

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 328 213

21) Número de solicitud: 200801303

(51) Int. Cl.:

C07D 493/08 (2006.01)

C07D 493/10 (2006.01)

C07D 307/20 (2006.01)

CO7D 317/30 (2006.01)

C07C 69/60 (2006.01)

C07D 303/40 (2006.01)

② SOLICITUD DE PATENTE A1

22 Fecha de presentación: 06.05.2008

(71) Solicitante/s:

Consejo Superior de Investigaciones Científicas c/ Serrano, 117 28006 Madrid, ES

43 Fecha de publicación de la solicitud: 10.11.2009

(72) Inventor/es: Noheda Marín, Pedro y Lozano Gordillo, Luis Miguel

Fecha de publicación del folleto de la solicitud: 10.11.2009

(74) Agente: Arias Sanz, Juan

- (54) Título: Procedimiento de obtención del ácido Zaragócico y derivados del mismo.
- (57) Resumen:

Procedimiento de obtención del ácido Zaragócico y derivados del mismo.

La presente invención se dirige a un procedimiento para la obtención de ácido Zaragócico y derivados del mismo, a los compuestos intermedios de esta síntesis y al uso de estos compuestos intermedios en la preparación del ácido Zaragócico.

DESCRIPCIÓN

Procedimiento de obtención del ácido Zaragócico y derivados del mismo.

5 Campo de la invención

20

25

30

45

50

55

60

La presente invención se refiere a un procedimiento de síntesis del ácido Zaragócico y derivados del mismo, y a intermedios de dicha síntesis. También se refiere al uso de dicha sintermedios en la síntesis del ácido Zaragócico.

10 Antecedentes de la invención

Los ácidos Zaragócicos [Nadin, A.; Nicolaou, K. C. *Angew. Chem. Int. Ed. Engl.* **1996**, *35*, 1622-1656] son una familia de productos naturales, de los cuales el primero que se aisló fue el ácido Zaragócico A (IA, Figura 1). Fue aislado simultáneamente entre los años 1991 y 1992 por tres grupos independientes: el grupo de Merck lo denominó ácido Zaragócico A, mientras que los grupos de Glaxo y de la Universidad de Tokio Noko/Mitsubishi Kasei Corporation lo denominaron escualestatina S1.

Firgura 1: Ácido Zaragócico A (IA)

WO 93/16066 y WO 93/17557 describen el aislamiento de derivados de ácidos Zaragócicos a partir de distintos cultivos de hongos. Asimismo, se muestra la modificación química de los compuestos obtenidos y su utilidad como agentes reductores del nivel de colesterol. También en WO 94/04144 se divulgan diversos análogos de ácidos Zaragócicos, así como su actividad inhibitoria de la enzima escualeno sintasa.

Los ácidos Zaragócicos presentan en su estructura una agrupación bicíclica común 2,8-dioxabiciclo[3.2.1]octano (anillos A y B, Figura 1), la cual posee 6 estereocentros consecutivos (carbonos C3, C4, C5, C6, C7 y C1), tres de ellos cuaternarios (carbonos C1, C4 y C5). La diferencia estructural entre los miembros de la familia de los ácidos Zaragócicos radica en los diferentes sustituyentes R_y y R_x (ver Figura 2) que presentan en las posiciones C6 y C1, respectivamente, del esqueleto bicíclico común.

anillo
$$A$$

RyO OH

 OH
 OH

Figura 2

Debido a la importante actividad biológica que presentan, como agentes útiles en la reducción del colesterol, y a su elevada complejidad estructural, los ácidos Zaragócicos han atraído la atención de numerosos grupos de investigación. Hasta la fecha se han descrito en la literatura tres síntesis totales del ácido Zaragócico A (IA). Una desarrollada por Dr. Nicolaou [a) Nicolaou, K. C.; Yue, E. W.; Naniwa, Y.; De Riccardis, F.; Nadin, A.; Leresche, J. E.; La Greca, S.; Yang, Z. Angew. Chem. Int. Ed. Engl. 1994, 33, 2184-2187; b) Nicolaou, K. C.; Nadin, A.; Leresche, J. E.; La Greca, S.; Tsuri, T.; Yue, E. W.; Yang, Z. Angew. Chem. Int. Ed. Engl. 1994, 33, 2187-2190; c) Nicolaou, K. C.; Nadin, A.; Leresche, J. E.; Yue, E. W.; La Greca, S. Angew. Chem. Int. Ed. Engl. 1994, 33, 2190-2191; d) Nicolaou, K. C.; Yue,

E. W.; La Greca, S.; Nadin, A.; Yang, Z.; Leresche, J. E.; Tsuri, T.; Naniwa, Y. De Riccardis, F. Chem. Eur. J. 1995, 1, 467-494; e) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH Publishers: New York, 1996. pp.: 673-709.], otra por el Dr. Heathcock [a) Stoermer, D.; Caron, S.; Heathcock, C. H. J. Org. Chem. 1996, 61, 9125-9125; b) Caron, S.; Stoermer, D.; Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1996, 61, 9126-9134]; y una del Dr. Tomooka [Tomooka, K.; Kikuchi, M.; Igawa, K.; Suzuki, M.; Keong, P.-H.; Nakai, T. Angew. Chem. Int. Ed. 2000, 39, 4502-4505]. Del ácido Zaragócico C (IC) se han desarrollado cinco síntesis totales por los grupos del Dr. Carreira, [a) Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1994, 116, 10825-10826; b) Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1995, 117, 8106-8125], del Dr. Evans, [Evans, D. A.; Barrow, J. C.; Leighton, J. L.; Robichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, 116, 12111-12112], del Dr. Armstrong [a) Armstrong, A.; Jones, L. H.; Barsanti, P. A. Tetrahedron Lett. 1998, 39, 3337-3340; b) Armstrong, A.; Barsanti, P. A.; Jones, L. H.; Ahmed, G. J. Org. Chem. 2000, 65, 7020-7032] y dos del Dr. Hashimoto [a) Kataoka, O.; Kitagaki, S.; Watanabe, N.; Kobayashi, J.; Nakamura, S.; Shiro, M.; Hashimoto, S. Tetrahedron Lett. 1998, 39, 2371-2374; b) Nakamura, S.; Hirata, Y.; Kurosaki, T.; Anada, M.; Kataoka, O.; Kitagaki, S.; Hashimoto, S. Angew. Chem. Int. Ed. 2003, 42, 5351-5355; a) Sato, H.; Nakamura, S.; Watanabe, N.; Hashimoto, S. Synlett 1997, 451-454; b) Nakamura, S.; Sato, H.; Hirata, Y.; Watanabe, N.; Hashimoto, S. Tetrahedron 2005, 61, 11078-11106; c) Nakamura, S. Chem. Pharm. Bull. 2005, 53, 1-10]).

Por otro lado, el grupo de Johnson a partir de cicloheptatrieno elaboró el esqueleto común de los ácidos Zaragócicos [Xu, Y.; Johnson, C. R. *Tetrahedron Lett.* **1997**, *38*, 1117-1120].

Todas ellas presentan desventajas a la hora de su aplicación debido al elevado número de etapas que requieren, el bajo rendimiento y al elevado número de grupos protectores que requieren. Existe por tanto la necesidad de proporcionar un procedimiento de obtención de ácido zaragócico y derivados del mismo, el cual preferiblemente reuniera las siguientes características:

- utilizase pocos grupos protectores;
 - sustratos de partida comerciales, asequibles y baratos;
 - un número de etapas razonable;

30

- procedimientos experimentales no sofisticados; o
- un buen rendimiento final.

35 Compendio de la invención

Se ha encontrado ahora que siguiendo la secuencia sintética de la invención es posible obtener compuestos de fórmula (I) a partir de compuestos de fórmula (II) o (III) en un número reducido de pasos y elevado rendimiento. Dichos compuestos de fórmula (I) son versátiles intermedios en la preparación del ácido zaragócico y derivados del mismo de fórmula (XXVI), ya que contiene la estructura bicíclica 2,8-dioxabiciclo[3.2.1]octano, común a todos los ácidos zaragócicos, lo cual permite, a través de esta estructura común, acceder a los distintos derivados del ácido zaragócico conocidos.

Por tanto, un primer aspecto de la presente invención se dirige a un procedimiento para la obtención de un compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos, caracterizado porque comprende reaccionar en medio ácido un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, o una mezcla de compuestos de fórmula (II) y (III).

Aspectos adicionales de la invención se dirigen a compuestos de fórmula (I), (II), (III), (IV), (V), (VI), (VII), (VIIa), (VIIb), (VII

Un aspecto adicional de la presente invención se dirige a un procedimiento para la preparación del ácido zaragócico y derivados del mismo de fórmula (XXVI), sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos, caracterizado porque comprende las etapas

- (i) reaccionar en medio ácido un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, o una mezcla de compuestos de fórmula (II) y (III), para obtener un compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos;
- hidrolizar en medio básico los grupos éster de dicho compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos, para proporcionar un compuesto de fórmula (XXV), sus enantiómeros o mezclas de los mismos; y
- reaccionar dicho compuesto de fórmula (XXV), sus enantiómeros o mezclas de los mismos, con un compuesto de fórmula (XXII) en presencia de una base, para obtener un compuesto de fórmula (XXVI), sus enantiómeros o mezclas de los mismos.

00

Un aspecto adicional de la presente invención se dirige al uso de un compuesto de fórmula (I), (II), (III), (IV), (V), (VI), (VII), (VIIa), (VIIb), (VIIb), (VIIb), (IXa), (IXb), (X), (XI), (XII), (XIII), (XIV), (XV) y/o (XVI), sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos, para la síntesis del ácido zaragócico y derivados del mismo, de fórmula (XXVI), sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos.

Descripción detallada de la invención

Un primer aspecto de la presente invención se dirige a un procedimiento para la obtención de un compuesto de 10 fórmula (I), sus enantiómeros o mezclas de los mismos

15
$$\begin{array}{c}
HO & OH \\
R^4O_2C & O \\
R^3O_2C & O \\
HO & CO_2R^5
\end{array}$$
(I)

en donde

25

30

35

40

55

5

 R^2 se selecciona del grupo que consiste en alquilo C_1 - C_{20} y alquenilo C_1 - C_{20} , los cuales son no-sustituidos o sustituidos en cualquier posición por al menos un grupo que se selecciona del grupo que consiste en alquilo C_1 - C_4 , alquilideno C_1 - C_3 , alquilideno C_1 - C_3 , alquilideno cualquier posición terminal de la cadena que se selecciona del grupo que consiste en arilo C_6 - C_{10} , heteroarilo mono-o bicíclico de 5 ó 6 miembros en cada anillo, los cuales pueden ser no sustituidos o sustituidos por al menos un grupo que se selecciona del grupo formado por alquilo C_1 - C_3 o halógeno; y

 R^3 , R^4 y R^5 se seleccionan independientemente del grupo de los alquilo C_1 - C_3 ;

caracterizado porque comprende reaccionar en medio ácido un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, o una mezcla de compuestos de fórmula (II) y (III)

HO OH HO OH
$$R^{4}O_{2}C \cdot CO_{2}R^{3}$$

$$R^{5}O_{2}C \cdot CO_{2}R^{3}$$

en donde

R², R³, R⁴ y R⁵ son tal y como se han definido anteriormente; y

 R^6 es un grupo alquilo C_1 - C_3 .

De acuerdo con una realización preferida, R^3 y R^4 son iguales, más preferiblemente R^3 , R^4 y R^5 son iguales, preferiblemente metilo. Los compuestos de fórmula (II) y (III) contienen ya todos los estereocentros del ácido zaragócico y sus derivados. Sin desear de quedar vinculado por la teoria, parece que en primer lugar se pierde el grupo OR^6 con la formación simultánea o subsiguiente de un ión oxonio y posterior reordenamiento para formar un compuesto de fórmula (I). Por tanto, la formación de los compuestos de fórmula (I) es independiente de la estereoquímica en la posición acetálica del anillo de tetrahidrofurano de los compuestos de fórmula (II) y (III).

De acuerdo con una realización preferida, el medio ácido comprende la adición de un ácido prótico inorgánico, por ejemplo, HCl, H₂SO₄ o HNO₃. Preferiblemente, el medio ácido es un medio ácido diluido, preferiblemente en una concentración en volumen con respecto al volumen total de la reacción comprendido entre 0,1 y 20%, más preferiblemente entre 0,5 y 10%, más preferiblemente entre 1 y 5%. De acuerdo con otra realización preferida, el disolvente es un alcohol de fórmula R⁶OH. De acuerdo con otra realización preferida, la reacción se realiza a una temperatura comprendida entre 0 y 100°C, más preferiblemente entre 25 y 90°C, más preferiblemente entre 50 y 80°C. Preferiblemente, la reacción se realiza en un recipiente cerrado (por ejemplo, un Kimble [®]).

Aspectos adicionales de la presente invención son los compuestos de fórmula (II) y de fórmula (III), sus enantiómeros o mezclas de los mismos.

Un aspecto adicional de la presente invención, se dirige a un procedimiento para la síntesis de un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o de un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, caracterizado porque comprende la dihidroxilación de un compuesto de fórmula (IV), sus enantiómeros o mezclas de los mismos

$$R^{4}O_{2}C$$
 $R^{3}O_{2}C$
 $CO_{2}R^{5}$
 (IV)

en donde

20

25

R², R³, R⁴ y R⁵ son tal y como se han definido anteriormente; y

 R^6 es un grupo alquilo C_1 - C_3 .

Por tanto, en dos etapas sintéticas a partir de un compuesto de fórmula (IV) se ha conseguido crear el núcleo del ácido zaragócico y sus derivados, mediante reacciones sencillas (dihidroxilación y medio ácido) y un rendimiento elevado o aceptable, y con la ventaja adicional de no necesitar grupos protectores adicionales. La dihidroxilación de a los compuestos de fórmula (IV) procede, seguida en el mismo medio de reacción de un reordenamiento sin necesidad de formar el diol en una etapa anterior, su posterior protección, y subsiguiente desprotección previa a la ciclación.

La reacción de dihidroxilación es una reacción ampliamente utilizada en la síntesis de moléculas orgánicas y puede ser realizada bajo condiciones conocidas por el experto, tal como se describe en Smith, M. B.; March, J. March's Advanced Organic Chemistry; John Wiley & Sons: New York, 2001. pp.: 1048-1051. De acuerdo con una realización preferida la dihidroxilación se realiza en presencia de tetróxido de osmio/N-óxido-N-metilmorfolina o permanganato potásico. Más preferiblemente, la hidroxilación se realiza en presencia de RuCl₃/NaIO₄ (para condiciones útiles para efectuar esta transformación, ver a) Shing, T. K. M.; Tai, V. W.-F.; Tam, E. K. W. Angew. Chem. Int. Ed. Engl. 1994, 33, 2312-2313; b) Shing, T. K. M.; Tai, V. W.-F.; Tam, E. K. W.; Chung, I. H. F.; Jiang, Q. Chem. Eur. J. 1996, 2, 50-57; o c) Plietker, B.; Niggemann, M. Org. Lett. 2003, 5, 3353-3356).

De acuerdo con una realización preferida, el procedimiento comprende dihidroxilar en presencia de RuCl₃ un compuesto de fórmula (IVa), sus enantiómeros o mezclas de los mismos, para dar un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos

HO, OH
$$R^{4}O_{2}C_{4}, OH$$

$$R^{3}O_{2}C$$

$$CO_{2}R^{5}$$
(IVa)

en donde

R², R³, R⁴ y R⁵ son tal y como se han definido anteriormente; y

 R^6 es un grupo alquilo C_1 - C_3 .

De acuerdo con otra realización preferida, el procedimiento comprende dihidroxilar en presencia de RuCl₃ un compuesto de fórmula (IVb), sus enantiómeros o mezclas de los mismos, para dar un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos

$$R^4O_2C$$
, OH R^2 R^3O_2C CO_2R^5 (IVb)

en donde

10

15

20

R², R³, R⁴ y R⁵ son tal y como se han definido anteriormente; y

 R^6 es un grupo alquilo C_1 - C_3 .

