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Abstract 

The polymerization reaction that takes place between resorcinol and formaldehyde is 

spontaneous but slow. For this reason, compounds are often used to increase the 

reaction rate and reduce the synthesis time. These compounds can be basic or acidic and 

their nature and concentration can be used to modify the mechanisms of the reaction and 

the final properties of the materials. In this work the differences in the final properties of 

the organic xerogels obtained with basic or acid boosters have been studied. It was 

found that, irrespective of the nature of the booster, none of the end-product materials 

showed any differences in their chemical properties. Moreover, the concentrations of 

the components of the precursor solution (i.e. monomers, water and methanol) were 

observed to have the same effect on the porous properties of the materials regardless of 

whether an acidic or a basic booster was used. However, differences in the porous 

properties were observed. It was found that the methanol content was crucial to tailor 

the porosity over the entire nanoscale when an acidic booster is used. These results are 

of great importance as acidic boosters allows to decrease synthesis time and, hence, to 

produce more competitive materials.  

Keywords: Organic xerogels, pH, microwave heating, porosity, resorcinol, 

formaldehyde 
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1. Introduction 

Resorcinol-formaldehyde (RF) gels are porous materials obtained by means of a 

polymerization reaction [1-3]. These materials have aroused widespread interest among 

the scientific community over the past two decades due to their excellent properties and 

diverse applications [4-8,3]. Some of the most notable features of these materials 

include their high purity, low density, controllable porous structure and the possibility 

of doping them with metals or other substances [8-10,6]. Another reason for the 

growing interest in these polymeric materials has been the development of a simple and 

fast synthesis process based on microwave technology, which has led to a reduction in 

the synthesis time and manufacturing costs [11,12]. From this process, the so-called 

xerogels are obtained instead of the well-known aerogels, which are unfeasible to 

synthesize at an industrial scale [3]. Moreover, it has been widely demonstrated that 

microwave heating leads to xerogels with similar properties than those obtained by 

conventional methods [12]. Therefore, it is now possible for companies to take benefit 

from the advantageous characteristics of RF xerogels without incurring excessive 

production costs. However, as in all industrial processes, more research is needed to 

further reduce the synthesis time and, in turn, increase the competitiveness of the 

material produced. In the context of microwave-assisted synthesis, one of the 

possibilities to further minimize production time is to accelerate the chemical reaction 

that takes place during the synthesis process [13]. 

Generally, RF gels are synthesized by a sol-gel process via the polycondensation of 

resorcinol and formaldehyde in an aqueous solution [3]. Another compound, the so-

called booster throughout this publication, is commonly used to regulate the pH of the 

precursor solution and accelerate the formation of the polymeric structure [9,3,14,15]. 
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Usually, the compounds employed to promote the polymerization reaction between the 

resorcinol and formaldehyde are basic, being Na2CO3 and NaOH the most widely used 

bases [16-18,4,19]. However, some acid compounds such as perchloric, acetic, nitric or 

oxalic acids have also been employed in the synthesis of RF gels [20,17,21,4,22]. Some 

of these studies have demonstrated that acidic boosters lead to an increase in the 

reaction rate in comparison with basic boosters and, hence, the synthesis time is reduced 

[21,17]. Another factor to bear in mind is the incorporation of impurities in the carbon 

structure [19,13,20,18]. Calvo et al. recently shown that the most common basic 

boosters provide impurities, which cause corrosion and slagging in steel reactors 

operating at high temperatures [19]. These reactors are typically employed in the 

carbonization process of RF gels, which give rise to carbon gels. Therefore, the 

selection of an acid booster may contributed to avoid the incorporation of metals.  

