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ABSTRACT 

The development of rapid and accurate techniques to predict the composition of crude 

bio-oils obtained via the pyrolysis of lignocellulosic biomass is a prerequisite for their 

industrial implementation. Here, we demonstrate the potential of the Fourier Transform 

Infrared Spectroscopy to replace the gas chromatography-mass spectrometry (GC-MS) 

in determining the compositional groups of bio-oils. Using mid-infrared spectroscopic 

technique as predictor, chemometric tools based on partial least squares regression 

models were contrasted with GC-MS results to foresee the various families of organic 

compounds. A broad data set, consisting of more than one hundred samples obtained 

from the thermal and catalytic pyrolysis of woody biomass and from the upgrading of 

bio-oil vapors by catalytic cracking over zeolites and metal oxides was used. The 
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applicability of the developed model was assessed by external validation using the 

Kennard-Stone algorithm, showing that more than 90 wt% of the bio-oil composition 

was accurately determined. These results pave the path for the on-line monitoring of the 

forthcoming manufacture system of second-generation biofuels through rapid and cost-

effective characterization of the pyrolysis bio-oils, thus enabling industrial producers to 

make timely decisions. 

KEYWORDS 

Chemometric tools, Bio-oil composition, Fourier Transform Infrared Spectroscopy, Gas 

Chromatography-Mass Spectrometry, Partial least squares regression 

INTRODUCTION 

The global dependency and depletion of fossil fuels together with the associated impact 

related to their use raise a serious threat for the environment, driving the scientific 

community towards the search of sustainable solutions for the production of fuels and 

commodity chemicals. Lignocellulosic biomass is deemed as the only carbon-based 

renewable source on Earth with real potential to partly replace fossil fuels. Among 

different conversion technologies for the valorization of lignocellulosic biomass, 

pyrolysis is generally considered as the most simple and economic platform to obtain 

alternative liquid bio-fuels. Pyrolysis oils accomplish a complex mixture of organic 

compounds,
1
 which are characterized by their high water content (up to 30% by 

weight), strong acidity associated to the presence of phenolic species and carboxylic 

acids, and low calorific value (ca. 16-19 MJ kg
−1

).
2
 The high oxygen content of crude 

bio-oil confers poor stability, corrosiveness and prevents the blending with commercial 

fuels,
3
 which restricts its direct application in current infrastructures.

4
 To overcome this 

Page 2 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 

 

 

limitation, the catalytic upgrading into value-added chemicals with relative similar 

characteristics than those obtained from fossil fuels,
3
 but also to the so-called 

second-generation bio-fuels is prerequisite. Therefore, this strategy involves different 

steps, thus demanding a fast, cost-efficient and non-destructive technique for the real-

time characterization of pyrolysis bio-oils. 

Traditionally, GC-MS has been applied to determine the composition of pyrolysis bio-

oils
5-7 

in both qualitative and quantitative manners.
8
 The identified components are 

subsequentially grouped into different organic families, which generally include 

phenols, acids, aldehydes, ketones, furans, cyclic hydrocarbons (HCs), aromatics and 

esters. However, the lack of a standard GC-MS analytical method jointly with the fact 

that this is a time and cost-demanding technique, drive the development of alternative 

strategies.  

In this regard, infrared spectroscopy (IR) associated to rotational-vibrational structure 

within a molecule emerges as a fast, cost-efficient and non-destructive technique to 

determine bio-oil composition. IR has been extensively used for the qualitative 

characterization of bio-oil samples obtained from the pyrolysis of lignocellulosic 

biomass
9-11

 and allows the identification of the different organic groups in the bio-oil 

without providing quantitative information on the composition. A step forward in the 

capacities of this analytical technique has been recently achieved in combination with 

chemometric tools, demonstrating to be an effective, rapid and accurate methodology 

for predicting the composition as well as different physical properties of solid biomass 

feedstocks.
12

 In this sense, this methodology has been used for the prediction of lignin, 

cellulose and hemicellulose fractions
13

 over a wide range of woody biomass types. 

Likewise, lignin, xylose, mannose, galactose, glucose and arabinose contents
14

 have 

been accurately determined in a set of agricultural biomass feedstocks. The capacities of 
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chemometric tools in combination with Fourier Transform Infrared Spectroscopy 

(FTIR) are also extended to the analysis of first generation biofuels. Thus, ester content 

in biodiesel samples can be accurately determined by near-IR spectroscopy in 

combination with partial least square (PLS) analysis.
15

 Additionally, a standard test 

method for the assessment of the biodiesel content in conventional diesel fuel oil using 

mid-IR spectroscopy with PLS analysis is already implemented in biodiesel production 

processes.
16

 Against this background, although the above-described models show good 

predictive ability and could be used to predict the above properties at laboratory and 

industrial scales, no previous attempt to develop a comprehensive and general model 

coupling IR spectroscopy and multivariate analysis as a rapid quantitative 

characterization technique of pyrolysis oils has been reported so far. 

Herein, we show the development and validation of a multivariate method based on PLS 

regression in combination with IR spectroscopy for the quantification of the different 

compositional groups in pyrolysis oils. A data set consisting of one hundred and eleven 

samples obtained from the thermal and catalytic pyrolysis of woody biomass and the 

upgrading of bio-oil vapors by catalytic cracking over zeolites and metal oxides enables 

the accurate determination of more than 90% of the bio-oil composition. 

 

EXPERIMENTAL  

Materials 

Bio-oils 

A total of 111 bio-oil samples were produced via thermal and catalytic pyrolysis of pine 

woodchips and catalytic upgrading of the bio-oil vapors. Thermal and catalytic 

pyrolysis of woody biomass was performed in an auger reactor operated at 450ºC with 

N2 as the carrier gas resulting in 10 bio-oil samples. A detailed description of the 
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experimental system used can be found elsewhere.
17,18 

Thermal pyrolysis was conducted 

using merely silica sand as heat carrier with sand-to-silica mass ratio of 3:1. For the 

catalytic pyrolysis, a list of the catalysts and catalyst-to-biomass ratios used in the 

experiments can be found in Table S1.  

