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Abstract 23 

Ongoing changes in global climate are altering ecological conditions for many species. The 24 

consequences of such changes are typically most evident at the edge of a species’ 25 

geographical distribution, where differences in growth or population dynamics may result 26 

in range expansions or contractions. Understanding population responses to different 27 

climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain 28 

a better understanding of plant responses to ongoing increases in global temperature and 29 

drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore 30 

growth responses to climatic variability (seasonal temperature and precipitation) over the 31 

last century through dendrochronological methods. We developed linear models based on 32 

age, climate and previous growth to forecast growth trends up to year 2100 using climatic 33 

predictions. Populations were located at the treeline across a latitudinal gradient covering 34 

the northern, central and southernmost populations and across an altitudinal gradient at the 35 

southern edge of the distribution (treeline, medium and lower elevations). Radial growth 36 

was maximal at medium altitude and treeline of the southernmost populations. 37 

Temperature was the main factor controlling growth variability along the gradients, 38 

although the timing and strength of climatic variables affecting growth shifted with latitude 39 

and altitude. Predictive models forecast a general increase in Scots pine growth at treeline 40 

across the latitudinal distribution, with southern populations increasing growth up to year 41 

2050, when it stabilises. The highest responsiveness appeared at central latitude, and 42 

moderate growth increase is projected at the northern limit. Contrastingly, the model 43 

forecasted growth decline at lowland-southern populations, suggesting an upslope range 44 

displacement over the coming decades. Our results give insight into the geographical 45 

responses of tree species to climate change and demonstrate the importance of 46 
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incorporating biogeographical variability into predictive models for an accurate prediction 47 

of species dynamics as climate changes. 48 

 49 

Introduction  50 

Distribution limits of plant species are determined by the ecological conditions that allow 51 

them to establish permanent populations (Babst et al., 2013). The long-term persistence of 52 

many species within their present distribution limits is, therefore, challenged by global 53 

warming (Parmesan, 2006; Allen et al., 2015). Indeed, there is increasing evidence of 54 

recent changes in climate affecting the ecological performance of plant species worldwide, 55 

from phenology, growth or reproductive investment to recruitment rates (Chmielewski & 56 

Rotzer, 2001; Peñuelas et al., 2002; Castro et al., 2004; Jump et al., 2006; Walck et al., 57 

2011; Matías & Jump, 2015). Furthermore, these changes are not likely to homogeneously 58 

affect species across their geographical ranges, with populations located at the edges of 59 

their distributions being especially sensitive to climate alterations (Andreu et al., 2007; 60 

Linares & Tíscar, 2011; Candel-Pérez et al., 2012). The evidence of plant responses to 61 

climatic drivers and the mechanisms underlying these responses has risen rapidly during 62 

the last decades (Camarero and Gutiérrez, 2004; Jump et al., 2006; Kullman, 2007; 63 

Benavides et al., 2013; Matías & Jump, 2015). However, there is an urgent need to move 64 

beyond reporting changes underway to increase our predictive capacity, enabling us to 65 

better estimate the ecological and biogeographical consequences of climate change for 66 

species in the future (Steinkamp & Hickler, 2015).  67 

 68 

Climatic factors constraining plant growth in temperate and boreal environments shift 69 

along altitudinal and latitudinal gradients, typically moving from water shortage at lower 70 

altitudes to low temperature limitation at higher altitudes or latitudes (Babst et al., 2013). 71 
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However, precipitation may constrain growth throughout an altitudinal gradient, as is 72 

sometimes the case in Mediterranean mountains (Arzac et al., 2016; Camarero et al., 2015; 73 

Sánchez-Salguero et al., 2015). Nonetheless, climate effects on growth are not only 74 

subjected to regional climate, but also dependent on local conditions or ontogenetic 75 

changes such as changes in tree age and size (Voelker, 2011). For example, older trees are 76 

usually more susceptible to drought stress than younger adults are, usually related to 77 

hydraulic limitations affecting photosynthesis, water-use efficiency and carbon allocation 78 

within the tree (Magnani et al., 2000; Martínez-Vilalta & Piñol, 2002; Ryan et al., 2006; 79 