Por tanto, otro aspecto de la presente invención se dirige a compuestos de fórmula (IV), (IVa) o (IVb) sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos tal y como se definen arriba, los cuáles son intermedios que permiten acceder a los compuestos de fórmula (I), sus enantiómeros o mezclas de los mismos, y por tanto, también al ácido zaragócico y sus derivados de fórmula (XXVI).

Un aspecto adicional de la presente invención se dirige a un procedimiento para la síntesis de un compuesto de fórmula (IV), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, que comprende el tratamiento en medio ácido de un compuesto de fórmula (V), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

35
$$R^{4}O_{2}C$$
 $R^{3}O_{2}C$
 $R^{3}O_{2}C$
 $CO_{2}R^{5}$
 (V)

en donde

R², R³, R⁴ y R⁵ son tal y como se han definido anteriormente; y

cada uno de R^7 y R^8 se selecciona independientemente del grupo que consiste en hidrógeno, alquilo C_1 - C_4 y arilo C_6 - C_{10} ; o R^7 y R^8 , junto con el átomo de carbono al que están unidos, forman un grupo alquilideno C_2 - C_7 .

Las condiciones bajo las cuales se realiza este procedimiento son las típicas para la eliminación de acetales, la cual sorprendentemente va acompañada en este caso de la ciclación concomitante para formar el anillo acetálico de tetrahidrofurano caracteristico de los compuestos de fórmula (IV). Condiciones útiles para obtener esta transformación pueden encontrarse en a) Lu, W.; Zheng, G.; Cai, J. Tetrahedron 1999, 55, 4649-4654; o b) Greene, T. W.; Wuts, P. G. M. Greene's Protective Groups in Organic Synthesis; John Wiley & Sons: Hoboken, 2007. pp.: 306-321, los cuales se incorporan por referencia. De acuerdo con una realización preferida, la reacción se realiza en presencia de ácido paratoluensulfónico (p-TsOH). De acuerdo con otra realización preferida, el disolvente es un alcohol de fórmula R⁶OH, más preferiblemente también de fórmula R⁴OH.

Por tanto, otro aspecto de la presente invención se dirige a un compuesto de fórmula (V) sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos tal y como se define arriba, intermedios útiles para la síntesis del ácido zaragócico y sus derivados de fórmula (XXVI).

Un aspecto adicional de la presente invención se refiere a un procedimiento para la síntesis de un compuesto de fórmula (V), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, caracterizado porque comprende

 (i) la eliminación del grupo trialquilsililo de un compuesto de fórmula (VII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, para dar un compuesto de fórmula (VI), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

10

$$R^{7}$$
 R^{8}
 $R^{4}O_{2}C_{0}$
 $R^{4}O_{2}C_{0}$
 R^{2}
 $R^{3}O_{2}C_{0}$
 $R^{3}O_{2}C_{0}$
 R^{5}
 R^{2}
 $R^{3}O_{2}C_{0}$
 $R^{3}O_{2}C_{0}$

en donde

25

55

R², R³, R⁵, R⁴, R⁷ y R⁸ son tal y como se han definido anteriormente; y

R⁹ es un grupo trialquilsililo;

У

(ii) la oxidación del grupo hidroxilo de un compuesto de fórmula (VI), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos.

Como puede observarse, la etapa (i) comprende la eliminación del grupo trialquilsililo, es decir, la transformación de R⁹ en un hidrógeno. Dicha transformación se entiende normalmente como una desprotección y se puede realizar bajo distintas condiciones (por ejemplo, ver Kocienski, P. J. *Protecting Groups*; Thieme: Stuttgart, 2000. p.: 188-230). Según una realización preferente, el grupo trialquilsililo se elimina de un compuesto de fórmula (VII) para dar lugar a un compuesto de fórmula (VI) en medio ácido diluido, como, por ejemplo HCl al 1%.

De acuerdo con una realización preferida, la etapa (ii) se realiza en presencia de PCC o IBX, preferiblemente IBX. Condiciones adecuadas se describen en a) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. 1995, 60, 7272-7276; b) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019-8022; c) Corey, E. J.; Palani, A. Tetrahedron Lett. 1995, 36, 3485-3488; d) Wirth, T. Angew. Chem. Int. Ed. 2001, 40, 2812-2814. Preferiblemente, se utiliza acetato de etilo como disolvente y en el workup de la reacción el exceso de reactivo, así como los subproductos derivados del mismo, se puede eliminar mediante filtración una vez concluida la reacción. (More, J. D.; Finney, N. S. Org. Lett. 2002, 4, 3001-3003).

Por tanto, otro aspecto de la presente invención se dirige a compuestos de fórmula (VI) o (VII) sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos tal y como se definen arriba, los cuáles son intermedios que permiten acceder al ácido zaragócico y sus derivados de fórmula (XXVI).

Un aspecto adicional de la presente invención se dirige a un procedimiento para la síntesis de un compuesto de fórmula (VII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, que comprende reaccionar un compuesto de fórmula (VIII), sus enantiómeros, o mezclas de los mismos, con un compuesto de fórmula (XX)

en donde

5

10

35

40

R², R³, R⁵, R⁴, R⁷, R⁸ y R⁹ son tal y como se han definido anteriormente; y

cada uno de los grupos Ar se selecciona independientemente de entre grupos arilo C₆-C₁₀.

La preparación del iluro de fórmula (XX) se puede realizar de acuerdo con condiciones conocidas en el estado de la técnica (Villa, M. J.; Warren, S. J. Chem. Soc. P. T 1 1994, 12, 1569-1572) o adquirirse comercialmente. De acuerdo con una realización preferida, dicho iluro es [(metoxicarbonil)metilen]trifenilfosforano.

Tanto los compuestos de fórmula (VII), como los compuestos de fórmula (VIII) son útiles para obtener el ácido zaragócico con independencia de la configuración del carbono C7. La configuración de dicho hidroxilo terciario puede invertirse, por ejemplo, de acuerdo con las condiciones descritas en Shi, Y. -J.; Hughes, D.L.; McNamara, J.M. *Tetrahedron Lett.* **2003**, *44*, 3609-3611; o Mukaiyama, T.; Shintou, T.; Fukumto, K. *J. Am. Chem. Soc.* **2003**, *125*, 10538-10539). Por tanto, de acuerdo con una realización preferida, los compuestos de fórmula (VII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, son compuestos de fórmula (VIIa) o (VIIb), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

20
$$R^{7} R^{8}$$

$$R^{4}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$R^{3}O_{2}C$$

$$CO_{2}R^{5}$$

$$C7$$

$$(VIIa)$$

$$(VIIb)$$

De acuerdo con otra realización preferida, los compuestos de fórmula (VIII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, son compuestos de fórmula (VIIIa) o (VIIIb), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

45
$$R^{7}$$
 R^{8}
 $R^{4}O_{2}C$
 $R^{3}O_{2}C$
 $R^{3}O_{2}C$
 $R^{3}O_{2}C$
 $R^{4}O_{2}C$
 $R^{3}O_{2}C$
 $R^{3}O_{2}C$
 $R^{4}O_{2}C$
 $R^{4}O_{2$

De acuerdo con una realización preferida, se transforma un compuesto de fórmula (VIIb), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, en un compuesto de fórmula (VIIa), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, mediante una reacción de inversión de la configuración de Mitsunobu. Preferiblemente dicha transformación se realiza en las condiciones descritas en Mukaiyama, T.; Shintou, T.; Fukumto, K. J. Am. Chem. Soc. 2003, 125, 10538-10539, el cual se incorpora en su totalidad por referencia, más preferiblemente en presencia de clorodifenilfosfina y un ácido carboxilico. De acuerdo con otra realización preferida, dicha transformación se realiza en las condiciones descritas en Shi, Y. -J.; Hughes, D.L.; McNamara, J.M. Tetrahedron Lett. 2003, 44, 3609-3611, el cual se incorpora en su totalidad por referencia, más preferiblemente en presencia de dietilazodicarboxilato (DEAD)/trifenil fosfina(TPP).

Preferiblemente, dicho compuesto de fórmula (VIII), sus enantiómeros, o mezclas de los mismos, se obtiene oxidando, preferiblemente en presencia de IBX, un compuesto de fórmula (IX), sus enantiómeros, o mezclas de los mismos

5

10

15

en donde

R², R³, R⁴, R⁵, R⁷, R⁸ y R⁹ son tal y como se han definido anteriormente.

20

La oxidación con IBX, se realiza preferiblemente en presencia de acetato de etilo, lo que permite someter directamente a los compuestos de fórmula (VIII) obtenidos a la siguiente etapa de reacción, sin necesidad de purificarlos. Por tanto, de acuerdo con una realización preferida, la transformación de un compuesto de fórmula (IX), sus enantiómeros, o mezclas de los mismos, en un compuesto de fórmula (VII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, se realiza sin aislar dicho compuesto de fórmula (VIII).

25

Por tanto, otro aspecto de la presente invención se dirige a compuestos de fórmula (VIII) o (IX), sus enantiómeros, o mezclas de los mismos tal y como se definen arriba, los cuáles son intermedios que permiten acceder al ácido zaragócico y sus derivados de fórmula (XXVI).

30 I

De acuerdo con una realización preferida, el compuesto de fórmula (IX), sus enantiómeros o mezclas de los mismos, es un compuesto de fórmula (IXa) o (IXb), sus enantiómeros o mezclas de los mismos:

35

40

R⁴O₂C, R⁸OOH OR⁹

(IXb)

en donde

R², R³, R⁴, R⁵, R⁷, R⁸ y R⁹ son tal y como se han definido anteriormente.

50

Un aspecto adicional de la presente invención se dirige a un procedimiento para la síntesis de un compuesto de fórmula (IX), sus enantiómeros, o mezclas de los mismos, caracterizado porque comprende la dihidroxilación, preferiblemente en presencia de OsO₄, de un compuesto de fórmula (X), sus enantiómeros, o mezclas de los mismos

55

$$R^{4}O_{2}C$$
 $R^{3}O_{2}C$
 (X)

60

en donde

R², R³, R⁴, R⁷, R⁸ y R⁹ son tal y como se han definido anteriormente.

La dihidroxilación de los compuestos de fórmula (X) puede proceder por ataque por la cara alfa o beta, dando lugar dos posibles compuestos de fórmula (IX), sus enantiómeros o mezclas de los mismos, concretamente compuestos de fórmula (IXa) o (IXb), sus enantiómeros o mezclas de los mismos, mencionados más arriba.

Ambos compuestos son útiles para los propósitos de la presente invención puesto que, como se ha visto más arriba, luego será posible invertir la configuración del carbono C7 en compuestos de fórmula (VII) o (VII) mediante una reacción de Mitsunobu.

Alternativamente, dicha hidroxilación puede realizarse de forma enantioselectiva. En este caso, si se partiese de un racémico, se generaría preferentemente uno de los diastereoisómeros posibles. Seria, por tanto, una resolución cinética del racémico de partida. Ver: Kolb, H. C.; Van Nievwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. Por tanto, otro aspecto de la presente invención se dirige a un compuesto de fórmula (X) sus enantiómeros, o mezclas de los mismos tal y como se definen arriba, los cuáles son intermedios que permiten acceder al ácido zaragócico y sus derivados de fórmula (XXVI).

Un aspecto adicional de la presente invención se dirige a un procedimiento para la síntesis de un compuesto de fórmula (X), sus enantiómeros, o mezclas de los mismos, caracterizado porque comprende la acetalización o hemiacetalización, de un compuesto de fórmula (XI), sus enantiómeros, o mezclas de los mismos

en presencia de un compuesto de fórmula $(R_7)(R_8)$ C=O o hidratos o aril o alquil acetales o hemiacetales del mismo en donde

 R^2 , R^3 , R^4 , R^7 , R^8 y R^9 son tal y como se han definido anteriormente.

15

20

25

30

55

La protección del grupo 1,2-diol de un compuesto de fórmula (XI) como acetal o hemiacetal se puede realizar siguiendo métodos conocidos en el estado de la técnica y permite mantener este grupo estable a lo largo de la síntesis. Para condiciones para la protección de 1,2-dioles útiles en la presente invención ver a) Konno, H.; Makabe, H.; Tanaka, A.; Oritani, T. *Tetrahedron* 1996, 52, 9399-9408; o b) Greene, T. W.; Wuts, P. G. M. Greene's *Protective Groups in Organic Synthesis*; John Wiley & Sons: Hoboken, 2007. pp.: 306-321, los cuales se incorporan por referencia. De acuerdo con una realización preferida, R_7 y R_8 son metilo, o hidrógeno o fenilo; o junto con el carbono al que están unidos forman un anillo de ciclohexano o ciclopentano. De acuerdo con otra realización preferida, R_7 es metilo y R_8 es fenilo. Los compuestos de fórmula $(R_7)(R_8)C=O$ pueden utilizarse en forma de cetona o en forma de acetal o hemiacetal. De acuerdo con otra realización preferida, un compuesto de fórmula (XI), sus enantiómeros, o mezclas de los mismos, se hace reaccionar con 2,2-dimetoxipropano en presencia cantidades catalíticas de ácido, preferiblemente ácido paratoluensulfónico.

Por tanto, otro aspecto de la presente invención se dirige a un compuesto de fórmula (XI) sus enantiómeros, o mezclas de los mismos tal y como se definen arriba, los cuáles son intermedios que permiten acceder al ácido zaragócico y sus derivados de fórmula (XXVI).

Un aspecto adicional de la presente invención se dirige a un procedimiento para la síntesis de un compuesto de fórmula (XI), sus enantiómeros, o mezclas de los mismos, caracterizado porque comprende las siguientes etapas

(i) reaccionar un compuesto de fórmula (XXI) en presencia de un compuesto de fórmula PY₃, y la posterior adición de un compuesto de fórmula (XVI), sus estereoisómeros o mezclas de los mismos, para dar un compuesto de fórmula (XV), sus estereoisómeros o mezclas de los mismos

(ii) epoxidar, preferiblemente con ácido metacloroperbenzóico (m-CPBA), dicho compuesto de fórmula (XV), para obtener un compuesto de fórmula (XIV), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos,

$$R^{4}O_{2}C$$

$$R^{3}O_{2}C$$

$$(XIV)$$

(iii) isomerizar en presencia de una base, preferiblemente DBU, dicho compuesto de fórmula (XIV), para obtener un compuesto de fórmula (XIII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos,

(iv) introducir un grupo trialquilsililo en dicho compuesto de fórmula (XIII) para obtener un compuesto de fórmula (XIII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

$$R^{4}O_{2}C$$

$$R^{3}O_{2}C$$
(XII)

40 y

(v) dihidroxilar dicho compuesto de fórmula (XII)

en donde

R², R³, R⁴ y R⁹ son tal y como se han definido anteriormente; y

cada uno de los grupos Y se selecciona independientemente de entre grupos arilo C₆-C₁₀ o grupos alquilo C₁-C₆.

La preparación de compuestos de fórmula (XV) (etapa (i)) se puede realizar de acuerdo con procedimientos descritos en el estado de la técnica, y se ha realizado en escala multigramo (Maryanoff, B. E.; Reitz, A. B. *Chem. Rev.* 1989, 89, 863-927; Trost, B. M.; Melvin, L. S. Jr. *J. Am. Chem. Soc.* 1976, 98, 1204-1212). De acuerdo con una realización preferida, el compuesto de fórmula PY₃ es n-Bu₃P. Los compuestos (XXI) y (XVI) se pueden adquirir comercialmente o repararse de acuerdo a procedimientos establecidos. Los compuestos de fórmula (XXI) son ésteres de fumarato, preferiblemente fumarato de dimetilo. Es posible adquirir distintos fumaratos, por ejemplo de dimetilo o diisobutilo, entre otros.

