algorithm discards the

trivial solution by means of a matching point ym, where for
an arbitrary pair of components (sσ sτ ) = (st) a nonvanishing
wave function is imposed. In addition, continuity of the first
derivative at the matching point is also imposed for the
components other than (st),

�
(0)
st (ym) = 1, (10)

(
d (U )

dy
− d (L)

dy

)
�(0)

sσ sτ
(ym) = 0, (sσ ,sτ ) �= (s,t), (11)

where d (U,L)/dy denote grid derivatives using only upper (U )
or lower (L) y-grid neighbors.

Equations (10) and (11) are used at ym in place of the
Bogoliubov–de Gennes ones. In particular, Eq. (10) makes the

system no longer homogenous and such that it always admits
a solution. The algorithm does not ensure the first-derivative
continuity for the component (st) at the matching point.
Therefore, this condition is used to distinguish the physical
from the nonphysical solutions with the continuity measure

F =
∣∣∣∣
(

d (U )

dy
− d (L)

dy

)
�

(0)
st (ym)

∣∣∣∣
2

. (12)

As mentioned, the F zeros will signal the desired gap closing
boundaries of Eq. (1). Further details about the algorithm can
be found in Ref. [35].

IV. PHASE DIAGRAMS

Figure 2(b) shows the phase transition boundaries obtained
with the matching method for an Ly = 150 nm nanowire
with material parameters typical of InAs and a magnetic field
strength between 0 and 6 T (�B = 0–25EU ). Phase boundaries
are signaled by zero values of F (red lines). Only F = 0 values
represented by red lines have physical sense and the color
scale is only indicating the measure deviation from zero. As
mentioned, the energy unit scales as L−2

y , such that in a 300 nm
wire 25EU would correspond to 1.5 T. The other panels of
Fig. 2 correspond to lower [2(a)] and higher [2(c),2(d)] values
of the Rashba coupling strength. We will explicitly calculate
the zero modes for particular sets of parameters below. Here, let
us anticipate that the orbital terms do not change the even-odd
effect of multiband nanowires [25–28].

The phases in Fig. 2 contain either no Majoranas or at
most one Majorana mode in regions labeled with an M .
The main result of this article is that orbital effects do not
destroy Majoranas into other phases. However, they do lead to
characteristic phase maps where the Majorana states survive
sizable vertical tiltings [even up to θ = 0 in Fig. 2(d)]. The
change in transition boundaries is caused by two reasons. First,
by the change in the effective transversal confinement due the
first two terms of Eq. (5). Note that the first contribution leads
to a harmonic confining. Second, the third term of Eq. (5) can
be understood as an effective inhomogeneous magnetic field
pointing in y direction due to the combination of Rashba and
orbital effect.

It is possible to give analytical expressions of the phase
boundaries in particular limits (see the Appendix). For θ = 90◦
and φ = 0 the critical magnetic fields read

�
(c)
B,n =

√(
μ − εn + mα2

2�2

)2

+ �2
s , (13)

where n = 1,2, . . . and εn are the (transverse) square well
eigenenergies. This analytical result extends recent findings
from other authors [25,28] who assumed that the contri-
bution in parentheses in Eq. (13) is an effective chemical
potential from subband n, without specifying its detailed α

dependence. Analogously, in the strong orbital limit �B >>

(�2/mL2
y,mα2/�2,�s,μ) the critical angles are

θ (c)
n = arccos

(
gm∗

4
(
n − 1

2

))
, (14)

where g is the gyromagnetic factor and m∗ = m/me the
ratio between the electron effective and bare masses (m and
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FIG. 2. (Color online) F measure in a color (gray) scale as a
function of �B and polar angle θ . The azimuthal angle remains φ =
0. Zero values of F (red) signal the phase transition boundaries.
Phases with a Majorana mode are labeled with an M . From top
to bottom the panels correspond to α = 0.1EULU (a), 2EULU (b),
πEULU (c), and 4EULU (d). Dashed lines indicate the analytical
limits. We have assumed �s = 3EU and typical InAs parameters
g = 15, m∗ = 0.033. Panel (b) corrresponds to an InAs nanowire with
α = 30 meV nm, �s = 0.3 meV, and Ly = 150 nm in a magnetic
field range from zero to 6 T.

me, respectively). In this limit quasiparticles are confined
by the effective �B-dependent harmonic potential caused
by the first and second terms of Eq. (5), independent of
the real nanowire transversal boundaries. Quite remarkably,
Eq. (14) is independent of the magnetic field, Rashba, and
superconductivity strengths, as well as on the specific wire
width Ly . In this sense, the critical angles are rather universal.
The values of Eqs. (13) and (14) for the particular parameters
used in Fig. 2 are overprinted as vertical and horizontal dashed

TABLE I. Numerical values in effective units of the inequalities,
Eq. (11) of the paper, corresponding to the four panels in Fig. 2 of
the paper.

Panel �
(c)
B,1 cos θ

(c)
1

gm∗
4EU

gm∗α2

4E2
U

L2
U

gm∗�s

4

(a) 1.43 0.12 0.001 0.36
(b) 1.03 0.12 0.48 0.36
(c) 0.74 0.12 1.22 0.36
(d) 1.06 0.12 1.98 0.36

lines, respectively. As shown, the numerical values match the
analytical ones in their corresponding limits. In Figs. 2(a)
and 2(b) the transitions boundaries do not deviate substantially
from the analytical laws in all the plot, while Figs. 2(c)
and 2(d) show large differences for intermediate values of
the parameters.

The structure of the phase transitions in Fig. 2(a) is typical
for cases when the kinetic orbital effects already dominate
around the first transition boundary with increasing �B . The
phase boundaries just bend from a vertical to a horizontal line
due to the effective change of the transversal confinement in
the nanowire, from square well to a �B-dependent harmonic
confinement [Eq. (5)]. Assuming μ ≈ 0, the conditions for this
simpler phase diagram (lz shortest scale) can be written as a
triple inequality

�
(c)
B,1 cos θ

(c)
1 � gm∗

4

(
EU,

α2

EUL2
U

,�s

)
. (15)

Figure 2(b) (InAs with Ly = 150 nm) still presents a phase
diagram qualitatively similar to Fig. 2(a) although the second
inequality of Eq. (15) is not well satisfied (see Table I in the
Appendix). On the other hand, Figs. 2(c) and 2(d) show the
modifications of the phase diagram as α increases in effective
units. As anticipated, the deviations can even allow a Majorana
state in perpendicular field (θ = 0) in Fig. 2(d). However, so
large spin orbit strengths give rise to complicated phase maps
that strongly deviate from the analytical limits.

The strong-α effects seen in the lower panels of Fig. 2
are caused by the term −αyσy/l2

z of Eq. (5). Indeed, this
term effectively adds a component along y to the magnetic
field. Therefore, the effective angle θe is such that θe > θ , thus
explaining the downwards shift of the lower phase transition
boundary in Figs. 2(c) and 2(d). Figures 2(a) and 2(b) do
not change with other azimuthal angles, while in the strong-α
diagrams [Figs. 2(c) and 2(d)] φ modifies the precise boundary
positions for θ = 90◦ (vertical lines), but not the horizontal
asymptotes and the overall qualitative behavior. Note that,
as mentioned in Sec. II, with φ �= 0 there is an additional
requirement for the existence of Majorana modes, the projec-
tion rule �B sin θ sin φ < �s [32,33]. However, the effective
tilting of the magnetic field towards y caused by the term
−αyσy/l2

z does not modify the projection rule because this
effective tilting is in opposite directions for positive and nega-
tive y’s, while the projection rule applies only to homogeneous
magnetic fields.
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V. SEMI-INFINITE NANOWIRES

Explicit zero-energy eigenstates can be obtained in semi-
infinite and finite nanowires in order to confirm the above phase
diagrams. We have checked that either one or no Majoranas
are obtained in the corresponding regions of Fig. 2. In the
semi-infinite system exact zero-energy solutions can be studied
with the complex band structure method of Refs. [31,32]. The
calculation is carried out solving the boundary condition

∑
k

Ck�
(k)
sσ ,sτ

(y) = 0, (16)

where the allowed complex wave numbers {k} and the �(k)
sσ sτ

(y)
functions are obtained with the matching method discussed
previously in Sec. III, with the only difference that k now is
not vanishing.

Equation (16) can be reworked into

∑
k

Mk′kCk = 0, (17)

–0.5

0.0

0.5

x ( LU )

y 
( L

U
 )

0 1 2 3
–0.5

0.0

0.5

y 
( L

U
 )

6 18 30
10–6

10–3

100

103

M
ei
ge
nv
al
ue
s

| k |  ( LU
−1)

(a)

(b)

(c)

FIG. 3. (Color online) (a) Evolution of the lower eigenvalues of
matrix M when increasing the number of evanescent modes, as
given by a cutoff |k|. (b) Majorana density function in a semi-
infinite nanowire for the null eigenvector of M. (c) Majorana
density function in a finite nanowire with Lx = 20LU calculated by
direct diagonalization of the Hamiltonian using covariant derivative
discretization. The three panels correspond to �B = 10EU , θ = 75◦

and the rest of the parameters as in Fig. 2(c).

with the matrix

Mk′k =
∑
sσ ,sτ

∫
dy �(k′)∗

sσ ,sτ
(y)�(k)

sσ ,sτ
(y). (18)

Equation (17) shows that, when enough wave numbers
are included, each Majorana state is represented by a null-
space eigenvector of matrix M. In Fig. 3(a) we can see the
convergence of the M eigenvalues with the cutoff in wave
number for a particular point of Fig. 2(c). Clearly, the lower
eigenvalue vanishes asymptotically indicating that for this
point of the phase diagram a Majorana mode is present as
expected. In Fig. 3(b) we can see the corresponding density
function, confirming the edge character of the mode, as also
expected for a Majorana.

Decay lengths

Within our complex-band-structure approach to the semi-
infinite nanowire we can estimate the length of the Majorana
decay tail from the imaginary part of the allowed wave
numbers. The lower the imaginary part, the longer the
Majorana decay tail (and thus the required length of the
nanowire to contain it without distortion). Figure 4 shows

FIG. 4. (Color online) F measure in a color (gray) scale showing
the position of the allowed wave numbers as zeros (red islands). The
parameters used are g = 15, m∗ = 0.033, α = πEULU , �s = 3EU ,
and �B = 10EU . Panels from top to bottom are for different polar
angles: θ = 68◦ (a), θ = 67◦ (b), and θ = 66◦ (c).
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FIG. 5. (Color online) Mode lengths Lm (defined in Sec. V A)
for the two wave numbers shown in Fig. 4. Note that the required
nanowire length at each θ is the higher of both curves.

a typical evolution of the wave numbers (red islands) in the
complex plane as the polar angle is approaching the critical
value. In the sequence from upper to lower panels, one of
the wave numbers moves along the imaginary axis towards
the origin; the phase transition being signaled by one mode
touching the origin (lower panel).

We calculate the required nanowire length with the smallest
imaginary wave number of the set of all allowed wave numbers
{k(m)}. However, as shown in Fig. 4 the smallest imaginary part
Im(k(m)) ≡ k

(m)
i changes from an approximately fixed mode

to the one touching the origin when approaching the phase
transition. We define the mode length Lm as two times the
length needed for the wave function to drop to one percent
of its maximum, that is e−k

(m)
i Lm/2 = 0.01. An estimate of

the nanowire length for undistorted Majoranas is simply the
maximum of all mode lengths.

In Fig. 5 we show the mode lengths of the two allowed wave
numbers of Fig. 4. As we decrease the polar angle from 90◦, the
needed nanowire length (the higher of the two curves) remains
more or less stable until θ approaches the critical value. A few
degrees before the transition the Majorana contracts before
diverging to infinity at the phase transition angle.

VI. FINITE NANOWIRES

The phase diagram can also be checked with full diago-
nalizations of nanowires with large, but finite, Lx . Though
more realistic, this approach is conceptually more qualitative,
since finite-nanowire Majoranas are not exact zero modes but
small energy modes (the smaller the energy the larger Lx).
Equivalently, the phase boundaries become blurred due to the
finite size effect. Figure 3(c) shows the density of the finite
nanowire Majorana corresponding to the semi-infinite one of
Fig. 3(b). Differences are small, just a slight distortion and a
somewhat longer decay tail of the finite-nanowire density.

In the finite nanowire diagonalization with orbital terms
we have found it crucial to use a covariant grid discretiza-
tion [29,30]. Otherwise, numerical artificial biases wrongly
suggest that Majoranas are always destroyed by orbital
terms [36], in clear contradiction with the phase diagram
(Fig. 2) and the semi-infinite wire analysis. In essence, the
covariant discretization amounts to expressing the canonical
momentum components as symmetrylike transformations. For

instance,

x ≡ −i�
∂

∂x
− �

y

l2
z

= eiyx/l2
z

(
−i�

∂

∂x

)
e−iyx/l2

z . (19)

Although these two representations of the canonical operator
are equivalent in the continuous limit, they are not on a discrete
grid.

As demonstrated in Ref. [30] the covariant derivative
preserves by construction the gauge invariance of the solutions,
while a noncovariant treatment only does that for extremely
fine discretizations, unfeasible in our case. Changing the gauge
origin usually constitutes a severe difficulty for numerical
discretizations not using covariant derivative formulations. In
our case, we can introduce an arbitrary gauge center yc for the
canonical momentum, generalizing Eq. (19) to

x = ei(y−sτ yc)x/l2
z

(
−i�

∂

∂x

)
e−i(y−sτ yc)x/l2

z , (20)

where the isospin sign sτ = ± is introduced in order to
preserve the particle-hole symmetry of the Bogoliubov–de
Gennes equation. We have checked that our numerical results
for the finite nanowire diagonalization as, e.g., in the lower
panel of Fig. 3, do not depend on the choice of yc, thus
proving the gauge invariance of the finite system results. We
have also obtained good agreement of the finite nanowire
diagonalizations and the results of the semi-infinite system
regarding the existence or absence of a zero mode in the
different regions of the phase diagrams (Fig. 2), again proving
the reliability of the method. Notice that the semi-infinite
solution, being purely 1D, can be obtained in very dense y

grids, while the finite system 2D diagonalization requires much
coarser xy grids.

VII. CONCLUSIONS

In this work we have shown that the orbital motions
caused by perpendicular components of the magnetic field
in planar 2D nanowires give rise to a rich phase diagram,
with regions containing Majoranas for sizable vertical tilting
of the magnetic field. In fact, with proper parameters, it is
possible to find Majoranas in a fully perpendicular field. We
have developed a general numerical method to obtain the
Majorana phases in nanowires in a computer efficient way and
we have checked this method against alternative calculations
for semi-infinite and finite nanowires. Analytical expressions
of the transition boundaries in asymptotic regions have been
found. For realistic parameter values (weak α) these analytical
expressions are a good approximation in general and not
only asymptotically. In the strong orbital limit the critical
angles are independent of sample details. Finally, the relevance
of the covariant grid discretization for the finite nanowire
diagonalization has been pointed out.
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APPENDIX: ANALYTICAL LIMITS

1. Longitudinal magnetic field

When the magnetic field is along x (see axis orientations in
Fig. 1) the phase transition law is fully analytical. As discussed
in Sec. III, finding the phase transition implies searching for
the zero energy eigenstates of the simplified Hamiltonian h

given in Eq. (9). For an x-oriented field l−2
z = 0 and all orbital

terms vanish. Assuming also a vanishing bottom potential for
V (y) we have

h =
(

p2
y

2m
− μ

)
τz + �sτx +

(
�B − α

�
pyτz

)
σx. (A1)

The eigenstates of Eq. (A1) can be obtained analytically
noticing that the linear py term from the Rashba interaction
can be absorbed in the kinetic term

h =
(

p̃2
y

2m
− mα2

2�2
− μ

)
τz + �sτx + �Bσx, (A2)

where p̃y = py − mασx/�. Using a basis of square-well
eigenstates of energies εn = �2π2n2/(2mL2

y), the matrix to
diagonalize is

h ≡
(

εn − μ − mα2

2�2 �s

�s −(
εn − μ − mα2

2�2

)
)

. (A3)

The diagonalization of this simplified Hamiltonian yields the
eigenenergies

Ens1s2 = s1�B + s2

√(
μ − εn + mα2

2�2

)2

+ �2
s , (A4)

with n = 1,2, . . . , s1 = ±1, and s2 = ±1. Of the four eigenen-
ergies only the two with opposite s1 and s2 can lead to a zero
energy solution at the critical values

�
(c)
B,n =

√(
μ − εn + mα2

2�2

)2

+ �2
s . (A5)

Equation (A5) with n = 1,2, . . . gives the critical Zeeman
parameter of phase transitions for a two dimensional nanowire
in parallel magnetic field. Notice that in Eq. (A5) n has to
be interpreted simply as an ordering index of the successive
transitions, and not as a label of independent transverse modes.
These latter interpretations would be wrong, since different
transverse modes are coupled through the Rashba mixing term
and one cannot associate a particular transverse mode with a
particular transition point. Shaded regions in Fig. 6 contain one
Majorana mode, while white regions have none. There are no
regions with multiple Majoranas due to the energy splittings
induced by the Rashba mixing in planar nanowires [27,31].