Knapp & Soulé 2011). Thus, it is important to explicitly account for factors other than 80 

climate such as ontogeny or resource accumulation when predicting the likely 81 

consequences of future climate on tree growth. However, species distribution models 82 

aimed at predicting future species dynamics usually consider the response of a species to 83 

climate as constant through its distribution range (Araújo & Luoto, 2007). Although this 84 

may be true for small-ranged species, the high variability of genotypes and climatic 85 

conditions make this assumption unrealistic for widely distributed species (Jyske et al., 86 

2014; Matías & Jump, 2014; Matías et al., 2016). Consequently, detailed information about 87 

local responses to past changes in climate and its variation through tree ontogeny is 88 

urgently needed to predict future species responses under global climate change 89 

(Benavides et al., 2013; Mina et al. 2016). 90 

 91 

Scots pine (Pinus sylvestris L.) is one the most abundant tree species of the Holarctic, with 92 

a distribution ranging from the Arctic to the Mediterranean (Matías & Jump, 2012). The 93 

wide distribution of this species implies a broad range of climatic conditions where it is 94 

able to survive, from the severe cold winters of northern Fennoscandia to the 95 

Mediterranean climate of southern Spain; and from the wet, oceanic climate of the west 96 
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coast of Scotland to the dry continental climate of central Europe and Asia (Carlisle and 97 

Brown, 1968). Thus, it is logical to expect that different climatic factors are influencing 98 

growth across the distribution range of the species (Kullman, 2007; Andreu et al., 2007; 99 

Candel-Pérez et al., 2012; Sánchez-Salguero et al., 2015), making this species a valuable 100 

study system to evaluate local responses to environmental alterations.  101 

 102 

We sought to model future growth trends across the latitudinal and altitudinal distribution 103 

of Scots pine under future climates. We quantified radial growth of Scots pine populations 104 

across a latitudinal gradient covering the northernmost and southernmost regions of the 105 

species’ western distribution and across an altitudinal gradient from the treeline to the 106 

lower limit at the southernmost range edge of the species. We analysed past growth 107 

patterns at range limits across altitudinal and latitudinal gradients and identified the 108 

climatic and ontogenetic variables controlling tree growth at range edges. These 109 

fundamental data were then used to construct a predictive model to understand likely 110 

consequences of forecasted climate on tree growth at the species’ range edges.  111 

 112 

Materials and Methods 113 

Field sites 114 

Scots pine populations were selected at locations along the altitudinal and latitudinal 115 

distribution of the species. The altitudinal gradient was located at the southernmost limit of 116 

this species in the Sierra de Baza, SE Spain (Table 1). Two different populations were 117 

selected (mean size 3.9 ± 0.3 ha) in each of the three altitudinal bands: lowermost limit, 118 

medium altitudinal distribution and upper (treeline), covering the whole altitudinal range. 119 

For the comparison across the latitudinal distribution range, we selected treeline 120 

populations across Western Europe (Fig. S1). We used the same populations at the upper 121 
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limit from the altitudinal range as the southernmost populations and two additional 122 

populations at western-central latitude (Cairngorms, UK), and two close to the northern 123 

limit of the distribution (Kevo, Finland), making a total of 10 study populations (see 124 

Matías and Jump 2015 for more details). The altitudinal gradient was not replicated in 125 

latitude since altitudinal distribution diminishes with increasing latitude, presenting a very 126 

narrow altitudinal range at the northern limit of the focal species. In order to maintain 127 

comparability across the study areas, we selected the different populations maintaining 128 

orientation, slope and soil type as constant as possible. To minimise human management 129 

impacts as far as is practicable, we selected all population within protected areas: Sierra de 130 

Baza Natural Park, Cairngorms National Park, and Kevo Strict Nature Reserve. 131 

 132 

Sampling and width measurements 133 

Between May and July 2012, 30 trees per population were randomly selected for 134 

dendrochronological study. Sampling was performed following standard 135 

dendrochronological methods (Fritts, 1976). For each sampled tree, two cores were taken 136 

using a 4.3 mm increment borer and diameter was recorded at breast height (DBH, 1.3 m 137 

above ground level). Samples were then stored and air-dried in paper straws. The wood 138 

core samples were mounted, polished with successively finer grit sand-paper until rings 139 

were clearly visible, scanned at 1600 dpi and then measured with an accuracy of 0.001 mm 140 

using CooRecorder v7.4 (Larsson 2003a). We examined samples to detect characteristic 141 

rings, and cores were cross-dated per population using CDendro v7.4 and COFECHA 142 