También son fácilmente accesibles diversos compuestos de fórmula (XVI). Otros compuestos de fórmula (XVI) no accesibles comercialmente pueden prepararse de acuerdo con métodos análogos a los descritos en, por ejemplo, a) Evans, D. A.; Barrow, J. C.; Leighton, J. L.; Robichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, 116, 12111-12112 (compuesto 4); b) Tomooka, K.; Kikuchi, M.; Igawa, K.; Suzuki, M.; Keong, P. -H.; Nakai, T. Angew. Chem. Int. Ed. 2000, 39, 4502-4505 (compuestos 14, 15 o 16); b) Nicolaou, K. C.; Yue, E. W.; Naniwa, Y.; De Riccardis, F.; Nadin, A.; Leresche, J. E.; La Greca, S.; Yang, Z. Angew. Chem. Int. Ed. Engl. 1994, 33, 2184-2187 (compuesto 6); o c) Armstrong, A.; Jones, L. H.; Barsanti, P. A. Tetrahedron Lett. 1998, 39, 3337-3340 (compuesto 6); o d) Evans, et al Tetrahedron Lett. 1993, 34, 8403 (ver referencia 4b en Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1994, 116, 10825-10826 para la preparación del compuesto 9), todos ellos incorporados aquí por referencia.

La epoxidación de los compuestos de fórmula (XV) (etapa (ii)) puede realizarse en presencia de agentes epoxidantes tales como el ácido metacloroperbenzóico, dando como resultado un compuesto de fórmula (XIV) en forma racémica. Alternativamente, la epoxidación se puede realizar mediante reactivos quirales, dando lugar a compuestos de fórmula (XIV) enantioméricamente puros o enantioméricamente enriquecidos, lo cual da lugar a que los subsiguientes intermedios de fórmula (XIII) a (I) y (XXV) y (XXVI) (definidos más abajo) también se obtengan enantioméricamente puros o enantioméricamente enriquecidos. Por tanto, la utilización en este punto de un agente epoxidante quiral permite obtener el ácido zaragócico y sus derivados de fórmula (XXVI) enantioméricamente puros o enantioméricamente enriquecidos. Algunas condiciones útiles para realizar la epoxidación de forma enantiomérica, pueden encontrarse en Jacobsen-Katsuki (ver: Katsuki, T. *Adv. Synth. Catal.* **2002**, *344*, 131-147)2); o Shi (ver: Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R; Shi, Y. *J. Am. Chem. Soc.* **1997**, *119*, 11224-11235).

La isomerización de los compuestos de fórmula (XIV) (etapa (iii)) permite abrir el epóxido e isomerizar el doble enlace para proporcionar un compuesto de fórmula (XIII). Preferiblemente la base utilizada es DBU (1,8-diazabiciclo [5.4.0]undic-7-eno).

Ejemplos no limitativos de condiciones en las que se puede proteger el grupo hidroxilo de un compuesto de fórmula (XIII) (etapa (iv)) para obtener un compuesto de fórmula (XII) pueden encontrarse en, por ejemplo, Dalla, V.; Catteau, J. P. *Tetrahedron* 1999, 55, 6497-6510, y los grupos trialquilsililo que pueden ser utilizados en esta reacción, así como reactivos apropiados para su introducción y eliminación, son conocidos para el experto en la materia (por ejemplo ver Greene, T. W.; Wuts, P. G. M. *Greene's Protective Groups in Organic Synthesis*; John Wiley & Sons: Hoboken, 2007).

De acuerdo a una realización particular, la base utilizada es imidazol y el agente sililante es TBDMSCI (cloruro de terc-butildimetilsililo). De acuerdo con otra realización preferida, el agente sililante es TBDMSOTf (trifluorametasulfonato de terc-butildimetilsililo).

Como se ha comentado más arriba, la dihidroxilación (etapa (v)) puede realizarse bajo condiciones conocidas por el experto, tal como se describe en Smith, M. B.; March, J. *March's Advanced Organic Chemistry*; John Wiley & Sons: New York, 2001. pp.: 1048-1051. De acuerdo con una realización preferida la dihidroxilación se realiza en presencia de tetróxido de osmio/*N*-óxido-*N*-metilmorfolina o permanganato potásico.

Por tanto, aspectos adicionales de la presente invención se dirigen a compuestos de fórmula (XII), (XIII), (XIV) o (XV), sus enantiómeros, o mezclas de los mismos tal y como se definen arriba, los cuáles son intermedios que permiten acceder al ácido zaragócico y sus derivados de fórmula (XXVI).

De acuerdo con un aspecto adicional, la presente invención se refiere a un procedimiento para la preparación del ácido zaragócico y derivados del mismo de fórmula (XXVI), sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos, caracterizado porque comprende las etapas

(i) reaccionar en medio ácido un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, o una mezcla de compuestos de fórmula (II) y (III), tal y como se definen anteriormente; para obtener un compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos, tal y como se define anteriormente;

(ii) hidrolizar en medio básico los grupos éster de dicho compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos, para proporcionar un compuesto de fórmula (XXV), sus enantiómeros o mezclas de los mismos

en donde

 R^2 es tal y como se ha definido anteriormente;

60

65

15

25

30

y

(iii) reaccionar dicho compuesto de fórmula (XXV), sus enantiómeros o mezclas de los mismos, con un compuesto de fórmula (XXII) en presencia de una base, para obtener un compuesto de fórmula (XXVI), sus enantiómeros o mezclas de los mismos

5

10

15

25

en donde

 R^1 se selecciona del grupo que consiste en alquilo C_1 - C_{20} o alquenilo C_1 - C_{20} , los cuales son no-sustituidos o sustituidos por al menos un grupo que se selecciona del grupo que consiste en alquilo C_1 - C_4 ; y/o un grupo en la posición terminal que se selecciona del grupo que consiste en arilo C_6 - C_{10} ;

Z se selecciona del grupo que consiste en hidroxilo y alcoxilo; y

 R^2 es tal y como se ha definido anteriormente.

La hidrólisis de grupos éster para proporcionar los correspondientes grupos ácido es conocida por experto en la materia (ver, por ejemplo, Kocienski, P.J. Protecting Groups; Thieme: Stuttgart, 2000. pp.: 393-425). Condiciones no limitativas para los propósitos de la presente invención son, preferiblemente, aquellas en las que la hidrólisis de los compuestos de fórmula (XXV) se realiza en presencia de un hidróxido de metal alcalino o alcalinotérreo, por ejemplo en presencia de LiOH, NaOH, Ba(OH)₂, o en presencia de Na₂S.

35

El acoplamiento del compuesto de fórmula (XXVI) implica la esterificación del compuesto de fórmula (XXV) para proporcionar el compuesto de fórmula (XXVI). Condiciones apropiadas para esta transformación se conocen en el estado de la técnica. Por ejemplo, se puede realizar de acuerdo con la condiciones descritas en Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1994, 116, 10825-10826, en donde el compuesto de fórmula (XXII) es un cloruro de ácido (Z=Cl), descritas en Stoermer, D.; Caron, S.; Heathcock, C. H. J. Org. Chem. 1996, 61, 9115-9125, o en Evans, D. A.; Barrow, J. C.; Leighton, J. L.; Robichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, 116, 12111-12112, en donde el compuesto de fórmula (XXII) es un ácido (Z=OH) y la reacción procede en presencia de DMAP.

45

Como puede comprobarse, la secuencia descrita en la presente invención permite obtener el ácido zaragócico y derivados del mismo de fórmula (XXVI), en pocas etapas, utilizando reactivos habituales en la síntesis de compuestos orgánicos. Dicha síntesis puede realizarse portando desde el inicio (compuestos de fórmula (XVI)) la cadena completa R². Alternativamente, es posible iniciar la síntesis con un compuesto de fórmula (XVI) que no comprende una cadena completa, sino un resto precursor de la misma. La secuencia puede realizarse tal y como se ha descrito arriba, y en el momento más conveniente construir la cadena completa, bien mediante una única etapa sintética, o bien mediante sucesivas etapas consecutivas o no consecutivas.

55

Por tanto, de acuerdo con una realización preferida R² es un alquilo o alquenilo C₁-C₅ sustituido, preferiblemente en el posición terminal, por un grupo hidroxilo o un hidroxilo protegido. En el momento de construir la cadena será posible funcionalizar dicho hidroxilo de forma que esté activado de cara a una reacción de alquilación. Por ejemplo, es posible oxidar el alcohol a aldehído (por ejemplo, en presencia de PCC) y luego reaccionar el compuesto resultante en presencia de un iluro (o viceversa) o luego reaccionar con un alquinilo en presencia de una base. Por ejemplo, ver formación del compuesto 30 en Nakamura, S.; Hirata, Y.; Kurosaki, T.; Anada, M.; Kataoka, O.; Kitagaki, S.; Hashimoto, S. *Angew. Chem. Int. Ed.* **2003**, *42*, 5351-5355; o la formación de los compuestos 57 y 58 en Kataoka, O.; Kitagaki, S.; Watanabe, N.; Kobayashi, J.; Nakamura, S.; Shiro, M.; Hashimoto, S. *Tetrahedron Lett.* **1998**, *39*, 2371-2374.

60

Por ejemplo, pueden prepararse distintos compuestos de fórmula (XVI) en donde R^2 es un alquilo o alquenilo C_1 - C_5 sustituido en el posición terminal por un grupo hidroxilo o un hidroxilo protegido (aldehídos alfa,beta-insaturados) a partir del correspondiente hidroxialdehído y un iluro apropiado (ver figura 3 - R=hidrógeno o grupo protector).

Figura 3

20

La obtención del compuesto de fórmula (XXXI) (cloruro de (formilmetil) trifenilfosfonio puede realizarse, por ejemplo, de acuerdo con métodos descritos en *Phytochemistry* **1995**, 38, 1169-1173, el cual se incorpora por referencia en su totalidad. las condiciones para reaccionar un compuesto de fórmula (XXXI) y un compuesto de fórmula (XXXII), pueden encontrarse en *Tetrahedron* **1993**, 49, 10643-10654. También en dicho documento se enseña cómo preparar un compuesto de fórmula (XXXII) a partir de un diol (1,4-butanodiol).

Tal y como se ha indicado anteriormente, el compuesto de fórmula (XVI) puede construirse desde el principio con todas la funcionalidades del compuesto final de fórmula (XXVI). Por ejemplo, haciendo reaccionar el compuesto de fórmula (XXX) con el compuesto 32 descrito en Carreira, et al, J. Am. Chem. Soc. 1995, 117, 8106-8125 siguiendo un procedimiento análogo al que se muestra en la Figura 3, proporcionaria el compuesto de fórmula (XVI) necesario para obtener, por ejemplo, el ácido zaragócico C (ver Figura 4).

compuesto 32 descrito en Carreira et al J. Am. Chem. Soc. 1995, 117, 8106-8125

compuesto de fórmula (XVI) necesario para obtener el ácido zaragócico C

Figura 4

45

65

35

40

Definiciones

Con el fin de facilitar la comprensión de la presente invención, los significados de algunos términos y expresiones tal como se usan en el contexto de la invención se incluyen en el presente documento.

"Alquilo" se refiere a un radical de cadena hidrocarbonada lineal o ramificado que consiste en átomos de carbono e hidrógeno, que no contiene insaturación y que está unido al resto de la molécula mediante un enlace sencillo, por ejemplo, metilo, etilo, propilo, isopropilo o *n*-butilo.

"Alquenilo" se refiere a un radical de cadena hidrocarbonada lineal o ramificada que consiste en átomos de carbono e hidrógeno, que contiene al menos una insaturación, y que está unido al resto de la molécula mediante un enlace sencillo, por ejemplo, etenilo, n-propenilo, i-propenilo, n-butenilo, n-pentenilo, etc.

"Alquilideno" se refiere a un radical de cadena hidrocarbonada lineal que consiste en átomos de carbono e hidrógeno, y que está unido al resto de la molécula desde los dos extremos mediante enlaces sencillos al mismo átomo de carbono, y por lo tanto forman un ciclo, por ejemplo, etilen (-CH₂-CH₂-), n-propilen(-CH₂-CH₂-), n-butilen (-CH₂-CH₂-CH₂-), n-pentilen(-CH₂-CH₂-CH₂-CH₂-), etc. En el caso de ser un grupo meutilen, se refiere al grupo =CH₂.

"Haluro" o "halógeno" significa -F, -Cl, -Br o -I;

Un "estereoisómero" en la presente solicitud hace referencia a compuestos formados por los mismos átomos unidos por la misma secuencia de enlaces pero que tienen estructuras tridimensionales diferentes que no son intercambiables.

Se entiende por "enantiómero" la imagen especular de un compuesto estereoisoméricamente puro. A efectos de la invención se puede considerar un enantiómero como una mezcla de dos enantiómeros que tienen un exceso enantiomérico superior al 95%, preferiblemente superior al 98%, más preferiblemente superior al 99%, más preferiblemente superior al 99,5%.

"heteroarilo" significa preferiblemente una fracción de hidrocarburo monocíclico o bicíclico que comprende 1 o 2 núcleos aromáticos, dichos núcleos estando unidos con, y/o covalentemente enlazados uno con el otro, al menos uno de tales núcleos conteniendo 1, 2, 3 ó 4 heteroátomos independientemente seleccionados del grupo que consiste de N, O y S, tales como -pirrolilo, -furilo, -tienilo, -piridilo, -quinolilo, -isoquinolilo, -indolilo, -oxazolilo, -isoxazolilo, -diazinilo, y similares.

"Arilo" se refiere a un radical hidrocabonado aromático tal como fenilo, o naftilo.

"Arilaquil" se refiere a un grupo arilo unido al resto de la molécula a través de un grupo alquilo, por ejemplo, bencilo ("-(CH₂)-fenilo" o "Bn").

"Alcoxilo" se refiere a un radical de la fórmula -O-R¹⁰, en donde R¹⁰ representa un grupo seleccionado del grupo que consiste en alquilo sustituido o no sustituido, alquenilo sustituido o no sustituido, arilo sustituido o no sustituido, y arilalquilo sustituido o no sustituido.

"alquilcaboxihidroxil" se refiere a un radical de fórmula R¹¹(C=O)O-, en donde R¹¹ se selecciona del grupo que consiste en alquilo C_1 - C_6 , alquenilo C_1 - C_6 , arilo C_6 - C_{10} y arilalquilo C_7 - C_{15} .

Cuando en la presente solicitud se refiere a un "hidroxilo protegido" indica un grupo hidroxilo bloqueado de forma que es inerte a determinadas reacciones y que después puede ser eliminado bajo condiciones controladas. Dichos grupos son conocidos por el experto en la materia y puede seleccionar los más apropiados en función de las reacciones a las cuales desea que el grupo hidroxilo sea inerte y/o las condiciones bajo las cuales desea eliminar dicho grupo proteger, es decir, la condiciones bajo las cuales desea desprovee el grupo hidroxilo. Ejemplos de grupos protectores de hidroxilo apropiados y sus condiciones de eliminación pueden encontrarse en textos de referencia, como por ejemplo, Greene and Wuts' "Protective Groups in Organic Synthesis", John Wiley & Sons, Inc., New York, 4th Ed., 2007.

- Grupos protectores preferidos para los propósitos de la presente invención son: 35
 - silil derivados de fórmula -Si(R¹²)₃ (conmunmente denominados trialquilsililos), como el trimetilsililo ("TMS"), trietilsililo, tert-butildimetilsililo ("TBDMS"), tert-butildifenilsililo, tri-isopropilsililo, dietilisopropilsililo, texildimetilsililo éter, trifenilsililo, di-tert-butilmetilsililo;
 - éteres de fórmula -R¹², como metal éter, tert-butil éter, bencil éter, p-metoxibencil éter, 3,4-dimetoxibencil éter, tritil éter; allil éter;
 - alcoximetil éteres de fórmula -CH₂-O-R¹², como metoximetil éter, 2-metoxietoximetil éter, benciloximetil éter, p-metoxibenciloximetil éter, 2-(trimetilsilil)etoximetil éter. El átomo de oxígeno puede ser reemplazado por un átomo de sulfuro para formar un alkiltiometil éter de fórmula -CH₂-S-R¹², como metiltiometil éter. Los éteres de tetrahidropiranil y derivados también son grupos protectores del hidroxilo comúnmente utilizados;
 - ésteres de fórmula -C(=O)R¹², acetato, benzoato; pivalato; metoxiacetato; clroacetato; levulinato;
 - carbonatos de fórmula -C(=O)-O-R¹², como carbonato de bencilo, de p-nitrobencilo, de tert-butilo, de 2,2,2-tricloroetilo, de 2-(trimetilsilil)etil, o de alilo; o
 - sulfatos de fórmula SO₃-O-R¹² o sus sales, como SO₃ piridina.