2. Strong orbital limit

When the kinetic orbital effect overcomes both the con-
finement by the transverse square well and the Rashba term,
the magnetic length lz ≡ √

�c/eBz is smaller than ly (here we
define ly = Ly of Fig. 1) and also smaller than the Rashba
length lα ≡ �2/mα. In the limit lz � (ly,lα) it is possible to
derive an analytical expression of the transition boundaries.

FIG. 6. Phase transition boundaries for a 2D planar nanowire with
a longitudinal (x) magnetic field. We have assumed �s = 3EU and
μ = 0. The shaded regions correspond to topological phases with a
Majorana zero mode.

Neglecting the square well V (y) and the Rashba terms in
Eq. (9) we find

h =
(

p2
y

2m
+ �2

2ml4
z

y2 − μ

)
τz + �B �σ · n̂ + �sτx. (A6)

The eigenvalues of Eq. (A6) are straightforward in a basis
|nsσ sτ 〉, where n = 1,2, . . . represent now harmonic oscillator
eigenstates, sσ = ± indicates spin eigenstates in direction n̂,
while sτ = ± indicates isospin in direction z. Since the h

matrix is diagonal in spin, we can diagonalize each subspace
independently. For instance, the matrix for sσ = + reads(

ε(ho)
n − μ + �B �s

�s −(
ε(ho)
n − μ

) + �B

)
, (A7)

with ε(ho)
n = (n − 1/2)�2/ml2

z . The eigenvalues of Eq. (A7)
are easily found, as well as those of the analogous matrix for
spin sσ = −.

The null-eigenvalue condition for h is now

�B =
√[

(n − 1/2)
�2

ml2
z

− μ

]2

+ �2
s , (A8)

that looks similar to Eq. (A5). An essential difference,
however, is that the right-hand side in Eq. (A8) depends itself
on the Zeeman parameter �B through lz. It is

�2

ml2
z

= 4

gm∗ �B cos θ, (A9)

where m∗ is the ratio of effective to bare mass, m = m∗me,
while g is the gyromagnetic factor defined from the Zeeman
parameter by �B ≡ gμBB/2. From Eq. (A8) we finally arrive
at the following relation:

cos θ = gm∗

4

√
�2

B − �2
s + μ(

n − 1
2

)
�B

. (A10)

For large enough �B , as compared to �s and μ, this leads to
the prediction of field-independent critical angles

cos θ (c)
n = gm∗

4
(
n − 1

2

) , (A11)

as given in Eq. (14).
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The triple inequality lz � (ly,lα,ls), where we define
ls ≡

√
�2/m�s , leads, when written in effective units, to

Eq. (15). In this situation the phase diagram does not
deviate much from the straight lines of the analytical limits,
Eqs. (A5) and (A11). Table I contains the numerical values

of the inequality sides for the four panels in Fig. 2. While
panel (a) fulfills all conditions, for the rest of the panels the
second inequality degrades as α increases from panel (b) to (d).
This explains the deviations in those panels from the analytical
limits.
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Chapter 5
Quasi-particle current in planar Majorana
nanowires

Javier Osca and Llorenç Serra
J. Phys.: Conf. Ser. 647, 012063. Published 13 October 2015.

5.1 Objectives

In the preceding chapter we presented a computer efficient method to calculate the
Majorana wavefunction with unprecedented spatial resolution. In this chapter we
want to profit this high resolution to calculate the local currents of a planar hybrid
Majorana nanowire.

It is well known that the local current density for a ballistic conductor is given in
terms of the wavefunction by

~ (x, y) = <
[
Ψ∗(x, y)

(
−i ~
m
~∇
)

Ψ(x, y)

]
, (5.1)

where < is used for the real part of a complex number. In this chapter we generalize
this expression to consider superconductors with Rashba spin orbit interaction inside
an external magnetic field. The objective of this calculation is determining whether
these currents are altered, and in what ways, in presence of vertical components of
the magnetic field. Although these currents are difficult to measure in the closed
nanowires considered in this work, ours is a prospective study with the aim to ease
the path towards the understanding of more complicated open nanowires.

5.2 Methodology

We use the same methodology already presented in Chap. 4 to calculate the Majo-
rana wavefunction. The only information needed to calculate the local currents is
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the mentioned Majorana wavefunction and the Hamiltonian parameters. The local
current new expression is obtained from the quasi-particle continuity equation,

∂ρ

∂t
= −∇ · ~ , (5.2)

where ρ ≡ |Ψ|2 is the Majorana probability density and ~ is the quasi-particle
current. The physical ground of this equation is the conservation of probability,
implying conservation of the number of quasi-particles.

5.3 Conclusion and remarks

We show how the pattern of local currents in a Majorana nanowire changes in
absence or presence of vertical components of the magnetic field. In absence of
vertical components of the magnetic field the current flows in closed paths without
a preferred sense of circulation, forming alternatively clockwise and anticlockwise
quasiparticle current vortices. On the other hand, if there is vertical component
of the magnetic field the quasiparticle current circulates in an anticlockwise fashion
only, the position of each vortex corresponding to a density maxima of the Majorana
state.

5.4 Future work

As stated above, this is a prospective work made as previous step to the study
of more complicated open nanowires. Differently from semi-infinite nanowires that
end in a hard edge the open nanowires end with an interface to a normal region.
Therefore, the systems of equations that arises from the edge condition Ψ(0) = 0
must be substituted for a new set of matching equations between the normal side
and the Majorana nanowire. In this case the normalization condition will be given
by the amplitude of the incident mode.

In addition, it would be useful to calculate the charge and spin currents. For ex-
ample, an electron or hole moving in a left to right direction represent the same
quasiparticle current but opposite charge current because they are opposite charge
carrying quasiparticles. Therefore,

~c (x, y) = −e<
[
Ψ∗(x, y)

(
−i ~
m
~∇
)
τzΨ(x, y)

]
, (5.3)

~s (x, y) = <
[
Ψ∗(x, y)

(
−i ~
m
~∇
)
σzΨ(x, y)

]
, (5.4)

where ~c is the charge current, ~s is the spin current and τz and σz are the corre-
sponding Pauli matrices for spin and isospin degrees of freedom. The rest of the
symbols have the same meaning as above.
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In Fig. 5.1 we can see some preliminary results for the case of an open nanowire with
a junction in x = 0. On the right side of the junction there is a Majorana nanowire
while on the left side we can find out a normal lead. The Rashba coupling and the
external magnetic field are considered to be constant all along the nanowire at both
sides of the junction. This way we model a semiconductor nanowire with a section
in proximity contact with a superconductor inside an homogeneous magnetic field.
In Fig. 5.1a we can see the probability density and quasiparticle current while in
Fig. 5.1b the charge density and current are shown.

From this result we derive two conclusions in relation with the proceedings article.
First, the quasiparticle density and current in the Majorana side (x > 0) hold
essentially the same features than the ones found in the close semi-infinite nanowire
but they are perturbed in order to allow the coupling through the barrier. This
coupling is summarized as an incident stream of electrons at y > 0 in the normal
side of the nanowire reflected into and outgoing flow of holes at y < 0. Second, this
two flows combine to create a flow of charge also in the normal side with a maximum
in the center. Note that the maximum flow of charge coincides with a minimum flow
of quasiparticles because it is the place where electron and hole flows cancel each
other. Furthermore, there is zero charge at the position of the peak of Majorana
probability density because a Majorana quasiparticle is neutral.

Figure 5.1: Quasiparticle current stream lines a) and charge current stream-
lines b) for a normal-Majorana nanowire junction inside a titled magnetic field.
The background in panel a) shows the probability density, while b) shows the
charge density. In each case the fields are normalized to their respective max-
imum values. The junction is located at x = 0. From x = −0.15LU to
x = 0.15LU a potential barrier is present with height V = 5EU . The Rashba
coupling α = 2EULU has a value compatible with an InAs nanowire of 150 nm
width. The magnetic field strength ∆B = 12EU and its polar and azimuthal
angles are θ = 80◦ and φ = 0◦, respectively. The superconductor gap at the
right side of the junction (x > 0) is ∆s = 3EU .
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Quasi-particle current in planar Majorana nanowires
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Abstract. We calculate the local quasi-particle current of a Majorana state in a planar hybrid
(superconductor-semiconductor) nanowire. In absence of perpendicular components of the
magnetic field the current flows in circular trajectories without a preferred orientation. On the
other hand, when a perpendicular component of the magnetic field is present the quasi-particle
current circulates surrounding the Majorana density peak with an orientation established by
the magnetic field.

1. Introduction
Majorana modes appear in quasi-1D wires as effectively charge-less, zero-energy eigensolutions.
They arise from the splitting, through a phase transition, of bulk electronic states into pairs
of quasi-particles on the wire ends, each one being its own antiparticle [1, 2, 3, 4]. These
phase transitions are known to occur at particular values of the magnetic field [5] giving rise to
characteristic phase diagrams. Recently, we have investigated the role of the magnetic orbital
motion on the physics of Majorana states. In Ref. [6] it is shown that in a planar nanowire
the main effect of the orbital motion is to change the Majorana phase boundaries. In general,
stationary Majorana states can sustain non-vanishing local quasi-particle currents. Furthermore,
these currents are altered by the kinetic orbital motion caused by the off plane components of
the magnetic field. In this proceedings article we extend the work of Ref. [6] studying the
quasi-particle current present in planar Majorana nanowires with and without components of
the magnetic field perpendicular to the nanowire surface.

2. Physical model
Majoranas can be obtained in nanowires due the combined effects of s-wave superconductivity,
Rashba interaction and an external magnetic field. We consider a nanowire where the electronic
motion is restricted to the x̂ (longitudinal) and ŷ (transverse) directions in presence of these
three effects. The homogeneous magnetic field points in an arbitrary direction and the edges
are modeled as infinite square well potentials in the longitudinal and transverse directions (see
Fig. 1a). Therefore the nanowire physics is described by a Hamiltonian of the Bogoliubov-de
Gennes kind

HBdG =

(
p2x + p2y

2m
+ V (x, y)− µ

)
τz + ∆s τx +

α

h̄
( pxσy − pyσx ) τz

+ ∆B (sin θ cosφσx + sin θ sinφσy + cos θ σz) ,

(1)
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Figure 1. a) Schematic of a 2D planar
nanowire showing the axis definitions. The
density distribution of Majorana modes on
the wire ends is qualitatively shown. b)
Phase transition proximity measure with
phase transitions (at zero value) in red, as
a function of ∆B and polar angle θ. The
azimuthal angle remains φ = 0. The results
correspond to an InAs nanowire with α =
30 meVnm, ∆s = 0.3 meV, gyro-magnetic
factor g = 15, effective mass ratio m∗ =
0.033, and Ly = 150 nm in a magnetic field
range from zero to 6 T. Both figures taken
from Ref. [6].

where the different terms are, in left to right order: kinetic energy, electrical potential V , chemical
potential µ, the superconductor term with strength ∆s, the Rashba spin orbit interaction term
with coupling strength α and finally, the Zeeman term of a magnetic field of magnitude ∆B and
arbitrary polar and azimuthal angles (θ, φ) ≡ n̂. The Pauli operators for isospin (particle-hole)
are represented by τx,y,z while those for spin are σx,y,z. In a planar nanowire the perpendicular
component of the magnetic field induces orbital motions of the nanowire quasi-particles through
the substitution ~p→ ~p+ e

c
~A(x, y) in the kinetic and Rashba terms (using the e > 0 convention).

The additional orbital terms obtained with this substitution in Eq. (1) are given in Ref. [6].
The semi-infinite nanowire exact zero-energy solution can be obtained by means of the

complex band structure method of Refs. [6, 7]. More specifically, the infinite nanowire
eigensolutions are obtained numerically from the effective one dimensional Hamiltonian.
Imposing the boundary condition to a superposition of infinite-nanowire solutions with different
wave numbers yields the Majorana edge state. This method has the advantage of being
computationally effective in comparison with direct diagonalization methods, even with fine
spatial grids, and can also be used to obtain the phase diagram of a Majorana nanowire inside
a tilted magnetic field as shown in Fig. 1b. In particular, a phase transition proximity measure
is displayed where phase boundaries (zero values) appear as red lines, and the regions with
a Majorana mode are labeled with an M while regions without a Majorana are not labeled.
Dashed lines indicate the phase transition analytical limits

∆
(c)
B,n =

√(
µ− εn +

mα2

2h̄2

)2

+ ∆2
s , (2)

and

θ(c)n = arccos

(
gm∗

4(n− 1
2)

)
, (3)

where n = 1, 2, 3, ... . We refer to Ref. [6] for further details. The results are presented in
characteristic units of the problem obtained by taking h̄, m and the width of the nanowire
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Ly as reference values. That is, our length and energy units are, respectively, LU ≡ Ly and
EU ≡ h̄2/mL2

y.

3. Quasiparticle current
The quasi-particle continuity equation for the Hamiltonian of Eq. (1),

∂ρ(x, y)

∂t
= −∇ · ~ (x, y) , (4)

is obtained from the Majorana probability density ρ(x, y) = Ψ(x, y)Ψ∗(x, y) and the time
dependent Schrödinger equation ih̄∂tΨ(x, y) = HBdGΨ(x, y), where Ψ(x, y) is defined as the

four-component spinor Ψ ≡ (ψ++, ψ−+, ψ+−, ψ−−)T in spin and isospin space. The rate of
change of the Majorana density depends on the divergence of the quasi-particle current

~ (x, y) = < [ Ψ∗(x, y) v̂Ψ(x, y) ] , (5)

that is directly proportional to the real part of the velocity operator v̂ ≡ (v̂x, v̂y), where
v̂x = ∂H/∂px and v̂y = ∂H/∂py, in the same way as in Ref. [8]. For our particular Hamiltonian
the x and y components of the velocity operator read

v̂x = −i h̄
m
∂xτz +

e

mc
Ax(x, y) +

α

h̄
σyτz , (6)

v̂y = −i h̄
m
∂yτz +

e

mc
Ay(x, y)− α

h̄
σxτz . (7)

As the density is constant in time, the resulting current has zero divergence, ∇ · ~ = 0.
Equation (5) can be rewritten as the sum of a familiar quasi-particle current for non Rashba
superconducting devices [9, 10], plus a Rashba current ~so

~ (x, y) =
h̄

m
= [ Ψ∗(x, y)∇τz Ψ(x, y) ] +

e

mc
ρ(x, y) ~A(x, y) + ~so(x, y) , (8)

where
~so(x, y) =

α

h̄
< [ Ψ∗(x, y) (σyx̂− σxŷ)τz Ψ(x, y) ] . (9)

In this form it is possible to recover the usual expression for the current in absence of Rashba
and superconductivity [9, 10] making the Rashba strength α zero and removing τz.

4. Results
We can see in Figs. 2a and 2b the quasi-particle current streamlines with the Majorana density
ρ(x, y) in the background, for two cases. In the first one (Fig. 2a) the magnetic field points
along the longitudinal direction of the nanowire (θ = 90◦) while in the second one (Fig. 2b) the
magnetic field has a component perpendicular to the surface of the nanowire (θ = 75◦). We
notice that the current field is modified by the electronic orbital motion in the second case.

The main effect of the Majorana, in terms of quasi-particle transport, is to create circulating
currents. For the longitudinally oriented magnetic field there is no preferred circulation
orientation. As shown in Fig. 2c, the (z-component) rotational of the current has a maximum
near the Majorana density peak and a minimum between the main and the secondary Majorana
peaks. In the second case, with a perpendicular component of the magnetic field, a circulation
orientation is enhanced over the other. We can see a strong current circulation around the
Majorana density peak (see Fig. 2d) creating a maximum in the rotational near that point. This
has similarities to what happens to the current near vortices in p-wave superconductors. On
the other hand, the region of high circulating current around the Majorana peak is surrounded
by regions of low or no current near the edges of the nanowire. This gives rise to minima in the
value of the rotational.

EDISON’19 IOP Publishing
Journal of Physics: Conference Series 647 (2015) 012063 doi:10.1088/1742-6596/647/1/012063
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Figure 2. Current (~ )
streamlines for longitudinal
(a, c) and tilted field (b, d).
The background in panels (a,
b) shows the density, while
in (c, d) it shows the z-
component of the rotational
[∇ × ~ ]z. In each case
the fields are normalized to
their respective maximum
values. The parameters are
the same of Fig. 1. The
streamlines are colored in
a gray scale to show the
regions of maximum current
in black and the regions of
zero current in white.

5. Conclusions
We have extended the study of Ref. [6] by calculating the local current associated with the
Majorana state. We have shown that the main effect is the emergence of circulating currents.
These currents follow closed trajectories without a preferred direction of circulation, in absence
of a perpendicular component of the magnetic field. On the other hand, when a perpendicular
component is present a quasi-particle current circulates around the Majorana peak in a vortex-
like scenario. These quasi-particle currents may be difficult to measure experimentally in closed
nanowires. However, in future work we will address the study of how these quasi-particle
currents may change in open Majorana nanowires where they give a contribution to the nanowire
conductance.
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6.1 Objectives

Present Majorana detection experiments are heavily based on their transport prop-
erties. As discussed in Chap. 1, these experiments aim at detecting a peak of con-
ductance at zero energy. However, it has been pointed out that other mechanisms
can be responsible for that peak. The previous chapters where we calculate the
Majorana phase diagram are intended to provide some help in this issue. However,
here we take a different approach. The main objective of this chapter is to study
the feasibility of using the Majorana optical absorption properties as a possible de-
tection method. This chapter in particular is an extension of Ref. [13], of which
the author of this thesis is also co-author. In this chapter we want to calculate the
optical absorption of Majorana nanowires in the quasi-1d limit of very long and
narrow nanowires.