Catalysts 

Catalytic upgrading of the organic fraction of the crude bio-oil was performed in a 

fixed-bed reactor at 450ºC over a set of catalysts consisting of zeolites and metal oxides 

resulting in 101 bio-oil samples. Some of the zeolites were previously reported in bio-

oil upgrading.
19-21

 The rest of the catalysts were included to improve the performance of 

the predictive model. Briefly, commercial zeolites with different framework topologies 

(MFI and FAU) and Si/Al ratios (Table S2) were converted into the protonic form by 

calcination prior to use. Hierarchical ZSM-5 and faujasite zeolites were prepared by 

desilication of the bulk zeolites in stirred aqueous NaOH solution using an Easymax
TM

 

102 reactor system (Mettler Toledo).
22,23

 In some cases, a sequential mild acid treatment 

with either HCl or Na2H2EDTA was applied to restore a similar bulk Si/Al atomic ratio 

to that of the bulk zeolite. Metal loading (Mg, Ga, Fe, Ca, Ag, Zn, Cu, or Co) of 

selected bulk and hierarchical zeolites was attained by ion exchange and wet 

impregnation.
19,20

 Carbon-templating ZSM-5 zeolite was prepared by hydrothermal 

treatment from a gel of the following molar composition: SiO2 : 0.46 TPAOH : 0.025 

Al(CH(CH3)2)3 : 51.25 H2O.
24

 CeO2 and Fe2O3 metal oxides of different morphologies 

were prepared following the experimental protocol reported in refs. 25-27. Detailed 

synthesis conditions used to obtain the different catalysts are provided in Supporting 

Information. 

Bio-oil characterization 
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The chemical composition of the organic phase of bio-oil was analyzed by GC-MS 

using a Varian CP-3800 gas chromatograph connected to a Saturn 2200 ion trap mass 

spectrometer. A capillary column (CP-Sil 8 CB, Agilent, low bleed: 5% phenyl, 95% 

dimethylpolysiloxane, 60 m × 0.25 mm i.d. × 0.25 mm film thickness) was used. The 

oven temperature was initially kept at 40ºC for 4 min. Then, a heating rate of 4ºC min
−1 

was implemented to reach a final column temperature of 300ºC, which was maintained 

for 16 min. He (BIP quality) was used as carrier gas (1 mL min
−1

). The temperatures of 

the injector, detector, and transfer line were 300, 220, and 300ºC, respectively. Sample 

volumes of 1 µL (1:25 wt%, in a mixture of 1:1 CH2Cl2/C2H6O) were injected (5:1 split 

mode, 7.5 min solvent delay). The MS was operated in electron ionization mode within 

35-550 m/z range. Each peak was assigned to selected compounds according to the 

corresponding m/z, which were previously defined in the automatic library search NIST 

2011. Each sample was analyzed twice, and the results were computed as an average. A 

total of 104 compounds were individually identified and they were categorized into 

eight major classes namely phenols, acids, aldehydes, ketones, furans, cyclic HCs, 

aromatics and esters (Tables S3 and S4). The percentage of each compound in the bio-

oil was determined by area normalization, i.e., the quotient between the area of each 

peak and the total area.
28

 The repeatability of GC-MS results was tested by injecting 

twice the samples, obtaining relative standard deviations lower than 10% (Table 1).  

A Bruker Vertex 70 spectrometer was used to record the FTIR spectra of the bio-oil 

samples. 50 µl liquid samples were applied on disposable real crystal IR sample cards 

(KBr sample support substrate) with 15 mm of aperture provided by International 

Crystal Laboratories. Due to limitations in the equipment configuration, two spectra 

were acquired for each sample corresponding to Medium-IR (MIR) and Near-IR (NIR). 

Whilst a Globar source and a deuterated L-alanine doped triglycine sulphate detector 
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were used for MIR configuration (4000 to 400 cm
−1

), a halogen source and an indium 

gallium arsenide detector were set up for NIR conditions (9000-4000 cm
−1

). Each 

spectrum was acquired in transmission mode using 32 co-averaged scans and a spectral 

resolution of 2 cm
−1

. 

 

 

Chemometric methods and data analysis 

Before building optimal PLS calibration models for each chemical family, an 

optimization of the spectral treatment and the wavelength was carried out. Data were 

centered by calculating the average value for each variable, and then, subtracting this 

from each of the original variables. All variables were weighted at constant value equal 

to 1 in order to avoid the influence of the different scales used for the variables. The 

initial data matrix used as predictor was composed of 111 spectra collected from the 

different bio-oils with  8918 variables per spectrum (NIR-MIR) (9000-400 cm
−1

) whilst 

the response matrix consisted of 111 samples and eight variables corresponding to the 

percentages of compositional groups obtained by GC-MS, i.e., phenols, acids, 

aldehydes, ketones, furans, cyclic HCs, aromatics and esters (Scheme 1). Full cross-

validation (FCV), also known as leave-one-out cross validation, was run as a validation 

procedure to determine the optimum number of latent variables (LV).  

FTIR data pre-treatment 

Spectral data (Figure 1) were imported from OPUS software into the Unscrambler X 

10.3 (Camo Inc., Oslo, Norway) software. All other spectral processing and 

chemometric tools were performed using this program. Three different spectral pre-

processing techniques were separately evaluated to minimize those physical effects that 

were not representing chemical phenomena and to remove any irrelevant information 
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(Scheme 1): (1) Standard Normal Variate (SNV), a row-oriented transformation which 

centers and scales individual spectra, avoiding scatter effects from spectral data, (2) first 

derivative using Savitzky-Golay algorithms (SGolay) (polynomial order 2, window with 

11 points) to remove additive effects from the spectra, such as baseline offsets or 

features, and (3) normalization to the highest peak, which attempts to correct for scaling 

differences (pathlength effects, scattering effects, source or detector variations, or other 

general instrumental sensitivity effects) by identifying some aspect of each sample 

which should be essentially constant from one sample to the next. The model 

parameters corresponding to the three spectral treatments for the whole set of samples 

(111) are provided in the Supporting Information (Tables S5-S7). Herein, we will only 

show SNV results since this data pretreatment method drove to the optimal model 

performance. 

IR wavelength selection 

Due to the high number of wavelengths, initially, a variable reduction process was 

manually performed
39

 based on spectroscopic experience. Firstly, the removal of some 

spectral ranges associated with the NIR region (9000-4000 cm
-1

), which showed very 

low contribution to the total data variance was evaluated. A significant improvement in 

the model performance was obtained based on parameters determined in subsection 2.3. 