 $En \ todos \ las \ formula \ anteriores, R^{12} \ representa \ un \ grupo \ seleccionado \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ C_1-C_{12} \ sussible \ del \ grupo \ que \ consiste \ en \ alquilo \ consiste \ que \ q$ tituido o no sustituido, alquenilo C_1 - C_{12} sustituido o no sustituido, arilo C_6 - C_{10} sustituido o no sustituido, y arilalquilo C_7 - C_{15} sustituido o no sustituido.

Las referencias del presente documento a grupos sustituidos en los compuestos de la presente invención se refieren al resto especificado que puede estar sustituido en una, dos o tres posiciones disponibles por uno, dos, tres grupos adecuados, los cuales se seleccionan independientemente del grupo que consiste en ciano; alcanoílo, tal como un grupo alcanoílo C₁-C₆, tal como acilo y similares; carboxamido (-(C=O)NH₂); trialquilsililo; arilo carbocíclico que tiene 6 o más carbonos, particularmente fenilo o naftilo y alquil(C₁-C₃)arilo tal como tolilo. Como ejemplo no limitativo, "alquilo sustituido" incluye grupos tales como cianoetilo, acetilmetilo, carboxamidometilo (-CH₂CONH₂), 2trimetilsililetilo, bencilo, difenilmetilo.

40

50

45

En cada caso, cuando se especifica el número de átomos de carbono del grupo correspondiente "Cx-Cy", se indica que el grupo comprende entre "x" e "y" átomos de carbono. Por ejemplo, cuando se indica "alquilo C_1 - C_3 " se refiere a un grupo alquilo de uno, dos o tres átomos de carbono, es decir, metilo, etilo, propilo, o isopropilo. Por ejemplo, cuando se indica "alquilo C_{10} - C_{15} " se refiere a un grupo alquilo de diez, once, doce, trece, catorce o quince átomos de carbono, tal como decilo, undecilo, dodecilo, tridecil, tetradecil o pentadecil.

A menos que se indique lo contrario, los compuestos de la invención también se refieren a aquellos que incluyen compuestos que difieren sólo en la presencia de uno o más átomos isotópicamente enriquecidos. Por ejemplo, los compuestos que tienen las presentes estructuras, a excepción de la sustitución de un hidrógeno por un deuterio o por tritio, o la sustitución de un carbono por un carbono enriquecido en ¹³C o ¹⁴C, están dentro del alcance de esta invención.

Los siguientes ejemplos ilustran distintas realizaciones de la invención y no deben ser considerados limitativos del alcance de la misma.

Ejemplos

15

Materiales v métodos generales

Todas las reacciones fueron realizadas bajo atmósfera de argón, excepto las indicadas en cada caso. Los disolventes empleados fueron destilados y secados bajo atmósfera de argón. Los reactivos y disolventes utilizados provienen de las casas comerciales *Aldrich, Fluka, Merck, Sigma, Acros, Lancaster, SDS* o *Scharlau*, y fueron purificados por procedimientos habituales cuando fue necesario. La purificación de los productos de reacción se realizó por cromatografia en columna bajo presión (cromatografía flash), utilizando como fase estacionaria gel de sílice *60 Merck* (con un tamaño de partícula 230-400 mesh).

Los espectros de resonancia magnética nuclear de ¹H y ¹³C (completamente desacoplados) se realizaron a temperatura ambiente en el disolvente indicado en cada caso (CDCl₃ y CD₃OD) empleando los siguientes aparatos: *Varian Gemini-200* (200 MHz), *Varian INOVA-300* (300 MHz), *Bruker Avance-300* (300 MHz) y *Varian INOVA-400* (400 MHz). Los valores de los desplazamientos químicos se expresan en partes por millón (d, ppm), utilizando como referencia interna la señal residual del disolvente: CDCl₃, 7.26 ppm (¹H-RMN) y 77.0 ppm (¹³C-RMN); CD₃OD, 3.31 ppm (¹H-RMN) y 49.0 ppm (¹³C-RMN). Los espectros ¹H-RMN se describen indicando el número de protones y la multiplicidad *aparente* de cada señal. Las constantes de acoplamiento (*J*) son las *aparentes* y se expresan en Hz. Se han empleado las siguientes abreviaturas: s (singlete), d (doblete), t (triplete), c (cuadruplete), q (quintuplete) y m (multiplete).

Los puntos de fusión (P.f.) se midieron en un microscopio *Kofler* marca *Reichert*. Los espectros de infrarrojo (IR) se registraron en los espectrofotómetros *Perkin-Elmer* modelos *681* y *FT-IR Spectrum One*. Los espectros de masas de baja resolución (*LRMS*) se registraron: (1) por inyección directa de la muestra en un espectrofotómetro *Hewlett Packard 5973 MSD* usando la técnica de ionización por impacto electrónico (*EI*); o (2) en un espectrofotómetro *Hewlett Packard LCMS 1100 MSD* (analizador cuadrupolar acoplado a un HPLC) usando la técnica de ionización química por electroespray (*API-ES*) en modos positivo o negativo. Los análisis elementales (A.E.) se efectuaron con los analizadores *Perkin-Elmer 240C y Heraus CHN-O-Rapid*.

Mientras no se indique lo contrario, todos los productos mostrados en los ejemplos son racémicos (rac).

Ejemplo 1

45

50

55

Preparación de (3<u>E</u>,5<u>E</u>)-3-(metoxicarbonil)-3,5-tridecadienoato de metilo (58)

A una disolución de fumarato de dimetilo (3.97 g, 27.6 mmoles) y (E)-2-decenal (3.89 g, 25.2 mmoles) en THF (44 ml) se adicionó n-Bu₃P (7.12 g, 35.2 mmoles). La mezcla se agitó a temperatura ambiente durante 48 horas. Pasado ese tiempo, se adicionó AcOEt (30 ml) y H₂O (30 ml). Se separaron las fases, y la fase acuosa se extrajo con AcOEt $(3 \times 25 \text{ ml})$. La fase orgánica se secó con Na₂SO₄ anhidro, se filtró y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 20:1), obteniéndose (5.03 g, rto. 71%) (3E,5E)-3-(metoxicarbonil)-3,5-tridecadienoato de metilo (58), como un aceite transparente.

IR (NaCl): v 2949, 2928, 2856, 1744, 1714, 1641, 1436, 1324, 1258, 1198, 1170, 1085, 975 cm⁻¹.

¹**H-RMN** (200 MHz, CDCl₃). δ 7.33 (1H, d, J = 10.4 Hz, H-4), 6.22 (1H, dt, J = 7.0, 15.1 Hz, H-6), 6.20 (1H, dd, J = 10.4, 15.1 Hz, H-5), 3.75 (3H, s, -OCH₃), 3.68 (3H, s, -OCH₃), 3.43 (2H, s, H-2), 2.18 (2H, m, H-7), 1.40-1.20 (10H, m, -CH₂-), 0.87 (3H, m, -CH₃).

¹³C-RMN (50 MHz, CDCl₃). δ 171.0, 167.6, 145.8, 141.5, 124.9, 121.5, 51.7, 51.6, 33.1, 32.0, 31.5, 28.9, 28.8, 28.5, 22.4, 13.9.

LRMS(IE): *m/z* 282(M⁺, 28), 251(16), 222(12), 190(8), 183(100), 166(12), 137(43).

E.A. (C₁₆H₂₆O₄): Hallado: C, 68.20, H, 9.30; Calculado: C, 68.06, H, 9.28.

Ejemplo 2

15 Preparación de rac-(E,5S,6S)-5,6-epoxi-3-(metoxicarbonil)-3-tridecenoato de metilo (60)

25

20

10

A una disolución de (3*E*,5*E*)-3-(metoxicarbonil)-3,5-tridecadienoato de metilo (58) (3.0 g, 10.62 mmoles) en CCl₄ (120 ml) se adicionó *m*-CPBA (3.66 g, 21.2 mmoles). La mezcla se agitó a temperatura ambiente durante 24 horas. Pasado ese tiempo, se eliminó el disolvente a presión reducida. El crudo de reacción se disolvió en AcOEt (50 ml) y se lavó con NaHCO₃ sat. (10 × 10 ml), se secó con Na₂SO₄ anhidro, se filtró y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 7:1), obteniéndose (1.93 g, rto. 61%) *rac-(E*,5*S*,6*S*)-5,6-epoxi-3-(metoxicarbonil)-3-tridecenoato de metilo (60), como un aceite transparente.

IR (NaCl): ν 3468, 2949, 2857, 1738, 1721, 1655, 1575, 1437, 1315, 1265, 1202, 1173, 1080, 1012, 932, 865, 776 cm⁻¹.

35

¹**H-RMN** (300 MHz, CDCl₃). δ 6.55 (1H, d, J= 8.3 Hz, H-4), 3.75 (3H, s, -OCH₃), 3.70 (3H, s, -OCH₃), 3.57 (1H, d, J= 16.6 Hz, H-2), 3.44 (1H, d, J= 16.6 Hz, H-2), 3.28 (1H dd, J= 2.1, 8.3 Hz, H-5), 2.97 (1H, dt, J= 2.1, 5.3 Hz, H-6), 1.59 (2H, m, -CH₂-), 1.44 (2H, m, -CH₂-), 1.26 (8H, s_{ancho}, -CH₂-), 0.87 (3H, t, J= 5.1 Hz, -CH₃).

⁴⁰ 13 C-RMN (75 MHz, CDCl₃). δ 170.7, 166.4, 141.8, 131.2, 60.4, 54.3, 52.2, 52.2, 32.3, 31.8, 31.6, 29.2, 29.1, 25.7, 22.5, 14.0.

LRMS(IE): m/z 298(M⁺, 0), 282(0), 266(1), 237(2), 206(2), 179(3), 170(100), 139(10), 111(80).

E.A. (C₁₆H₂₆O₅): Hallado: C, 64.25, H, 8.95; Calculado: C, 64.41, H, 8.78.

Ejemplo 3

⁵⁰ Reacción de rac-(E,5S,6S)-5,6-epoxi-3-(metoxicarbonil)-3-tridecenoato de metilo (60) con DBU

60

A una disolución de rac-(E,5S,6S)-5,6-epoxi-3-(metoxicarbonil)-3-tridecenoato de metilo (60) (5.64 g, 18.90 mmoles) en Et_2O (190 ml) se adicionó DBU (4.31 g, 28.35 mmoles). La mezcla se agitó a temperatura ambiente durante 20 minutos. Pasado ese tiempo se adicionó Celita y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 4:1), obteniéndose (3.46 g, rto. 61%) rac-(2Z,4E,S)-6-hidroxi-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (61-cis) y rac-(2E,4E,S)-6-hidroxi-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (61-cis) en proporción 2:1, respectivamente, ambos como un aceite incoloro.

<u>rac-(2Z,4E,S)-6-Hidroxi-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (61-cis)</u>

5

10

IR (NaCl): v 3431, 2949, 2928, 2856, 1738, 1722, 1634, 1613, 1436, 1375, 1275, 1203, 1170, 1152, 1018, 968, 843 cm⁻¹. 15

¹**H-RMN** (300 MHz, CDCl₃). δ 6.32 (1H, d, J= 15.7 Hz, H-4), 5.98 (1H, dd, J= 5.3, 15.7 Hz, H-5), 5.84 (1H, s, H-5) 2), 4.24 (1H, m, H-6), 3.89 (3H, s, -OCH₃), 3.72 (3H, s, -OCH₃), 1.84-1.52 (4H, m, -CH₂-), 1.25 (8H, s_{ancho}, -CH₂-), $0.86 (3H, t, J = 6.5 Hz, -CH_3).$

20

¹³C-RMN (75 MHz, CDCl₃). δ 167.7, 165.4, 147.2, 143.2, 125.1, 118.7, 71.7, 52.5, 51.8, 36.8, 31.7, 29.3, 29.1, 25.2, 22.5, 14.0.

LRMS(IE): *m/z* 298(M⁺, 0), 280(0), 266(6), 234(24), 167(41), 153(10), 139(100), 127(58).

25

E.A. (C₁₆H₂₆O₅): Hallado: C, 64.30, H, 8.90; Calculado: C, 64.41, H, 8.78.

<u>rac-(2E,4E,S)</u>-6-Hidroxi-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (61-trans)

30

61-trans

40

50

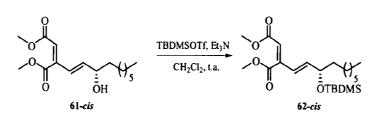
35

IR (NaCl): v 3431, 2928, 2856, 1723, 1634, 1600, 1435, 1206, 1125, 1019, 980, 883 cm⁻¹.

¹**H-RMN** (300 MHz, CDCl₃). δ 7.38 (1H, d, J= 16.1 Hz, H-4), 6.46 (1H, dd, J= 6.1, 16.1 Hz, H-5), 6.33 (1H, s, H-5) 2), 4.25 (1H, m, H-6), 3.82 (3H, s, -OCH₃), 3.75 (3H, s, -OCH₃), 1.85-1.56 (4H, m, -CH₂-), 1.26 (8H, s_{ancho}, -CH₂-), 45 0.86 (3H, m, -CH₃).

¹³C-RMN (75 MHz, CDCl₃). δ 166.7, 165.8, 144.3, 143.0, 122.5, 121.2, 72.7, 52.5, 51.7, 36.9, 31.7, 29.4, 29.1, 25.2, 22.6, 14.1.

LRMS(IE): *m/z* 298(M⁺, 0), 281(0), 267(7), 234(18), 207(7), 179(4), 169(90), 139(100), 127(41).


E.A. (C₁₆H₂₆O₅): Hallado: C, 64.32, H, 8.87; Calculado: C, 64.41, H, 8.78.

55 Ejemplo 4

Preparación de rac-(2Z,4E,S)-6-(terc-butildimetilsililoxi)-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (62-cis)

60

65

A una disolución de rac-(2Z,4E,S)-6-hidroxi-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (61-cis) (0.380 g, 1.27 mmoles) y Et₃N (0.167 g, 1.65 mmoles) en CH₂Cl₂ (13.5 ml) a 0°C se adicionó TBDMSOTf (0.403 g, 1.52 mmoles). La mezcla se agitó a temperatura ambiente durante 18 horas. Pasado ese tiempo se adicionó AcOEt (10 ml) y Celita, y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 10:1), obteniéndose (0.430 g, rto. 82%) rac-(2Z,4E,S)-6-(terc-butildimetilsililoxi)-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (62-cis), como un aceite incoloro.

IR (NaCl): v 3426, 2949, 2929, 2857, 1744, 1723, 1634, 1614, 1461, 1438, 1375, 1271, 1253, 1202, 1169, 1152, 1094, 967, 837, 807, 777 cm⁻¹.

¹**H-RMN** (300 MHz, CDCl₃). δ 6.27 (1H, d, J= 15.8 Hz, H-4), 5.97 (1H, dd, J= 5.1, 15.8 Hz, H-5), 5.80 (1H, s, H-2), 4.22 (1H, m, H-6), 3.89 (3H, s, -OCH₃), 3.73 (3H, s, -OCH₃), 1.57 (2H, m, -CH₂-), 1.25 (10H, s_{ancho}, -CH₂-), 0.89 (9H, s, *terc*-BuSi), 0.87 (3H, t, J= 6.5 Hz, -CH₃), 0.04 (3H, s, MeSi), 0.01 (3H, s, MeSi).

