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The first section of this Supporting Material contains information about the diabatization tech-

nique and electronic couplings obtained in the work. Section S2 presents electron transfer proba-

bilities calculated at MS-CASPT2 level of theory. Section S3 outlines the He density functional-

based approach used to calculate the repulsive contribution to the Csx–C60 (x = 1,2) interaction

energies due to the presence of a He2000 droplet. It also presents two pictures showing the helium

density layering around the fullerene C60 molecule and the calculated repulsive energy corrections.

Section S4 shows how the crossing points has been estimated from experimental data. Section S5
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presents the reaction energy pathways derived from a HF+Das[CCSD(T)] ansatz. Section S6 com-

pares test calculations on the Cs2–C60 model system at CCSDT(T), MP2, and SCS-MP2 levels

of theory as well as using different basis set sizes for carbon atoms. Finally, Section S7 presents

interaction potentials and reaction energy pathways upon accounting for the basis set superposition

error via the counterpoise scheme.
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S1 Obtaining Diabatic HF Solutions and Electronic Couplings

for Neutral and Ionic Channels

Strictly speaking, it is not possible to obtain HF solutions for two states of the same symmetry,

as with the proper orbital optimization, the HF procedure should always end up at the electronic

ground state. However, by the construction of suitable initial orbitals, biased either towards the

neutral or the ionic channel, the HF algorithm can get deliberately trapped in the corresponding lo-

cal minima. A similar strategy has been previously used in Ref. 1 to study the hopping between the

van der Waals (vdW) and ionic electronic states characterizing the interaction of O2 with a reduced

TiO2(110) surface. This strategy has also worked for the Csx–C60 system (x = 1,2). Starting from

a large distance of at 100 Å between the Csx and C60 fragments, we build the initial set of orbitals

by explicitly combining the orbitals associated to the HF orbitals of separated fragments using the

MERGE procedure of MOLPRO.2 At such large distances, these perfectly correspond to converged

HF solutions. These orbitals are then used as starting guess to obtain solutions at smaller distance.

Thus, using always the next larger distance as a starting guess, we obtain two different HF solu-

tions corresponding to the neutral and ionic channels, which are easily monitored by calculating

the dipole moment of the complete Csx–C60 system. This approach is working up to distances of

about 5 Å, i.e. the location of the repulsive wall. Still, the fact that the upper HF solution is a

saddle point and not the minimum, translates to a rather slow convergence of the upper state, and

even non-convergence for certain distances.

It is clear that at finite distances these solutions are neither orthonormal nor non-interacting.

Denoting the HF solutions obtained by MOLPRO as ψ0
n,i, we have an overlap of the electronic

wavefunctions

s0
ni = 〈ψ0

n |ψ0
i 〉 6= 0

and non-vanishing matrix elements for the electronic Hamiltonian

H0
ni = 〈ψ0

n |Ĥ|ψ0
i 〉 6= 0
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in the basis of the electronic states. To calculate these quantities, we use a specially developed

procedure in MOLPRO, based on bi-orthogonal orbital transformation (see Ref. 1 for details). The

present implementation works for HF wavefunctions, using the integral-direct approach, and can

be applied to large systems such as molecular oxygen adsorbed to a cluster model of the TiO2(110)

surface.1

In a first step, these HF solutions need to be orthogonalized. This is done via Schmidt orthog-

onalization by applying the transformation matrix

 1 −s0
ni√

1−s02
ni

0 1√
1−s02

ni


or via the symmetric orthogonalization using the matrix

 1 s0
ni

s0
ni 1


−1/2

,

and transforming the energy matrix  E0
n H0

ni

H0
ni E0

i


accordingly. The corresponding transformed energy matrix elements can be considered as the “di-

abatic" energies (diagonal elements) and “diabatic" electronic couplings (non-diagonal elements).