Nevertheless, despite the abovementioned advantages, the vast amount of literature on 

basic boosters overshadows the few reports focused on acidic boosters (the reader is 

referred to some of these relevant publications on acid-based RF gels 

[1,20,17,13,15,23]). From those studies, two main items should be highlighted: i) 

almost all acid-based RF gels synthesized are mainly macroporous materials but with 

lower densities than that of basic-based gels, and ii) from the best of our knowledge, all 

the studies reported to date, are based on the synthesis of aerogels rather than xerogels, 

the latter being those currently synthesized at an industrial scale by means of microwave 

heating. Consequently, although several attempts to synthesized acid-based aerogels 

have been made, there is still an ongoing need for a method for producing RF xerogels 

using acidic boosters, which gives rise to materials with tailored porosity over the entire 

nanoscale. 

Therefore, the aim of the present work is to synthesize acid-based RF xerogels by 



4 

 

means of microwave heating in order to i) obtain materials with tailored porosity and ii) 

increase the competitiveness of these materials by reducing synthesis time. It is well-

known that the porosity of basic-based RF xerogels can be minutely tuned by selecting 

the appropriate composition of the precursor solution: pH, dilution ratio, R/F molar ratio 

and even, as recently demonstrated, the methanol content in commercial formaldehyde 

solutions [24,22,25,26,14,27,28]. However, from the best of our knowledge, there are 

not exhaustive studies on the effect of all these variables on the porous properties of 

organic xerogels synthetized by employing acid as booster and a microwave oven as 

heating source. Accordingly, in this work the influence of the aforementioned variables 

on the chemical and porous properties of acid-based RF xerogels synthesized by 

microwave heating has been studied. All of the synthesized xerogels were characterized 

from the point of view of their chemical and porous structure to determine the effect of 

each variable. Moreover, basic-based RF xerogels have also been synthesized to 

ascertain possible differences in properties due to the booster employed. 

2. Experimental Section 

2.1. Synthesis of organic xerogels  

A wide spectrum of resorcinol-formaldehyde xerogels was synthesized by microwave 

heating and by modifying chemical variables such as the pH of the precursor solution, 

the amount of solvent (water), the R/F molar ratio and the amount of methanol 

contained in the commercial formaldehyde solution. Briefly, the synthesis of the organic 

xerogels proceeded as follows: a mixture of resorcinol (Indspec, 99.6 wt. %), distilled 

water, formaldehyde (Química S.A.U., aqueous solution with 37 wt. % formaldehyde 

and 1.5 wt. % methanol), and some extra methanol (AnalaR Normapur, 99%) if 

necessary, was prepared. The initial pH of the precursor solution, which had a value of 



5 

 

ca. 3.0 in almost all cases, was measured and then adjusted to the desired final pH in 

order to obtain acid-based and basic-based xerogels. To this end, nitric acid (Merck, 65 

wt. % HNO3) and sodium hydroxide (1 M NaOH made up of solid NaOH, AnalaR 

Normapur, 99.9 %) were used as boosters to adjust the pH of the precursor solutions, 

respectively.  

Resorcinol, formaldehyde, methanol and water were added in the required proportions 

depending on the values of dilution ratio (D = total solvent / reactant molar ratio), R/F 

molar ratio and percentage of methanol desired. These values were selected on the basis 

of results reported in previous published works on the synthesis of basic-based RF 

xerogels, in order to obtain materials with different porous properties [27,14]. 

Each precursor solution prepared was introduced into the microwave oven at 85 ºC for 

about 5 hours, following the experimental method describe elsewhere [11]. Once the 

synthesis was completed, the organic xerogels were subjected to a heat treatment at 100 

ºC overnight to remove any traces of reagent and obtain completely stable samples.  

The nomenclature of each sample indicates the synthesis conditions employed; OXA 

and OXB denoting Organic Xerogel prepared with an Acid booster and Organic 

Xerogel prepared with a Basic booster, respectively, and the following numbers 

referring to the pH, dilution ratio, R/F molar ratio and the percentage of methanol 

content, in that order. 

2.2. Characterization techniques 

The chemical composition of the RF xerogels was evaluated in order to identify 

possible discrepancies between the samples synthesized via the acid and basic routes. 