Secondly, the exclusion of the broadest vibrations associated with the presence of water 

(3700-3000 cm
-1

) was also appraised. Again, better model performance in terms of 

model prediction capacity was obtained. Finally, the removal of different wavelength 

ranges were systematically assessed (4000-3700, 3000-2700, 2700-2400, 2400-2000, 

2000-1700, 1700-1400, 1400-1000 and 700-400 cm
-1

). Those wavelength ranges 

decreasing the model performance in terms of the accuracy and precision of the model 

were removed. Finally, a range comprised between 2000 and 700 cm
−1

 was selected as 

Page 8 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

 

 

the optimal range since other wavelengths associated to NIR and MIR regions did not 

improve the model performance (Table S5). With this wavelength range eight PLS 

regression models were built, one for each GC-MS group, where the 1349 variables of 

the IR spectra comprised between 2000 and 700 cm
−1

 for the 111 bio-oils were used as 

predictor data (x) and the percentage of each chemical family as the response variable 

(y). 

Partial least square (PLS) regression models 

The ASTM E1655 standard
29

 establishes a minimum number of samples for 

constructing PLS models using infrared spectroscopy. The minimum number of samples 

must be equal to 6(k + 1) in calibration set and to 4k in prediction set, being the k value 

the number of latent variables selected in the model. The PLS models were built with up 

to seven latent variables. A total of 74 samples, two thirds of the samples were used for 

constructing PLS calibration models and the remaining one third, 37 samples were used 

for external validation to predict, with a separate set of samples not used in the 

calibration, those model deviations that can be expected when real samples are 

assessed.
30

 Samples were designated according to the Kennard-Stone algorithm,
31

 which 

selects samples sequentially by maximizing the Euclidean distances between each other. 

PLS regression analysis with FCV determined the optimum number of LV with the 

calibration set (74 samples). Once obtained the optimal PLS calibration model, the 

prediction accuracy of this calibration model was evaluated on the prediction set (37 

samples) (Scheme 1).  

The performance of the calibration and the predictive ability of the models was 

evaluated by the following criteria: the bias, which can be interpreted as the average 

difference between the reference value and the predicted value in the prediction set and 

refers to systematic errors; the root mean square error of calibration (RMSECal); the root 
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mean square error of prediction (RMSEPred)
 32

; the standard error of calibration (SEC); 

the standard error of prediction (SEP), which is defined as the standard deviation of the 

predicted residuals; the ratio of performance to deviation (RPD), being calculated from 

the ratio between the standard deviation of the reference values and the standard error of 

prediction (SD/SEP)
33

 and the linear correlation coefficients for calibration (Rcal
2
) or 

prediction (RPred
2
)
34

 (see Scheme 1), which provide information regarding the fit of the 

model. The lower the bias, the RMSE, the SEP and the higher the R
2
 (close to 1), the 

better the prediction ability of the PLS model. RMSE, SEP and bias provide information 

about the accuracy, the precision and the trueness of the model. These parameters were 

calculated according to the following equations: 

Bias = 
�
�∑ �ȳ� − ��	
���       (1) 

RMSEPred =	∑�ȳ����	��        (2) 

SEP =  �
���∑ �ȳ� − �� − ����	�����      (3) 

R
2
= 1 − ∑����ȳ�		�

∑���������		�       (4) 

where N is the number of samples, ȳi is the value predicted by the model, yi is the 

experimental value obtained by GC-MS and ymean is the average value of the 

experimental values.  

The ASTM E1655-05
 29

 standard proposed the investigation of systematic errors using a 

t-test for validation samples at 95% confidence and degrees of freedom equal to the 

number of prediction samples. The t value was calculated using Eq. (5). 

tbias = 
| �!"|√�
$%&         (5) 

When the tbias is higher than the t-value from a standard t-table  (tcrit), it can be 

concluded that there is a 95% probability that the prediction from the multivariate 
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model will not lead to the same average results as the reference method, pointing out 

that the differences between experimental and modelled results are significant.  

An estimation of the model uncertainty was performed by a confidence interval (C.I.) 

which is determined from the Eq. (6) when bias is small and standard deviation is 

unknown: 

C.I. = ȳ� ± (	)*+ ≈ ȳ� ± (	-.)*&/01    (6) 

where z-value must be replaced by a value from a Student´s t-distribution table which is 

estimated as +2 (1.960 is used for the 95% confidence interval) when N is high. 

Absolute precision and relative precision will be calculated according to the Eq (7) and 

(8): 

Absolute Precision = (	. -.)*&/01     (7) 

Relative Precision (%) = 
3	.		45$%67�8

ȳ  *100    (8) 

Residuals, which are of diagnostic value for the quality of a model, enabled identifying 

outliers that did not fit the model. A normal probability plot of the Y-residuals of the 

model showing a fairly straight line with all values within “+3SD” was indicative of 

non-outliers. In contrast, a point that clearly deviates from this line and is outside 

“+4SD”
35

 can be considered as outlier. In this study, all samples were included, except 

in the case of aldehydes and esters, where some outliers were detected.  

In order to evaluate the precision of the PLS model based on repeatability for IR 

spectra, a total of five spectra for a same sample were determined and the compositional 

predictions for each replicate were obtained. Uncertainties expressed as relative 

precision were also calculated (Table 2). 
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RESULTS AND DISCUSSION 

GC-MS results 

Compositional intervals for the eight chemical families obtained by GC-MS as a 

function of the different validation procedures are shown in Table 1. The two groups of 

compounds showing a broader calibration range were phenols (24.66-65.06%) and 

aromatics (4.90-63.85%) whereas furans (1.10-5.94%) and acids (non-detected-5.77%) 

showed the narrowest ranges for the whole set of samples. This was also reflected in the 

Kennard-Stone calibration set whereas for the prediction set, acids and aldehydes were 

the two groups showing the lowest variations. In fact, precisions expressed as relative 

uncertainty showed high values for these two groups of compounds (acids and 

aldehydes) when samples were injected by GC-MS by duplicate due to these low 

compositional intervals. Although a high number of replicates should be analyzed in 

order to improve the precision of the method, this would be very time-consuming 

considering that the whole number of samples was 111 and only duplicate samples were 

determined by GC-MS in this study. 