However, the two different orthogonalization schemes (Schmidt and symmetric orthogonalization

procedures) lead to a rather different non-diagonal interaction and thus they can not be considered

as satisfactory.

To obtain more rigorous diabatic solutions, we have applied the method described in Ref. 3.

Diabatic solutions are defined as those for which the derivative coupling is zero. Thus, it is clear

that the diabatic solution is defined up to an arbitrary geometry-independent unitary transformation.

In our case, it is obvious to consider that the diabatic states should coincide with the adiabatic ones
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at very large distance. Then, the diabatization procedure consists in rotating the two states at the

present geometry in such a way that their overlap with the diabatic states at the next larger distance

is maximized. As shown in Ref. 3, this results in the following transformation matrix,

T̂c = Ŝcp
[
Ŝt

cpŜcp
]−1/2

where Ŝcp is the overlap matrix between the HF solutions at the current geometry (orthogonalized

as explained above with any orthogonalization scheme), and the diabatic solutions evaluated at a

previous larger distance. Applying this transformation to the current solutions, we obtain diabatic

solutions at the current geometry. Clearly, the results will not depend on the orthogonalization

scheme if we start from a very large distance where the overlap s0
ni is very close to zero and thus the

two orthogonalization schemes provide the same results. This diabatization method is robust even

when using large steps between adjacent geometries. Still, the step should be shorter than 1−2 Å

as otherwise the Scp matrix elements become very small and thus prone to numerical noise. For

our system, we start from 30 Å inwards. To better estimate the crossing position between vdW and

ionic states, the diabatic HF solution correlating to the C−60 + Cs+x fragmentation is asymptotically

corrected using experimental values of the C60 electron affinity4 and the Csx ionization energy.5

S2 Hopping Probabilities at MS-CASPT2 Level of Theory

As an alternative to calculate the non-adiabatic interaction between vdW and ionic states we

adopted the following strategy. First, using these two HF solutions, we construct the combined one-

particle density matrix as an average of the densities of the two HF solutions. Next, we generate

the natural orbitals, corresponding to this averaged density. Finally, we perform the state-averaged

CASSCF calculations for the two states, using a slightly increased active space to fully reproduce

the corresponding HF solutions, without optimization of orbitals. This results in two adiabatic

states equivalent to the original HF solutions. To recover some part of the dynamic correlation,

the MS-CASPT2 method is further applied. For the Cs–C60 system, the valence space consists of
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Figure S1: Electronic coupling H12 between vdW and ionic states as a function of the distance
between Cs and C60 fragments.
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4 closed and 7 active orbitals, while inner 179 orbitals were kept frozen (not correlated). At the

crossing point, half of the minimum energy splitting between these adiabatic states can be iden-

tified with the non-adiabatic interaction matrix element H12. The resulting hopping probabilities

as a function of the relative velocities are plotted in Figure S2. They are larger than those calcu-

lated at diabatic HF level by about 20%. If the procedure is repeated for the Cs2–C60 system in a

collinear configuration, the hopping probability increases to 98% at the Landau velocity, which is

27% larger than that calculated at diabatic HF level (71%). However, the value obtained for the

orientational average by considering both collinear and T-shaped configurations is very similar at

MS-CASPT2 and diabatic HF levels (48% vs. 52%).

S3 Calculation of the Repulsive Contribution to the Interaction

Energies Between Csx and C60 Species in Helium Droplets

S3.1 Outline of Helium Density Functional Theory

Free energies of doped He nanodroplets (HeN) have been obtained via helium density functional

theory (He-DFT) based on a slightly modified version of the Orsay-Trento-density functional.6,7