6.2 Methodology

The methodology used here requires two steps. First the Hamiltonian is numerically
diagonalized using similar techniques to those of the preceding chapters. However,
the main difference from those chapters is the use of a mixed-basis approach. Instead
of spatially discretizing the nanowire in the longitudinal and transversal directions,
the nanowire is discretized only in the longitudinal direction. The transverse degree
of freedom is described in a basis of square well eigenstates. Therefore our basis
depends on the position x, the quantum number n of the transverse square well
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and the spin and isospin degrees of freedom. Once we have calculated the nanowire
spectrum the absorption cross section is calculated for a classical electromagnetic
field in the dipole approximation.

A question that may arise is how this model takes into consideration the protection
against noise between topological states. This is a question not covered in this pro-
ceedings article but it was answered in Ref. [13]. First, we should clarify which states
are protected from what in which conditions. Topological states form a degenerate
set of states living at zero energy protected one from another in a way that only
nontrivial changes in the device (i.e. braiding) will lead to a transition from one to
another. From a strict topological point of view it is said that no local operator can
couple two topological states 〈1|O(x)|2〉 = 0. Where |1〉 and |2〉 are two topological
states and O(x) is an arbitrary local operator. In this sense, two topological states
are protected from each other against the presence of an external electromagnetic
field but this does not happen with two non topological states, neither between
topological and non topological states. This protection is achieved thanks to the
gap that separates the two kind of states and that protection will be as big as the
gap itself.

Therefore, in presence of an external electromagnetic field we will find two kind of
transitions. Transitions of type I between states out of the gap and transitions of
type II between a Majorana state and out of the gap states. However, we will not find
transitions between Majorana states. Note that, transitions of type II will arise even
if the electromagnetic field excites only certain section of the nanowire in a local way.
Nevertheless, this is not in contradiction with the known Majorana physics because
topological states will remain protected between themselves. On the other hand, to
obtain signatures of absorption the amplitude of the external electromagnetic field
must be big enough to overcome the gap width. In this sense we are assuming a
model that considers the external electromagnetic field as a controlled element of
the experiment and not like random noise.

In a simple nanowire model two energy degenerated topological states arise at zero
energy. In Ref. [13] is demonstrated that in this particular model the protection
of these states is guaranteed by means of the particle hole symmetry. Essentially,
the absorption amplitude in the dipole approximation is proportional to the matrix
element of the momentum operator. Here, the main point is that this matrix element
between particle-hole conjugate states is zero

〈ΨE| ~p |Ψ−E〉 = 〈ΨE| ~pΘ |ΨE〉 = 0 . (6.1)

Therefore no transition is possible between the two conjugate Majorana states and
the protection between them is guaranteed. To see signatures of Majoranas in the
absorption spectrum we need to use a radiation amplitude high enough to excite
type II transitions from Majorana states to states out of the gap.
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6.3 Conclusions and remarks

The main conclusion of this work is that there are clear Majorana signatures in the
absorption spectrum of the nanowire, provided that we use light polarized in the
nanowire transverse direction. The typical nanowire dimensions and materials are
the same considered in Chaps. 4 and 5. For these typical values of the Majorana
nanowire the absorbed light would have a frequency of around 100 GHz. This
frequency is in the microwave region and is experimentally feasible with the current
technology.

6.4 Published paper
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We calculate the electromagnetic absorption cross sec-
tion of long and narrow nanowires, in the so-called
quasi-1D limit. We consider only two transverse bands
and compute the dipole absorption cross section taking
into account quasiparticle transitions from negative to
positive energy eigenstates of the Bogoliubov-de Gennes
Hamiltonian. The presence of the zero energy (Majo-
rana) state manifests in the different absorption spectra
for x (parallel) and y (transverse) polarizations of the
electromagnetic field.

In the y-polarized case, the Majorana state causes a low
energy absorption plateau extending from mid-gap up to
full-gap energy. Increasing further the energy, the plateau
is followed by a region of enhanced absorption due to
transitions across the full gap. For x polarization the low
energy absorption plateau is not observed.

1 Introduction The physics of Majorana states in
semiconductor nanowires has been attracting much atten-
tion in recent years [1–4]. There is a fundamental mo-
tivation, as they are a novel realization of the physics
envisioned by Majorana for a class of elementary parti-
cles already in 1937 [5]. Majorana states in semiconductor
nanowires are also interesting from the point of view of
technological applications. Indeed, it has been suggested
that their character of nonabelian anyons with topological
protection could be exploited for implementing quantum
computation in practice [6].

Several electrical transport experiments with semicon-
ductor nanowires have observed a zero bias peak for a cer-
tain range of magnetic fields, consistent with a zero energy
Majorana state [7–10]. The observed peak height is, how-
ever, an order of magnitude lower than the quantized value
2e2/h. This discrepancy is not yet well understood, as it
might be due to effects ranging from finite temperature, ex-
perimental and tunneling resolutions to other low-energy
subgap states and possible inelastic and renormalization
processes [11,12]. It is, therefore, important to characterize
the Majorana mode and its role in different experimental

signals in order to ascertain the existence of such peculiar
states.

In Ref. [13] we investigated the role of the Majo-
rana state on the optical absorption of 2D semiconductor
nanowires. It was suggested that the Majorana causes a low
energy absorption feature, observed when the polarization
of the electromagnetic (EM) field is in transverse direction
to the nanowire (Fig. 1). We used a grid approach, whereby
the xy plane was discretized in a mesh of points and the
Bogoliubov-de Gennes eigenvalue equation was trans-

Figure 1 Sketch of the system.
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formed into a matrix diagonalization problem using finite
differences on the grid. A shortcoming of that method is
the high computational cost for fine grids, that aggravates
when a large number of Hamiltonian eigenstates need to be
obtained. Indeed, the absorption cross section is the result
of many quasiparticle transitions from occupied to empty
eigenstates (see Fig. 2).

In this work we extend the analysis of Ref. [13] by
focussing on the quasi-1D limit of very long and narrow
nanowires. We use a mixed grid-basis approach, discretiz-
ing the longitudinal x coordinate in a grid and describing
the transverse y degree of freedom in a basis of square well
eigenstates (Fig. 1 contains the axis definitions). As we are
interested in the case of narrow wires, we will restrict to
only two transverse states. This technique is computation-
ally less demanding and it will allow us the calculation of
large numbers of eigenstates, thus better characterizing the
absorption cross section.

2 Model and linear absorption formalism We use
the model and notation already described in Ref. [13], to
which the reader is addressed for the details. The Hamilto-
nian reads

HBdG =

[
p2

x + p2
y

2m
+ V (x, y)− μ

]
τz + ΔB σx

+ Δ0 τx +
α

h̄
(pxσy − pyσx)τz , (1)

where the potential V (x, y) is a hard wall confinement to a
rectangle of lengths Lx and Ly, with Ly << Lx. Equation
(1) contains the three mechanisms giving Majorana physics
with semiconductor nanowires. Namely, these are the Zee-
man (ΔB), superconductivity (Δ0) and Rashba spin-orbit
(α) interactions. As a consequence of particle-hole sym-
metry the eigenstates of HBdG always come in pairs of
energy ±Ei, with i = 1, 2, . . . . When a critical value of
the Zeeman parameter is surpassed the system presents a
pair of solutions at very small energies E1 = ±ε, which is
signaling the Majorana phase transition (Fig. 2).

We present the results in effective length (LU ) and en-
ergy (EU = h̄2/mL2

U ) units. For definiteness, we take
LU = 150 nm and EU = 0.1 meV. We also assume
m = 0.033 me and α = 47 meVnm, typical values for
InAs nanowires. With a gyromagnetic factor of g = 15 the
maximum Zeeman energy in Fig. 2 (20 EU ) corresponds
to ≈ 4.4 T.

The dipole absorption cross section, in the limit of
weak EM field, is given by the eigenstate transitions,

σ(ω) ≈
∑

k,s

|〈k|p · ê|s〉|2
ωks

δ(ω − ωks) fs (1− fk) , (2)

where fs,k are the occupations of levels s, k as given by
Fermi functions with a given temperature T , and ê is a
unitary vector giving the polarization direction of the EM
field. Below, we will restrict for simplicity to the limit of

Figure 2 Evolution of the quasiparticle energy levels with the
Zeeman energy. A zero energy mode is seen for ΔB > 5EU .
The vertical dashed lines signal two values of ΔB for which the
cross section is shown in Fig. 3. The shaded region is the Dirac
sea of occupied quasiparticles with negative energies. The arrows
indicate the transitions across the full gap (I) and across the mid
gap (II). The latter are possible only in presence of the Majorana
state. Parameters: Δ0 = 3 EU , α = 3.1 EULU , μ = 20 EU ,
Ly = 0.5 LU , Lx = 30 LU .

vanishing temperature where only transitions from nega-
tive to positive energy eigenstates contribute to Eq. (2), as
sketched in Fig. 2.

The eigenstates of HBdG are obtained in a mixed rep-
resentation, using a space grid in x and a set of square well
eigenstates φn(y) in the transverse direction,

Ψ ≡
∑

n=1,2, sσ ,sτ=±
ψnsσsτ (x)φn(y)χsσ (ησ)χsτ (ητ ) . (3)

The unknown functions ψnsσsτ (x) are found on the grid
by matrix diagonalization. We are interested in the limit of
narrow wires and will thus restrict to only two transverse
modes n = 1, 2. This is the minimum needed in order to
account for the possibility of dipole excitations in trans-
verse polarization, i.e., with a py operator in Eq. (2).

3 Results Figure 2 displays the energy eigenstates as
a function of the Zeeman parameter for a selected case.
The Majorana phase transition is clearly seen. For vanish-
ing field the spectrum has a gap of ≈ 2Δ0 (6 EU ); this
is followed by an intermediate region without a clear gap
and, at large-enough fields, the gap is approximately re-
stored with the qualitative difference of the Majorana pair
of eigenstates lying right in the middle of the main gap.
Of this particular pair, one state is infinitesimally below
zero while the other is infinitesimally above. We may thus
expect mid-gap transitions, labelled as II in Fig. 2. We no-
tice here that dipole transitions between the two states of a
given pair are forbidden because of particle-hole symmetry
[13].
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Figure 3 Absorption cross sections for the spec-
tra of Fig. 2, corresponding to the Zeeman values
indicated by dashed lines in that figure. Left and
right panels are for x̂ and ŷ polarizations, respec-
tively. In each panel, thin lines resolve individual
peaks while thick lines are the smoothened absorp-
tions obtained with larger averaging widths of the
Lorentzian peaks. A lower absorption plateau start-
ing around mid gap energy (≈ 3 EU ), caused by
the Majorana state, is clearly seen in panel d).

The dipole cross sections corresponding to the eigen-
states of Fig. 2 for two selected values of ΔB are shown
in Fig. 3. The delta peaks of Eq. (2) have been replaced by
Lorentzian functions of width Γ that could represent the
experimental resolution of the apparatus. We show both the
result for a low Γ , resolving the individual transitions, and
for a high Γ , yielding a smoothened absorption profile. As
expected, for vanishing magnetic field absorption occurs
only above the full gap (≈ 6 EU ) and there is no significant
difference between x and y polarizations (upper panels).

The emergence of the Majorana state causes two re-
markable modifications (lower panels in Fig. 3). First, ab-
sorption starts at mid-gap energy ≈ 3 EU due to transi-
tions of type II from and to the Majorana pair of states.
Second, there is a qualitative difference between x and y
polarizations. For x polarization there is a rather feature-
less smooth absorption once the mid-gap threshold is over-
come. For y polarization, however, there is a lower absorp-
tion plateau extending from mid-gap to full-gap energies,
followed by an enhanced absorption once the full-gap en-
ergy is exceeded. The differences between x and y polar-
ization in presence of a Majorana state were already sug-
gested in Ref. [13]. However, in that work the number of
eigenstates was truncated to lower values and thus the ab-
sorption for higher energies was less converged than in this
work.

4 Conclusions We have improved the analysis of
Ref. [13] of the EM absorption of Majorana wires in the
quasi-1D limit by considering larger sets of eigenstates.
We confirm that the differences between x and y polarized
absorptions are an important signature of the presence of
the Majorana state. In particular, with y polarization the
Majorana mode causes a low-energy absorption plateau,
from mid-gap to full-gap energies, followed by an en-

hanced absorption once the full-gap energy is exceeded.
The present method can be easily extended to consider the
effect of optical masks covering parts of the nanowire or
other quasi-1D geometries like L-junctions.
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Eur. Phys. J. B 87, 84. Published 9 April 2014.

7.1 Objectives

In previous chapters we have dealt with the physics of 1d and quasi-1d nanowires.
However, as mentioned in Chaps. 1 and 4, real 3d nanowires such as those of Ref.
[22] and other similar experiments are approximately cylindrical. In Ref. [20] it was
already addressed the question whether a cylindrical nanowire could or could not
hold a Majorana state. The proposed model, that is also used in this chapter, is
a 2d closed cylindrical shell. This model is grounded in the layer structure of the
semiconductor materials of the nanowire as well as on the metallic-like behavior
of the proximity induced superconductor that forces the electronic motion in the
nanowire to be confined at the surface. Furthermore, this same metallic behavior
leads to an orbital motion of the quasi-particles in presence of components of the
magnetic field perpendicular to the surface. In this particular case the orbital terms
are different of those presented in Chap. 4 because of the different geometry.

In Ref. [20] it was also shown that no Majoranas are possible when the electric field
responsible for the Rashba term points in the radial direction of the nanowire. A
priori, this might seem the most natural choice for a cylindrical geometry because,
experimentally, it is the direction of growth of the nanowire semiconductor layers.
In that reference, however, it was proposed to consider an externally induced electric
field perpendicular to the nanowire in order to produce Majorana states. This elec-
tric field has a fixed spatial direction and may originate in the background materials
on which the nanowire is deposited. In this new configuration it was discovered the
stacking effect, an anti-intuitive result that for high values of the external magnetic
field it is possible to find out more than one Majorana on the same edge. More de-
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tailed physical explanation or further study about the robustness of these Majoranas
was left for future work.

The work presented in this chapter is a direct continuation of Ref. [20]. The main
objective of the article presented below is the determination of the Majorana mode
robustness for different tiltings of the magnetic field in cylindrical shells. Further-
more, the robustness against variation of other parameters is also checked, specially
in those cases that imply a change in the number of Majorana modes active in each
end. Finally, the wavefunctions of the different Majorana modes are calculated to
uncover the reason of the stacking effect allowing many Majorana modes to coexist
in the same edge without annihilating in pairs.

7.2 Methodology

The main method used here is the diagonalization of the Hamiltonian using the
eigenstates of the confinement as a basis. In other words, we use the basis of states
|nmsσsτ 〉, where n is the quantization number of the infinite square well in the lon-
gitudinal direction of the nanowire (z direction), m is the eigenvalue of the angular
momentum in the same direction Lz, while sσ and sτ are, like in preceding chapters,
the spin and isospin labels.

The numerical algorithm works in dimensionless units. In this case, we use the
cylinder radius as length unit by the same kind of reasoning as was given in Chap.
4. This choice also determines the energy scale with our usual convention of enforcing
~ = 1 and m∗ = 1 in effective units; that is

LU = ρ , (7.1)

EU =
~2

m∗ρ2
, (7.2)

where LU and EU represent the length and energy effective units, ρ is the cylinder
radius and m∗ is the electron effective mass in the nanowire. A realistic nanowire of
ρ = 150 nm made of InSb will have a Rashba coupling strength parameter of around
α = 0.2EU . On the other hand, we use a superconductor gap ∆ = 0.2EU , equivalent
to ∆ ≈ 0.25 meV in physical (not scaled) units. Again, in the same way of preceding
chapters this value does not correspond to any particular bulk superconductor gap
but it is a value within a realistic range.

In this work, we study the robustness of the Majorana modes in front of changes
on the external magnetic field, the Rashba spin orbit coupling strength and the
radius of the considered nanowire. Note that, in the last case we choose a typical
value of the nanowire radius as a reference length and then we study the behavior
of the Majorana modes in nanowires of different dimensions referred to the original
one. We proceed in this way to allow the comparison between nanowires of different
diameters, with a different choice each nanowire would be referred to its own units.
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7.3 Conclusions and remarks

In this chapter, we have studied the robustness of the Majorana modes in a cylin-
drical nanowire inside an external magnetic field. It has been established that a
perpendicular electrical field is also needed to have Majorana modes. The role of
this electric field is to break the azimuthal symmetry of the nanowire. The electric
field is perceived by the quasiparticles as an effective magnetic field. In this work
we have demonstrated that the Majorana modes are robust to tiltings of the exter-
nal magnetic field, provided the field is not tilted in the direction of the spin orbit
effective magnetic field. This behavior is analogous and appears by the same reason
than the limits in the tilts of 1d and quasi-1d Majorana nanowires. If the external
magnetic field points in the same direction of the spin orbit effective magnetic field
then there is a privileged direction of quantization that prevents any spin precession.
As explained in Chap. 1, spin precession of the Majorana modes is needed to avoid
the problem of spin degeneracy. However, as shown below, in spite of the analogy
with the 1d case the precise formulation of the projection rule is not respected. In
this sense, we have also shown that a strong spin-orbit coupling is needed in order
to have Majoranas but, at the same time, the orbital terms affect the role of the
spin-orbit coupling.