 

FTIR results 

Original data set enclosed 8918 variables, covering the NIR and MIR regions of the IR 

spectra (Figure 1). The highest dissimilarities were obtained in the MIR region ranging 

from 4000 to 400 cm
−1

, which involves 4254 variables. Briefly, several peaks with 

different intensities were found, pointing out different functionalities in the bio-oils. The 

highest and broadest vibrations were attained between 3675 and 3000 cm
−1

, which are 

associated with O-H stretching due to the presence of water, phenols, alcohols,
36

 

carboxylic acids, carbohydrates and amino acids. Unsaturated and aromatic C-H bonds 

absorb from 3100 to 3000 cm
−1

 and aliphatic C-H bond absorbance bands were detected 
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from 3000 to 2850 cm
−1

.
37

 A broad and intense peak around 1700 cm
−1

 indicates C=O 

stretching vibration of free carbonyl groups of aldehydes, ketones, carboxylic acids and 

esters and subsequent bands around 1650-1550 cm
−1

 represent C=C stretching 

vibrations caused by aliphatic or aromatic structures. The spectral region of 1488-1400 

cm
−1

 contains bands in the O-H bending region, which were most probably associated 

with alcohols and carboxylic acids.
38

 The peak around 1260 cm
−1

 indicated C–O 

stretching peak (in acids, esters, ethers and alcohols) and the peaks around 1030 cm
−1

 

were associated with aromatic C-H in plane bending. Aromatic rings could also be 

determined by the presence of C–H out of plane bands
1
 between 840 and 700 cm

−1
. 

Implementation of the PLS regression models  

Building PLS calibration models  

Once selected the wavelength range of the infrared spectra and the spectral pre-

processing (SNV), eight PLS regression models were built, one for each chemical 

family, where the 1349 variables of the IR spectra comprised between 2000 and 700 

cm
−1

 for the 74 calibration bio-oils were used as predictor data (x) and the percentage of 

each chemical family as the response variable (y)..  

FCV was used as validation procedure in order to determine the number of LV included 

in the PLS regressions models (Scheme 1). The PLS calibration models showed LV, 

which ranged between 2 for cyclic HCs and 7 for aldehydes. The different parameters 

showing the performance of the PLS regression models and the explained variance are 

shown in Table 2.  

The bias values were zero for all families indicating no systematic errors. This was 

reflected on the RMSECal and SEC, which were similar for each chemical family. 

Therefore, RMSECal was used to determine precision. The highest RMSECal 

corresponded to aromatics (5.18%) (one of the groups with the widest range of 
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percentage values) and the lowest (0.42%) to acids. The lowest SEC was obtained for 

the aldehydes (0.42%) whereas the aromatics presented the highest value (5.22%). 

Other parameter providing additional information on the expected accuracy of the PLS 

predictions is the RPD (Table 2). The RPD should be at least 3,
 
between 2 and 3, 1.5 to 

2 and lower than 1.5 for analytical, good, medium and poor performance quality, 

respectively.
39

  

All the chemical families presented RPD higher than 2, with the exception of furans, 

indicating good performance quality with values higher than 3 for acids, aldehydes, 

cyclic HCs and aromatics (Table 2).  

Regarding the fitting of the models, all of the different compositional families showed 

remarkable regression coefficients, except furans (Table 2, Figure 2) with R
2
Cal=0.55 

indicating that 45% of the total variation could not be explained by the PLS model. This 

group included only few compounds with variable nature providing a marginal 

percentage of the total sample (see Table S3), which can be the main reason for the 

inferior results. The other seven groups, i.e., phenols, acids, aldehydes, ketones, cyclic 

HCs, aromatics and esters, showed PLS regression models with RCal
2
 higher or equal 

than 0.80. Remarkably, these models were built with a calibration set having an ample 

heterogeneity associated to bio-oils of different composition, which includes not only 

upgraded bio-oils obtained after catalytic cracking of pyrolysis vapors, but also those 

raw bio-oils obtained from the pyrolysis and catalytic pyrolysis of biomass without 

further upgrading. The use of a more homogenous sample set to generate calibrations 

models, i.e., only upgraded bio-oils would probably result in reduced errors
40

 although 

would decrease the applicability of the model. 

Relative uncertainties showed high values for two chemical families, acids and 

aldehydes which will be commented in more detail in next section.  
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Prediction of chemical families by external validation 

Once the optimal calibration models were built, these were applied to predict the 

compositional groups for a set of 37 samples used as external validation, which were 

not used in the calibration models. It is worth mentioning that although the prediction of 

furans was carried out, these data were not discussed due to the poor results achieved 

during the development of the calibration model. As previously commented, furans 

included only a few compounds with variable nature, covering a marginal percentage of 

the total sample (see Tables S3-S4).  The prediction ability for the calibration models 

can be assessed according to different parameters, such as bias, RMSECal, RMSEPred and 

SEP, which are reported in Table 2. Firstly, bias can be used to determine the presence 

of systematic errors.  The bias values for acids (-4.6*10
-2

) and aldehydes (-6.3*10
-2

) 

were almost zero, indicating that systematic errors were negligible for these two 

families. Similarly, although bias values indicated that the models over-predicted the 

concentration of phenols, ketones and cyclic hydrocarbons and under-estimated the 

composition of aromatics and esters, these values were again quite close to zero, 

pointing out that the presence of systematic errors can be ruled out.  

Regarding the accuracy of the model, Table 2 shows that RMSEPred values ranged 

between 0.24% for acids and 3.79% for aromatics, being the highest RMSEPred values 

obtained for those compositional groups with the broadest range of composition 

(aromatics and phenols). Additionally, the highest SEP value was obtained for 

aromatics (3.83%), whilst acids showed the lowest (0.24%). RMSEPred and SEP 

exhibited similar values, which corroborated the absence of bias and thus RMSEPred 

could be used to determine the relative uncertainty. All the chemical families showed 

RPD values higher than 2.5 (Table 2), which further corroborated that bio-oil 

composition could be predicted with an acceptable degree of accuracy. With regard to 
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the fit of the models, RPred
2
 values between 0.8 and 0.9 point out a notable predictive 

ability, and values higher than 0.9 denote an excellent predictive ability.
41

 In addition, a 

reasonable model predictive ability was suggested by Chen et al. 
42

 when differences 

between Rcal
2
 and RPred

2
 are lower than 0.2. Larger differences between both values 

indicate over-fitting of the models,
35

 i.e., a well-fitting model with limited or no 

predictive ability.  

The prediction of the chemical families based on the independent set of samples led to 

R
2
Pred values ranging between 0.68 for acids and 0.90 for aromatics and esters. 