¹³**C-RMN** (75 MHz, CDCl₃). δ 167.8, 165.6, 147.6, 144.4, 124.5, 118.0, 72.2, 52.4, 51.8, 37.6, 31.7, 29.5, 29.1, 25.8, 25.3, 24.9, 22.6, 18.2, 14.1, 14.0, -4.5, -4.8.

LRMS(IE): *m/z* 412(M⁺, 0), 397(2), 380(5), 355(100), 323(58), 313(60), 191(39).

E.A. (C₂₂H₄₀O₅Si): Hallado: C, 64.10, H, 9.85; Calculado: C, 64.04, H, 9.77.

Ejemplo 5

10

20

25 Reacción de <u>rac-(2Z,4E,S)</u>-6-(<u>terc</u>-butildimetilsililoxi)-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (62-<u>cis</u>) con OsO₄/NMO

35

OsO₄, NMO
OH
OH
OH
OTBDMS

OsO₄, NMO
OH
OTBDMS

40

A una disolución de rac-(2Z,4E,S)-6-(terc-butildimetilsililoxi)-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (62-cis) (0.430 g, 1.042 mmoles) y NMO (0.134 g, 1.14 mmoles) en una mezcla acetona/H₂O 5:1 (4.8 ml) se adicionó OsO₄ (2.5% en terc-BuOH, 0.015 g, 0.062 mmoles). La mezcla se agitó a temperatura ambiente durante 24 horas. Pasado ese tiempo se adicionó AcOEt (10 ml) y Celita, y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 5:1), obteniéndose (0.270 g, rto. 65%) una mezcla en proporción 4:1 de rac-(Z,4S,5R,6S)-6-(terc-butildimetilsililoxi)-4,5-dihidroxi-3-(metoxicarbonil)-2-tridecenoato de metilo (63a) y rac-(Z,4R,5S,6S)-6-(terc-butildimetilsililoxi)-4,5-dihidroxi-3-(metoxicarbonil)-2-tridecenoato de metilo (63b), respectivamente, como un aceite incoloro.

50

IR (NaCl): v 3463, 2949, 2929, 2857, 1730, 1654, 1436, 1360, 1258, 1201, 1170, 1089, 837, 776 cm⁻¹.

60

 13 C-RMN (75 MHz, CDCl₃). δ 167.7, 167.5, 165.7, 165.2, 148.6, 148.1, 121.9, 121.7, 76.0, 73.1, 72.2, 71.4, 70.4, 52.5, 52.5, 52.0, 51.9, 33.9, 31.7, 29.6, 29.1, 25.8, 25.7, 24.9, 22.5, 21.0, 17.9, 14.1, 14.0, -4.5, -4.7.

LRMS(IE): *m/z* 445(M⁺-1, 0), 415(3), 389(2), 357(16), 297(5), 243(92), 215(100), 142(34).

Ejemplo 6

10

15

25

40

45

50

55

 $Preparación \ de \ \underline{rac}-(\underline{Z},4\underline{S},5\underline{R},6\underline{S})-6-(\underline{terc}-butildimetilsililoxi)-4,5-(dimetilmetilendioxi)-3-(metoxicarbonil)-2-tridecenoato \ de \ metilo\ (\overline{64})$

OH OH OTBDMS

63a

TsOH, OF OTBDMS

64

A una disolución de rac-(Z,4S,5R,6S)-6-(terc-butildimetilsililoxi)-4,5-dihidroxi-3-(metoxicarbonil)-2-tridecenoato de metilo (63a) (1.36 g, 3.04 mmoles) y 2,2-dimetoxipropano (0.951 g, 9.13 mmoles) en acetona (6 ml) a 0°C se adicionó TsOH (0.020 g, cat.). La mezcla se agitó a temperatura ambiente durante 5 horas. Pasado ese tiempo se adicionó Et₂O (20 ml), y la mezcla se lavó con NaHCO₃ sat. (2 × 10 ml), se secó con MgSO₄ anhidro, se filtró y eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 5:1), obteniéndose (1.34 g, rto. 91%) rac-(Z,4S,5R,6S)-6-(terc-butildimetilsililoxi)-4,5-(dimetilmetilendioxi)-3-(metoxicarbonil)-2-tridecenoato de metilo (64), como un aceite incoloro.

IR (NaCl): y 3444, 2985, 2949, 2930, 2857, 1734, 1655, 1461, 1436, 1381, 1256, 1167, 1068, 836, 776 cm⁻¹.

¹**H-RMN** (300 MHz, CDCl₃). δ 6.08 (1H, s, H-2), 4.68 (1H, d, J = 7.5 Hz, H-4), 4.23 (1H, dd, J = 3.1, 7.5 Hz, H-5), 3.86 (1H, m, H-6), 3.84 (3H, s, -OCH₃), 3.74 (3H, s, -OCH₃), 1.42 (3H, s, -CH₃), 1.32 (3H, s, -CH₃), 1.24 (12H, s_{aucho}, -CH₂-), 0.89 (9H, s, terc-BuSi), 0.88 (3H, m, -CH₃), 0.07 (6H, s, Me2Si).

¹³**C-RMN** (75 MHz, CDCl₃). δ 167.0, 164.7, 149.0, 121.3, 109.7, 81.3, 76.5, 71.5, 52.3, 52.0, 33.9, 31.7, 29.1, 29.1, 27.1, 26.3, 25.9, 25.1, 22.6, 18.1, 14.0, -4.4, -4.4.

35 **LRMS(IE**): m/z 486(M⁺, 0), 471(4), 455(0), 429(44), 411(6), 397(1), 371(7), 339(34), 321(3), 311(7), 279(7), 243 (100), 156(36).

E.A. (C₂₅H₄₆O₇Si): Hallado: C, 61.60, H, 9.60; Calculado: C, 61.69, H, 9.53.

Ejemplo 7

Reacción de \underline{rac} -(\underline{Z} ,4 \underline{S} ,5 \underline{R} ,6 \underline{S})-6-(\underline{terc} -Butildimetilsililoxi)-4,5-(dimetilmetilendioxi)-3-(metoxicarbonil)-2-tridecenoato de metilo (64) con OsO_4

OTBDMS acetona/H₂O (5:1)

OTBDMS

OTBDMS

OTBDMS

OTBDMS

OTBDMS

OTBDMS

OTBDMS

A una disolución de rac-(Z,4S,5R,6S)-6-(terc-butildimetilsililoxi)-4,5-(dimetilmetilendioxi)-3-(metoxicarbonil)-2-tridecenoato de metilo (64) (0.980 g, 2.01 mmoles) y NMO (0.518 g, 4.43 mmoles) en una mezcla acetona/H₂O 5:1 (9.2 ml) se adicionó OsO₄ (2.5% en terc-BuOH, 0.030 g, 0.12 mmoles). La mezcla se agitó a temperatura ambiente durante 5 días. Pasado ese tiempo se adicionó una disolución acuosa de Na₂S₂O₃ 5% (0.5 ml), AcOEt (20 ml) y Celita, y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 10:1), obteniéndose (0.320 g, rto. 31%) rac-(2S,3S,4R,5R,6S)-6-(terc-butildimetilsililoxi)-2,3-dihidroxi-4,5-(dimetilmetilen dioxi)-3-(metoxicarbonil)tridecanoato de metilo (65a) y (0.322 g, rto. 31%) rac-(2R,3R,4R,5R,6S)-6-(terc-butildimetilsililoxi)-2,3-dihidroxi-4,5-(dimetilmetilen dioxi)-3-(metoxicarbonil)tridecanoato de metilo (65b), ambos como un aceite incoloro.

rac-(2S, 3S, 4R, 5R, 6S)-6-(terc-Butildimetilsililoxi)-2,3-dihidroxi-4,5-(dimetilmetilendioxi)-3-(metoxicarbonil)tridecanoato de metilo (65a)

5

10

15

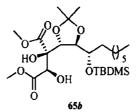
IR (NaCl): v 3490, 2949, 2930, 2857, 1748, 1461, 1439, 1379, 1367, 1255, 1213, 1109, 1088, 1000, 837, 775 cm^{-1} .

20

¹**H-RMN** (300 MHz, CDCl₃). δ 4.75 (1H, d, J = 5.8 Hz, H-4), 4.43 (1H, s, H-2), 4.41 (1H, dd, J= 5.8, 9.7 Hz, H-5), 3.85 (3H, s, -OCH₃), 3.80 (1H, m, H-6), 3.76 (3H, s, -OCH₃), 1.73 (1H, m), 1.59 (1H, m), 1.36 (3H, s, -CH₃), 1.35 (3H, s, -CH₃), 1.26 (10H, s_{archo}, -CH₂-), 0.92 (9H, s, terc-BuSi), 0.91 (3H, m, -CH₃), 0.16 (3H, s, MeSi), 0.14 (3H, s,

25

¹³C-RMN (75 MHz, CDCl₃). δ 172.0, 170.7, 110.1, 80.8, 79.6, 78.0, 74.7, 73.2, 52.8, 52.5, 33.3, 31.6, 29.6, 29.0, 27.7, 27.0, 26.9, 25.7, 22.8, 22.4, 18.0, 13.8, 0.8, -4.3, -4.6.


LRMS(IE): m/z 520(M⁺, 0), 463(0), 431(1), 405(4), 369(13), 327(5), 295(5), 243(100), 187(18), 73(60).

30

E.A. (C₂₅H₄₈O₉Si): Hallado: C, 57.60, H, 9.35; Calculado: C, 57.66, H, 9.29.

rac-(2R,3R,4R,5R,6S)-6-(terc-Butildimetilsililoxi)-2,3-dihidroxi-4,5-(dimetilmetilendioxi)-3-(metoxicarbonil)tridecanoato de metilo (65b)

40

45

50 IR (NaCl): v 3489, 2949, 2929, 2857, 1748, 1461, 1438, 1380, 1367, 1252, 1216, 1101, 1050, 1003, 836, 775 cm^{-1} .

¹**H-RMN** (300 MHz, CDCl₃). δ 4.65 (1H, m, H-4), 4.36 (1H, s, H-2), 4.34 (1H, m, H-5), 3.80 (3H, s, -OCH₃), 3.79 (3H, s, -OCH₃), 3.76 (1H, m, H-6), 1.61 (2H, m), 1.41 (3H, s, -CH₃), 1.39 (3H, s, -CH₃), 1.26 (10H, s_{ancho}, -CH₂-), 0.90 (9H, s, terc-BuSi), 0.89 (3H, m, -CH₃), 0.09 (3H, s, MeSi), 0.08 (3H, s, MeSi).

¹³C-RMN (75 MHz, CDCl₃). δ 171.1, 170.9, 110.2, 78.9, 78.8, 76.9, 72.7, 71.1, 52.8, 31.6, 29.4, 29.0, 27.6, 26.5, 25.7, 24.8, 22.4, 18.0, 13.8, -4.4, -4.6.

60

LRMS(IE): m/z 520(M⁺, 0), 505(2), 463(0), 431(1), 387(9), 327(4), 299(6), 243(100), 187(19), 73(69).

E.A. (C₂₅H₄₈O₉Si): Hallado: C, 57.58, H, 9.37; Calculado: C, 57.66, H, 9.29.

Ejemplo 8

10

15

Preparación de \underline{rac} -(\underline{Z} ,4 \underline{S} ,5 \underline{R} ,6 \underline{R} ,7 \underline{S})-7-(\underline{terc} -butildimetilsililoxi)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxi-carbonil)-2-tetradecenoato de metilo (76a)

A una disolución de *rac*-(2*S*,3*S*,4*R*,5*R*,6*S*)-6-(*terc*-butildimetilsililoxi)-2,3-dihidroxi-4,5-(dimetilmetilendioxi)-3-(metoxicarbonil)tridecanoato de metilo (65a) (0.294 g, 0.564 mmoles) en AcOEt (5 ml) se adicionó IBX (0.474 g, 1.69 mmoles). La mezcla se calentó a 80°C durante 8 horas. Pasado ese tiempo la mezcla se filtró a vacío sobre *Celita* y se eliminó el disolvente a presión reducida. El residuo se disolvió en CH₂Cl₂ (10 ml), y se adicionó [(metoxicarbonil) metilen]trifenilfosforano (0.451 g, 1.34 mmoles). La mezcla se agitó a temperatura ambiente durante 24 horas. Pasado ese tiempo se adicionó AcOEt (10 ml) y *Celita*, y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 5:1), obteniéndose *rac*-(*Z*,4*S*,5*R*,6*R*,7*S*)-7-(*terc*-butildimetilsililoxi)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (76a) (0.220 g, rto. 71%), como un aceite incoloro.

IR (NaCl): ν 3477, 2949, 2929, 2854, 1743, 1642, 1461, 1435, 1367, 1252, 1213, 1166, 1095, 1062, 836, 774 cm⁻¹.

³⁰ ¹**H-RMN** (400 MHz, CDCl₃). δ 6.49 (1H, s, H-2), 4.45 (1H, d, J = 7.3 Hz, H-5), 4.28 (1H, dd, J = 2.6, 7.3 Hz, H-6), 4.00 (1H, s, -OH), 3.85 (3H, s, -OCH₃), 3.81 (3H, s, -OCH₃), 3.77 (1H, m, H-7), 3.73 (3H, s, -OCH₃), 1.63-1.42 (2H, m, H-8), 1.38 (6H, s, -CH₃), 1.28 (10H, s_{ancho}, -CH₂-), 0.89 (3H, m, -CH₃), 0.88 (9H, s, *terc*-BuSi), 0.02 (3H, s, MeSi), 0.02 (3H, s, MeSi).

¹³C-RMN (100 MHz, CDCl₃). δ 171.0, 166.3, 164.5, 147.1, 122.5, 110.1, 79.9, 79.8, 78.4, 72.7, 53.9, 52.5, 52.0, 31.8, 31.2, 29.8, 29.3, 27.7, 26.3, 25.9, 25.7, 25.4, 22.6, 18.2, 14.0, -4.4.

LRMS(IE): *m/z* 574(M⁺, 0), 517(3), 485(2), 409(5), 335(14), 257(13), 243(100), 215(31), 171(16).

E.A. (C₂₈H₅₀O₁₀Si): Hallado: C, 58.60, H, 8.85; Calculado: C, 58.51, H, 8.77.

Ejemplo 9

40

Preparación de <u>rac-(Z,4R,5R,6R,7S)</u>-7-(<u>terc-butildimetilsililoxi</u>)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxi-carbonil)-2-tetradecenoato de metilo (76b)

A una disolución de *rac*-(2*R*,3*R*,4*R*,5*R*,6*S*)-6-(*terc*-butildimetilsililoxi)-2,3-dihidroxi-4,5-(dimetilmetilendioxi)-3- (metoxicarbonil)tridecanoato de metilo (65b) (0.322 g, 0.618 mmoles) en AcOEt (6 ml) se adicionó IBX (0.519 g, 1.85 mmoles). La mezcla se calentó a 80°C durante 8 horas. Pasado ese tiempo la mezcla se filtró a vacío sobre *Celita*, y se eliminó el disolvente a presión reducida. El residuo se disolvió en CH₂Cl₂ (10 ml), y se adicionó [(metoxicarbonil) metilen]trifenilfosforano (0.483 g, 1.44 mmoles). La mezcla se agitó a temperatura ambiente durante 24 horas. Pasado ese tiempo se adicionó AcOEt (10 ml) y *Celita*, y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 5:1), obteniéndose *rac*-(Z,4*R*,5*R*,6*R*,7*S*)-7-(*terc*-butildimetilsililoxi)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (76b) (0.270 g, rto. 76%), como un aceite incoloro.

IR (NaCl): v 3471, 2949, 2930, 2857, 1735, 1645, 1461, 1435, 1368, 1254, 1167, 1086, 836, 775 cm⁻¹.