The free energy of a doped He droplet is minimized with respect to a given arrangement of the

dopants within the droplet and on its surface. The free energy F [ρ], a functional of the helium

density ρ , can be written as

F [ρ] = E[ρ]+Uext[ρ]−µN[ρ]−F ·R[ρ], (S1)

where E[ρ] stands the Orsay-Trento-density functional6 and Uext[ρ] an external potential intro-

ducing the interaction between the droplet and the dopants. The He–C60 and He–Csx interaction

potentials reported in Ref. 8 were used. The interactions between the dopants themselves were

added a posteriori (see next subsection). The two last terms of the equation allows for the conser-

vation of N, the total particle number, and R, the He droplet mass center. Both can be written as
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functionals of the density,

N =
∫

drρ(r) , R =
1
N

∫
drρ(r)r. (S2)

Their corresponding Lagrange parameters are the chemical potential µ and the retaining force F,

respectively. The density functional itself can be written as7

E[ρ] =
h̄2

2m

∫
dr(∇

√
ρ) (S3)

+
1
2

∫
drdr′VLJ(|r− r′|)ρ(r)ρ(r′)

+
c2

2

∫
drρ(r)ρ̄(r)2 +

c3

2

∫
drρ(r)ρ̄(r)3

+ C
∫

dr [1+ tanh(β{ρ(r)−ρm})] ,

with the first term as the quantum kinetic energy, the second as a Lennard-Jones-type He-He pair

potential interaction energy, term 3 and 4 as short range correlation energy contributions involving

ρ̄ , a locally averaged density for a given sphere of radius h̄, and finally, a penalty term which

forbids unphysical pile-up of He density.7

S3.2 Calculation of the Repulsive Energy Correction due to the Presence of

a He2000 Droplet

The aim of this subsection is to briefly outline how we have calculated the repulsive energy con-

tribution to the interaction of Cs or Cs2 with C60 in the environment of superfluid helium at a

temperature of 0.38 K. We simulate the experimental conditions,9 where a sequential pickup of

C60 fullerenes and Cs atoms was studied by electron ionization mass spectrometry. While helio-

philic fullerenes immerse into the droplet completely, the heliophilic alkali metals are known to

reside on the droplet surface due to their diffuse valence electron density. This spatial separation,

which occurs in cases where C60 pickup takes place before Cs pickup, together with the hindered
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Figure S3: Left-hand panel: contour plot of the helium density for the He2000 droplet with the C60
molecule immersed (at its center). Right-hand panel: average helium density at a function of the
radial distance to the center of the drop where the C60 molecule is located. The density is plotted
in units of Å−3. Note that the bulk value for the density of liquid helium is 0.02185 per Å−3.

mobility of the dopants on and in the droplet,10 introduces a repulsive energy correction to the

interaction between the dopants.

One example density distribution for the C60 fullerene immersed in the He droplet consisting

of N = 2000 He atoms is shown in Figure S3 as a contour plot of planar cut through the system

(left-hand panel), and as the average over the radial distance to the drop center (right-hand panel).

Note the helium shell of exceptionally high density which surrounds the fullerene. Next, the total

energy of the multiply-doped He2000 droplet is evaluated via He-DFT as a function of the distance

between the heliophilic and the heliophobic dopant. By repeating the He-DFT energy evaluations

for intermolecular distances from 5 to 40 Å we obtain the energy corrections shown in Figure S4,

which have been added to the interaction between the dopants (see Figures 1 and 3 of the main

manuscript).
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Figure S4: Repulsive corrections which occur due to sterical hindrance during the reaction of Cs or
Cs2 with C60 inside a helium droplet formed by 2000 He atoms, evaluated with orbital-free helium
density functional theory.