Remarkable predictions were attained for phenols (0.85), aldehydes (0.84), ketones 

(0.87), cyclic HCs (0.83), aromatics (0.90) and esters (0.90) (Figure 2), which were in 

line with the results obtained by the PLS calibration model, thus suggesting the 

applicability of the developed models in predicting the bio-oil composition.
43

 However, 

a very poor fitting between the prediction and the reference compositional values was 

attained for acids (R
2

Pred = 0.68) although the linear correlation coefficient for the 

calibration was notable (R
2

cal = 0.93). This poor prediction could be associated to the 

fact that Rcal
2
 value for this chemical family was over-fitted, likely related to own nature 

of the bio-oil samples, where 10 highly acidic bio-oils together with 64 samples with a 

very low percentage of acid compounds, even null in some cases, was modeled. Indeed, 

Rcal
2
 would decrease from 0.93 to 0.58 if the former samples were considered as 

outliers. This result prevented the potential application of the PLS model for the 

prediction of this compositional group in the current set of samples. Additionally, it is 

worth mentioning that the presence of two groups greatly different in their acid 

composition highlighted the importance of the selection algorithm between calibration 

and prediction samples, since the selection procedure could lead to inconsistences in the 

concentration ranges between both sets of samples, as clearly observed for acids in 
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Figure 2. Similar results have been found by other authors,
44,45

 pointing out that a 

bigger set of samples covering a broader range of compositions could be needed for this 

compositional group. In line with this, although the same issues might appear when the 

aldehydes and the cyclic HCs were predicted, Rcal
2
 for the aldehydes and cyclic HCs 

hardly decreased if the highly concentrated samples would be considered as outliers. 

Then, consistent results were obtained between Rcal
2
 and RPred

2
 although the application 

of the Kennard-Stone selection algorithm did not include the highly concentrated 

samples in the prediction set.  

Statistical tests based on paired t-test at 95% confidence level were also performed for 

each chemical family in order to assess whether significant differences were found 

between the values predicted by the PLS models and the experimental values obtained 

by GC-MS (Table S8-S10). No significant statistical differences were found between 

both methods for each chemical family. Only in the case of furans, a weak correlation 

was found between experimental and modeled results confirming the poor model 

prediction for this chemical family. Moreover, the bias included in the model were not 

statistically significant at 95% level since tbias calculated by the PLS models were 

always lower than tcrit (2.03) for the degree of freedom equal to the number of prediction 

samples (Table 2), again pointing out no systematic errors as suggested by the ASTM 

E1655 
29

. Once proved that bias were negligible, confidence intervals (C.I.) for 

predictions were also calculated for the different chemical families, providing 

information regarding the precision of the PLS model. Table 2 shows the uncertainties 

expressed as relative precision (%) for the different predicted chemical families. For 

comparative purposes, the relative uncertainties, obtained for the different 

compositional groups by GC-MS are reported in Table 1The PLS model uncertainties 

were  very high  for furans, acids and aldehydes due to the own nature of the samples 
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and low range of compositions The other chemical families (phenols, ketones, cyclic 

HCs, aromatics and esters) showed relative precisions ranging from 14% for phenols to 

32% for esters, similar to the ones obtained by GC-MS (Table 2)  concluding that the 

PLS modeling based on infrared spectra could be considered as a first approximation to 

semi-quantitatively determine the composition of phenols, ketones, cyclic 

hydrocarbons, aromatics and esters with reasonable precision. These results were 

compared with studies of repeatability for one sample analysed by FTIR-PLS five times 

where the highest relative uncertainties were also obtained for acids and aldehydes. 

However, higher precision for each chemical family was obtained by studying the 

repeatability of samples by FTIR when compared to GC-MS. This could be explained 

by the different procedure to determine the chemical families by both methods. Whereas 

FTIR allowed obtaining spectra in a fast way providing directly information regarding 

the organic composition of the bio-oils, GC-MS required a more tedious method in 

which each chemical family was composed by several individual organic compounds 

(30 for the aromatics). On the other hand, prediction uncertainties based on a constant 

RMSEPred could not lead to correct interval estimates, in particular when a reference 

value based on GC-MS is taken as good and object-specific prediction uncertainties 

would be required in future.  Special caution should be taken into account when the 

mean value of the data set is close to zero as it happens for acids and aldehydes since 

the value of the relative precision increases.  

More research should be focused on developing ruggedness models able to predict the 

composition of these chemical families by including other spectral ranges and/or 

spectral treatments. In particular, an optimization of the spectral range by using more 

sophisticated programs based on algorithms could improve results shown in this work. 

Also, a higher number of samples could reduce the uncertainties obtained for some 
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specific families. However, it is worth mentioning that the percentage of acids, 

aldehydes and furans was always lower than 5%, which makes their modelling highly 

demanding. Additionally, a reduction in the uncertainties could be obtained in future 

work by performing more studies of repeatability and reproducibility for IR spectra. 

Still, the main advantage of implementing IR in combination with PLS regression 

models over the chromatographic procedure relies on the efficiency of the analyses. In 

particular, in this study, each chromatogram runs for 90 minutes and the further 

treatment of data as individual organic compounds, with a previous developed method, 

would extend for at least one hour. Additionally, to ensure the repeatability of the 

results, this protocol has to be repeated at least by duplicate, which significantly 

increases the analysis time. In contrast, the IR spectrum is acquired in less than 1 minute 

and no additional sample preparation is required, as the liquid samples are used as-

received. The following treatments of the IR data and the subsequent application of 

chemometric models are also performed in a few minutes. Thus, total analysis time can 

be greatly decreased from hours to minutes whereas similar accuracy to that obtained by 

the GC-MS analysis is attained in determining more than 90% of the bio-oil 

composition in terms of compositional groups. In addition, the loss of information 

related to individual organic compounds can be considered as negligible since it is not 

required for the monitoring and quality control of production processes. Finally, it is 

important to note that the trends identified in this work have been derived from pine-

pyrolysis oils and therefore these observations can differ under different process 

conditions and/or with other feedstocks.  

CONCLUSIONS 

In this work, we demonstrate that mid-infrared spectroscopy based on partial least 

squares regression models can be used as a fast technique to predict the composition of 
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five chemical families: phenols, ketones, cyclic hydrocarbons, aromatics and esters with 

reasonable accuracy in 111 pine-wood-derived pyrolysis oils including those obtained 

via catalytic upgrading and thermal and catalytic pyrolysis. Standard normal variate was 

the spectral pre-processing technique leading to the best multivariate regression. 