On the other hand, we confirm the stacking behavior by which several Majorana
modes can appear on the same edge (by different causes than spin degeneracy).
This is a novelty in comparison with 1d and quasi-1d models. It is possible because
the Majorana wavefunctions take complementary, in the sense of non overlapping,
positions in space. Therefore, it is as if we had various independent or poorly
interconnected nanowires. Furthermore, the number of Majorana modes increases
with the radius and the strength of the Rashba coupling allowing to a certain degree
the tuning of this phenomenon. Note that the origin of this coexistence it is not due
the relationship between the width or perimeter of the cylinder and the spin orbit
length differently from the considerations done in Chap. 4. In this chapter it was
discussed that in very narrow planar nanowires a sort of approximated cohexistence
between Majoranas arise when the gap is near to be closed due to the lack of spin
coupling. However, here the phenomenon works in an opposite way. The bigger
the perimeter of the nanowire due to a greater radius more Majoranas are piled up.
Furthermore, there is a complicated interplay between the Rashba and orbital terms
that affect the way the Majoranas are piled up.

It is an object of future work to determine the origin of this coexistence. However,
we have stated that Majorana coexistence in 2d cylindrical surfaces is different than
in quasi-1d planar nanowires explained in Chap. 4. It is the opinion of this author
that the periodicity of the space along the azimuthal direction plays a major role in
this change, this is something not discussed in Ref. [38] of Chap 4.

7.4 Published paper
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Abstract. We discuss the robustness of Majorana edge modes in a finite quantum nanowire of cylindri-
cal shape. The nanowire is modeled as a bidimensional cylindrical shell of semiconductor material with
proximity-induced superconductivity and an intrinsic Rashba spin-orbit interaction. The latter is charac-
terized by effective electric and magnetic fields in transverse direction of the nanowire. An applied external
magnetic field pointing in an arbitrary orientation is also assumed. The numerical diagonalization of the
Hamiltonian allows us to study the spectrum of the nanowire for different experimental configurations.
The Majorana modes prove robust against tilting of the magnetic field away from the cylinder longitudinal
axis, if the tilt direction is perpendicular to the effective spin-orbit magnetic field, but fragile otherwise.
On the other hand, we find an increasing number of Majorana modes in the same cylinder edge for in-
creasing values of the nanowire radius. We refer to this phenomenon as “stacking effect” and it occurs due
to the orthogonality between Majorana mode wave functions. In this manner, different Majoranas take
complementary positions on the nanowire surface.

1 Introduction

The discovery of topological states of matter was a ma-
jor milestone in the condensed matter field [1–3]. These
states behave as localized non abelian anyons, meaning
that a nontrivial phase modification is obtained after the
interchange of a pair of them [4]. It has been argued that
in addition to new yet to discover physics, their pecu-
liar statistics has the potential of making these states the
basic units for quantum processing and opens the possi-
bility of achieving topological quantum computation [5].
The nonlocal properties of these topological quasiparti-
cles gives them a certain degree of immunity against local
sources of noise. A particular set of these kind of exci-
tations are the nowadays called Majorana modes. These
quasiparticle excitations are identical to their own antipar-
ticles. They inherit their name from the famous physicist
Ettore Majorana who proposed a modification of the Dirac
equation in order to describe fermionic particles that are
their own antiparticles [6].

It has been theorized that Majorana states are formed
at the ends of superconductor wires as a consequence of
the combined action of superconductivity, Rashba spin-
orbit coupling and Zeeman magnetic effect [7–21]. In a
superconductor nanowire electrons play the role of parti-
cles while holes of opposite charge and spin perform the

a e-mail: llorens.serra@uib.es

role of antiparticles. These kinds of systems are modeled as
quantum gases with the mentioned interactions and their
Majorana modes can only exist at zero energy because an-
tiparticle states have an opposite energy that their particle
counterparts. Superconductivity leads to a charge sym-
metry breaking and allows quasiparticles without a good
isospin number to exist. On the other hand, the Rashba ef-
fect is a direct result of an inversion asymmetry caused by
an electric field in a direction perpendicular to the electron
motion while the Zeeman magnetic field breaks the spin
rotation symmetry of the system. The combined action of
the Rashba and Zeeman effects are needed to create states
with a space precessing spin necessary to obtain effective
spin less Majorana states at zero energy.

In a finite nanowire Majorana physics necessarily
manifests in an approximate way. This is because of the
unavoidable interference between the states on the two
opposite ends of the finite nanowire. These states never
lie exactly at zero energy and their wave functions al-
ways overlap to some degree. In long enough nanowires,
however, Majorana behavior is seen as energy eigenval-
ues very close to zero, protected by a sizable energy gap
from the rest of eigenvalues and with exponentially small
overlap of their wave functions. We can, of course, in-
terpret those near-zero-energy states as the finite-system
Majoranas and consider how their Majorana character is
increased or decreased when some system parameters are
varied. That is, we can investigate whether the scenario of
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protected near-zero-energy states is better achieved or not
after a particular variation. This approach to Majorana
physics is realistic since the experiments are always done
with finite systems.

Very recently, Mourik et al. [22] have reported the de-
tection of such Majoranas in long InSb nanowires (L =
2 μm). Superconductivity is induced by contact with an
NbTiN metallic superconductor caused by the leakage
of Cooper pairs into the semiconductor. Superconductiv-
ity is maintained all along the few nanometer width of
the nanowire, shorter than the coherence distance of the
Cooper pairs. The large g factor of the InSb semiconduc-
tor allows the existence of a noticeable Zeeman effect in
presence of a moderate magnetic field while at the same
time it maintains a strong enough spin-orbit interaction.
Finally the nanowire is connected to two electrodes, one
in each end, and the current is measured. The Majorana
mode evidence is a peak at zero voltage in the tunneling
differential conductance called zero bias anomaly (ZBA).
Similar experiments based on the detection of the zero
voltage peak have been carried out by different research
groups [23–26].

The ZBA only appears in presence of the three
required ingredients (superconductivity, Rashba and
Zeeman effects) when the system is driven into the topo-
logical phase. From the theoretical point of view several
authors dealt with one dimensional or two dimensional
planar models [18,27,28]. However, the cylindrical geom-
etry of the nanowire motivated the study made by Lim
et al. [20]. In the proposed configuration the spin-orbit
electric field Eso points perpendicularly to the nanowire
(see Fig. 1) while the possibility of Majoranas with a ra-
dial electric field was discarded in that work for any con-
figuration of the remaining parameters. It is reasonable to
expect a weaker total spin-orbit effect if the field is radial
simply because of the compensation for opposite angles.
On the other hand, a fixed direction Eso can originate in
the asymmetry induced by the superconductor substrate
on which the nanowire is deposited.

In reference [20] the effects of magnetic fields pointing
into the three Cartesian directions were considered, for dif-
ferent values of its magnitude. It was concluded that only
a magnetic field pointing along the nanowire axis (z) is
suited to the creation of the Majoranas, but no discussion
about the robustness of this particular configuration was
made. The present work addresses this issue, studying the
robustness of the Majorana modes to different tiltings of
the magnetic field and it also investigates the dependence
of the nanowire eigenstates with other parameters, such
as the cylinder radius and the spin-orbit strength.

We show that Majorana modes are robust to the tilting
of the magnetic field only in a particular direction, while
these modes are easily destroyed for tiltings in any other
directions. This is relevant to avoid possible non Majorana
experimental set-ups, but also as possible procedures to
verify the Majorana origin of the ZBA checking its ro-
bustness against the theoretical predictions. Remarkably,
when increasing the nanowire radius and/or the spin-orbit
strength we find that more and more Majoranas coexist

Fig. 1. Hollow semiconductor nanowire of length L with cylin-
drical geometry. Cylindrical coordinates and unit vectors are
indicated. A magnetic field B is applied in an arbitrary di-
rection. The orientation of the Rashba electric and magnetic
fields, Eso and Bso, are also indicated. The three field tiltings
discussed in Section 3 are indicated in (a–c).

on the same end, a phenomenon we name “stacking” of
Majoranas. These coexisting Majoranas tend to occupy
complementary spatial positions on the cylinder edge.

In Section 2 the physical system is introduced while
Section 3 studies the nanowire spectrum for different tilt-
ing directions of the magnetic field. Section 4 is devoted to
study the spectrum changes when varying the cylinder ra-
dius and the spin-orbit strength. Finally, the conclusions
can be found in Section 5.

2 Physical model

The nanowire is modeled as a finite two dimensional
semiconductor cylindrical shell with spin-orbit interac-
tion and induced superconductivity, inside an homoge-
neous Zeeman magnetic field, as shown in Figure 1. We
assume that due to the superconductive character of the
nanowire the quasiparticles move only on the cylinder sur-
face. Experimentally, this type of tubular systems have
been produced either as rolled-up quantum wells (e.g. in
Ref. [29]) or by epitaxial growth of core/shell nanowires
(e.g. in Ref. [30]).

The system is described by a Hamiltonian of
Bogoliubov-de Gennes kind [20],

H = Hkin + HR + HZ + HS , (1)

where the successive contributions are kinetic, Rashba
spin-orbit, Zeeman and superconductivity term. In this
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manner, the three ingredients needed to obtain Majorana
modes are present in the model: superconductivity, spin-
orbit interaction and a Zeeman magnetic field. The kinetic
term depends on the canonical momentum Π = p + e

cA,
where p is the usual momentum operator in three dimen-
sions and A is the vector potential. The vector potential
models the orbital effects of the magnetic field on the elec-
tron trajectories. Therefore, the kinetic term for electrons
is Π2/2m∗ − μ, where μ is the chemical potential. Since
the system has cylindrical symmetry it is convenient to
write the Hamiltonian in the cylindrical coordinate sys-
tem indicated in Figure 1. Being a two dimensional prob-
lem the cylindrical coordinates will allow us to express
the Hamiltonians as function of two coordinates (z and φ,
note that the radius ρ is fixed). Furthermore, the kinetic
term can be split into a non-magnetic

H(0)
kin =

[
p2

φ + p2
z

2m∗ − μ

]
τz , (2)

and a magnetic term

H(1)
kin =

�2

2m∗

[
ρ

l2z

pφ

�
τz +

ρ2

4l2z
τz + 2

ρ

l2x
sin φ

pz

�
τz

−2
ρ

l2y
cosφ

pz

�
+

ρ2

l4x
sin2 φ τz +

ρ2

l4y
cos2 φ τz

−2
ρ2

l2xl2y
sin φ cosφ

]
, (3)

where the electron and holes degrees of freedom are repre-
sented with the Pauli matrices τx,y,z acting on the isospin
space and the magnetic lengths along direction i ≡ x, y, x
are li =

√
�c/eBi. Trivially, when a certain magnetic field

component vanishes the corresponding magnetic length
diverges, giving a vanishing contribution to Hkin.

The Rashba term is obtained assuming the existence
of an external electric field Eso, in direction of the uni-
tary vector uE . It is proportional to the double product
of vectors σ · (Π × uE), where σ represents the vector
of Pauli matrices for spin. If we assume an homogeneous
electric field pointing in x direction the corresponding
Hamiltonian contribution can be split, by analogy to the

kinetic term, into non magnetic H(0)
R and magnetic H(1)

R
terms as:

H(0)
R =

α

�

(
pz σyτz − cosφpφ σz − i�

2ρ
sin φσz

)
, (4)

H(1)
R = αρ

(
sin φ

l2x
σyτz − cosφ

l2y
σy − cosφ

2l2z
σz

)
. (5)

As mentioned in Section 1 another natural choice for the
Rashba term could be a radial field (uE = uρ) but, in
agreement with reference [20], we have checked that this
does not lead to the formation of any Majorana-like states.
For a long-enough cylinder in absence of magnetic field one
expects the first contribution to equation (4) dominate
the others for large values of pz, thus leading to the usual
interpretation of the Rashba term as an effective magnetic
field Bso ∝ αpzy, in y direction and thus coupling with σy.

The Zeeman term for an external magnetic field
along n reads

HZ = ΔB σ · n. (6)

Finally, the superconductor contribution HS is:

HS = Δ0τx, (7)

where Δ0 is the Cooper-pair breaking energy. The super-
conduction pairing term couples opposite isospin states
and arises from a mean field approximation over electron
interactions shielded by the atomic network.

Notice that the Zeeman effect allows the closing of
the superconductor energy gap, shifting some quasipar-
ticle states to zero energy while the Rashba spin-orbit
term interaction introduces anti crossings in the system
spectrum that separate the Majorana zero energy states
from the others. The Rashba term arises from the self in-
teraction between an electron (or hole) spin with its own
motion due to the presence of a transverse electric field
Eso, perceived as an effective magnetic field in the rest
frame of the quasiparticle. Spin-orbit effects in cylindri-
cal shells similar to the ones considered here but without
superconductivity have been studied in references [31,32].

The Rashba spin-orbit and Zeeman effects depend on
the parameters α and ΔB, respectively. Since we con-
sider a nanowire made of an homogeneous material inside
a constant magnetic field these parameters are assumed
to be homogeneous. The potential, not included in the
Hamiltonian, is taken as zero inside the nanowire and in-
finite outside. Therefore it is included into the calculations
as a boundary condition. Summarizing, the Hamiltonian
depends on the superconducting gap Δ0, the Zeeman en-
ergy ΔB and the Rashba coupling strength α, as well as
on the direction of the magnetic field n.

The explicit energy contributions from the orbital ef-

fects of the magnetic field are contained in the kinetic H(1)
kin

and H(1)
R terms. Below we will also study the results when

these contributions are omitted, finding in general that or-
bital effects are very important and cannot be neglected.
The orbital terms increase with the cylinder radius due to
contributions that are linear and quadratic in ρ and they
contain the dependence on curvature of the model.

To obtain the energy spectrum the total Hamiltonian
is diagonalized numerically using as a basis states
characterized as:

|nmsσsτ 〉

⎧
⎪⎨
⎪⎩

n = 1, 2, . . . ,
m = 0, ±1, ±2, . . . ,
sσ = ±,
sτ = ±,

(8)

where n is the quantum number associated with the in-
finite square well eigenstates (z direction), m is the Lz

eigenvalue (angular momentum along z) while sσ and sτ

are the spin and isospin quantum numbers. The numeri-
cal algorithm works in dimensionless units, defining energy
and length units as:

EU ≡ �2

m∗ρ2
, (9)

LU ≡ ρ. (10)
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More specifically, assuming a cylinder radius of ρ = 50 nm,
and m∗ = 0.015me for InSb, one has EU = 2.03 meV
and LU = 50 nm. From reference [22], typical values for
the Rashba parameter and the superconducting gap are
α ≈ 20 meV nm and Δ0 ≈ 0.25 meV, which in scaled
units are α ≈ 0.2EULU and Δ0 ≈ 0.12EU . We will present
below the results in the generalized units, assuming an
arbitrary m∗ and ρ, since the conversion for each material
and cylinder radius is just a trivial scaling.

3 Results on tilted fields

In reference [20] it was shown that the critical fields cor-
responding to transitions into the topological phase of the
nanowire were strongly dependent on the external mag-
netic field orientation. Considering a nanowire whose dom-
inant spin-orbit effective magnetic field Bso points along y
(Fig. 1), if the external magnetic field B points also into
this same direction then the Rashba Bso contribution and
the Zeeman term commute and no anti crossings are in-
duced in the spectrum. As a consequence, no spin less zero
energy modes are observed since the Majorana conditions
are not met. It was also shown in reference [20] that, due
to the strong influence of the orbital effects, Majorana
modes are neither possible with an external magnetic field
along x. Therefore, for the three main Cartesian orienta-
tions Majorana modes are found only when the magnetic
field is pointing in the z direction, and for strong-enough
values. We address in this section the study of the tran-
sition between these configurations and, particularly, the
robustness of the Majoranas (or their lack of it) due to
fluctuations in the magnetic field direction.

Figures 2a–2c show how the spectrum of a cylindrical
nanowire changes when the magnetic field is tilted from
the z-axis in the directions sketched in Figure 1, while
its magnitude is maintained. Notice that Figure 2a proves
that the Majorana modes are robust to a tilting of the
magnetic field from z towards x, up to almost 30◦ when
the tilting is done within the y = 0 plane. On the contrary,
Figure 2b shows that the Majorana modes break almost
immediately if the tilting is done towards y in the x = 0
plane. Zero energy crossings are found in Figure 2b for
θ ≈ 15◦ and, when the magnetic field is further tilted, also
around θ ≈ 50◦, but this kind of crossings can be labeled
as accidental since they only occur at specific points.

Majorana behavior is characterized by eigenvalues ly-
ing very close to zero for a continuous range of parameter
values, protected from nearby states by a sizable energy
gap much larger that their own energy. Accidental zero
energy crossings, on the contrary, occur at specific values
and in this sense they are weak against any small param-
eter fluctuation. Notice that Figure 2 shows that tilting
directions towards x and y are not equivalent, in spite of
being perpendicular between them and also with z. As
mentioned above, differences are due to the relative orien-
tation with respect to the effective Rashba field Bso, that
in our case points in the y direction.