¹**H-RMN** (400 MHz, CDCl₃). δ 6.51 (1H, s, H-2), 4.60 (1H, d, J= 6.6 Hz, H-5), 4.50 (1H, s, -OH), 4.04 (1H, dd, J= 6.2, 6.6 Hz, H-6), 3.81 (3H, s, -OCH₃), 3.78 (3H, s, -OCH₃), 3.74 (3H, s, -OCH₃), 3.68 (1H, dt, J= 6.2, 10.9 Hz, H-7), 1.56 (2H, m, H-8), 1.39 (6H, s, -CH₃), 1.28 (10H, s_{ancho}, -CH₂-), 0.90 (12H, m, terc-BuSi, -CH₃), 0.10 (6H, m, -CH₃).

¹³**C-RMN** (100 MHz, CDCl₃). δ 170.2, 166.1, 165.0, 145.9, 124.0, 110.6, 79.5, 78.7, 76.3, 73.4, 53.3, 52.1, 51.8, 33.1, 31.6, 29.5, 29.0, 27.0, 26.8, 26.1, 25.6, 23.5, 17.9, 13.8, -4.4, -4.7.

LRMS(IE): *m/z* 574(M⁺, 0), 559(3), 517(2), 485(2), 409(15), 335(26), 243(100), 215(34).

E.A. (C₂₈H₅₀O₁₀Si): Hallado: C, 58.58, H, 8.87; Calculado: C, 58.51, H, 8.77.

Ejemplo 10

10

15

20

30

Preparación de <u>rac-(Z,4S,5R,6S)</u>-4,5-Epoxi-6-hidroxi-3-(metoxicarbonil)-2-tridecenoato de metilo (82c)

A una disolución de *rac-*(2*Z*,4*E*,*S*)-6-hidroxi-3-(metoxicarbonil)-2,4-tridecadienoato de metilo (3a) (0.080 g, 0.26 mmoles) en CC14 (2.5 ml) se adicionó *m*-CPBA (0.101 g, 0.59 mmoles). La mezcla se agitó a temperatura ambiente durante 3 días. Pasado ese tiempo, se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 4:1), obteniéndose (0.080 g, rto. 95%) *rac-*(*Z*,4*S*,5*R*,6*S*)-4,5-epoxi-6-hidroxi-3-(metoxicarbonil)-2-tridecenoato de metilo (82c), como un aceite incoloro.

IR (NaCl): v 3473, 2929, 2857, 1730, 1652, 1574, 1437, 1372, 1276, 1204, 1171, 1020, 870 cm⁻¹.

¹**H-RMN** (300 MHz, CDCl₃). δ 6.15 (111, s, H-2), 3.86 (1H, m), 3.81 (3H, s, -OCH₃), 3.73 (3H, s, -OCH₃), 3.71 (3H, s, -OCH₃), 3.63 (3H, s, -OCH₃), 3.58 (1H, m), 3.05 (1H, m), 1.63 (2H, m, -CH₂-), 1.25 (10H, s_{ancho}, -CH₂-), 0.85 (3H, m, -CH₃).

¹³C-RMN (75 MHz, CDCl₃). δ 165.6, 165.6, 165.0, 164.9, 144.5, 144.1, 122.0, 121.8, 70.1, 67.8, 63.9, 63.4, 53.8, 52.6, 52.2, 52.1, 34.3, 33.0, 31.6, 29.4, 29.3, 29.0, 25.1, 24.9, 22.5, 14.0.

LRMS(IE): *m/z* 314(M⁺, 0), 282(5), 237(1), 223(1), 173(10), 156(100), 141(82), 127(10).

E.A. (C₁₆H₂₆O₆): Hallado: C, 61.00, H, 8.41; Calculado: C, 61.13, H, 8.34.

Ejemplo 11

50

55

Preparación de \underline{rac} - $(\underline{Z}, 4\underline{S}, 5\underline{R}, 6\underline{R})$ -5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-7-oxo-2-tetradecenoato de metilo (110a)

A una disolución de rac-(Z,4S,5R,6R,7S)-7-(terc-butildimetilsililoxi)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis (metoxicarbonil)-2-tetradecenoato de metilo (76a) (0.220 g, 0.382 mmoles) en MeOH (5 ml) se adicionó $Et_3N \cdot (HF)_3$ (0.492 g, 3.05 mmoles). La mezcla se agitó a temperatura ambiente durante 6 días. Pasado ese tiempo se adicionó AcOEt (10 ml) y la mezcla se lavó con H_2O (2 × 5 ml), se secó con Na_2SO_4 anhidro, se filtró y se eliminó el disolvente a presión reducida. El residuo se disolvió en AcOEt (3.6 ml), y se adicionó IBX (0.224 g, 0.801 mmoles, 3 eq.). La mezcla se calentó a 80°C durante 7 horas. Pasado ese tiempo la mezcla se filtró a vacío sobre Celita y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 4:1), obteniéndose (0.110 g, rto. 63%) rac-(Z,4S,5R,6R)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-7-oxo-2-tetradecenoato de metilo (110a), como un aceite incoloro.

IR (NaCl): *v* 3477, 2949, 2931, 2854, 1733, 1645, 1455, 1436, 1373, 1201, 1162, 1083, 985, 876 cm⁻¹.

¹**H-RMN** (400 MHz, CDCl₃). δ 6.45 (1H, s, H-2), 5.02 (1H, d, J = 4.6 Hz, H-6), 4.51 (1H, d, J = 4.6 Hz, H-5), 3.88 (3H, s, -OCH₃), 3.80 (3H, s, -OCH₃), 3.73 (3H, s, -OCH₃), 2.64 (2H, m, H-8), 1.57 (2H, m, H-9), 1.45 (3H, s, -CH₃), 1.25 (13H, s_{ancho}, -CH₂-, -CH₃), 0.86 (3H, m, -CH₃).

 13 C-RMN (100 MHz, CDCl₃). δ 209.2, 170.7, 166.0, 164.4, 146.2, 122.9, 112.3, 80.6, 79.7, 77.5, 54.2, 52.6, 52.1, 39.2, 31.6, 29.0, 29.0, 26.5, 26.5, 23.1, 22.5, 14.0.

LRMS(IE): m/z 458(M⁺, 0), 443(1), 427(0), 399(0), 369(12), 331(7), 313(14), 273(92), 227(32), 127(100).

E.A. (C₂₂H₃₄O₁₀): Hallado: C, 57.70, H, 7.50; Calculado: C, 57.63, H, 7.47.

25 Ejemplo 12

10

20

30

55

65

Preparación de \underline{rac} - $(\underline{Z}, 4\underline{R}, 5\underline{R}, 6\underline{R})$ -5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-7-oxo-2-tetradecenoato de <math>metilo (110b)

35 HO 5 1) Et₃N·(HF)₃, MeOH, t.a. HO 5 1106

A una disolución de *rac-*(*Z*,4*R*,5*R*,6*R*,7*S*)-7-(*terc*-butildimetilsililoxi)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis (metoxicarbonil)-2-tetradecenoato de metilo (76b) (0.270 g, 0.469 mmoles) en MeOH (6 ml) se adicionó Et₃N·(HF)₃ (0.605 g, 3.75 mmoles). La mezcla se agitó a temperatura ambiente durante 6 días. Pasado ese tiempo se adicionó AcOEt (10 ml) y la mezcla se lavó con H₂O (2 × 5 ml), se secó con Na₂SO₄ anhidro, se filtró y se eliminó el disolvente a presión reducida. El residuo se disolvió en AcOEt (4 ml), y se adicionó IBX (0.324 g, 1.15 mmoles). La mezcla se calentó a 80°C durante 7 horas. Pasado ese tiempo la mezcla se filtró a vacío sobre *Celita*, y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 4:1), obteniéndose (0.160 g, rto. 74%) *rac-*(2*Z*,4*R*,5*R*,6*R*)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-7-oxo-2-tetradecenoato de metilo (110b), como un aceite incoloro.

IR (NaCl): *v* 3470, 2985, 2949, 2930, 2854, 1732, 1648, 1436, 1373, 1352, 1255, 1166, 1090, 882 cm⁻¹.

¹**H-RMN** (400 MHz, CDCl₃). δ 6.45 (1H, s, H-2), 4.70 (1H, d, J = 6.6 Hz, H-6), 4.37 (1H, d, J = 6.6 Hz, H-5), 3.96 (1H, s, -OH), 3.83 (3H, s, -OCH₃), 3.81 (3H, s, -OCH₃), 3.74 (3H, s, -OCH₃), 2.66-2.61 (2H, m, H-8), 1.55 (2H, m, H-9), 1.47 (3H, s, -CH₃), 1.38 (3H, s, -CH₃), 1.27 (8H, s_{ancho}, -CH₂-), 0.87 (3H, m, -CH₃).

¹³C-RMN (100 MHz, CDCl₃). δ 210.6, 169.9, 166.2, 164.7, 146.1, 123.4, 111.7, 80.4, 79.1, 76.3, 53.7, 52.3, 51.9, 38.6, 31.4, 28.8, 28.8, 26.2, 26.08, 22.6, 22.3, 13.8.

LRMS(IE): m/2 459(M⁺+1, 0), 443(2), 399(1), 369(4), 331(10), 313(11), 299(7), 273(50), 255(32), 127(100).

E.A. (C₂₂H₃₄O₁₀): Hallado: C, 57.72, H, 7.55; Calculado: C, 57.63, H, 7.47.

Ejemplo 13

10

15

30

35

40

45

55

60

65

Reacción de \underline{rac} -(\underline{Z} ,4 \underline{S} ,5 \underline{R} ,6 \underline{R})-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-7-oxo-2-tetradecenoato de metilo (110a) con p-TsOH y MeOH

HO, OH HO

A una disolución de rac-(Z,4S,5R,6R)-5,6-(dimetilmetilendioxi)-4-hidroxi-3,4-bis(metoxicarbonil)-7-oxo-2-tetradecenoato de metilo (110a) (0.045 g, 0.098 mmoles) en MeOH (1.3 ml) se adicionó p-TsOH (0.008 g, cat.). La mezcla se agitó a temperatura ambiente durante 6 días. Pasado ese tiempo se adicionó NaHCO₃ (0.03 g) y la mezcla se agitó durante 10 minutos. A continuación la mezcla se filtró a vacío sobre Celita y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 3:1), obteniéndose (0.030 g, rto. 71%) rac-(Z,4S,5R,6R,7S)-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2- tetradecenoato de metilo (111a) y (0.011 g, rto. 26%) rac-(Z,4S,5R,6R,7R)-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (112a), ambos como un aceite incoloro.

 $\underline{rac} - (\underline{Z}, \underline{4S}, \underline{5R}, \underline{6R}, \underline{7S}) - 5, \underline{6} - Dibidroxi - 4, \underline{7} - epoxi - 7 - metoxi - 3, \underline{4} - bis(metoxicarbonil) - 2 - tetradecenoato de metilo (111a) - 2 - tetradece$

OHO, OH

IR (NaCl): v 3466, 2950, 2926, 2852, 1758, 1732, 1642, 1435, 1258, 1169, 1080 cm⁻¹.

¹**H-RMN** (400 MHz, CDCl₃). δ 6.47 (1H, s, H-2), 4.47 (1H, dd, J = 4.1, 8.6 Hz, H-5), 4.21 (1H, dd, J = 8.6, 10.7 Hz, H-6), 3.81 (3H, s, -OCH₃), 3.74 (3H, s, -OCH₃), 3.73 (3H, s, -OCH₃), 3.64 (1H, d, J = 4.1 Hz, -OH), 3.32 (3H, s, -OCH₃), 2.42 (1H, d, J = 10.7 Hz, -OH), 1.99 (1H, m, H-8), 1.83 (1H, m, H-8), 1.29 (10H, s_{ancho}, -CH₂-), 0.88 (3H, m, -CH₃).

¹³C-RMN (100 MHz, CDCl₃). δ 169.5, 167.6, 165.6, 144.0, 122.8, 105.6, 85.0, 82.5, 78.0, 52.9, 52.9, 52.2, 49.1, 32.9, 31.7, 29.7, 29.0, 23.0, 22.6, 14.0.

LRMS(IE): *m/z* 432(M⁺, 0), 401(0), 383(0), 369(1), 333(6), 323(9), 255(2), 213(73), 181(100), 143(16), 99(3).

E.A. (C₂₀H₃₂O₁₀): Hallado: C, 55.60, H, 7.55; Calculado: C, 55.55, H, 7.46.

<u>rac-(Z,4S,5R,6R,7R)</u>-5,6-Dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxi carbonil)-2-tetradecenoato de metilo (112a)

IR (NaCl): v 3491, 2954, 2855, 1732, 1650, 1436, 1351, 1268, 1173, 1076, 1030, 783 cm⁻¹.

¹**H-RMN** (400 MHz, CDCl₃). δ 6.41 (1H, s, H-2), 4.43 (1H, d, *J* = 11.7 Hz, H-5), 4.04 (1H, d, *J* = 8.5 Hz, H-6), 3.95 (1H, d, *J* = 11.7 Hz, -OH), 3.86 (3H, s, -OCH₃), 3.81 (3H, s, -OCH₃), 3.73 (3H, s, -OCH₃), 3.43 (3H, s, -OCH₃), 3.26 (1H, d, *J* = 8.5 Hz, -OH), 1.96 (1H, m, H-8), 1.70 (1H, m, H-8), 1.30 (10H, sncho, -CH₂-), 0.88 (3H, m, -CH₃).

 $^{13}\text{C-RMN}$ (100 MHz, CDCl₃). δ 168.2, 168.2, 164.5, 148.3, 122.5, 114.9, 91.5, 86.2, 78.9, 53.1, 53.1, 52.1, 49.2, 31.7, 29.5, 29.1, 28.1, 23.7, 22.6, 14.0.

LRMS(IE): *m/z* 432(M⁺, 0), 383(0), 333(4), 301(1), 255(1), 213(72), 181(100), 173(39), 99(9).

E.A. (C₂₀H₃₂O₁₀): Hallado: C, 55.62, H, 7.53; Calculado: C, 55.55, H, 7.46.

15 Ejemplo 14

10

30

45

50

55

60

65

Reacción de \underline{rac} -(\underline{Z} ,4 \underline{S} ,5 \underline{R} ,6 \underline{R} ,7 \underline{S})-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (111a) con OsO_4

25

OHO OH

Society of the second of the sec

A una disolución de rac-(Z,4S,5R,6R,7S)-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (111a) (0.030 g, 0.069 mmoles) y NMO (0.017 g, 0.15 mmoles) en una mezcla acetona/H₂O 5:1 (0.6 ml) se adicionó OsO₄ (2.5% en terc-BuOH, 0.001 g, 0.004 mmoles). La mezcla se agitó a temperatura ambiente durante 6 días. Pasado ese tiempo se adicionó una disolución acuosa de Na₂S₂O₃ 5% (0.5 ml), AcOEt (10 ml) y Celita, y se eliminó el disolvente a presión reducida. El producto se purifico por columna comatográfica (hexano/AcOEt, 1:1), obteniéndose (0.005 g, rto. 17%) una mezcla de rac-(2S,3S,4R,5R,6R,7S)-4,7-epoxi-7-metoxi-3-(metoxicarbonil)-3,5,6-trihidroxitetradecanoato de metilo 4,2-carbolactona (120) y rac-(2R,3R,4R,5R,6R,7S)-4,7-epoxi-7-metoxi-3-(metoxicarbonil)-3,5,6-trihidroxitetradecanoato de metilo 4,2-carbolactona (121) en proporción 1:11, respectivamente, como un aceite incoloro.

 \underline{rac} - $(2\underline{S},3\underline{S},4\underline{R},5\underline{R},6\underline{R},7\underline{S})$ -4,7- \underline{E} poxi-7- \underline{metoxi} -3- $\underline{(metoxicarbonil)}$ -3,5,6- $\underline{trihidroxitetradecanoato}$ de \underline{metilo} 4,2- \underline{c} arbolactona $\underline{(120)}$

IR (KBr): v 3426, 2922, 2853, 1739, 1636, 1437, 1375, 1077 cm⁻¹.