Performance of the calibration models were validated by external validation, obtaining 

RMSEPred between 0.40-3.79% for cyclic hydrocarbons and aromatics with relative 

uncertainties decreasing when repeatability was studied by FTIR versus GC-MS.  Good 

fitting between the experimental and the predicted values with coefficients of 

determination for the prediction higher than 0.8 were obtained for these five chemical 

families. The attained results have successfully proved that infrared spectroscopy in 

combination with the chemometric technique can drive the development of enhanced 

tools for the online monitoring and quality control during the production of second-

generation bio-fuels in a fast and secure manner.  

 

ASSOCIATED CONTENT 

Supporting Information 

Details on the catalyst preparation. List of compounds identified by GC-MS analysis. 

Relative area (%) of the different chemical families for each bio-oil sample obtained by 

GC-MS. Results of the PLS regression models with different spectral treatments.  

 

AUTHOR INFORMATION 

Corresponding Author 

*Address correspondence to marisol@icb.csic.es  

ORCID 

Mª Soledad Callén: 0000-0001-6063-7386 

Page 20 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21 

 

 

Notes 

The authors declare no competing financial interest. 

 

ACKNOWLEDGMENTS 

Authors would like to thank the Spanish MINECO and European Union FEDER funds 

for providing support for this work (projects CTQ2012-37984-C02-01 and ENE2015-

68320-R). B.P. thanks the Spanish Ministry of Education through the Temporary 

Transfer Program (TRA13/00003). 

 

REFERENCES 

(1) Kanaujia, P.K.; Sharma, Y.K.; Garg, M.O.; Tripathi, D.; Singh, R. Review of 

analytical strategies in the production and upgrading of bio-oils derived from 

lignocellulosic biomass. J. Anal. Appl. Pyrol. 2014, 105, 55–74.  

(2) Bridgwater, A.V.; Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renew. 

Sust. Energy Rev. 2000, 4, 1–73. 

(3) Yildiz, G.; Pronk, M.; Djokic, M.; Van Geem, K.M.; Ronsse, F.; Van Duren, R. 

Validation of a new set-up for continuous catalytic fast pyrolysis of biomass 

coupled with vapor phase upgrading. J. Anal. Appl. Pyrol. 2013, 103, 343–351. 

(4) Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. 

Biomass Bioenergy 2012, 38, 68–94. 

(5) Adjaye, J.D.; Sharma, R.K.; Bakhshi, N.N. Characterization stability analysis of 

wood-derived bio-oil. Fuel Process. Technol. 1992, 31, 241–256. 

(6) Karagoz, S.; Bhaskar, T.; Muto, A.; Sakata, Y. Comparative studies of oil 

compositions produced from sawdust, rice husk, lignin and cellulose by 

hydrothermal treatment. Fuel 2005, 84, 875–884. 

Page 21 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22 

 

 

(7) Luo, Z.; Wang, S.; Liao, Y.; Cen, K. Mechanism study of cellulose rapid 

pyrolysis. Ind. Eng. Chem. Res. 2004, 43, 5605–5610. 

(8) Zhang, J.; Toghiani, H.; Mohan, D.; Pittman Jr. C.U.; Toghiani, R.K. Product 

analysis and thermodynamic simulations from the pyrolysis of several biomass 

feedstocks. Energy Fuels 2007, 21, 2373–2385. 

(9) Li, J.; Wu, L.; Yang, Z. Analysis and upgrading of bio-petroleum from biomass by 

direct deoxy-liquefaction. J. Anal. Appl. Pyrol. 2008, 81, 199–204. 

(10) Eide, I.; Neverdal, G. Fingerprinting Bio-Oils from Lignocellulose and 

Comparison with Fossil Fuels. Enery Fuels 2014, 28, 2617–2623. 

(11) Zhang, L.; Chenjie, S.; Liu, R. GC-MS and FT-IR analysis of the bio-oil with 

addition of ethyl acetate during storage. Front. Energy Res. 2014, 2, 1–6. 

(12) Chadwick, D.T.; McDonnell, K.P.; Brennan, L.P.; Fagan, C.C.; Everard, C.D. 

Evaluation of infrared techniques for the assessment of biomass and biofuel 

quality parameters and conversion technology processes: A review. Renew. Sust. 

Energ. Rev. 2014, 30, 672–681. 

(13) Jin, S. Y.; Chen, H. Z. Near-infrared analysis of the chemical composition of rice 

straw. Ind. Crops Prod. 2007, 26 (2), 207–211. 

(14) Kelley, S. S. Rowell, R. M.; Davis, M.; Jurich, C.K.; Ibach, R. Rapid analysis of 

the chemical composition of agricultural fibers using near infrared spectroscopy 

and pyrolysis molecular beam mass spectrometry. Biomass Bioenerg. 2004, 27 

(1), 77–88. 

(15) Baptista, P.; Felizardo, P.; Menezes, J.C.; Correia, M.J.N. Multivariate near 

infrared spectroscopy models for predicting the methyl esters content in biodiesel. 

Anal. Chim. Acta. 2008, 607 (2), 153–159. 

Page 22 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23 

 

 

(16) ASTM Standard D7371, 2007. Standard test method for the determination of 

biodiesel (fatty acid methyl esters) content in diesel fuel oil using mid-infrared 

spectroscopy (FTIR-ATR-PLS method). ASTM International: West 

Conshohocken, PA, 2007; http://dx.doi.org/10.1520/D7371-12. 

(17) Veses, A.; Aznar, M.; Martínez, I.; Martínez, J.D.; López, J.M.; Navarro, M.V.; 

Callén, M.S.; Murillo, R.; García, T. Catalytic pyrolysis of wood biomass in an 

auger reactor using calcium-based catalysts. Biores. Technol. 2014, 162, 250–258. 

(18) Veses, A.; Aznar, M.; López, J.M.; Callén, M.S.; Murillo, R.; García, T. 

Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor 

using low cost materials. Fuel 2015, 141, 17–22. 

(19) Veses, A.; Puértolas, B.; López, J. M.; Callén, M. S.; Solsona, B.; García, T. 

Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites. 

ACS Sustainable Chem. Eng. 2016, 4 (3), 1653–1660. 

(20) Veses, A.; Puértolas, B.; Callén, M.S.; García, T. Catalytic upgrading of biomass 

derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different 

metal cations on the bio-oil final properties. Microp. Mesop. Mat. 2015, 209, 189–

196. 

(21) Puértolas, B.; Veses, A.; Callén, M. S.; Mitchell, S.; García, T.; Pérez-Ramírez, J. 

Porosity-acidity interplay in hierarchical ZSM-5 zeolites for pyrolysis oil 

valorization to aromatics. ChemSusChem 2015, 12, 2383–3293. 