(Holmes 1983; Larsson 2003b) and a mean ring width value was calculated per tree and 143 

year using the two cores. In order to control for the geometric trend of decreasing ring 144 

width with increasing tree size, the ring width data were converted into increment of basal 145 

area (BAI) using the following formula: 146 
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 149 

where r is the tree radius and t is the year of the ring formation. The resulting chronology 150 

included 60 trees for the period 1960-2011 and at least 40 trees per site for all the 20th 151 

Century (Fig. S2). 152 

 153 

Climate data 154 

Monthly climatic data series since 1960 were obtained from the nearest meteorological 155 

stations for the three latitudinal areas: Kevo Subarctic Research Station (University of 156 

Turku), Braemar meteorological station (UK Met Office) and Narvaez meteorological 157 

station (Junta de Andalucía) (Table S1). In order to reduce the number of variables used for 158 

modelling (see below) and to include general climatic trends, monthly data of mean 159 

temperatures were seasonally averaged: temperature of the autumn previous to the 160 

formation of the current ring (Taup, September(t-1)–November(t-1); winter (Twi, December(t-161 

1)–February(t)); spring (Tsp, March(t)–May(t)); summer (Tsu, June(t)–August(t)); and autumn 162 

(Tau, September(t)–November(t)). To assign the same weight to all variables in the models, 163 

variables were normalized by subtracting the average temperature from each value for the 164 

period 1961–1990 and dividing by the standard deviation of the same period. Monthly 165 

rainfall was also aggregated into seasonal rainfall in the same way as for temperature 166 

values (Paup, Pwi, Psp, Psu and Pau) and standardised by means of the Standardised 167 

Precipitation Index (SPI) following McKee et al. (1993). SPI shows mean zero and 168 

variance of one and represents a Z-score, i.e. the number of standard deviations above or 169 

below the mean of a certain event. The SPI allows the determination of the rarity of a 170 
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drought or an anomalously wet event at a particular time scale and site (McKee et al. 171 

1993).  172 

 173 

Data for the period 1901-2100 were obtained from CRU database (Climate Research Unit, 174 

University of East Anglia) for the three latitudinal sites. Forecasted data for the period 175 

2012-2100 are projected according with the ECHAM5 General Circulation Model (Max-176 

Planck Institute für Meteorologie) and A1B scenario from IPCC (2013). This scenario is 177 

based on a moderate increase of global population, economy and technology with a 178 

balanced use of resources and land-use, being among the most conservative predictions. 179 

Seasonal standardised temperature and precipitation indices were calculated for CRU data 180 

in the same way as for data from meteorological stations.  181 

 182 

The three sites selected for this study across the latitudinal distribution of Scots pine have a 183 

strongly contrasted climate. Precipitation has been relatively stable at central and northern 184 

latitude sampling sites since 1900, but it has a greater inter-annual variability at the 185 

southern edge of the species (variance ± 0.10 at northern, ± 0.11 at central and ± 0.25 mm 186 

at southern latitude, respectively; Fig. 1). Temperature had a stronger variability across 187 

sites than precipitation. We detected a colder period during the first half of the 20th Century 188 

at the three sites, but warmer years have been recorded across the species’ range since 189 

1990. The three areas presented a positive trend of rising temperature during the past 190 

century, but was more steep during the last 50 years with mean yearly increases of 0.05 °C 191 

year-1 for northern latitude for the 1960-2011 period (0.009 °C year-1 for the 1910-1960 192 

period), 0.02 °C year-1 for central latitude (0.008 °C year-1 for the 1910-1960 period) and 193 

0.03 °C year-1 for the southern edge (0.01 °C year-1 for the 1910-1960 period; Fig. S3). 194 

 195 
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Climate predicted by the ECHAM5 A1B scenario forecast a generalised rise in mean 196 

annual temperature for the studied areas (northern 4.2 °C, central 2.4 °C and southern 4.6 197 

°C), a total annual precipitation increase at northern and central latitude (48.6 % and 39.2 198 

%, respectively) and a reduction at the southern edge ( 13.6 %) when comparing the 199 

periods 1961-1990 with 2071-2100. 200 

 201 

Data analysis 202 

For modelling the BAI variation across latitudinal and altitudinal gradients, all trees from 203 

the same altitude or latitude were pooled together after checking that there were no outliers 204 

showing marked discrepancies in growth patterns (maximum N = 60 per altitude or 205 

latitude). In consequence, all the data shown throughout the text is expressed at site level 206 