Therefore, ultimate (i.e. carbon, hydrogen, nitrogen and oxygen contents) and proximate 
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(i.e. moisture, ash and volatile matter contents) measurements were carried out in a 

LECO-TF-900 and LECO-CHNS-932 microanalyzer, respectively.  

Fourier Transform Infrared Spectroscopy (FTIR) was also performed. The spectra were 

recorded in the 525 and 4000 cm
-1

 range on a Nicolet IR 8700 spectrometer fitted with a 

DTGS detector (deuterated triglycine sulphate) at a resolution of 4 cm
-1

 over 64 

accumulated scans. All the samples were analyzed twice. In order to prepare the pellets, 

the samples and KBr (previously dried overnight) were mixed in a proportion of 1:100 

in an agate mortar for 10 minutes until a homogeneous mixture was obtained. Around 

0.125 g of this mixture was subjected to 8 tons of pressure in a 13 mm-diameter matrix.  

In addition, in order to study the chemical properties of the xerogels in greater depth the 

pH of the point of zero charge (pHPZC) was determined by the reverse mass titration 

method described elsewhere [29]. 

The porous structure of the RF xerogels was evaluated by the following techniques: (i) 

nitrogen adsorption-desorption isotherm analysis and; (ii) mercury porosimetry. Prior to 

performing these analyses, the samples were degassed at 120 ºC under a vacuum of 0.1 

mbar overnight. N2 adsorption-desorption isotherms were performed at -196 ºC using a 

Tristar II 3020 (Micromeritics) analyzer. The specific surface area was calculated by 

the Brunauer-Emmett-Teller (BET) method. The Dubinin-Raduskevich (D-R) model 

was used to obtain information about the microporosity (VDUB-N2). The total pore 

volume (Vp) was calculated from the amount of nitrogen adsorbed at a relative pressure 

of 0.99. The mesopore volume obtained by this technique (Vmeso-N2) was calculated as 

the difference between Vp and the VDUB-N2. Pore volume measurements by nitrogen 

adsorption are not precise enough for samples containing macropores. As several of the 

studied samples displayed large mesopores, and in some cases macropores, mercury 
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porosimetry was used as a complementary technique. The device used was an AutoPore 

IV 9500 Micromeritics that is able to operate in a pressure range from atmospheric 

pressure to 228 MPa. The surface tension and contact angle values for Hg in all the 

characterizations were 0.485 N m
-1

 and 130º, respectively. By means of this technique, 

based on the Washburn intrusion theory, the following parameters were calculated: 

mesopore and macropore volume (Vmeso and Vmacro, respectively), average pore size 

(dpore), percentage of porosity and bulk density. It should be noted that the lowest 

detectable limit of the device is 5.5 nm, so that, Vmeso refers to a pore size range of 

between 50 and 5.5 nm. Moreover, it should be highlight that some organic gels may 

have a weak compressive strength and they may undergo densification without any 

intrusion of mercury into the pores when submitted to mercury porosimetry. In order to 

avoid possible errors due to densification, the analysis of the data obtained from 

mercury porosimetry was treated following the methodology detailed elsewhere [30]. 

The morphology of all samples was examined using a Quanta FEG 650 scanning 

electron microscope. Samples were previously attached to an aluminum tap using 

conductive double-sided adhesive tape. An accelerating voltage of 25 kV and a 

secondary electron detector EDT (Everhart-Thornley) were used in all analysis. 

3. Results and Discussion 

3.1. Chemical properties 

The chemical composition of acid-based (OXA) and basic-based (OXB) RF xerogels 

synthesized was analysed. Given that, as expected, the composition of all materials 

studied was similar, only the results of four samples are shown in Table 1, as an 

example.  
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Table 1. Elemental analysis of the acid and basic RF xerogels. 