On the other hand, if the magnetic field is tilted away
from z in the x = y plane (Fig. 2c) the resulting spectrum

Fig. 2. Eigenenergies (including orbital effects) as a function
of the magnetic tilting angle from the z axis, for different
orientations: (a) y = 0 plane, (b) x = 0 plane, (c) x = y
plane. The parameters used are ΔB = 0.2EU , Δ0 = 0.12EU ,
α = 0.2EULU , μ = 0 and Lz = 30LU . The number of basis
states are Nn = 51 and Nm = 31. Only the lowest 6 pairs of
eigenvalues are displayed.

has mixed features with respect to those of Figures 2a
and 2b. The Majoranas break up for small angles but the
resulting fermionic modes remain close to zero energy up
to almost 40◦. Therefore, cylinder Majoranas are robust to
deviations of the external magnetic field from the cylinder
axis only within the plane perpendicular to the spin-orbit
effective magnetic field Bso.

4 Dependence on nanowire characteristics

4.1 Spin-orbit coupling

Figure 3 shows a spectrum for a cylindrical nanowire with
the same parameters used in Figure 2 as a function of
the spin-orbit coupling strength α. The magnitude and
the direction of the magnetic field are kept constant to
ΔB = 0.2EU and z, respectively. In principle, this change
can be experimentally realized controlling the intensity of
the transverse electrical field Eso. As observed in Figure 3,
for zero spin-orbit the states lying closer to zero are two
states of fermionic type at finite energies. Increasing the
value of α those two states evolve into a Majorana pair
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Fig. 3. Eigenenergies of a cylinder (considering the orbital
effects) as a function of spin-orbit coupling. The rest of the
parameters are the same of Figure 2, including the number of
basis states and the number of displayed eigenvalues.

Fig. 4. Dependence of the spectrum of eigenergies of a cylinder
with respect to its length. The rest of the parameters are the
same of Figure 2. The main plot shows only positive energy
eigenvalues in logarithmic scales while the inset contains both
positive and negative eigenvalues in linear scales.

as their energy approaches zero. Note also that additional
Majorana modes become activated sequentially, in more
or less regular intervals of the coupling constant α. Each
time a new Majorana mode arises, the protection (energy
gap) diminishes for a short range of values, to increase
again once the Majorana is fully formed.

Since the spin-orbit coupling is also affected by the
orbital terms, when high values of α are achieved the
spectrum of the modes near zero energy in Figure 3
becomes more and more oscillating, blurring away the
Majorana character of these modes. Although the process
of Majorana activation still works for the higher values of
spin-orbit coupling, these states do not become Majorana-
like due to their sizable energies that keep oscillating with
increasing amplitudes. Figure 3 suggests an optimal range
for the formation and coexistence of Majoranas when the
amplitude of the energy oscillation around zero attains its
minimum, with two pairs coexisting for α ≈ 0.6EULU .

4.2 Cylinder geometry

The length and radius of the nanowire are not tunable pa-
rameters in the same sense as the external magnetic and
electric fields, but can be controlled by fabricating differ-
ent versions of the nanowire with different dimensions. As
can be seen in Figure 4 Majoranas are not possible for very
short nanowires because both ends greatly interfere with

Fig. 5. Dependence of the spectrum of eigenergies of a cylinder
with respect to its radius. The rest of the parameters are the
same as in Figure 2. Panel (a) is the result obtained when ne-

glecting the orbital contributions of the magnetic field H(1)
kin

and H(1)
R , while (b) is for the complete Hamiltonian. Note

that the length unit LU in this figure is taken as an arbitrary
reference distance.

each other creating a fermionic state. Qualitatively, for the
particular choice of parameters in this figure the nanowire
length must exceed at least six times its radius in order to
be able to hold a Majorana state with energy lower than,
roughly, 0.01EU . When displayed in logarithmic scales,
Figure 4 also shows that the energy of the states lying
closer to zero oscillate as a function of the cylinder radius,
similarly to the α dependence of Figure 3.

On the other hand, increasing the radius of the
nanowire leads to a stacking of Majoranas (Fig. 5). A qual-
itatively similar coalescence is found for Shockley states
at the surface of finite crystals [33], which is suggesting a
generic behavior for edge states. A technical point in the
analysis of a varying cylinder radius ρ is that this can no
longer be identical to the length unit LU . To avoid am-
biguities, we take an arbitrary length as a reference LU

and measure all distances (including the varying cylinder
radius in Fig. 5) with respect to this unit.

As shown in Figure 5a, if the orbital effects are disre-
garded, the zero point energy contribution of the angular
momentum decreases as the radius becomes larger, allow-
ing the activation of the Majorana modes, creating this
way a stacking of zero modes at regular intervals of the
radius. Each Majorana pair is associated with an angular
momentum quantum number m. Since m and −m eigenen-
ergies are almost degenerate, two pairs are activated at
around the same value of the radius. As they are not com-
pletely degenerate by the action of the transversal electric
field, there is a slight difference in their activation value.

With orbital effects the spectrum becomes more in-
volved (see Fig. 5b). First, the Majorana pairs are ac-
tivated one by one as the value of the radius increases.
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Fig. 6. Density distributions of the lower cylinder eigenmodes. The parameters used are ΔB = 0.2EU , Δ0 = 0.12EU , α =
0.2EULU , μ = 0, ρ = 3.2LU and Lz = 30LU . The densities of the first positive energy solutions are plotted. All of them are
Majorana modes with the exception of the panel at the bottom that is a fermionic one.

Furthermore, each pair is destroyed shortly after its acti-
vation, developing into a fermion pair of states above the
gap, and is re-formed again for larger values. This behav-

ior is due to the increase with ρ of the orbital terms H(1)
kin

and H(1)
R . There is a competition between the different

effects of the spin-orbit terms, some of them helping to
create the Majorana and some of them trying to destroy
the Majorana, with the former ones eventually wining for
high values of the radius. Nevertheless, we stress the gen-
eral tendency of Majorana mode stacking at zero energy
for high values of the radius.

We finally discuss the spatial distribution of the prob-
ability densities associated with the Majorana-like states.
A clear signature of Majorana character is a strong lo-
calization at the nanowire edges, with very small central
overlaps. Figure 6 shows in a particular example that this
is indeed observed, with a very clear difference between
Majorana-like and fermionic modes. Figure 6 also shows
that the above mentioned stacking is possible for high val-
ues of the radius because there is room for orthogonal wave
functions, with almost non overlapping density distribu-
tions, to be formed on the same nanowire end. The higher
the radius the larger the suitable region for the Majoranas
to be formed, where more and more orthogonal zero en-
ergy wave functions can accommodate in complementary
regions.

5 Conclusions

The diagonalization of the Hamiltonian for a two di-
mensional cylindrical shell has allowed us to discuss the
eigenenergies and eigenstates of a finite nanowire. In par-
ticular, we have focussed on the Majorana state wave func-
tions and the parameter configurations leading to their
appearance. The resilience of the Majorana states to the
tilting of the magnetic field, as far as 30◦ into the Eso

direction, has been shown; as well as the lack of it if one
component points into the Bso direction. We have also
learnt how a strong spin-orbit coupling is needed in or-
der to have Majoranas but, at the same time, how or-
bital terms affect the role of the spin-orbit coupling. This
means that for too high values of the spin-orbit coupling
Majorana modes get blurred due to orbital effects.

Our main result is the stacking effect of Majorana
modes for increasing nanowire radius and high enough val-
ues of the magnetic field. This is a novelty in comparison
with one dimensional models, and it is an exclusive prop-
erty of two dimensional models. It means that we can
tune the number of localized Majorana modes on each
nanowire end. Although not explored in this work, this is
hinting interesting transport properties that could be use-
ful to experimentally confirm the presence of Majoranas
in nanowires and it will be matter of future work.
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Charge and energy transport in a
Majorana nanowire
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8.1 Objectives

In previous chapters we have been mainly focused on finding Majorana phase bound-
aries and in robustness considerations. These previous works help us locate in which
regions of the parameter space it is possible to find Majorana modes for models that
contain realistic physical effects. They were aimed to be a guide to obtain Majorana
modes in the context of transport experiments. In this chapter we take the opposite
approach. The Majorana transport properties are studied using an effective model
to capture the Majorana most essential physics.

There is in the literature theoretical predictions for the DC conductance of Majorana
nanowires [51,52]. However, the conductance is not the only transport property that
can be measured in a Majorana nanowire. The Majorana AC response in the form
of an admittance is also a quantity that can be measured. Furthermore, it is possible
to measure not only charge but also the energy transport behavior of the Majorana
modes.

In this chapter, the objective is to calculate the DC and AC electrical and energy
currents of a Majorana nanowire connected to one or two reservoirs where each
reservoir is connected to one side of the nanowire. The AC driving is considered to
be applied in one of the reservoirs and finite size effects are also considered through
the Majorana hybridization energy.
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8.2 Methodology

In this chapter we use a combination of different mathematical techniques to carry
out the charge and energy flow calculations. First, the nanowire is described with
an effective model. The total Hamiltonian is composed as,

H = HC +HM +HT , (8.1)

where
HC =

∑

α,k,σ

εαkσ(t)c†αkσcαkσ , (8.2)

describes the normal leads, εαkσ(t) is the energy of an electron of wavevector k and
spin σ in the α = L,R reservoir and c†αkσ and cαkσ are the electron creation and
annihilation operators, respectively. Note that εαkσ changes by the AC driving.

HM =
∑

i 6=j

i

2
εMij

ηiηj , (8.3)

characterizes the coupled Majorana states, εMij
is the Majorana hybridization energy

between the ones located at the i, j edges and ηi is the Majorana creation and
annihilation operator at edge i = {1, 2}. Finally,

HT =
∑

k

∫ L

0

dx
[
t∗k(x)c†kΨ(x) +H.c.

]
, (8.4)

corresponds to the tunnel Hamiltonian between the normal lead and the Majorana
state. Ψ(x) is the Majorana field operator, tk(x) is the nanowire position dependent
coupling amplitude and L is the nanowire length. Note that this model is general to
any kind of Majorana nanowire device. We simply assume that the Majorana mode is
present but no discussion is provided in this chapter about the mechanisms that make
the Majorana mode possible, we refer the reader to previous chapters for that matter.
Furthermore, note that this model implies an effective infinite superconductor gap
because only transport through the Majorana mode is considered.

The Majorana field operator reads,

Ψ(x) =
1

2

∑

α

fα(x)ηα + f ∗α(x)η†α , (8.5)

where f(x) is the Majorana wavefunction. Making the substitution of Eq. (8.5) into
Eq. (8.4) gives,

HT =
∑

α,k,σ;β∈{1,2}

[
V ∗αkσβc

†
αkσηβ + Vαkσ,βηβcαkσ

]
, (8.6)

where

Vk,β =

∫ L

0

dx tk(x)f ∗β(x) . (8.7)
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The calculation of the time dependent current is posed as the calculation of the
variation of the electron number in one of the contacts,

Iα(t) = −e〈ṅα〉 = −ie
h
〈[H, nα]〉 , (8.8)

where e is the electron charge and nα is the particle number at terminal α. When
charge conservation applies IL = −IR, that it is not ensured in our description due
to the presence of superconductivity but it must be enforced at the end by means
of a self-consistent determination of the chemical potential at the nanowire. The
resulting current expression can be split as follows,

I(ω) = IDC + IAC (ω) , (8.9)

where IDC is the stationary current and IAC the time dependent one. From the
currents we can calculate the DC linear conductance Go = dI/dV DC and the admit-
tance g(ω) = dI/dV AC . Note that the total voltage drop is V = V DC + V AC (ω).

The DC energy current calculation is very similar to the one done for charge. The
calculation is posed as the calculation of the variation of energy in one of the con-
tacts,

J (DC )
α (t) = −e〈Ḣα〉 , (8.10)

whereHα =
∑

k,σ εαkσ(t)c†αkσcαkσ is the energy at the reservoir α. On the other hand,

the AC energy current in the reservoir of a Majorana capacitor circuit J
(AC )
C (t) is

calculated by energy conservation as suggested in Refs. [46,47],

J
(AC )
C (t) = −

(
J
(AC )
M (t) +

J
(AC )
T (t)

2

)
, (8.11)

where J
(AC )
M (t) = ∂

∂t
〈HM〉 and J

(AC )
T (t) = ∂

∂t
〈HT 〉 are the time evolution of the mean

energy in the Majorana nanowire and the tunnel region between the reservoir and
the nanowire, respectively. From a theoretical point of view, the calculation of the
AC energy currents can also be done from Eq. (8.10) but the resulting algebra is
more straightforward carrying out the calculation from Eq. (8.11).

To calculate the DC and AC charge and energy currents we make use of the nonequi-
librium (Keldysh) Green functions formalism. In this chapter we work in Nambu
space because of the presence of superconductivity in the Majorana mode formula-
tion. This means that the Green functions acquire a vectorial character to track the
electron and hole degrees of freedom simultaneously.

8.3 Conclusions and remarks

In this chapter we have calculated the DC and AC charge and energy currents of a
Majorana nanowire. In general, in a Majorana nanowire device inside a finite bias
DC circuit there is no quasiparticle currents between terminals (assuming that the
Majorana hybridization energy is small or zero). The reason is that the transport
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through the Majorana channel is caused only by Andreev reflection. In this process
an incident electron is reflected into a hole. Current conservation is achieved by the
selfconsistent calculation of the chemical potential for the case that the Majorana
device is floating. The current in the linear regime for each reservoir will be propor-
tional to the quantum 2e2/h and the voltage drop between the Fermi energy at that
terminal and the nanowire. However, the conductance measured in the nanowire
is dI/dV where V is the voltage drop between the two terminals. That leads to a
quantum of conductance that deviates from the one presented above.

The AC response of this same kind of devices can be measured with the admittance
calculated from the AC charge current. The most interesting case is the Majorana
nanowire connecting one of its edges to a single reservoir. This reservoir contains
the AC driving that produces a response in the nanowire. It is shown how the
Majorana hybridization produces notable resonances in the real and imaginary parts
of the admittance that are resilient to temperature effects. Furthermore, the linear
admittance shows a peculiar behavior. The admittance acquires a constant term
and the linear and quadratic ω dependent terms are proportional to remarkable
fractional values. This particular behavior is caused again by the dominant role
of the Andreev reflection in the Majorana transport process. In this sense, the
admittance can be separated into two terms, one analogous to the quantum dot
conductance and another that can be directly related to Andreev processes. The
result is that we can not identify straightforwardly the linearized admittance to an
equivalent RC circuit in the same way that can be done with a non-superconducting
arbitrary device, like a quantum dot. Therefore the RC analogy in the presence of
superconductivity must be taken with caution.

Finally, Majorana nanowires have proven to be very resilient against the flow of
energy. The perfect particle-hole symmetry of the Majorana mode leads to zero
stationary energy currents through the nanowire. Furthermore, a finite DC bias is
needed in order to have a non vanishing response of the nanowire on top of an AC
driving to break the electron-hole symmetry.

8.4 Draft
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The time dependent electrical and energy currents expressions are obtained for a topological
Majorana circuit. In our setup, we consider one or two normal electrodes tunnel coupled to a
Majorana nanowire. We employ a low-energy effective model for the Majorana nanowire that
includes a finite overlap between the Majorana edge states along the wire. We consider the influence
of an AC driving potential applied to the reservoir whereas the Majorana nanowire is kept to be
grounded. Then, by means of the Keldysh-Green function formalism we derive the electrical and
energy time dependent flows. We give a detailed analysis of both, the DC and AC current responses.
Our main results for the AC transport report a singular behavior of the admittances for the electrical
current signal when Majorana physics is present.

I. INTRODUCTION

Solid state devices have been revealed as new plat-
forms to probe phenomena traditionally linked to the
realm particle physics, like the occurrence of Dirac-like
fermions1–3. Of particular relevance is the highly sym-
metric Dirac state in which particle and anti-particle
weights are equally represented. Such uncommon state
is named as Majorana fermion in honour to Ettore Majo-
rana who in 1937 hypothesized its existence as a funda-
mental particle4. During decades the search of Majorana
particles have been focused on the context of mutant neu-
trinos without success. However, few years ago Fu and
Kane predicted theoretically their existence as localized
electronic collective excitations at the interface between
a topological insulator and a superconductor5. In this
context, Majoranas are not fermions like neutrinos but
chargeless, spinless, zero energy quasi-particles that are
their own antiparticles.

The non-local nature of Majorana states combined to-
gether with their non-abelian interchange property makes
them basic pillars for the development of robust topolog-
ical quantum computation6–9. From a physical point of
view, the importance of such exotic entities do not only
resides in their topological properties but they also rep-
resent a new state of matter never seen before. The main
obstacle towards their detection is that they are not in-
fluenced by electrical or magnetic fields. Experimental
evidences of Majorana states have been reported by us-
ing (i) superconducting nanowires with strong spin-orbit
interaction and magnetic fields10–17 and (ii) a chain of
iron atoms formed on the surface of a superconducting
lead18. In both cases Majorana physics is measured as
a zero-bias anomaly present in the nonlinear differential
conductance.

The mentioned proposals to detect Majoranas
in nanowires are grounded on DC transport
measurements10,17. In this paper we face the ques-
tion of probing Majorana physics differently. We
propose to employ the time dependent response of
Majorana states to AC fields. In general, time depen-
dent fields have already been used for many purposes.

FIG. 1: Majorana nanowire circuit setup. A Majorana
nanowire is tunnel barrier connected to metallic contacts.
One of the contact is under the influence of an oscillatory
electrical potential which drives charge and energy time de-
pendent currents. Due to the presence of V AC(t) transport
occurs by absorption or emission of energy quanta with ener-
gies ~ω. The Majorana nanowire can be obtained, for exam-
ple, by applying a magnetic field (B) and considering super-
conductivity and a Rashba field (Bso).