S4 Determination of Crossing Points from Experimental Data

The position of the crossing point Rx can be estimated by assuming a −1/R asymptotic behaviour

of the ionic potential energy curve and solving the following equation,

−1/Rx +∆E = 0 (S4)

with ∆E = IE−EA, where IE is the ionization energy of the Csx fragment and EA is the electron

affinity of the C60 molecule. Experimental values have been used for both IE and EA values of

atomic cesium5 and the C60 molecule.4 The resulting ∆E value is 9840 cm−1 for the Cs–C60

system, with Rx being 11.8 Å. The ∆E value for the Cs2(a 3Σ+
u )–C60 complex is estimated to be

5535 cm−1 instead, with Rx being 21.4 Å. To derive this value, we use the experimental-based

data for both the vdW well-depth and position of the potential minimum of the Cs2(a 3Σ+
u ) dimer
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(295 cm−1 and 6.3 Å from Ref. 11) as well as the interaction energy of the Cs+2 molecule at 6.3 Å

(about 4700 cm−1).

S5 Reaction Energy Pathways Derived from a HF + Das[CCSD(T)]

Ansatz

Another approach to add the dispersion contribution to the diabatic HF solution in the neutral

state is based on an extrapolation of the correlation contributions calculated for vdW Csx-benzene

complexes at single and double and perturbative triples coupled cluster [CCSD(T)] level in our

previous work.8 These interaction energies were counterpoise-corrected.12 As mentioned in Ref.

8, CCSD(T) calculations are first performed for the vdW Csx–benzene complexes. The correlation

CCSD(T) energies are then fitted to the effective interatomic pairwise Das function proposed by

Szalewicz and collaborators.13,14 Finally, the function Das is used to estimate the dispersion con-

tribution to the interaction energies of the vdW Csx–C60 complexes, adding them to those obtained

at diabatic HF level.

As can be seen in Figure S5, the global picture emerging from the calculated reaction energy

path is very similar to that obtained using the MP2 method (see Figure 3 of the main manuscript):

The energetic barrier emerging from the extrusion of helium upon the approach of the two reactants

at the crossing region is overcome for the Cs2–C60 system in a collinear approach at the Landau

velocity, but neither by atomic cesium nor the Cs2–C60 complex at a T-shaped configuration.

S6 Test Calculations on the Cs2-Benzene Model System

Test calculations have been performed for the Cs2–C60 model system at CCSD(T), MP2, and

spin-component scaled15 (SCS-MP2) levels of theory, with the Cs2 in the ground (singlet) state

at a collinear approach with the C6 axis of benzene. The CCSD(T) calculations were perfomed

using the polarized correlation-consistent double-ζ basis set for carbon atoms (as for the Csx–C60
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Figure S5: Reaction energy paths as calculated at HF+Das[CCSD(T)] level. Dashed lines indicate
the positions of the crossing points, as determined from experimental estimations (see section S4).

system) as well as the augmented polarized correlation-consistent triple-ζ counterpart.16 These

basis sets will be referred to as cc-pVDZ and aug-cc-pVTZ.

As can be seen in Figure S6, the MP2 method overestimates the well-depth by about 19% as

compared with the CCSD(T) treatment when using the same basis set. It can be also observed

that the separate scaling of the parallel and anti-parallel spin components proposed by Grimme15

corrects the MP2 overbinding. However, we notice that the MP2 overestimation of the binding

energy is partially compensated by the incompleteness of the basis set centered at the carbon atoms:

the MP2 interaction energies obtained using the cc-pVDZ basis are very similar to the CCSD(T)

counterparts calculated with the aug-cc-pVTZ basis.
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Figure S6: Cs2-benzene interaction energies as a function of the distance from the Cs2 to the
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axis of the benzene molecule. The interaction energies have been obtained in the adiabatic repre-
sentation, asymptotically correlated to a separation in neutral fragments. The potential minimum
corresponds to the interaction between a negatively charged benzene molecule and a positively
charged Cs2 species.
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S7 Counterpoise-Corrected Interaction Energies and Reaction