Booster Acid (HNO3) Basic (NaOH) 

Sample OXA-2.0-3.7-0.5-12.5 OXA-2.0-2.7-0.5-1.5 OXB-5.4-7.7-0.3-12.5 OXB-6.5-6.0-0.5-12.5 

C (±0.3, wt. %) 65.8 66.1 64.7 66.3 

H (±0.3, wt. %) 4.3 4.6 4.9 4.5 

N (±0.3, wt. %) 0.3 0.3 0.3 0.3 

O (±0.3, wt. %) 29.6 29.0 30.1 28.9 

 

All samples contain c.a. 65.5 wt. % of carbon, 4.5 wt. % of hydrogen and 30 wt. % of 

oxygen. No nitrogen is considered to be present since 0.3 wt. % is within the range of 

analysis error and the precursors (i.e., R and F) have no nitrogen. It should also be noted 

that the same nitrogen content was obtained for all the samples which means that the 

nitrogen content did not increase (at least substantially) as a result of using HNO3 for 

the synthesis. Moreover, all the samples showed c.a. 46 % of volatile material, 5 % of 

moisture and no mineral residue at all. Therefore, irrespective of the nature of the 

booster employed to fix the pH, the chemical composition obtained was similar for all 

samples, inasmuch as the same main reagents were used to prepare the precursor 

solutions. However, it is well-known that the nature of the booster modifies the 

mechanism of the polymeric reaction [10,3]. Accordingly, structural differences may be 

expected between OXA and OXB samples. Conversely, as shown in Figure 1, the FTIR 

spectra of acid (series OXA) and basic (series OXB) samples are quite similar (note that 

only four samples are shown in Figure 1, as an example). These results are in agreement 

with those recently published by Alonso-Buenaposada et al. [28]. The authors presented 

an exhaustive chemical study on organic and carbon basic-based xerogels synthesized 

by microwave heating in which several techniques of characterization were employed to 

elucidate the possible differences in the chemical structure of those materials [28]. They 

demonstrated that all samples present a very similar chemical properties, even slightly 
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differences related to the concentration of oxygen and number of ester bonds were 

found [28].  

 

Fig. 1. FTIR spectra of the RF xerogels synthesized by the addition of an acid 

(HNO3) or basic (NaOH) booster 

As shown in Figure 1, all the samples exhibit a wide band between 3700 and 3000 cm
-1

, 

associated with O-H stretching vibrations, while another band located at 1474 cm
-1

, 

corresponds to CH2 deformation vibrations [5]. Moreover, the band at 1613 cm
-1

 is due 

to aromatic ring stretching vibrations (C=C) whereas the bands at 1217 and 1092 cm
-1

 

indicate the presence of methylene ether bridges C-O-C. These similarities found in the 

chemical properties of the RF xerogels synthesized from precursor solutions with 

boosters of different nature can be attributed to the two steps involved in the 

polymerization reaction between resorcinol and formaldehyde: (i) addition and (ii) 

condensation reaction [2]. In general, the mechanism of the addition reaction depends 

largely on the nature of the compound used to adjust the pH of the precursor solution, 

whilst the condensation reaction is independent of the booster, as shown in Figure 2. 
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Fig. 2. Mechanism of the polymerization reaction between resorcinol and 

formaldehyde under basic and acid routes 

 

When a basic booster is used, the resorcinol is deprotonated (Figure 2a), giving rise to 

resorcinol anions which trigger a nucleophilic attack from the second, fourth or sixth 

positions of the resorcinol towards the formaldehyde [2,25,3,23]. On the other hand, 

when an acid compound is used, the first step is favoured by the protonation of the 

formaldehyde (Figure 2b), which makes the carbonyl carbon more electrophilic and 

causes an identical SN2 attack from the resorcinol [1]. As a result of these two 

mechanisms, hydroxymethyl derivatives are obtained, which are the necessary 

monomers for polymerization to occur. A series of consecutive condensation reactions 

then take place, in which the hydroxymethyl derivatives lose OH groups and form 

benzyl-type cations [26,15,23]. Each cation reacts with a benzene ring of another 

molecule, giving rise to methylene and ether bonds until a three-dimensional cross-

linked polymer is formed, as shown in Figure 2c. The results of FTIR shown in Figure 