¹**H-RMN** (400 MHz, CDCl₃). δ 4.98 (1H, s, H-2), 4.77 (1H, d, J= 3.0 Hz, -OH), 4.65 (1H, dd, J = 3.0, 7.9 Hz, H-5), 4.19 (1H, dd, J = 7.9, 10.5 Hz, H-6), 3.91 (3H, s, -OCH₃), 3.86 (3H, s, -OCH₃), 3.82 (1H, s, -OH), 3.19 (3H, s, -OCH₃), 2.36 (1H, d, J = 10.5 Hz, -OH), 1.80 (2H, m, H-8), 1.25 (10H, s_{ancho}, -CH₂-), 0.87 (3H, t, J = 5.1 Hz, -CH₃).

 13 C-RMN (100 MHz, CDCl₃). δ 169.9, 169.4, 166.5, 105.7, 85.8, 78.8, 78.5, 75.8, 67.1, 54.3, 53.6, 49.0, 32.1, 31.7, 29.7, 29.0, 23.1, 22.6, 14.0.

LRMS(IE): *m/z* 434(M⁺, 0), 335(48), 315(16), 290(2), 275(10), 247(52), 229(78), 201(23), 159(100), 101(53).

E.A. (C₁₉H₃₀O₁₁): Hallado: C, 52.60, H, 7.00; Calculado: C, 52.53, H, 6.96.

 \underline{rac} - $(2\underline{R},3\underline{R},4\underline{R},5\underline{R},6\underline{R},7\underline{S})$ -4,7- \underline{Epoxi} -7- \underline{metoxi} -3-(metoxicarbonil)-3,5,6- $\underline{trihidroxitetradecanoato\ de\ metilo\ 4,2$ - $\underline{carbona}$ (121)

IR (KBr): v 3433, 2953, 2922, 2847, 1804, 1739, 1630, 1437, 1148, 1083, 1055, 800, 499 cm⁻¹.

 1 **H-RMN** (400 MHz, CDCl₃). δ 5.43 (1H, s, H-2), 4.28 (2H, m, H-5, H-6), 3.94 (3H, s, -OCH₃), 3.83 (3H, s, -OCH₃), 3.62 (1H, s_{ancho}, -OH), 3.26 (3H, s, -OCH₃), 2.36 (1H, d, J = 9.0 Hz, -OH), 1.89 (2H, m, H-8), 1.23 (10H, s_{ancho}, -CH₂-), 0.89 (3H, m, -CH₃).

²⁰ 13 C-RMN (100 MHz, CDCl₃). δ 169.0, 167.5, 165.6, 106.1, 94.9, 80.9, 78.4, 77.7, 77.5, 53.1, 52.9, 49.2, 32.0, 31.6, 29.8, 29.0, 23.2, 22.5, 14.1.

LRMS(IE): m/z 385(1), 355(1), 335(11), 303(1), 290(2), 278(4), 247(15), 217(4), 159(40), 101(15), 83(100).

E.A. (C₁₉H₃₀O₁₁): Hallado: C, 52.45, H, 6.90; Calculado: C, 52.53, H, 6.96.

Ejemplo 14

5

10

15

25

35

40

Reacción de <u>rac-(Z,4S,5R,6R,7S)</u>-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (111a) con RuCl₃/NaIO₄

A una disolución de rac-(Z,4S,5R,6R,7S)-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (111a) (0.025 g, 0.057 mmoles) en una mezcla AcOEt/MeCN 1:1 (1 ml) a 0°C se adicionó una disolución de RuCl₃·3H₂O (0.003 g, 0.014 mmoles) y NaIO₄ (0.018 g, 0.086 mmoles) en H₂O (0.2 ml). La mezcla resultante se agitó a 0°C durante 5 minutos. Pasado ese tiempo se adicionó NaHCO₃ sat. (1 ml) y AcOEt (2 ml). Se separaron las fases, y la fase acuosa se extrajo con AcOEt (2 × 1 ml). La fase orgánica se secó con Na₂SO₄ anhidro, se filtró y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 1:1), obteniéndose (0.008 g, rto. 32%) rac-(2S,3S,4R,5R,6R,7S)-4,7-epoxi-7-metoxi-3-(metoxicarbonil)3,5,6-trihidroxitetradecanoato de metilo 4,2-carbolactona (120), como un aceite incoloro.

IR (KBr): v 3426, 2922, 2853, 1739, 1636, 1437, 1375, 1077 cm⁻¹.

⁵⁵ ¹**H-RMN** (400 MHz, CDCl₃). δ 4.98 (1H, s, H-2), 4.77 (1H, d, *J*= 3.0 Hz, -OH), 4.65 (1H, dd, *J* = 3.0, 7.9 Hz, H-5), 4.19 (1H, dd, *J* = 7.9, 10.5 Hz, H-6), 3.91 (3H, s, -OCH₃), 3.86 (3H, s, -OCH₃), 3.82 (1H, s, -OH), 3.19 (3H, s, -OCH₃), 2.36 (1H, d, *J*= 10.5 Hz, -OH), 1.80 (2H, m, H-8), 1.25 (10H, s_{aucho}, -CH₂-), 0.87 (3H, t, *J* = 5.1 Hz, -CH₃).

¹³**C-RMN** (100 MHz, CDCl₃). δ 169.9, 169.4, 166.5, 105.7, 85.8, 78.8, 78.5, 75.8, 67.1, 54.3, 53.6, 49.0, 32.1, 31.7, 29.7, 29.0, 23.1, 22.6, 14.0.

LRMS(IE): m/z 434(M⁺, 0), 335(48), 315(16), 290(2), 275(10), 247(52), 229(78), 201(23), 159(100), 101(53).

E.A. (C₁₉H₃₀O₁₁): Hallado: C, 52.60, H, 7.00; Calculado: C, 52.53, H, 6.96.

Ejemplo 15

10

15

25

35

40

Reacción de \underline{rac} -(\underline{Z} 4 \underline{S} ,5 \underline{R} ,6 \underline{R} ,7 \underline{R})-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (112a) con RuCl₃/NaIO₄

OHO OH

OHO OHO

OHO OH

A una disolución de rac-(Z,4S,5R,6R,7R)-5,6-dihidroxi-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2-tetradecenoato de metilo (112a) (0.018 g, 0.041 mmoles) en una mezcla AcOEt/MeCN 1:1 (1 ml) a 0°C se adicionó una disolución de RuCl₃·3H₂O (0.002 g, 0.010 mmoles) y NaIO₄ (0.013 g, 0.062 mmoles) en H₂O (0.2 ml). La mezcla se agitó a 0°C durante 5 minutos. Pasado ese tiempo se adicionó una disolución acuosa de Na₂S₂O₃ 10% (0.2 ml), H₂O (2 ml) y AcOEt (2 ml). Se separaron las fases, y la fase acuosa se extrajo con AcOEt (2 × 1 ml). La fase orgánica se secó con Na₂SO₄ anhidro, se filtró y se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 1:2), obteniéndose (0.014 g, rto. 74%) rac-(2S,3S,4S,5S,6S,7R)-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2,3,5,6-tetrahidroxitetradecanoato de metilo (122), como un aceite incoloro.

IR (NaCl): v 3435, 2957, 2926, 2852, 1643, 1438, 1074 cm⁻¹.

¹**H-RMN** (400 MHz, CDCl₃). δ 5.25 (1H, d, J = 6.7 Hz, H-2), 5.06 (1H, d, J= 10.1 Hz, H-5), 4.51 (1H, s, -OH), 4.18 (1H, d, J= 10.7 Hz, -OH), 3.92 (1H, d, J= 10.7 Hz, H-6), 3.85 (3H, s, -OCH₃), 3.83 (3H, s, -OCH₃), 3.75 (3H, s, -OCH₃), 3.59 (1H, d, J= 6.7 Hz, -OH), 3.36 (3H, s, -OCH₃), 3.25 (1H, d, J= 10.1 Hz, -OH), 1.85 (1H, m, H-8), 1.66 (1H, m, H-8), 1.27 (10H, s_{ancho}, -CH₂-), 0.87 (3H, m, -CH₃).

 13 C-RMN (100 MHz, CDCl₃). δ 170.8, 170.8, 170.7, 113.7, 79.7, 79.4, 78.8, 78.3, 73.8, 53.9, 52.9, 52.4, 49.5, 31.8, 29.7, 29.1, 28.1, 23.4, 22.6, 14.0.

LRMS(IE): *m/z* 466(M⁺, 0), 385(2), 375(3), 367(4), 335(11), 315(6), 275(4), 247(15), 229(26), 185(22), 159(100), 127(49).

E.A. (C₂₀H₃₄O₁₂): Hallado: C, 51.65, H, 7.20; Calculado: C, 51.50, H, 7.35.

Ejemplo 16

Preparación de \underline{rac} - $(1\underline{R},3\underline{S},4\underline{S},5\underline{S},6\underline{R},7\underline{R})$ -1-heptil-3,4,5-tris(metoxicarbonil)-4,6,7-trihidroxi-2,8-dioxabiciclo[3.2.1] octano (3)

Método A

Una disolución de rac-(2S,3S,4R,5R,6R,7S)-4,2-carbolactona-4,7-epoxi-7-metoxi-3-(metoxicarbonil)-3,5,6-trihidroxi-2-tetradecenoato de metilo (120) (0.008 g, 0.018 mmoles) en HCl (2% en MeOH, 2.37 ml) se calentó en un Kimble a 80° C durante 30 horas. Pasado ese tiempo se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 1:1), obteniéndose (0.006 g, rto. 75%) rac-(1R,3S,4S,5S,6R,7R)-1-heptil-3,4,5-tris(metoxicarbonil)-4,6,7-trihidroxi-2,8-dioxabiciclo[3.2.1]octano (3), como un sólido blanco.

Método B

10

HO

OH

HO

OH

HO

OH

HO

OH

MeO₂C

OO

S

MeO₂C

OO

OH

15

15

Una disolución de *rac-*(2*S*,3*S*,4*S*,5*R*,6*R*,7*R*)-4,7-epoxi-7-metoxi-3,4-bis(metoxicarbonil)-2,3,5,6-tetrahidroxi-2-tetradecanoato de metilo (122) (0.026 g, 0.055 mmoles) en HCl (2% en MeOH, 2.5 ml) se calentó en un *Kimble* a 80°C durante 30 horas.73 Pasado ese tiempo se eliminó el disolvente a presión reducida. El producto se purificó por columna cromatográfica (hexano/AcOEt, 1:1), obteniéndose (0.019 g, rto. 73%) rac-(1*R*,3*S*,4*S*,5*S*,6*R*,7*R*)-1-heptil-3,4,5-tris (metoxicarbonil)-4,6,7-trihidroxi-2,8-dioxabiciclo[3.2.1]octano (3), como un sólido blanco.

 $\underline{rac} - (1\underline{R}, 3\underline{S}, 4\underline{S}, 5\underline{S}, 6\underline{R}, 7\underline{R}) - 1 - Heptil - 3, 4, 5 - tris(metoxicarbonil) - 4, 6, 7 - trihidroxi - 2, 8 - dioxabiciclo[3.2.1] octano (3)$

Pf.: > 220°C.

¹**H-RMN** (400 MHz, CDCl₃). δ 5.09 (1H, s, H-3), 5.08 (1H, dd, J= 2.4, 5.4 Hz, H-6), 4.14 (1H, dd, J= 2.4, 3.7 Hz, H-7), 3.84 (3H, s, -OCH₃), 3.74 (3H, s, -OCH₃), 3.68 (3H, s, -OCH₃), 3.67 (1H, s, -OH), 2.58 (1H, d, J= 5.4 Hz, -OH), 2.40 (1H, d, J= 3.7 Hz, -OH), 1.89 (2H, m, H-1'), 1.21 (10H, s_{ancho}, -CH₂-), 0.81 (311, m, -CH₃).

¹³**C-RMN** (100 MHz, CDCl₃). δ 169.7, 167.0, 166.9, 106.3, 91.4, 82.2, 78.4, 75.4, 74.6, 53.6, 53.0, 52.6, 35.5, 31.7, 29.5, 29.0, 22.7, 22.6, 14.0.

LRMS(IE): m/z 434(M⁺, 0), 336(0), 314(0), 278(0), 243(0), 219(1), 149(3), 83(100).

E.A. (C₁₉H₃₀O₁₁): Hallado: C, 52.50, H, 6.90; Calculado: C, 52.53, H, 6.96.

50

55

60

65

REIVINDICACIONES

1. Procedimiento para la obtención de un compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos

10

5

15

20 en donde

 R^2 se selecciona del grupo que consiste en alquilo C_1 - C_{20} y alquenilo C_1 - C_{20} , los cuales son no-sustituidos o sustituidos en cualquier posición por al menos un grupo que se selecciona del grupo que consiste en alquilo C_1 - C_4 , alquilideno C_1 - C_3 , alquilideno C_1 - C_3 , alquilideno consiste en arguno que se selecciona del grupo que consiste en arguno que se selecciona del grupo que consiste en arguno que se selecciona del grupo que se selecciona del grupo que se selecciona del grupo formado por alquilo C_1 - C_3 o halógeno; y

R³, R⁴ y R⁵ se seleccionan independientemente del grupo de los alquilo C₁-C₃;

30

25

caracterizado porque comprende reaccionar en medio ácido un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, o una mezcla de compuestos de fórmula (II) y (III)

35

HO OH
$$R^{4}O_{2}C$$

$$R^{4}O_{2}C$$

$$R^{4}O_{2}C$$

$$R^{5}O_{2}C$$

$$R^{5}O_{2}C$$

$$R^{5}O_{2}R^{3}$$

$$R^{5}O_{2}C$$

$$R^{5}O_{2}R^{3}$$
(II)
(III)

45

40

50 en donde

R², R³, R⁴ y R⁵ son tal y como se han definido anteriormente; y

 R^6 es un grupo alquilo C_1 - C_3 .

- 2. Procedimiento según la reivindicación 1, en donde R³ y R⁴ son iguales.
- 3. Procedimiento según cualquiera de las reivindicaciones anteriores, en donde R³, R⁴ y R⁵ son iguales, preferiblemente metilo.
 - 4. Compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, tal y como se define en cualquiera de las reivindicaciones 1 a 3.
- 5. Compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, tal y como se define en cualquiera de las reivindicaciones 1 a 3.

6. Procedimiento para la síntesis de un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o de un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, tal y como se definen en cualquiera de las reivindicaciones 1 a 3, **caracterizado** porque comprende la dihidroxilación de un compuesto de fórmula (IV), sus enantiómeros o mezclas de los mismos

R⁴O₂C, OR⁶
R³O₂C CO₂R⁵

en donde

5

10

15

20

30

35

40

45

55

60

R², R³, R⁴ y R⁵ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3; y

 R^6 es un grupo alquilo C_1 - C_3 .

 Procedimiento según la reivindicación 6, en donde la dihidroxilación tiene lugar en presencia de OsO₄ o de RuCl₃.

8. Procedimiento según cualquiera de las reivindicaciones 6 y 7, en donde un compuesto de fórmula (IVa), sus enantiómeros o mezclas de los mismos, se dihidroxila en presencia de RuCl₃ para dar un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos

 R^4O_2C , OH R^4O_2C , OH R^2 R^3O_2C CO_2R^5 (IVa)

en donde

R², R³, R⁴ y R⁵ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3; y

 R^6 es un grupo alquilo C_1 - C_3 .

9. Procedimiento según cualquiera de las reivindicaciones 6 y 7, en donde un compuesto de fórmula (IVb), sus enantiómeros o mezclas de los mismos, se dihidroxila en presencia de RuCl₃ para dar un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos

$$R^4O_2C$$
 OH R^2 OR^6 OR^6 OR^5 OR^6

en donde

 R^2 , R^3 , R^4 y R^5 son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3; y R^6 es un grupo alquilo C_1 - C_3 .