(22) Milina, M.; Mitchell, S.; Michels, N.-L.; Kenvin, J.; Pérez Ramírez, J. 

Interdependence between porosity, acidity, and catalytic performance in 

hierarchical ZSM-5 zeolites prepared by post-synthetic modification. J. Catal. 

2013, 308, 398–407. 

Page 23 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24 

 

 

(23) Verboekend, D.; Keller, T.C.; Mitchell, S.; Pérez-Ramírez, J. Hierarchical FAU 

and LTA-type zeolites by post-synthetic design: a new generation of highly 

efficient base catalysts. Adv. Funct. Mater. 2013, 23, 1923–1934. 

(24) Koo, J.-B.; Jiang N.; Saravanamurugan, S.; Bejblova, M.; Musilova, Z.; Cějka, J.; 

Park, S.-E. Direct synthesis of carbon-templating mesoporous ZSM-5 using 

microwave heating. J. Catal. 2010, 276, 327–334. 

(25) López, J. M.; Arenal, R.; Puértolas, B.; Mayoral, A.; Taylor, S. H.; Solsona, B.; 

García, T. Au deposited on CeO2 prepared by a nanocasting route: A high activity 

catalyst for CO oxidation. J. Catal. 2015, 317, 167–175. 

(26) Torrente-Murciano, L.; Gilbank, A.; Puértolas, B.; Garcia, T.; Solsona, B.; 

Chadwick D. Shape-dependency activity of nanostructured CeO2 in the total 

oxidation of polycyclic aromatic hydrocarbons. Appl. Cat., B 2013, 132-133, 116–

122.   

(27) Solsona, B.; García, T.; Sanchis, R.; Soriano, M.D.; Moreno, M.; Rodríguez-

Castellón, E.; Agouram, S.; Dejoz, A.; López Nieto, J. M. Total oxidation of 

VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard 

template method. Chem. Eng. J. 2016, 290, 273–281. 

(28) Dupuy, N.; Molinet, J.; Mehl, F.; Nanlohy, F.; Le Dréau, Y.; Kister, J. 

Chemometric analysis of mid infrared and gas chromatography data of Indonesian 

nutmeg essential oils. Ind. Crops Prod. 2013, 43, 596–601. 

(29) ASTM Standard E1655. Standard practices for infrared multivariate quantitative 

analysis. ASTM International: West Conshohocken, PA, 2005; 

http://www.astm.org. 

(30) Lupoi, J.S.; Singh, S.; Davis, M.; Lee, D.J.; Shepherd, M.; Simmons, B.A.; Henry, 

R.J. High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using 

Page 24 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25 

 

 

multivariate analysis: a comparison between mid-infrared, near-infrared, and 

Raman spectroscopies for model development. Biotechnol. Biofuels 2014, 7, 93. 

(31) Kennard, R. W.; Stone, L. A. Computer aided design of experiments. 

Technometrics 1969, 11(1), 137–148. 

 (32) Naes, T., Isaksson, T., Fearn, T., Davies, T. A user friendly guide to multivariate 

calibration and classification; NIR Publications: Chichester, UK, 2002. 

(33) Williams, P.C. Implementation of near-infrared technology. In Near-Infrared 

Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K.H., 

Eds.; American Association of Cereal Chemists: St Paul, MN., 2001, 145–169.  

(34)  Sills, D.L.; Gossett, J.M. Using FTIR spectroscopy to model alkaline pretreatment 

and enzymatic saccharification of six lignocellulosic biomasses. Biotechnol. 

Bioeng. 2012, 109(4), 894–903.(35) Wold, S.; Sjöström, M.; Eriksson, L. PLS-

regression: A basic tool of chemometrics. Chemometrics Intelligent. Lab. Syst. 

2001, 58(2), 109–130. 

(36) Schnitzer, M. I.; Monreal, C. M.; Facey, G. A.; Fransham, P. B. The conversion of 

chicken manure to biooil by fast pyrolysis I. Analysis of biooils by FTIR and 

NMR spectroscopy. J. Environ. Sci. Health, Part B 2007, 42, 71–77. 

(37) Coury, C.; Dillner, A.M. A method to quantify organic functional groups and 

inorganic compounds in ambient aerosols using attenuated total reflectance FTIR 

spectroscopy and multivariate chemometric techniques. Atmos. Environ. 2008, 42, 

5923–5932. 

(38) Asadieraghi, M.; Wan Dau, W.M.A. In-depth investigation on thermochemical 

characteristics of palm oil biomasses as potential biofuel sources. J. Anal. Appl. 

Pyrol. 2015, 115, 379–391. 

Page 25 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26 

 

 

(39) Janik, L.J.; Merry, R.H.; Forrester, S.T. Rapid prediction of soil water retention 

using mid infrared spectroscopy. Soil Sci. Soc. Am. J. 2007, 71, 507–514. 

(40) Romera-Fernández, M.; Berrueta, L.A.; Garmon-Lobato, S.; Gallo, B.; Vicente, F.; 

Moreda, J.M. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast 

determination of anthocyanins in wine. Talanta 2012, 88, 303–310. (41)

 Tamaki, Y.; Mazza, G. Rapid determination of lignin content of straw using 

attenuated total reflectance Fourier transform mid-infrared spectroscopy. J. Agric. 

Food Chem. 2011, 59, 504–512. 

(42) Chen, H.; Ferrari, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. Qualitative and 

quantitative analysis of wood samples by Fourier transform infrared spectroscopy 

and multivariate analysis. Carbohydr. Polym. 2010, 82, 772–778. 

(43) Meissl, K.; Smidt, E.; Schwanninger, M. Prediction of humic acid content and 

respiration activity of biogenic waste by means of Fourier transform infrared 

(FTIR) spectra and partial least squares regression (PLS-R) models. Talanta 2007, 

72, 791–799. 

(44) Bellon-Maurel, V.; McBratney, A. Near-Infrared (NIR) and Mid-Infrared (MIR) 

spectroscopic techniques for assessing the amount of carbon stock in soils. Critical 

review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. 

(45) D’Acqui, L.P.; Pucci, A.; Janik, L.J. Soil properties prediction of western 

Mediterranean islands with similar climatic environments by means of mid-

infrared diffuse reflectance spectroscopy. Eur. J. Soil Sci. 2010, 61, 865–876. 