1, are in good agreement with the above detailed mechanisms, as all the materials have 

similar chemical properties, whichever booster was used. 
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3.2. Porous properties 

The most interesting characteristic of basic-based RF xerogels is that it is possible to 

design their porous properties to fit the requirement of specific applications, by 

modifying the main chemical variables: pH, D, R/F molar ratio and % of methanol. The 

effect of the pH is the most studied variable [17,12,14,9]. Values of pH usually ranged 

between 3.0, which is the initial pH value of most of the precursor solutions, and 7.0 

[12,26]. Generally, an increase in the concentration of the basic booster, i.e. an increase 

in the pH value, results in materials with smaller pore size, which is confirmed by pore 

size distributions shown in Figure 3a. Therefore, one might assume an increase in pore 

size as the pH drops below 3.0. However, contrary to expected, pore size of samples 

synthesized with an acidic booster decreases with pH, as shown in Figure 3b. It is 

evident from these results that the polymerization reaction depends largely on the 

amount and nature of catalyst added. Each booster favours its corresponding addition 

reaction (Figure 2a and 2b), which leads to the formation of a large number of clusters 

and, hence, to materials with pores of smaller size. However, it should be noted that the 

use of a basic or an acidic booster results in meso-macroporous materials or exclusively 

macroporous materials, respectively. These results are consistent with other published 

studies where it was shown that the use of acidic boosters gives rise to materials of 

larger pore size [13]. Therefore, it seems necessary to modify the concentration of the 

remaining reagents (i.e. R/F molar ratio, D and percentage of methanol) to find out if it 

is possible to obtain porous materials over the entire nanoscale by using acidic boosters.  
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Fig. 3. Influence of the pH value on the pore size distribution of RF xerogels 

synthesized by adding basic (a) or acid (b) boosters  

Initially, two set of samples (OXB and OXA) were synthesized from precursor solutions 

with different R/F molar ratio. The effect of this variable on pore size and total pore 

volume obtained by mercury porosimetry, is shown in Figure 4. Regardless of the 

nature of the booster, a decrease in the concentration of either of the main reagents 

(resorcinol and formaldehyde) leads to a decrease in the reaction rate since the 

precursors are prevented from locating each other. As a consequence, an increase in the 

pore size is observed, and a minimum value of pore size is obtained when the 

stoichiometric ratio (R/F=0.5) is employed. On the other hand, an excess of 



13 

 

formaldehyde (i.e., a low R/F molar ratio) creates more interconnections between 

clusters, leading to a highly branched structure [22,14]. The mechanical strength of 

these RF xerogels is greater so that no shrinkage occurs during the drying step, which 

results in a larger total pore volume (Figure 4). Therefore, whereas same pore size can 

be obtained using different R/F molar ratios, large pore volumes are achieved only if the 

R/F molar ratio is below 0.5. The effect of modifying the R/F molar ratio is similar for 

both the OXA and OXB series. However, the porous properties of samples synthesized 

by using an acidic booster are within the range of macroporosity, while OXB are within 

the range of mesoporosity. This effect, as explained above, is due to the amount and 

nature of the booster, which means that pH value has more effect on the porous 

properties than the R/F molar ratio.  