- 10. Compuesto de fórmula (IV), (IVa) o (IVb) sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos tal y como se define en cualquiera de las reivindicaciones 6 a 9.
- 11. Procedimiento para la síntesis de un compuesto de fórmula (IV), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, que comprende el tratamiento en medio ácido de un compuesto de fórmula (V), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

$$R^{4}O_{2}C$$
 $R^{3}O_{2}C$
 $CO_{2}R^{5}$
 (V)

en donde

10

15

25

40

45

50

55

60

65

R², R³, R⁴ y R⁵ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3; y

cada uno de R^7 y R^8 se selecciona independientemente del grupo que consiste en hidrógeno, alquilo C_1 - C_4 y arilo C_6 - C_{10} ; o R^7 y R^8 , junto con el átomo de carbono al que están unidos, forman un grupo alquilideno C_2 - C_7 .

- 12. Procedimiento según la reivindicación 11, en donde un compuesto de fórmula (V), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, reacciona en presencia de ácido p-toluensulfónico.
- 30 13. Compuesto de fórmula (V), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, tal y como se define en la reivindicación 11.
- 14. Procedimiento para la síntesis de un compuesto de fórmula (V), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, **caracterizado** porque comprende
 - (i) la eliminación del grupo trialquilsililo de un compuesto de fórmula (VII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, para dar un compuesto de fórmula (VI), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

en donde

R², R³ y R⁵ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3;

 R^6 es un grupo alquilo C_1 - C_3 ;

cada uno de R^7 y R^8 se selecciona independientemente del grupo que consiste en hidrógeno, alquilo C_1 - C_4 y arilo C_6 - C_{10} ; o R^7 y R^8 , junto con el átomo de carbono al que están unidos, forman un grupo alquilideno C_2 - C_7 ; y

R⁹ es un grupo trialquilsililo;

(ii) la oxidación del grupo hidroxilo de un compuesto de fórmula (VI), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos.

- 15. Procedimiento según la reivindicación 14, en donde la oxidación se realiza en presencia de PCC o IBX.
- 16. Compuesto de fórmula (VI), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, tal y como se define en la reivindicación 14.
- 17. Compuesto de fórmula (VII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, tal y como se define en la reivindicación 14.
- 18. Procedimiento para la síntesis de un compuesto de fórmula (VII), tal y como se define en la reivindicación 17, sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, que comprende reaccionar un compuesto de fórmula (VIII), sus enantiómeros, o mezclas de los mismos, con un compuesto de fórmula (XX)

en donde

25

30

R², R³, R⁴ y R⁵ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3; y

cada uno de R^7 y R^8 se selecciona independientemente del grupo que consiste en hidrógeno, alquilo C_1 - C_4 y arilo C_6 - C_{10} ; o R^7 y R^8 , junto con el átomo de carbono al que están unidos, forman un grupo alquilideno C_2 - C_7 ;

R⁹ es un grupo trialquilsililo; y

- cada uno de los grupos Ar se selecciona independientemente de entre grupos arilo C₆-C₁₀.
 - 19. Procedimiento según la reivindicación 18, en donde dicho compuesto de fórmula (VIII), sus enantiómeros, o mezclas de los mismos, se obtiene oxidando, preferiblemente en presencia de IBX, un compuesto de fórmula (IX), sus enantiómeros, o mezclas de los mismos

45
$$R^{4}O_{2}C$$

$$HO$$

$$R^{3}O_{2}C$$

$$OH$$

$$OH$$

$$(IX)$$

55 en donde

60

R², R³ y R⁴ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3;

cada uno de R^7 y R^8 se selecciona independientemente del grupo que consiste en hidrógeno, alquilo C_1 - C_4 y arilo C_6 - C_{10} ; o R^7 y R^8 , junto con el átomo de carbono al que están unidos, forman un grupo alquilideno C_2 - C_7 ; y

R⁹ es un grupo trialquilsililo.

20. Procedimiento según las reivindicaciones 18 y 19, en donde la transformación de un compuesto de fórmula (IX), sus enantiómeros, o mezclas de los mismos, en un compuesto de fórmula (VII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos, se realiza sin aislar dicho compuesto de fórmula (VIII).

- 21. Compuesto de fórmula (VIII), sus enantiómeros, o mezclas de los mismos, tal y como se define en la reivindicación 18
- 22. Compuesto de fórmula (IX), sus enantiómeros, o mezclas de los mismos, tal y como se define en la reivindica-5 ción 19.
 - 23. Procedimiento para la síntesis de un compuesto de fórmula (IX), sus enantiómeros, o mezclas de los mismos, **caracterizado** porque comprende la dihidroxilación, preferiblemente en presencia de OsO₄, de un compuesto de fórmula (X), sus enantiómeros, o mezclas de los mismos

10

15

20

30

- 25 en donde
 - R², R³ y R⁴ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3;
 - cada uno de R^7 y R^8 se selecciona independientemente del grupo que consiste en hidrógeno, alquilo C_1 - C_4 y arilo C_6 - C_{10} ; o R^7 y R^8 , junto con el átomo de carbono al que están unidos, forman un grupo alquilideno C_2 - C_7 ; y
 - R⁹ es un grupo trialquilsililo.
- 35 24. Compuesto de fórmula (X), sus enantiómeros, o mezclas de los mismos, tal y como se define en la reivindicación 23.
 - 25. Procedimiento para la síntesis de un compuesto de fórmula (X), sus enantiómeros, o mezclas de los mismos, caracterizado porque comprende la acetalización o hemiacetalización, de un compuesto de fórmula (XI), sus enantiómeros, o mezclas de los mismos

45

 R^4O_2C OH R^2 R^3O_2C

50

55

- en presencia de un compuesto de fórmula $(R_7)(R_8)C=O$ o hidratos o aril o alquil acetales o hemiacetales del mismo en donde
 - R², R³ y R⁴ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3; y
- cada uno de R^7 y R^8 se selecciona independientemente del grupo que consiste en hidrógeno, alquilo C_1 - C_4 y arilo C_6 - C_{10} ; o R^7 y R^8 , junto con el átomo de carbono al que están unidos, forman un grupo aiquilideno C_2 - C_7 ; y
 - R⁹ es un grupo trialquilsililo.

65

26. Compuesto de fórmula (XI), sus enantiómeros, o mezclas de los mismos, tal y como se define en la reivindicación 25.

27. Procedimiento para la síntesis de un compuesto de fórmula (XI), sus enantiómeros, o mezclas de los mismos, **caracterizado** porque comprende las siguientes etapas

(i) reaccionar un compuesto de fórmula (XXI) en presencia de un compuesto de fórmula PY₃, y la posterior adición de un compuesto de fórmula (XVI), sus estereoisómeros o mezclas de los mismos, para dar un compuesto de fórmula (XV), sus estereoisómeros o mezclas de los mismos

$$R^{3}O_{2}C$$
 (XXI)
 $R^{4}O_{2}C$
 $R^{3}O_{2}C$
 (XV)

en donde

10

15

20

R², R³ y R⁴ son tal y como se han definido en cualquiera de las reivindicaciones 1 a 3;

cada uno de los grupos Y se selecciona independientemente de entre grupos arilo C₆-C₁₀ o grupos alquilo C₁-C₆;

(ii) epoxidar, preferiblemente con ácido metacloroperbenzóico (m-CPBA), dicho compuesto de fórmula (XV), para obtener un compuesto de fórmula (XIV), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos,

$$R^{4}O_{2}C$$

$$R^{3}O_{2}C$$
(XIV)

35 en donde

R², R³ y R⁴ son tal y como se han definido anteriormente;

(iii) isomerizar en presencia de una base, preferiblemente DBU, dicho compuesto de fórmula (XIV), para obtener un compuesto de fórmula (XIII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos,

$$R^{4}O_{2}C$$

$$R^{3}O_{2}C$$
(XIII)

en donde

55

R², R³ y R⁴ son tal y como se han definido anteriormente;

(iv) introducir un grupo trialquilsililo en dicho compuesto de fórmula (XIII) para obtener un compuesto de fórmula (XIII), sus estereoisómeros, especialmente sus enantiómeros, o mezclas de los mismos

$$R^{4}O_{2}C$$

$$R^{3}O_{2}C$$
(XII)

en donde

R², R³ y R⁴ son tal y como se han definido anteriormente; y

R⁹ es un grupo trialquilsililo;

у

(v) dihidroxilar dicho compuesto de fórmula (XII).

10

20

5

- 28. Compuesto de fórmula (XV), tal y como se define en la reivindicación 27, sus estereoisómeros, o mezclas de los mismos.
- 29. Compuesto de fórmula (XIV), tal y como se define en la reivindicación 27, sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos.
 - 30. Compuesto de fórmula (XIII), tal y como se define en la reivindicación 27, sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos.

31. Compuesto de fórmula (XII), tal y como se define en la reivindicación 27, sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos.

- 32. Procedimiento para la preparación del ácido zaragócico y derivados del mismo de fórmula (XXVI), sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos, **caracterizado** porque comprende las etapas
- (i) reaccionar en medio ácido un compuesto de fórmula (II), sus enantiómeros o mezclas de los mismos, o un compuesto de fórmula (III), sus enantiómeros o mezclas de los mismos, o una mezcla de compuestos de fórmula (II) y (III), tal y como se definen en cualquiera de las reivindicaciones 1 a 3; para obtener un compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos, tal y como se define en cualquiera de las reivindicaciones 1 a 3;
- (ii) hidrolizar en medio básico los grupos éster de dicho compuesto de fórmula (I), sus enantiómeros o mezclas de los mismos, para proporcionar un compuesto de fórmula (XXV), sus enantiómeros o mezclas de los mismos

35

45

40

en donde

R² es tal y como se ha definido en la reivindicación 1;

₅₀ y

(iii) reaccionar dicho compuesto de fórmula (XXV), sus enantiómeros o mezclas de los mismos, con un compuesto de fórmula (XXII) en presencia de una base, para obtener un compuesto de fórmula (XXVI), sus enantiómeros o mezclas de los mismos

55

65

en donde

 R^1 se selecciona del grupo que consiste en alquilo C_1 - C_{20} o alquenilo C_1 - C_{20} , los cuales son no-sustituidos o sustituidos por al menos un grupo que se selecciona del grupo que consiste en alquilo C_1 - C_4 ; y/o un grupo en la posición terminal que se selecciona del grupo que consiste en arilo C_6 - C_{10} ;

Z se selecciona del grupo que consiste en hidroxilo y alcoxilo; y

 R^2 es tal y como se ha definido en la reivindicación 1.

33. Uso de un compuesto de fórmula (I), (II), (III), (IV), (V), (VI), (VII), (VIIa), (VIIb), (VIII), (VIIa), (VIIIb), (IX), (IXa), (IXb), (X), (XI), (XII), (XIII), (XIV), (XV) y/o (XVI), sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos, para la síntesis del ácido zaragócico y derivados del mismo de fórmula (XXVI), sus estereoisómeros, especialmente enantiómeros, o mezclas de los mismos.

- 11) ES 2 328 213
- ②1) № de solicitud: 200801303
- ② Fecha de presentación de la solicitud: 06.05.2008
- 32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51)	Int. Cl.:	Ver hoja adicional

DOCUMENTOS RELEVANTES

Categoría	6 9	Documentos citados Re	eivindicaciones afectadas
Х	Transfer Alkylations". Journal	nalonates as Synthetic Reagents. of the American Chemical Society, of, páginas 1204-1212. Ver página 1205,	28
X	aldol-based strategy". Tetrah	synthesis of zaragozic acid C by an edron, 2005, Volumen 61, sumen; página 11079, esquema 1;	33
А	Synthase Inhibitor Zaragozic	etric Synthesis of the Squalene Acid C". Journal of the American Imen 116, páginas 12111-12112. 2, compuesto 14.	1-32
А	TOMOOKA, K. "Stereoselect based on an acetal [1,2] Witti Chemie International Edition Número 24, páginas 4502-45	1-32	
А	MARUYAMA, Y. et al. "Ruthe allylic esters with formic acid to short-step synthesis of a-h Organometallic Chemistry, 19 Ver página 259, columna 2, c	29	
А	WATANABLE, H. et al. "A facile route to 3,7-cis-disubstituted cycloocta-1,5-diene-1,2,5,6-tetracarboxylates through photochemical [2+2] cycloaddition of 3-substituted cyclobutene-1,2-dicarboxylates and thermal isomerization". Chemical Communications, 1999, páginas 1753-1754. Ver página 1754, esquema 3, compuesto 5.		31
X: de parti Y: de parti misma	ía de los documentos citados icular relevancia icular relevancia combinado con otro/s o categoría el estado de la técnica	O: referido a divulgación no escrita	
	nte informe ha sido realizado todas las reivindicaciones	□ para las reivindicaciones nº:	
			D' '
recna d	e realización del informe 25.08.2009	Examinador N. Martín Laso	Página 1/4

INFORME DEL ESTADO DE LA TÉCNICA

 N° de solicitud: 200801303

CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD
C07D 493/08 (2006.01) C07D 493/10 (2006.01) C07D 307/20 (2006.01) C07D 317/30 (2006.01) C07C 69/60 (2006.01) C07D 303/40 (2006.01)
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
C07D, C07C
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
INVENES, EPODOC, WPI, NPL, BIOSIS, CAS.

OPINIÓN ESCRITA

Nº de solicitud: 200801303

Fecha de Realización de la Opinión Escrita: 25.08.2009

Declaración

Novedad (Art. 6.1 LP 11/1986) Reivindicaciones 1-27,29-32 **SÍ**

Reivindicaciones 28,33 NO

Actividad inventivaReivindicaciones1-27,29-32SÍ(Art. 8.1 LP 11/1986)Reivindicaciones28,33NO

Se considera que la solicitud cumple con el requisito de **aplicación industrial**. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión:

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como ha sido publicada.

OPINIÓN ESCRITA

Nº de solicitud: 200801303

1. Documentos considerados:

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	Journal of the American Chemical Society, 1976, Volumen 98, Nú-	03/03/1976
	mero 5, páginas 1204-1212.	
D02	Tetrahedron, 2005, Volumen 61, páginas 11078-11016.	07/10/2005

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La solicitud se refiere a un procedimiento de síntesis del ácido zaragócico y derivados del mismo, a intermedios de dicha síntesis y al uso de dichos intermedios en la síntesis del ácido zaragócico.

Novedad (Art. 6.1 LP 11/1986).

La reivindicación 28 se refiere a un compuesto general de fórmula XV con estructura de dieno.

El documento D01 divulga un dieno acorde con la fórmula XV donde R3=R4=metilo y R2=propenilo (página 1205, tabla I).

Las características de la reivindicación 28 se encuentran recogidas en el documento D01, dicha reivindicación carece por tanto de novedad.

El documento D02 divulga el uso de un compuesto acorde con la fórmula general I (donde R2=R5=Me, R4=Et y donde R2 es un grupo alquilo C5 sustituido en el C3 por un hidroxilo protegido y en la posición terminal por un grupo arilo C6), para la síntesis del ácido zaragócico C (página 11085, esquema 10).

Las características de la reivindicación 33 se encuentran recogidas en el documento D02, dicha reivindicación carece por tanto de novedad.

Sin embargo, no se han encontrado en el estado de la técnica documentos que, solos o en combinación, revelen ni contengan sugerencia alguna que dirijan al experto en la materia hacia un procedimiento para la síntesis de compuestos generales de formula I, ni hacia la síntesis del ácido zaragócico ni derivados del mismo de formula XXVI que utilicen compuestos intermedios de formula II ó III, al no estar divulgados dichos compuestos en el estado de la técnica.

Igualmente, no se han encontrado documentos que divulguen o dirijan al experto en la materia hacia compuestos generales de formula II, III, IV, V, VI, VII, VIII, IX, X, XI, XIII o XIV.

Por lo tanto, el objeto de la invención definido en la reivindicaciones 1-27, 29-32 es nuevo y posee actividad inventiva (Art 6.1 y 8.1 LP 11/1986).