  

Page 26 of 32

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27 

 

 

 

Scheme 1. Algorithm of a PLS regression model for the calculation of the statistical 

parameters from FTIR and GC-MS results. 
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Figure 1. FTIR of three selected bio-oils. Black line corresponds to the bio-oil 

obtained from biomass pyrolysis using silica sand as heat carrier. Red and 

blue lines correspond to bio-oils obtained after catalytic upgrading with a 

commercial ZSM-5 zeolite (Si/Al = 40) at 500ºC and 550ºC, respectively. 
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Figure 2. Predicted versus GC-MS results for the different chemical families 

obtained by the PLS model with external validation (target lines; blue 

dots=calibration, N=74; red dots=prediction N=37). 
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Table 1. Descriptive statistics of all samples, calibration and prediction sets according to the Kennard-Stone algorithm for the different 

chemical families (%) obtained by GC-MS. N: number of samples; Cal.: Calibration; Pred.: Prediction; KS: Kennard-Stone 

algorithm; Rel. Unc.: relative uncertainty (%). 

 

 Samples N Phenols Acids Aldehydes Ketones Furans Cyclic HCs Aromatics Esters 

 All 111         

Mean   43.09 0.74 1.13 8.81 2.75 3.66 34.93 4.89 

SD
a 

  1.11 0.12 0.15 0.24 0.11 0.23 0.89 0.46 

Max.b    65.06 5.77 6.62 15.95 5.94 11.43 63.85 10.01 

Minim.
c
    24.66 n.d.

f
 0.70 4.40 1.10 1.26 4.90 1.01 

Rel. Unc.
d 

  11 73 60 12 17 28 11 42 
C.I.e   43.09±4.95 0.74±0.54 1.13±0.67 8.81±1.07 2.75±0.47 3.66±1.01 34.93±3.96 4.89±2.07 

 Cal. KS 74         

Mean   44.38 0.96 1.44 9.15 2.73 4.06 32.47 4.82 
SDa   1.12 0.07 0.06 0.23 0.11 0.21 0.76 0.48 

Max.
b
    65.06 5.77 6.63 15.95 4.60 11.43 63.85 9.21 

Minim.
c
    24.66 n.d.

 f
 0.07 4.40 1.10 1.26 4.91 1.01 

Rel. Unc.d   11 32 20 11 18 23 10 45 

C.I.
e
   44.38±5.00 0.96±0.31 1.44±0.28 9.15±1.01 2.73±0.50 4.06±0.92 32.47±3.41 4.82±2.16 

 Pred. KS 37         

Mean   40.52 0.30 0.51 8.13 2.80 2.86 39.86 5.02 

SD
a 

  1.09 0.22 0.33 0.27 0.09 0.26 1.13 0.43 

Max.
b
    53.33 0.88 1.53 12.36 5.94 4.86 59.02 10.01 

Minim.c    27.38 n.d.f 0.08 5.76 1.62 1.85 20.82 1.78 

Rel. Unc.d   12 333 285 15 15 41 13 38 

C.I.
e
   40.52±4.85 0.30±1.00 0.51±1.45 8.13±1.19 2.80±0.41 2.86±1.19 39.86±5.06 5.02±1.90 

a Average sample standard deviation based on duplicate injections by GC-MS for N samples 
b Maximum value obtained for each chemical family by GC-MS 
c Minimum value obtained for each chemical family by GC-MS 
d Relative uncertainty for a confidence level of 90%  
e Confidence interval at a confidence level of 90% 
f non-detected 
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Table 2. Results of the PLS regression models for each chemical family. 

Dependent 

variable 

N Model type LV Variance Bias RMSE SEC, SEP RPD R2  Rel  

Uncertainty (%) 

C.I. t bias 

    x y  (%) (%)      

Phenols 74 Cal. 5 89.97 83.24 2.6 x10
-3

 3.77 3.80 2.41 0.83 17 44.37±7.54  

 37 Pred. 5 91.69  5.5 x10
-1

 2.98 3.17 2.88 0.85 14 (0.39)
c 

41.08±5.96 1.06 

Acids 74 Cal. 4 84.01 92.65 3.3 x10
-3

 0.42 0.42 3.64 0.93 83 0.99±0.84  

 37 Pred. 4 80.43  -4.6 x10
-2

 0.24 0.24 6.41 0.68 142 (37)
c 

0.33±0.48 1.18 

Aldehydes 73
a
 Cal. 7 95.37 95.28 2.4 x10

-3
 0.42 0.42 4.67 0.96 60 1.30±0.80  

 37 Pred. 7 94.34  -6.3 x10
-2

 0.27 0.27 7.30 0.84 104 (9)
c 

0.51±0.54 1.43 

Ketones 74 Cal. 6 93.50 79.84 1.6 x10
-2

 1.20 1.21 2.20 0.80 26 9.15±2.40  

 37 Pred. 6 93.56  2.2 x10
-1

 0.83 0.93 2.85 0.87 19 (0.82)
c 

8.36±1.66 1.47 

Furans 74 Cal. 6 93.10 54.97 1.2 x10
-2

 0.59 0.59 1.47 0.55 42 2.73±1.18  

 37 Pred. 6 93.78  -1.9 x10
-1

 0.90 0.89 0.98 0.07 67 (0.40)
c 

2.61±1.80 1.32 

Cyclic HCs 74 FCV 2 73.96 91.95 6.3 x10
-3

 0.68 0.68 3.48 0.92 33 4.06±1.36  

 37 Pred. 2 64.30  1.2 x10
-1

 0.40 0.45 5.24 0.83 26 (1.97)
c 

2.98±0.80 1.58 

Aromatics 74 Cal. 5 89.28 90.15 4.5 x10
-2

 5.18 5.22 3.14 0.90 31 32.47±10.36  

 37 Pred. 5 91.93  2.9 x10
-1

 3.79 3.83 4.28 0.90 19 (0.52)
c 

39.57±7.58 0.45 

Esters 73
b
 Cal. 5 92.83 79.63 3.8 x10

-3
 0.98 0.99 2.40 0.80 40 4.87±1.98  

 37 Pred. 5 91.20  -1.6 x10
-1

 0.79 0.78 2.77 0.90 32 (1.99)
c 

4.82±1.58 1.21 
a,b 

After removing some outliers 
c
 Results of relative uncertainty (%) for the repeatability of one sample determined five times by FTIR with a confidence level of 95% 
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Infrared spectroscopy in combination with partial least squares regression models 

enable the fast and accurate prediction of 90 wt% of bio-oil composition. 
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