 

Fig. 4. Effect of the variation of the R/F molar ratio on the pore size () and total 
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pore volume () when (a) a basic (NaOH) or (b) an acid (HNO3) booster is used to 

prepare the precursor solution 

Another important chemical variable which must be taken into account when designing 

the porosity of RF xerogels is the dilution ratio (D). In order to evaluate the effect of 

this parameter, the pore size distribution obtained by subjecting the samples with 

different dilution ratios to mercury porosimetry is shown in Figure 5. The same trend 

can be observed by both the OXA and OXB series: the larger the dilution ratio is, the 

larger the pore size obtained. This is because an increase in the dilution ratio leads to a 

greater volume of water among the clusters, which in turn, results in an increase in the 

distance between clusters, and therefore, larger pores [24,26]. As in the case of basic 

compounds, the OXA series shows an upper limit for D values and, when it is exceeded, 

the sol–gel reaction fails to take place as the large amount of water prevents the 

precursor solution from reaching its gelation point [26].  
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Fig. 5. Influence of the dilution ratio on the pore size distribution of RF xerogels 

synthesized by adding basic (a) or acid (b) boosters 

Finally, the influence of the concentration of methanol on the porous properties of RF 

xerogels prepared from acidic and basic precursor solutions was evaluated. Methanol is 

added to formaldehyde solutions in order to prevent the formaldehyde from 

polymerizing and subsequently precipitating. It was only recently that the methanol 

content of the formaldehyde solution was recognised as a chemical variable that 

affected the porosity of RF xerogels [27]. Hemiacetals and acetals are formed in a 

reversible reaction that prevents the formation of clusters owing to the fact that the 

reaction between resorcinol and formaldehyde only takes place if the formaldehyde 

remains in its free form [3]. Consequently, an increase in the methanol content leads to 
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an increase in the formation of hemiacetals which prevents the resorcinol molecules 

from finding free formaldehyde molecules to react with. Moreover, the formation of 

hemiacetal compounds is favoured in acidic media [27], which suggest that the 

formation, growth and crosslinking of the polymeric structure depend to a great extent 

on the methanol content and the booster used to prepare the precursor solution. In fact, 

structural differences were observed by SEM images, as shown Figure 6. In Figure 6a 

and 6b it can be appreciated the characteristic morphology of basic-based RF xerogels. 

However, by using an acidic booster, the typical morphology is replaced by a capsule-

like or cellular morphology with pores enclosed by thin polymeric walls. 

Fig. 6. SEM images of RF xerogels synthesized from precursor solutions with 

different concentration of reagents: (a) OXB-5.4-7.7-0.3-12.5, (b) OXB-6.5-6.0-0.5-

12.5, (c) OXA-2.0-2.7-0.5-1.5 and (d) OXA-2.0-2.7-0.5-20.0 
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However, even though differences in the polymeric structures have been found, the 

effect of methanol content on the reactivity of resorcinol (or the availability to 

polymerize) is independent of the nature of the booster used (acidic or basic). Therefore, 

similar effects on the final porous properties are observed, as shown in Figure 7. 

Materials synthesized with low concentrations of methanol have larger pore volumes 

both in the OXA and OXB series of samples. 

 

Fig. 7. Influence of the methanol content of the formaldehyde solutions on the 

porosity of RF xerogels synthesized using a basic (NaOH) or an acid (HNO3) 

booster in the precursor solution 

As explained in detail in previous studies [27,10,14,26], the formation, growth and 

crosslinking of the polymeric structure depend on the concentrations of all the reagents 

used to prepare the precursor solution. Accordingly, it is possible to obtain RF xerogels 

with a desired pore size whether an acid or basic booster is used, if the concentration of 

all the reagents are properly selected, as shown in Table 2. However, it is worth noting 

that the variation of the percentage of methanol in OXA series, results in mesoporous 

materials, which are generally achieved only by using basic boosters. In other words, 

the variation of the methanol content is essential in the case of acid-based RF xerogels 
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in order to obtain mesoporous materials.  