Energy Pathways

To get insights into the influence of the basis set superposition error (BSSE), we have applied the

counterpoise correction scheme of Boys and Bernardi12 to the MP2 interaction energies associated

to both neutral and ionic states of the Cs2–C60 system. We considered the particular case where

the Cs2 intramolecular axis is collinear to the C3 symmetry axis of the C60 molecule. For the

neutral state, counterpoise-corrected energies ECP
Cs2−C60

were calculated as a function of the distance

between the Cs2 to the C60 center-of-mass positions R as,

ECP
Cs2−C60

(R) = ECs2−C60(∞)+ECs2−C60(R)−ECs2(R)−EC60(R) (S5)

where ECs2−C60 is the MP2 energy of the Cs2–C60 dimer in the neutral state, and ECs2 and EC60 are

the MP2 energies of the neutral (ground-state) interacting monomers, as calculated with the dimer

basis set at the geometry of the dimer.

For the ionic state, counterpoise-corrected energies ECP
Cs+2 −C−60

are estimated in a similar way as

ECP
Cs+2 −C−60

(R) = ECs+2 −C−60
(∞)+ECs+2 −C−60

(R)−ECs+2
(R)−EC−60

(R) (S6)

where ECs+2 −C−60
is the MP2 energy of the Cs+2 −C−60 ionic dimer, and ECs+2

and EC−60
are the MP2

energies of the ionic interacting monomers, as calculated with the dimer basis set at the geometry of

the dimer. To estimate the energy of the ionic state at dissociation, we used the distance of R =100

Åadding the pure Coulomb term 1/R. The electronic clouds of ionic states are interacting via

the long range Coulomb and higher electrostatic terms which makes it more difficult to define the

BSSE correction. To verify the quality of the long-range interaction, we compared the total energy

of the complex and the sum of monomer energies together with the Coulomb 1/R interaction,

the difference being below 2 cm−1 at 100 Å. As the ionic character of the diabatic states is well

preserved, we think that the above approach provides reasonable estimate of BSSE effects for both
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Figure S7: Cs2–C60 interaction energies in neutral and ionic states using the MP2 method, as a
function of the distance between the Cs2 to the C60 center-of-mass positions. The Cs2 intramolec-
ular axis is collinear to the C3 symmetry axis of the C60 molecule. Counterpoise corrected12

interaction energies are presented and compared with those excluding this correction.

neutral and ionic states.

In Figure S7, we compare the interaction energies obtained with and without including the

counterpoise correction for both neutral and ionic states. As expected, the potential minima regions

are shallower upon including the counterpoise correction. Thus, the value of the well-depth for the

ionic state is 2850 cm−1 smaller (about 16% of the interaction). The influence on the energy at

the potential minimum for the van der Waals-dominated interaction in the neutral state is much

more pronounced: the shaft region is about three times less deeper. However, it is very important

to stress that the crossing region is almost unperturbed by this correction. This is clearly seen in

Figure S8, showing the solvation-corrected reaction paths, i.e. the interaction energies corrected

by the repulsion energy contribution arising from the He extrusion upon the approach of the Cs2

and C60 reactive species. It can be observed that the solvation-corrected reaction paths with and

without including the counterpoise correction are almost coinciding. Also, it is worth stressing that

the energetic barrier to the vdW potential minimum becomes more pronounced upon incorporating
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counterpoise correction12 as an estimate of the basis set superposition error (BSSE).

the counterpoise correction, thus reinforcing our conclusions about the destabilization of the vdW

complex.

Similar effects can be expected in counterpoise-corrected reaction energy paths for the T-

shaped configuration of the reactive Cs2 and C60 species. On one hand, the crossing point (at

22.3 Å) is too far away from the potential minimum for the counterpoise correction to have an

influence. On the other hand, the energetic barrier to the vdW potential minimum is expected

to become even larger than without including the counterpoise correction. We also notice that the

crossing between neutral and ionic states occurs at a shorter relative distance for the Cs–C60 system

(about 12.1 Å) so that the counterpoise correction has an influence by making the energy barrier to

the ionic state even larger (to about 200 cm−1), as well as that to the vdW potential minimum (to

about 300 cm−1), thus reinforcing the main conclusions of this work.
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