Instances are, charge qubit manipulation19,20, controlled
emission of electron-hole pairs21, reconstruction of quan-
tum states (tomography)22,23 and leviton production24,
just to cite a few. For a slow AC driving, a second
order expansion in the AC frequency yields a complex
admittance usually characterized by two parameters, the
capacitance Cq which provides spectroscopic information
about the conductor and Rq that accounts for charge re-
laxation processes. Both quantities have been measured
experimentally, in quantum capacitors,25–29 carbon
nanotubes,30 superconducting josephson junctions,31

and quantum dots32.

The progress towards miniaturization and the new role
of topology in the performance of new devices needs a
profound understanding on how charge and energy flows
response to electrical fields33–35. On the other hand, the
cross-response of energy flow to an electrical signal lies in
the field of thermoelectrical transport that for quantum
systems is now an active area of research36–42. However,
for topological materials its thermoelectrical response is,
so far, a poor investigated issue43–46.

Our objectives is to study the DC and AC response of
the charge and energy currents in normal electrodes at-
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tached to a Majorana nanowire. Then, either a static or
a time-dependent electrical field generates a charge and
energy current in the device. We focus our analysis of the
admittance in the single terminal case. The considered
setup is the topological analogue to the RC circuit by re-
placing the normal conductor (usually a quantum dot) by
a Majorana nanowire. Our analytic results demonstrate
that indeed, when superconductivity is present and for
an ideal Majorana nanowire the RC circuit admittance
has two contributions. Such admittance can be expanded
in frequency up to second order in which the RC param-
eters appear. Then, the AC conductance is written as
g(ω) = gN (ω) + gS(ω) where gN (ω) = −iωCq + ω2C2

qRq
with Cq = (1/2π)(e2/2Γ), and Rq = h/e2, that are the
RC parameters for an normal quantum capacitor albeit
for a factor two. Perfect Andreev processes add to the ad-
mittance a new term gS(ω) = g0− iωCS +ω2C2

SRS . The
first observation is that now CS is a negative parameter.
The sign of CS reflects the fact that electrons are Andreev
converted into holes, in which charge conservation is ab-
sent. Besides, the value for RS is quite unusual. Adding
both AC admittances, and since the currents that involve
a Majorana mode are driven by Andreev processes, RC
parameters for the full admittance are opposite in sign
in comparison to the normal case, which is a remarkable
finding.

Part of our results are also focused on the electrother-
mal energy admittance. It is known that for a normal
RC circuit the energy current can be elapsed or delayed
with respect to the AC signal depending on the conduc-
tor resonance positions. Besides, for interacting conduc-
tors, within a tunnel Hamiltonian formulation, the time-
dependent energy flow needs a proper definition which
includes the storage or accumulated energy at the tunnel
barriers in order to keep causality46,47. For the topo-
logical RC circuit we derive the time-dependent energy
current in the same spirit. Our results demonstrate that
the AC energy formulation needs from a finite DC bias,
otherwise such contribution vanishes due to electron hole
symmetry.

The goal that we face consists of the calculation of the
energy flux and charge flux in response to DC and AC
electrical fields. For the time-dependent case, our trans-
port formulation holds for arbitrary high frequencies, it
is able to describe photon-assisted tunneling processes
occurring in the energy-charge transport. Our only lim-
itation is that we are restricted to the linear response
regime, i.e., low AC driving amplitudes. For our calcula-
tions, we employ the nonequilibrium (Keldysh) Green’s
function formalism48 which allows us to include the Ma-
jorana nanowire in a feasible way.

In Sec. II, we describe the theoretical model for a Ma-
jorana nanowire. We also derive both the stationary and
time dependent energy and charge fluxes for a reservoir.
From the previous results we obtain the electrical and
electrothermal admittances. In Sec. III, we present our
findings for DC and AC transport as a function of the
quality of the Majorana state. Finally our conclusions

are summarized in Sec. IV.

II. CHARGE AND ENERGY FORMULATION
FOR A MAJORANA NANOWIRE

The aim of this work is to derive the electrical and
energy currents for a circuit that contains a topological
nanowire. For such purpose we consider a device com-
prised by one or two reservoirs tunnel coupled to different
edges of a Majorana nanowire. Besides, we assume the
influence of an AC potential applied directly to one of
the reservoirs that oscillates in time. The Hamiltonian is
formed by the three terms: HC +HM +HT where

HC =
∑

α,k,σ

εαkσ(t)c†αkσcαkσ, (1)

corresponds to the contact Hamiltonian composed by
α = L,R electrodes [Left, Right]. Here, εαkσ(t) =
εαkσ+µα+eV ACα (t) with µα = EF +eV DCα as the chem-
ical potential for the α-lead, e > 0 the unit charge, and
V ACα (t) the electrical voltage modulation applied to the

α-th electrode [see Fig. 1]. The operator c†αkσ(cαkσ) cre-
ates (annihilates) an electron with wavevector k and spin
σ in the reservoir α. On the other hand, in a finite-length
Majorana nanowire the two Majorana edge states have
a finite overlap between their wave functions, which is
quantified by the overlap integral εMij

. The low-energy
Hamiltonian of the Majorana nanowire is

HM =
∑

i 6=j

i

2
εMij

ηiηj =
i

4

∑

i,j

tijηiηj , (2)

where t11 = 0, t22 = 0, t12 = εM , t21 = −εM and

ηi = η†i , (i = {1, 2}) are the two Majorana fermion oper-
ators which satisfy the Clifford algebra {ηi, ηj} = 2δi,j .
In addition, the Majorana operators can be written in
terms of an ordinary fermion operator d which satisfies
the usual fermionic commutation relations

η1 =
d+ d†√

2
, η2 =

d− d†
i
√

2
. (3)

In terms of d operators the Majorana coupling term in
Eq. (2) can be written as

HM = M12(dd† − 1) , (4)

which means that M12(21) is nothing but the energy split-

ting between empty |0〉 and filled (|1〉 = d†|0〉) states.
Finally, the tunneling between the lead α and each Ma-
jorana edge mode is,

HT =
∑

α,k,σ;β

[
V ∗αkσ,βc

†
αkσηβ + Vαkσ,βηβcαkσ

]
, (5)

where Vαkσ,β is the tunneling amplitude which defines
the tunneling rates between the reservoirs α = L,R and
the Majoranas in the nanowire β = 1, 2.
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Below, we use the Keldysh formalism for the calcula-
tion of nonequilibrium Green functions to derive the DC
and AC transport for the energy and charge currents in
terms of the Majorana nanowire Green functions.

A. DC charge current

1. General formulation of the charge current

We are interested in measuring the charge current at
the α reservoir when DC and AC voltages are applied.
We start with the calculation of the stationary charge
flow. The charge current is the expectation value of the
time derivative of the α-reservoir occupation operator

Iα(t) = −e〈ṅα〉 = − ie
~
〈[H, nα]〉 , (6)

where nα =
∑
k∈α,σ c

†
αkσcαkσ denotes the α-reservoir

quantum number operator. The current expression Eq.
(6) is now expressed in terms of the lesser mixed lead-
Majorana Green function G<αkσ,β(t, t′) = i 〈ηβ(t′)cαkσ(t)〉
and the lesser Majorana-lead one G<β,αkσ(t, t′) =

i
〈
c†αkσ(t′)ηβ(t)

〉
,

Iα(t) = − e
~
∑

β,k∈α,σ

[
Vαkσ,β(t)G<αkσ,β(t, t) (7)

−V ∗αkσ,β(t)G<β,αkσ(t, t)
]
.

The current calculation can be simplified using the
lead-Majorana and Majorana-lead equations of motion
( EOM ) and the Langreth rules dictated for swapping
from a real time contour to a Keldysh complex time con-
tour. In this manner the mixed Green functions are writ-
ten as a function of the much simpler unperturbed green
functions of the normal reservoir and the Majorana Green
function,

G<αkσ,β(t, t′) =
1

~
∑

γ

∫
dt1 g

e,r
αkσ(t, t1)V ∗αkσ,γ(t1)G<γ,β(t1, t

′)

+ ge,<αkσ(t, t1)V ∗αkσ,γ(t1)Gaγ,β(t1, t
′) ,

G<β,αkσ(t, t′) =
1

~
∑

γ

∫
dt1 Grβ,γ(t, t1)Vαkσ,γ(t1)ge,<αkσ(t1, t

′)

+ G<β,γ(t, t1)Vαkσ,γ(t1)ge,aαkσ(t1, t
′) , (8)

where g
e/h,r/a
αkσ (t1, t2) are the unperturbed reservoir re-

tarded/advanced Green functions and g
e/h,<
αkσ (t1, t2) the

lesser Green function both of them for the electron
(hole) degrees of freedom [see appendix A]. On the

other hand, Gr/aβ,γ (t1, t2) is the Majorana retarded (ad-

vanced) Green function and G<β,γ(t1, t2) is the lesser one.

They are defined as G<β,γ(t1, t2) = −i〈ηγ(t2), ηβ(t1)〉 and

Gr/aβ,γ (t1, t2) = ∓iθ(±t1 ∓ t2)〈{ηβ(t1), ηγ(t2)}〉. The ex-
plicit expression for such Green functions can be found
in the appendices A and B respectively.

Using the expressions of Eq. (8) we can write the
charge current

Iα(t) =

− e
~
∑

β,γ

∫
dt1
~

Σe,r0α;βγ(t, t1)G<γ,β(t1, t)+Σe,<0α;βγ(t, t1)Gaγ,β(t1, t)

− Grβ,γ(t, t1)Σe,<0α;γβ(t1, t)− G<β,γ(t, t1)Σe,a0α;γβ(t1, t) . (9)

where the tunneling electron self-energies are defined as
follows

Σ
e,r/a
0α;βγ(t1, t2) =

∑

k∈α,σ
Vαkσ,β(t1)g

e,r/a
αkσ (t1, t2)V ∗αkσ,γ(t2) ,

(10a)

Σe,<0α;βγ(t1, t2) =
∑

k∈α,σ
Vαkσ,β(t1)ge,<αkσ(t1, t2)V ∗αkσ,γ(t2) ,

(10b)

and the hole ones

Σ
h,r/a
0α;βγ(t1, t2) =

∑

k∈α,σ
V ∗αkσ,β(t1)g

h,r/a
αkσ (t1, t2)Vαkσ,γ(t2) ,

(11a)

Σh,<0α;βγ(t1, t2) =
∑

k∈α,σ
V ∗αkσ,β(t1)gh,<αkσ(t1, t2)Vαkσ,γ(t2) .

(11b)

2. Stationary charge current

We consider first the stationary regime for the electri-
cal current as a preliminary step of the time-dependent
AC calculation, this implies to make V ACα (t) = 0. In
this sense, we are able to recover the Majorana quantum
of conductance (2e2/h) for a topological NS junction re-
ported in the literature49,50 and the known values of the
DC current further away of the linear regime51,52.

In general, it is advantageous to switch to energy space,
then the DC charge current expression Eq. (9) in matri-
cial form is reduced to

Iα = −2e

h
<e
{∫

dεTr[Σe,r
0α (ε)G<η (ε) + Σe,<

0α (ε)Gaη (ε)

}
,

(12)

where the tunneling self-energy Σ
<,r/a
0 (ε) =

Σ
e,<,r/a
0 (ε) + Σ

h,<,r/a
0 (ε). In this expression,

Σ
e,r/a
0 (ε) =

∑

α

∓iΓα(ε) + Λα(ε) , (13)

and

Σ
h,r/a
0 (ε) =

∑

α

∓iΓα(−ε)−Λα(−ε) . (14)
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They depend on the reservoir-Majorana nanowire cou-
pling with matrix elements [Γα(ε)]γβ = Γα,γβ(ε) =
2π
∑
k∈α Vαkσ,γV

∗
αkσ,βδ(ε − εαkσ) and on [Λα(ε)]γβ =

Λα,γβ(ε) =
∑
k∈α Vαkσ,γV

∗
αkσ,β/(ε− εαkσ). For the lesser

hopping self energy we have similar expressions,

Σe,<
0 (ε) =

∑

α

ifαe (ε)Γα(ε) , (15)

and

Σh,<
0 (ε) =

∑

α

ifαh (−ε)Γα(−ε) , (16)

that also depend on the Fermi function for electron f(ε−
V DCα ) = fαe (ε) and hole degrees of freedom f(ε+V DCα ) =
fαh (ε).

On the other hand, the full retarded(advanced) Majo-
rana Green function reads

Gr/aη (ε) =
2

ε− it− 2Σ
r/a
0 (ε)

, (17)

where t is the hybridization energy matrix with elements
ti,j = εMij

of i 6= j. Note that the Majorana Green

function is given in matricial form [G<,r/aη ]γ,β = G<,r/aγ,β .
Finally, the lesser Majorana Green function component
takes the simple form

G<η (ε) = Grη(ε)Σ<
0 (ε)Gaη (ε) . (18)

Having in mind all these results the stationary DC cur-
rent takes the form

Iα =
e

h
=m

{∫
dεTr

[
fαe (ε)

(
Grη(ε)− Gaη (ε)

)
Γα(ε)

+ G<η (ε)Γα(ε)
]}

. (19)

In spite of the familiar expression for the current no-
tice that Iα is composed by electron and hole contribu-
tions and accounts Andreev tunneling events to transport
charge. For a better understanding, let us insert explic-
itly Eqs. (17) and (18) in Eq. (19),

Iα = − e
h

{∫
dεTr

[
ΓαGrη(ε)

∑

β

Γβ
(
fβe (ε) + fβh (ε)

− 2fαe (ε)
)
Gaη (ε)

]}
, (20)

where we have applied the wide band limit approximation
Γα(ε) ≈ Γα.

In general, for an arbitrary bias configuration we have
IL 6= −IR that violates current conservation. To keep the
current conservation law satisfied the chemical potentials
in the reservoirs need to be symmetric µL = −µR =
eV/2.

In such bias configuration, and for an ideal Majorana
nanowire the charge current in the linear voltage regime
simplifies to IL = −IR = (2e/h)µL = (2e2/h)V/2 that
leads to a linear conductance G0 = dIα/dV = 1/2(2e2/h)
because V is the total measured voltage drop of the cir-
cuit.

3. Stationary charge current in a many nanowire device

FIG. 2: Schematics of different many nanowire devices. Dif-
ferent Majorana nanowires (in blue) are interconnected in dif-
ferent ways to each other. Each Majorana (red dots) are at-
tached to the nanowire edges and tunnel coupled to a source
S or a drain D. Additionally in the device d) a gate G can be
open or close to connect and disconnect a Majorana with the
drain electrode.

We can extend our calculations of the stationary charge
current to a whole family of many nanowire devices, pro-
vided that the hybridization energy between Majoranas
is maintained close to zero. As shown in Fig. 2, we
can define many Majorana devices made of N ′ nanowires
with 2N ′ edges where each edge contains a Majorana
state. At the same time, these Majoranas can be coupled
to N reservoirs [2N ′ > N , not every Majorana needs to
be coupled to a reservoir]. A specific description of the
interaction between Majoranas would be needed for each
particular device found in Fig. 2. Furthermore, these in-
teractions will depend on the particular way in which the
various Majorana nanowires are interconnected. How-
ever, if the Majoranas are well located on the edges the
interaction between them is approximately zero. There-
fore, the particularities of the unions between nanowires
become irrelevant because Majoranas are edge states. On
practical level, such devices will be modeled by a Hamil-
tonian with Eq. (1) contact and Eq. (5) tunneling ener-
gies where α = {1, N} and β = {1, 2N ′}.

In this sense we can consider, for example, setups
where N − 1 Majorana states are tunnel coupled to a
(right side) drain electrode, biased with µD = −eVSD/N
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and the remaining edge state (left side) is contacted to a
single terminal source biased by µS = ((N − 1)/N)eVSD
where VSD is the total potential drop between the source
and the drain. Under these circumstances the source and
drain voltage drop are determined selfconsistently mak-
ing the current to be conserved through all the terminals∑i=N
i=1 Ii = 0. Remarkably, this configuration leads to

exotic Majorana conductances G0 = (2e2/h)(N − 1)/N .
Additionally, in Fig. 2d we can see a nanowire ar-

rangement similar to the ones proposed for braiding
schemes9,53,54. In this arrangement opening or closing
the gate G has the effect to change the Majorana con-
ductance from G0 = e2/h to G0 = 4/3(e2/h).

B. DC energy current

The DC energy current calculation is very similar to
the one done for charge. Energy current at the normal
lead α is calculated as the energy change in the reservoir

as follows

Jα(t) = 〈Ḣα〉 =
i

~
〈[H, Hα]〉 , (21)

where Hα =
∑
k,σ εαkσ(t)c†αkσcαkσ is the energy at the

reservoir. In the same manner than in the charge calcu-
lation the resulting expression can be written in terms of
the mixed Green functions

Jα(t)=
1

~
∑

β,k∈α,σ
εαkσ

[
Vαkσ,βG<αkσ,β(t, t)−V ∗αkσ,βG<β,αkσ(t, t)

]
.