Table 2. The porous properties of the RF xerogels synthesized under different chemical 

conditions 

SAMPLE 

aVtot 

(cm3 g-1) 

aVmeso 

(cm3 g-1) 

aVmacro 

(cm3 g-1) 

aPore 

diameter 

(nm) 

aBulk 

density 

(g cm-3) 

aPorosity 

(%) 

bSBET  

(m2 g 1) 

bVmeso-N2 

(cm3 g-1) 

OXB-4.5-7.7-0.5-12.5 2.67 0.03 2.64 775 0.2 86 120 0.05 

OXB-5.4-7.7-0.3-12.5 1.47 0.81 0.65 41 0.44 65 180 0.36 

OXB-6.2-8.6-0.5-12.5 0.64 0.51 0.13 22 0.61 53 269 0.47 

OXB-6.5-6.0-0.5-12.5 0.41 0.36 0.04 14 0.76 40 303 0.52 

OXA-2.0-3.7-0.5-12.5 1.01 0 1.01 735 0.56 56 0 0 

OXA-2.0-2.7-0.5-1.5 0.81 0.65 0.17 41 0.63 50 110 0.33 

OXA-2.0-2.7-0.5-12.5 0.73 0.67 0.06 26 0.67 49 226 0.66 

OXA-2.0-2.7-0.5-20.0 0.54 0.48 0.06 14 0.70 37 354 0.73 
aobtained from mercury porosimetry 

bobtained from N2 adsorption isotherms 

 

In short, an appropriate combination of pH, R/F molar ratio, dilution ratio and methanol 

content leads to materials with similar porous properties irrespective of the mechanism 

of the polymerisation reaction (Figure 2). However, acidic boosters, should result in 

lower synthesis time and, hence, in to more competitive materials. In order to verify this 

advantage, the evolution of the pH of 4 precursor solutions was registered at ambient 

temperature and plotted in Figure 8.  

 

 

Fig. 8. Evolution of the pH of the precursor solutions with time up to the point of 

gelation for the following initials pH: 1.5, 3 (with no compound to modify the pH), 
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4.5 and 6.5 

 

From Figure 8 it can be inferred that, even at room temperature, the precursor solution 

reacts and its pH value changes with time. Moreover, although each solution has a 

different initial pH, the general trend is for all of them to acquire the same final pH (c.a. 

pH of 3), which can be considered as the equilibrium pH for this type of materials. This 

pH value matches the pHPZC of all the final RF xerogels obtained (i.e. pHPZC=3 for all 

organic xerogels), indicating that, although the type and concentration of the booster 

may have a great effect on the mechanism and rate of the polymerisation reaction, 

respectively, the final nature of the material obtained is similar. It can also be observed 

that the acidic solutions get to the gelation point faster than the basic ones even if they 

are farther from the equilibrium pH (e.g., the precursor mixture with a pH=1.5 only 

shows a few points in Figure 8). In fact, a solution with a pH of 0.85 was prepared and 

no data at all could be recorded owing to its instant gelation. Therefore, the main 

difference between what an acid or a basic booster has to offer is that the acid 

mechanism (Figure 2b) is more favoured and so the reaction is much faster than when a 

basic one is used. Extra evidence for this is provided in the video of the supplementary 

material. 

 

5. Conclusions 

In this work resorcinol-formaldehyde (RF) xerogels have been synthesized by means of 

microwave heating and by using basic and acidic booster to adjust the pH of the 

precursor solutions. It was found that, regardless of the booster used, materials with 

similar chemical composition were obtained. Conversely, the nature of the booster had a 

great influence on the porous properties. It has been observed that basic boosters led to 

meso-macroporous materials while acid boosters resulted in exclusively macroporous 
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materials. However, it has been demonstrated that the properties of acid-base RF 

xerogels can be also tailored by the appropriate selection of the concentration of all 

reagents, which are defined by the R/F molar ratio, the dilution ratio and the methanol 

content. Among these three variables, the methanol content has shown to be crucial to 

obtained mesoporous materials via an acid route. These results are of great relevance as 

they proof, for the first time, that the microwave-assisted synthesis of basic-based 

organic xerogels may lead to materials with tailored porosity over the entire nanoscale. 

Moreover, acid boosters has the advantage that it prevents the incorporation of 

impurities into the carbonaceous structure (i.e. alkaline metals) and accelerates the 

polymerization reaction, leading also to more competitive materials. 
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