(22)
We use here too the equation of motion for the mixed
Green functions G<αkσ,β(t, t) and G<β,αkσ(t, t) and the Lan-
greth rules to express the DC energy flow only in terms of
the unperturbed reservoir and the Majorana Green func-
tions. The matricial expression for the energy flow can
be arranged to read

Jα(t) =
1

~

∫
dt1Tr

[
Σ̃e,r0α (t, t1)G<η (t1, t) + Σ̃e,<0α (t, t1)Gaη (t1, t)− Grη(t, t1)Σ̃e,<0α (t1, t)− G<η (t, t1)Σ̃e,a0α (t1, t)

]
, (23)

where the matrix elements for Σ̃
e[<,r/a]
0α (t1, t2) are

Σ̃
e[<,r/a]
0α;βγ (t1, t2) =

∑

k∈α,σ
εαkσVαkσ,β(t1)g

e[<,r/a]
αkσ (t1, t2)V ∗αkσ,γ(t2) ,

(24)
therefore the energy current expression reads

Jα = − 1

h
=m

{∫
dεεTr

[
fαe (ε)

(
Grη(ε)− Gaη (ε)

)
Γα(ε)

+ G<η (ε)Γα(ε)
]}

. (25)

Inserting Eqs. (17) and (18) in Eq. (25) and again under
the wide limit approximation we arrive at

Jα =
1

h

{∫
dεεTr

[
ΓαGrη(ε)

∑

β

Γβ
(
fβe (ε) + fβh (ε)

− 2fαe (ε)
)
Gaη (ε)

]}
. (26)

It is worthy to realize that the energy DC current van-
ishes identically due to the intrinsic particle-hole symme-
try of the system. However this does not mean the the
heat current is zero because the heat flow Qα = Jα− IV
where V = VL − VR is the total voltage drop. The only
heat transfer in a truly Majorana device is due the Joule
heating.

C. Time dependent AC charge current

We are now in position to compute the time dependent
charge current for a Majorana nanowire. The calculation
starts in the same way than the DC current calculation
and the same steps are repeated until Eq. (9). However,
the unperturbed electron(hole) lesser Green functions of
the reservoir are now multiplied by e−iφα(t1,t2) where

φα(t1, t2) =
∫ t1
t2
dt′V ACα (t′). V ACα (t′) is the AC driving

potential at reservoir α. The electron(hole) self energies

Σ
e/h,<
0 definitions [given by Eqs. (10b) and (11b)] de-

pend on these Green functions, therefore they are also
proportional to this term. We are interested in the linear
response regime, for such purpose we expand the selfen-

ergies Σ
e/h,<
0 at leading order in the AC driving intensity

V ACα , then the electron and hole component read

Σ
e/h,<
0α;βγ(t1, t2) = e∓iφα(t1,t2)Σ

e/h,<
0α;βγ(t1, t2)|φα(t1,t2)=0

≈ Σ
e/h,<
0α;βγ(t1, t2)[1∓ iφα(t1, t2)] , (27)

whereas Σ
e/h,r/a
0αβγ are time independent. The next step is

the calculation of the time dependent Majorana Green
functions for the retarded(advanced) and lesser compo-
nents [see again appendix B]. Inserting the self-energies of
Eqs. (10), (11) and (27) in the Majorana Green function
expressions we obtain (i) that the retarded(advanced)
Majorana Green function is kept as the stationary form
whereas (ii) the lesser Green function becomes
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G<η (t, t′) = i
∑

γ

(∫
dε1

2π
e−i

ε1
~ (t−t′)Grη(ε1)Γγ(fγe (ε1) + fγh (ε1))Gaη (ε1)

−
∫
dε1

2π

∫
dε2

2π
e−i

ε1
~ te−i

ε2
~ (t−t′)Grη(ε1 + ε2)eV ACα (ε1)Γγ(F γe (ε1, ε2)− F γh (ε1, ε2))Gaη (ε2)

)
, (28)

where we have defined F γ(ε1, ε2) = [fγ(ε1 + ε2) −
fγ(ε2)]/ε1.

Inserting now the time dependent Majorana Green
functions such as Eq. (28) in the current expression [Eq.

(9)] and after a tedious but simple algebra we arrive at

Iα(t) = − e
~

Tr

[∑

γ

∫ +∞

−∞

dε1

2π
ΓαGrη(ε1)Γγ(fγe (ε) + fγh (ε)− 2fαe (ε)

)
Gaη (ε1)

+ i
∑

γ

∫ +∞

−∞

dε1

2π

∫ +∞

−∞

dε2

2π
e−i

ε1
~ tiΓγGrη(ε1 + ε2)Γα(F γe (ε1ε2)− F γh (ε1, ε2)− 2Fαe (ε1, ε2)

)
Gaη (ε2)eV ACα (ε1)

− i
∑

γ

∫ +∞

−∞

dε1

2π

∫ +∞

−∞

dε2

2π
e−i

ε1
~ t
ε1

2
Grη(ε1 + ε2)ΓαF

α
e (ε1, ε2)Gaη (ε2)eV ACα (ε1)

]
. (29)

Some comments on Eq. (29) are in order. First of all,
the first integral of Eq. (29) accounts for the DC current
component already calculated above while the second and
third integrals take into account the purely AC contribu-
tion. If we consider in Eq. (29) a change in the potential
reservoir caused only by the AC modulation (VDC = 0)
then Fαe (ε1, ε2) = Fαh (ε1, ε2) = Fα(ε1, ε2), therefore the
AC current spectrum reads,

Iα(ε) =
ie2

2h

∫ +∞

−∞
dε′Tr

[
Grη(ε+ ε′)Γα

×
(
ε+ 4i

∑

γ

Γγ

)
Gaη (ε′)Fα(ε, ε′)V ACα (ε)

]
. (30)

Finally, from Eq. (30) is straightforward to obtain the
electrical AC admittance gα(ε) = dIα/dV

AC
α ,

gα(ε) =
ie2

2h

∫ +∞

−∞
dε′Tr

[
Grη(ε+ ε′)Γα

×
(
ε+ 4i

∑

γ

Γγ

)
Gaη (ε′)Fα(ε, ε′)

]
. (31)

In the following, we investigate the AC current sig-
nal for a quantum capacitor. In such a case we consider
that a single terminal is tunnel coupled to the topolog-
ical Majorana nanowire. This system then represents

the minimal quantum capacitor circuit. In this case,
Eq. (29) can be written as the sum of two contributions,
g(ω) = gN (ω) + gS(ω),

gN (ε) =
ie2

2h
ε

∫ +∞

−∞
dε′Tr

[
Grη(ε+ ε′)ΓGaη (ε′)Fe(ε, ε

′)
]
,(32)

and

gS(ε) =
ie2

2h
2iΓ

∫ +∞

−∞
dε′Tr

[
Grη(ε+ ε′)ΓGaη (ε′)

× [Fe(ε, ε
′) + Fh(ε, ε′)]

]
. (33)

Our first observation by comparing gN and gS is that gN
coincides with the expression for a normal RC setup al-
beit for a factor two caused by the Majorana statistics.
The contribution gS(ε) contains the electron and hole
Fermi factors as the Fe and Fh functions. This admit-
tance reflects the fact that Andreev transport is present
in the system which converts electrons into holes. Such
conversion is reflected in the fact that now the admit-
tance gS has a relative phase compared with gN of π [see
details below].

Now for sufficiently slow AC signals we can perform
an AC frequency expansion of both contributions for
the electrical AC admittance gN (ω), and gS(ω) to de-
termine the RC parameters. We perform such frequency
expansion firstly for gN (ω) ≈ −iωCq + ω2C2

qRq, where
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Cq = 1
2π

e2

2Γ and Rq = h
e2 . In normal conductors it is

found that Rq = h/2e2 exhibits an universal value55–59

and Cq = (1/2π)(e2/Γ) in the particular case of a normal
quantum dot. In those cases Cq has a physical sense as
a quantum capacitance while Rq is related to charge re-
laxation resistance. Since the Majorana edge state has a
Green function with a tunneling selfenergy that accounts
for the electron and hole parts Γe + Γh = 2Γ, then the

quantum capacitance reflects this fact as Cq = 1
2π

e2

2Γ .
This value is modified as long as the two Majorana edge
states hybridize. For a finite overlap Majorana nanowire
our results show Cq = e2Γ/(πε2

M ). Therefore, the contri-
bution of gN to the capacitance offers a good indicator
of the presence of a Majorana state having a fixed value
for Cq.

We can now explore some limits from which Rq has
simple form. In the zero temperature limit Rq = h/e2.
We have checked that indeed this value is kept indepen-
dently if the two Majorana edge modes overlap or not.
This result reflects the fact that the system is always co-
herent, either showing a non-local half-fermionic state at
each nanowire edge or having a coherent electronic state
broadly extended along the nanowire (for large values of
εM ). The total charge relaxation resistance is seen as the
sum of two serial resistances of h/2e2, each for electron
and hole sectors. Then the total charge relaxation resis-
tance becomes h/e2 from the fact that the nanowire is
superconductor.

The second contribution to the admittance is repre-
sented by Eq. (33) that shows an explicit dependence
on the Andreev reflection processes. Due to the elec-
tron to hole conversion this admittance carries a global
phase factor of π compared with gN . This fact yields an
unphysical negative capacitance when why try to make
a comparison with a traditional RC system. The main
reason is because we have Andreev processes that im-
ply a Cooper pair outgoing supercurrent. If we try to
do the RC analogy the obtained capacitance is then
CS = −(1/2π)(e2/Γ) which accounts the fact that elec-
trons are converted into holes. Besides the RS value takes
a quite unusual value ofRS = − 5h

12e2 which has not a clear
physical interpretation.

D. Time dependent energy current

Our purpose in this section is the derivation of the
time dependent energy current for a Majorana nanowire
in contact with a single reservoir in a capacitor setup.
We evaluate the time derivative of each component of
the Hamiltonian which is given by

QX =
d

dt
〈HX〉 =

i

~
〈[H,HX ]〉+

〈
∂HX
∂t

〉
= JC(t)+P (t) ,

(34)
where QX is the heat flow at the reservoir, X =
{C,M, T} is referred to C contact, M Majorana
nanowire, and T tunneling term. Notice that in Eq. (34)

the last term is the power P (t) = I(t)V (t) supplied by an
external source that must be equal to the heat dissipation
far inside the reservoir. Besides, since the Hamiltonian
operator H commutes with itself it is fulfilled

i

~
〈[H,H]〉 = JC + JM + JT = 0 , (35)

where JC ,JM and JT are the energy rates at the con-
tact, the Majorana nanowire and at the interface between
them.

As mentioned, our goal is to compute the flow of energy
at the Majorana nanowire circuit that it is equal to the
flow at the contact. For the stationary energy current
above we did the calculation of the energy flow at the
reservoir. However, a calculation of JC is cumbersome
in presence of an AC driving, therefore our strategy is
to compute the energy change rates for the Majorana
nanowire and tunnel barrier and then use Eq. (35) by
energy conservation,

JC = −(JM + JT ) . (36)

Note than the AC driving lies in the reservoir therefore
HX with X = T,M does not have any explicit depen-
dence on time. Therefore, in these two cases QX = JX
and we can make the approximation dt〈HH〉 = ∂t〈HH〉
because the only time dependence is the explicit one from
the time evolution operators. We start with the calcu-
lation from the time derivative of the lesser Majorana
Green function

JM = ∂t〈HM 〉 =
i

4
Tr
[
t∂tG<η (t, t)

]
. (37)

Then, using Eq. (28) is easy to arrive at

JM (t)=
ie

4~
Tr

[∫
dε1

2π

∫
dε2

2π
e−i

ε1t
~ (itε1)Grη(ε1 + ε2)

× (Fe(ε1, ε2)− Fh(ε1, ε2)) ΓGaη (ε2)V AC(ε1)

]
. (38)

Similarly, for the energy rate at the barrier we employ:
JT = ∂t〈HT 〉 where HT is given by Eq. (5), which in
terms of Green functions it reads as

〈HT 〉 = −i
∑

k,σ;β

[
Vkσ,βG<kσ,β(t, t) + V ∗kσ,βG<β,kσ(t, t)

]
.

(39)
This now, it can be expressed in terms of Majorana Green
functions by using the expressions of Eq. (8). In this
manner the energy rate for the tunneling contribution
becomes

JT (t) =
ie

2~
Tr

[∫ +∞

−∞

ε1

2π

∫ +∞

−∞

ε2

2π
e−i

ε1t
~ ε1(ε1 + 2ε2 − 2it)

Grη(ε1 + ε2)ΓαGaη (ε2)Fe(ε1, ε2)V AC(ε1)
]
. (40)
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Now using Eq. (36), (38) and (40) we can obtain the
energy rate spectrum for the reservoir. However, nei-
ther JC(ω) nor JM (ω) have a well defined parity when
the AC frequency is reversed, and therefore, within lin-
ear response theory, these two magnitudes do not rep-
resent physical quantities. Based on these observations,
the reservoir and Majorana frequency dependent energy
current expressions must be thus modified to exhibit a
proper parity property when the AC frequency is re-
versed. We propose the expressions

J̄C = JC(ω) +
1

2
JT (ω), J̄M = JM (ω) +

1

2
JT (ω) , (41)

that satisfy the parity property in close analogy as it has
been done in quantum dot systems46,47. Remarkably, the
choice of the factor 1

2JT (ω) is unique in order to ensure a

well defined parity property in both J̄C , and J̄M . There-
fore, under the same considerations and approximations
than in previous sections the contact energy flux reads,

J̄C(t) = − ie
4~

Tr
[ ∫ +∞

−∞

dε1

2π

∫ +∞

−∞

dε2

2π
e−i

ε1t
~ ε1(ε1 + 2ε2)Grη(ε1 + ε2)ΓGaη (ε2)Fe(ε1, ε2)V AC(ε)

+
ie

4~
Tr
[ ∫ +∞

−∞

dε1

2π

∫ +∞

−∞

dε2

2π
e−i

ε1t
~ itε1Grη(ε1 + ε2)ΓGaη (ε2) (Fe(ε1, ε2) + Fh(ε1, ε2))V AC(ε) . (42)

In the presence of a time dependent driving force, it is
quite general to characterize the transport using the con-
cept of admittance, and in this case the electrothermal
admittance, defined as

m(ω) =
J̄C(ω)

V ACα (ω)
. (43)

We recall that J̄C(ω) refers to the contact. Although the
electrothermal admittance m(ω) is defined for the case of
zero DC bias like the electrical one in general it is neces-
sary the simultaneous application of an AC driving and a
DC bias to obtain a non-zero electrothermal response of
a Majorana capacitor. Therefore it is necessary to extend
the definition of m(ω) to non-zero bias setups otherwise
m(ω) = 0 independently of the frequency ω and the hy-
bridization value εM .

III. RESULTS

Our results are presented in this section where we in-
vestigate the DC and AC transport for the electrical and
energy currents.

A. DC charge transport

We begin by analyzing the DC transport for the electri-
cal and heat currents in a two terminal system in Fig. 3.
We consider a symmetrically biased Majorana nanowire,
i.e., VL = −VR = V/2. Firstly, we study the effect of
the Majorana hybridization term εM 6= 0 in the I-V
characteristic as shown in Fig. 3(a). The current be-
comes linear only for a small range of voltages [see Fig.

3(a) blue curve in comparison with the linearized current
curve in black]. We observe that the electrical current is
suppressed rapidly by increasing εM from zero because
the Majorana state is destroyed and a fermionic state
emerges at energies that are now not at zero energy. The
effect of temperature is shown in Fig. 3(b). Temperature
has a minor effect on the current in comparison with a fi-
nite Majorana hybridization. Nevertheless, starting with
a good Majorana state with εM = 0 an enhancement
of temperature tends to diminish globally the electrical
current (see Fig. 3(b)) and the conductance diluting the
Majorana signature.

B. DC heat transport

For the heat current versus the DC bias voltage we
have a similar scenario than in the charge current as
depicted in Fig. 3(c). The curve Q-V characteristic is
quadratic by construction and it corresponds to the Joule
heating. An enhancement of εM suppresses quite quickly
the heat current due to the suppression of the electrical
current. Finally, in Fig. 3(d) the heat current is shown
for an ideal Majorana state and different temperature
values. As previously, an increase of temperature leads
to a reduced heat current due to a diminution of the elec-
trical flow.

C. AC charge transport

Next, we focus on the behavior of the real and imagi-
nary parts of the purely electrical admittance [shown in
Figs. 4 and 5]. For simplicity we consider the single
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FIG. 3: a) Two terminal DC charge current I/(eΓ/h) as
function of the voltage bias eV/Γ for different Majorana hy-
bridization energies εM/Γ = 0.0, 0.2, 0.5, 100 in blue, green,
yellow and red respectively. It is also show in black the low
temperature linearized current in the no hybridization sce-
nario I = (e2/h)V . b) The same as a) in the no hybridiza-
tion scenario for different temperature regimes kBT/Γ =
0.0, 1.0, 2.5, 5.0 in blue, green, yellow and red respectively.
c) Two terminal DC heat current Q/(Γ/h) as function of the
voltage bias eV/Γ for different Majorana hybridization ener-
gies εM/Γ = 0.0, 0.2, 0.5, 100 in blue, green, yellow and red re-
spectively. d) The same as c) in the no hybridization scenario
for different temperature regimes kBT/Γ = 0.0, 1.0, 2.5, 5.0 in
blue, green, yellow and red respectively.

terminal case that can be viewed as a RC-circuit with
a nanowire containing two Majorana edge mode [one at
each side of the nanowire] but only one of the edges is
connected to a reservoir. In Fig. 4 we illustrate the
imaginary [Fig. 4(a)] and the real part [Fig. 4(b)] of
the electrical admittance for the case where the nanowire
hosts an ideal Majorana state εM = 0. We take the
zero temperature limit that allows us to perform a sim-
ple discussion. The imaginary part of g(ω) has a positive
slope. We have already discussed above the origin of Fig.
4(a) positive slope. The AC electrical admittance is in-
deed composed by two contributions gN , and gS which
have a relative phase of π between them. The normal

contribution =m(gN ) = −iω 1
2π

e2

2Γ is similar to a normal
transmission conductance but it considers both channels,
the electron and hole sectors with an effective broaden-
ing of 2Γ instead of Γ. However, due to the presence of
Andreev electron-to-hole conversion the contribution for
=m(gS) = iω 1

2π
e2

Γ makes the overall AC admittance to
exhibit a positive imaginary part as shown in Fig. 4(a).
For the real part, depicted in Fig. 4(b) our results for
the AC admittance reflect that there is a constant ad-
mittance term that does not vanish even when the AC
frequency is zero. Such term g0 = 2e2/h is due to the
non-conserving charge transport caused by Andreev pro-
cesses that produce an outgoing Cooper pair supercur-
rent. In this sense, the presence of superconductivity is
implicitly considered in our Majorana description.
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FIG. 4: a) Single terminal imaginary part of the electrical
admittance g(ω)/(e2/h) as function of the driving frequency
~ω/Γ. The exact zero temperature admittance is plotted in
blue while its linearized version =m(g(ω)) = −wCT is plotted
in green where the capacitance is CT = −(1/2π)(e2/2Γ). b)
Real part of the same admittances than in a). The exact zero
temperature admittance is plotted in blue while its linearized
version <e(g(ω)) = g0 + w2C2

TRT is plotted in green where
the resistance is RT = −(h/e2)(2/3) and the drain term is
g0 = 2e2/h. c) and d) The same as a) and b) but with an hy-
bridization energy εM/Γ = 0.5. In this case CT = e2Γ/(πε2M ).

Remarkable is the fact that the charge relaxation re-
sistance when the Majorana state is present reaches the
value of RT = − 2

3
h
e2 that arises from g = gN + gS =

g0 − iωCT + ω2C2
TRT . This value is extracted from the

Green curve in Fig. 4(b) where a parabolic function
fits the low frequency spectrum for <e(g). As we know,

<e(gN ) = ω2C2
qRq + · · · with Cq = 1

2π
e2

2Γ , and Rq = h
e2

and <e(gS) = g0 + ω2C2
SRS , with CS = − 1

2π
e2

Γ , and

RS = − 5h
12e2 .

We observe that when the Majorana state is removed
by allowing some degree of hybridization εM 6= 0 this
scenario changes dramatically. This is showed in Fig.
4(c), and Fig. 4(d) for =m(g), and <e(g), respectively
and when εM/Γ = 0.5. The slope for =m(g) close to zero
frequency now becomes negative and it depends on the

value of εM , CT = e2Γ
πε2M

. Similarly, the curvature and sign

of <e(g) changes and becomes positive for a non ideal
Majorana state. Notice that RT does not match with
the pure normal case since, even if the Majorana is not
totally well formed, the superconductivity is still present.
Finally, we discuss in Fig. 5 how the transition for the
=m(g), and <e(g) occurs from an ideal Majorana towards
a fermionic state when we increase the value of εM/Γ
from 0 to 0.6. These results are reflected in Fig. 5(a) for
the imaginary part of g. We can observe how the slope of
such curve evolves from positive to negative values as long
as εM grows. Besides, the curves develop some structure,
a maximum and a minimum close to frequencies that
match with the hybridization values ~ω ≈ ±εM . Similar
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FIG. 5: a) Single terminal imaginary part of the electrical
admittance g(ω)/(e2/h) as function of the driving frequency
~ω/Γ for different Majorana hybridization energies εM/Γ =
0.0, 0.2, 0.4, 0.6 in black, blue, green and yellow respectively.
b) Single terminal real part of the same admittances than
in a). c) and d) The same as a) and b) but for different
temperatures kBT/Γ = 0.05, 0.2, 0.4, 0.6 in blue, green, yellow
and red respectively and εM/Γ = 0.4.

features are also observed in Fig. 5(b) where the real
part of the electrical admittance is plotted. At low, close
to zero, frequencies and at εM = 0 the real part of the
admittance exhibits a quadratic dependence with ω with
a negative sign as we stated previously. Such behavior
when εM increases, it is still quadratic, but it reverses
its sign and two maxima appear that reflect the fact that
Majorana physics are washed out. Finally, Figs. 5(c)
and (d) show the dependence with temperature for a non
ideal Majorana case for =m(g) and <e(g), for a finite
hybridization energy εM . In these case, for both =m(g)
and <e(g) the maxima and minima position that appear
in the curves are not temperature dependent contrary to
what happens with their value.

D. AC energy transport

The real and imaginary parts of the electrothermal ad-
mittance at finite DC bias are showed in Fig. 6. The
imaginary part of the electrothermal admittance is plot-
ted in Fig. 6(a) for various εM . Contrary to what hap-
pens with the electrical admittance, there is no change
in the slope of the curves in =m(m(ω)) when εM = 0
increases from zero to a finite value. Besides, for the real
part, showed in Fig. 6(b) we have the same tendency
for all curves independently on εM . Therefore we can
conclude that there is no a clear indicator that the elec-
trotermal admittance could be a good signature of the
presence of a Majorana state. Roughly all curves are
quite similar, for the real and imaginary parts of m(ω)
independently on the value of the Majorana hybridiza-
tion when we look at low frequencies. The temperature

dependence for the electrothermal admittance is shown
in the lower panel of Fig. 6. We observe that, for both,
the imaginary and the real part of this admittance, the
behavior of m(ω) is quite insensitive to a change in tem-
perature [see Fig. 6(c), and (d)].

IV. CONCLUSIONS

In closing, we have investigated the electrical and en-
ergy current spectrum in the linear response regime for a
Majorana nanowire that is coupled to one reservoir. Our
results, valid for arbitrary AC frequencies, show that the
energy reservoir current expression is zero unless a finite
voltage bias is provided because of the symmetry of the
particle and hole degrees of freedom. Additionally, our
findings reflect the fact that the presence of the Majo-
rana state affects strongly the shape of the electrical ad-
mittance in the quantum capacitor configuration. This
admittance is formed by two contributions, gN similar to
a quantum dot admittance albeit by a doubling of the
coupling that accounts transport events with two quasi-
particle species, electrons and holes. And gS that implies
a Cooper pair outgoing flow. Both contributions, gN , and
gS are dephased by a factor of π. Due to this fact, when
Majorana physics is present the real and imaginary parts
for the total admittance g = gN + gS reverses its sign
in comparison with a situation where the two edge Ma-
jorana state hybridize. Such change in sign for the low
frequency region of g could serve as a good indicator for
the presence of Majorana states.
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Appendix A: Unperturbed reservoir Green functions

The EOM for the unperturbed reservoir Green func-
tion is

(i~∂t − εαkσ)g̃eαkσ(t, t′) = ~δ(t− t′)τz , (A1)

where τz is the z-component Pauli matrix for the
electron-hole space and g̃eαkσ(t, t′) is the Keldysh matrix
of the unperturbed Green function,

g̃eαkσ(t, t′) =

(
ge,tαkσ(t, t′) g<,tαkσ(t, t′)
ge,>αkσ(t, t′) ge,t̄αkσ(t, t′)

)
. (A2)

We consider the influence of a time dependent electrical
signal V ACα (t) applied to an arbitrary α reservoir. In this
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FIG. 6: a) Single terminal imaginary part of electrothermal
admittance m(ω)/(Γ2/h) in presence of a finite bias eV/Γ = 1
as function of the driving frequency ~ω/Γ for different Ma-
jorana hybridization energies εM/Γ = 0.0, 0.5, 0.75, 1.0 in
black, blue, green and yellow respectively. b) Single termi-
nal real part of the same admittances than in a). c) and
d) The same as a) and b) but for different temperatures
kBT/Γ = 0.05, 0.2, 0.4, 0.6 in blue, green, yellow and red re-
spectively and εM/Γ = 0.5.

manner, the unperturbed reservoir Green function for the
electron and hole part acquires a time dependent phase

φα(t1, t2) =
∫ t1
t2

(dt′/~)eV ACα (t′) taking the form,

ge,<αkσ(t1, t2) = if(εαkσ − Vα)e−
i
~ εαkσ(t1−t2)e−iφα(t1,t2) ,

(A3a)

gh,<αkσ(t1, t2) = if(εαkσ + Vα)e
i
~ εαkσ(t1−t2)eiφα(t1,t2) ,

(A3b)

g
e,r/a
αkσ (t1, t2) = ∓iθ(±(t1 − t2))e−

i
~ εαkσ(t1−t2)e−iφα(t1,t2) ,

(A3c)

g
h,r/a
αkσ (t1, t2) = ∓iθ(±(t1 − t2))e

i
~ εαkσ(t1−t2)eiφα(t1,t2) ,

(A3d)

where f(ε − Vα) = fαe (ε) is the electron distribution
function whereas fα(ε+ Vα) = fαh (ε) is the hole one. In
the energy domain,

g
e,r/a
αkσ (ε) =

1

ε− εαkσ ± 0+
, (A4)

and

ge,<αkσ(ε) = 2iπf(εαkσ − µα)δ(ε− εαkσ) , (A5)

where the same equations apply to the hole degree of
freedom changing εαkσ → −εαkσ

Appendix B: Majorana Green function

Here we explicitly calculate the Majorana Green func-
tion, lesser and retarded(advanced) components. They
are needed for the current expression, see Eq. (9). The
EOM for the causal Majorana Green function

i~∂tGtγ,β(t, t′) = 2~δγ,βδ(t, t′) + i
∑

µ

tγµGtµβ(t, t′) +
2

~

∫
dt1
∑

µ

[Σe0µ;γδ(t, t1) + Σh0µ;γδ(t, t1)]Gtδ,β(t1, t
′) (B1)

After applying the Langreth rules, the lesser, re-
tarded(advanced) Majorana Green functions in a matrix
form reads

Gr/aη (t, t′) = gr/aη (t, t′)

+

∫ ∫
dt1
~
dt2
~

gr/aη (t, t1)Σ
r/a
0 (t1, t2)Gr/aη (t2, t

′) ,(B2)

G<η (t, t′) =

∫
dt1
~

∫
dt2
~
Grη(t, t1)Σ<

0 (t1, t2)Gaη (t2, t
′) .(B3)

Here Σ
<,r/a
0 = Σ

e,<,r/a
0 + Σ

h,<,r/a
0 with elements given

by Σ
e/h,<,r/a
0 =

∑
α Σ

e/h,<,r/a
0α;γδ . On the other hand, gη

is the unperturbed Majorana Green function that fulfills
the EOM,

(i~∂t − it)gη = 2~δ(t, t′)τz , (B4)
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where τz is the z-component Pauli matrix for the
electron-hole space.

Fourier transforming Eq. (B2) we obtain a sim-
ple energy dependent expression for the full re-
tarded(advanced) Majorana Green function,

Gr/aη (ε) = gr/aη (ε) + gr/aη (ε)Σ
r/a
0 (ε)Gr/aη (ε) , (B5)

that after these considerations reads

Gr/aη (ε) =
2

ε− it− 2Σ
r/a
0 (ε)

. (B6)

Besides, from Eq. (B3), the lesser Majorana Green func-
tion component takes the simple form

G<η (ε) = Grη(ε)Σ<
0 (ε)Gaη (ε) . (B7)

1 K. S. Novoselov, A. K. Geim, S.V. Mozorov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A.A. Firsov,
Science, 306, 666 (2004).

2 K. S. Novoselov, A. K. Geim, S.V. Mozorov, D. Jiang,
I. V. Grigorieva, S. V. Dubonos, and A.A. Firsov, Na-
ture(London), 438, 197 (2005).

3 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

4 E. Majorana, Nuovo Cim. 14, 171, 1937
5 L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407

(2008).
6 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
7 J. K. Pachos, Introduction to Topological Quantum Com-

putation. Cambridge University Press (2012).
8 S. R. Elliott, and M. Franz, Rev. Mod. Phys. 87, 137163

(2015).
9 J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A.

Fisher, Nat Phys, 7, 131136 (2011).
10 V. Mourik, K. Zuo, S. Frolov, S. Plissard, E. Bakkers, and

L. Kouwenhoven, Science, 336, 10031007 (2012).
11 H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M.

T. Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys.
Rev. B, 87, 241401 (2013).

12 M. T. Deng, C. L. Yu, G. Y. Huan, M. Larsson, and P.
Caroff, Nano Lett., 12, 6414 (2012).

13 L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nature
Physics, 8, 795 (2012).

14 A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Nature Physics, 8, 887 (2012).

15 A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K.
Jung, and X. Li, Phys. Rev. Lett., 110, 126406 (2013).

16 J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. B, 85,
064512 (2012).

17 H. Zhang and et. al., ArXiv, 1603.04069v1 (2016).
18 S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J.

Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani,
Science, 346,6209, 602607 (2014).
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Chapter 9
Outlook

The study of Majorana devices is mainly motivated by their potential applications
in quantum computation technologies. At present Majorana modes have been the-
oretically predicted and studied but there is no widespread consensus yet on their
experimental discovery. Current experiments in Majorana nanowires are aimed at
demonstrating the existence of Majorana modes through the detection of their con-
ductance signature.

It is the opinion of the author of this thesis that the scientific community is focused
in finding a silver bullet. That is, a single irrefutable evidence of the Majorana
phenomena. The objective seems to be to find out a single experiment with a
single measurement that provides us with a definite answer. Although this would be
indeed very convenient, it is this author’s opinion that, most likely, an accumulation
of many circumstantial evidences could be the silver bullet we are searching for. This
thesis has been developed with the aim to be useful in that direction.

In this work we have made different theoretical predictions of the Majorana mode
behavior. First, we started questioning ourselves about the robustness of the Majo-
rana modes away from ideal theoretical conditions. These ideal conditions are a 1d
closed nanowire inside an external magnetic field perfectly oriented in the nanowire
longitudinal direction. We have studied how this robustness can be affected by the
presence of a junction in an open nanowire and by the tilt of the magnetic field away
from the longitudinal axis. In particular we have uncovered the projection rule for
1d nanowires that is also fulfilled approximately in quasi-1d planar nanowires. This
is a mathematical relation between the transverse component of the magnetic field
and the proximity induced superconductivity that limits the range of parameters
where it is possible to find a Majorana mode. Furthermore, in quasi-1d nanowires
the possibility of electronic transverse motion allows kinetic orbital effects in pres-
ence of components of the magnetic field perpendicular to the nanowire surface. It
is also shown how this effects lead to a characteristic phase diagram where the phase
boundaries depend on the magnetic field strength and orientation.

These considerations on robustness have led to a rather detailed knowledge about
the Majorana phase dependence on the nanowire materials, the proximity induced
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superconductivity and, most notoriously, the external magnetic field configuration.
Our main idea has been to clarify the location of the phase boundaries with the
aim to apply this knowledge to transport problems. Experiments showing the zero
bias peak in the conductance in the predicted range of values and for no other
configurations would be a strong point in favor of the Majorana existence.

Next, we thought about the possibility of extending the range of measurements
in the transport problems. Current experiments measure the mentioned peak in
conductance. This is measured probing the said conductance for different DC voltage
biases. However, the Majorana admittance in presence of an AC driving calculated
in this thesis has some particular features of its own. Furthermore, the Majorana
hybridization in a finite nanowire creates notable resonances in the admittance if
we use the nanowire as a capacitor. Finally, we go beyond the transport problems
focusing on the absorption spectrum of a Majorana nanowire as an alternative but
complementary method of Majorana measurement. We show how the Majoranas
leave a signature in the absorption spectrum when the light is polarized in the
transverse direction of the nanowire.

To state that these behaviors are individually unique of the Majorana modes would
be a slight overstatement because, on an scientific basis, this would require a specific
comparison between each of the reported behaviors and all the possible alternative
explanations and this is out of the scope of this thesis. Nevertheless, if for example
a zero bias peak consistent with the reported Majorana physics is found in a planar
nanowire only in the proper regions of its phase diagram; and at the same time
this nanowire has the proper Majorana AC response and optical absorption profile
then we think that it would be difficult and a tremendous coincidence to find out an
alternative explanation to all these evidences simultaneously. As a conclusion, we
have increased the available knowledge on Majorana modes with the aim to help in
their detection and their later practical use.

However, this is an ongoing work that will not end with this thesis. For example,
in Chap. 5 the local currents of a Majorana mode were calculated with the aim to
find out the characteristic features of these currents. It was already stated in Chap.
5 the need to study the local currents in open nanowires for different nanowire
geometries. It is also important to clarify the role of the electronic orbital motion
in these geometries. On the other hand, an expanded knowledge is required about
new Majorana devices that have been proposed, some of them using semiconductor
technology while others use a different physical basis.



Erratum

Pag. 26. Eq. (1): It should be ~ instead of h

Pag. 41. Eq. (1): It should be ~ instead of h

Pag. 63. Eq. (20): The exponentials should have an additional sτ , that is
e±isτ (y−sτyc)x/l

2
z . The gauge center must be counted as a global phase change for

the eigenstate.
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