(n=3 for altitude or latitude). Following the procedure by González-Muñoz et al. (2014), 207 

for each site (altitudinal or latitudinal band) we first fitted the tree age at the year of ring 208 

formation using the most accurate function (linear, polynomial or sigmoidal) and kept the 209 

residuals. As radial growth strongly depends on tree age, this method allowed us to obtain 210 

an estimate of BAI without ontogenetic effects. After that, linear mixed-effects models 211 

were used to identify the effects of 10 climatic variables (Taup, Twi, Tsp, Tsu, Tau, Paup, Pwi, 212 

Psp, Psu and Pau) on the residuals of the previous function, using climatic variables from 213 

meteorological stations for the period 1960-2011 (when instrumental climatic data are 214 

available for all sites) as fixed factors and tree as a random factor. Fitted models followed 215 

the equation: 216 

�� = ��� + �� +	�� 

where Yi represents BAI residuals from the age model per year i; a and b are the vectors of 217 

fixed (seasonal climatic data) and random effects (tree identity) regression coefficients, 218 

respectively; X and Z are regression matrices of fixed and random effects, respectively; and 219 
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ei is the within-group error vector (Camarero et al. 2016). Model selection was performed 220 

using backward stepwise regression to minimise the Akaike Information Criterion 221 

corrected for sample size (AICc). The final model was selected for each site as the one with 222 

the lowest number of variables among those with the lowest AICc (Burnham & Anderson 223 

2002). The use of standardised seasonal climatic averages instead of monthly data allowed 224 

the creation of more parsimonious models, whilst maintaining a reliable representation of 225 

climatic trends. Finally, first order autocorrelations were included using a linear regression 226 

between the BAI of the previous year (BAIp) and the residuals of the climate-growth 227 

model. The selected models were run to forecast BAI of each site for the period 1902-228 

2100, using as climatic source CRU data for the period 1902-2011 plus the forecast under 229 

the A1B scenario predicted by ECHAM5 for the period 2012-2100, also obtained from 230 

CRU. We simulated annual BAI of a group of 1000 individuals per site (either in latitude 231 

or in altitude) with initial ages between 5 and 100 years. Accordingly, the individual trees 232 

would be a maximum 298 years old at the end of the simulated period. All analyses were 233 

performed using the packages “nlme” and “mgcv” in R (R Core Team, 2015). Data are 234 

shown as mean ± SE throughout the text. 235 

 236 

Results 237 

Past growth  238 

Across the latitudinal gradient we found a contrasting pattern of growth in Scots pine, with 239 

BAI at treeline populations decreasing from south to north (Table 1; Fig. S4). All 240 

populations showed a positive growth trend during the last 50 years (1960-2011; Fig. S4a), 241 

although the slope was highest at the southern edge and lowest at the northern limit 242 

(northern: R2 = 0.57, slope = 0.05, P < 0.0001; central: R2 = 0.81, slope = 0.11, P < 243 

0.0001; south: R2 = 0.66, slope = 0.16, P < 0.0001). Across the altitudinal gradient at the 244 
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southern limit of the distribution, medium-altitude populations presented a higher BAI than 245 

those at the high or low limits (treeline: 7.3 ± 0.3a cm2 year-1; medium: 9.9 ± 0.3b cm2 year-
246 

1; low: 7.5 ± 0.4a cm2 year-1 for the 1900-1990 period; different letters denote significant 247 

differences after a post-hoc test; Fig. S4). However, growth of lower populations showed a 248 

more marked growth decrease in response to especially dry years since the 1990s (such as 249 

1998 and 2005) together with a lower mean BAI than at mid or high altitude (treeline: 15.0 250 

± 0.3a cm2 year-1; medium: 15.7 ± 0.4a cm2 year-1; low: 12.5 ± 0.4b cm2 year-1 for the 1991-251 

2011 period). Apart from these altitudinal differences, a relatively stable growth trend was 252 

evident during the first half of the 20th Century, followed by a steep growth increase since 253 

the 1950s (Fig. S4). A positive trend appeared during the last 50 years, but the slope of this 254 

trend decreased from high to low altitude (treeline: R2 = 0.66, slope = 0.16, P < 0.0001; 255 

medium: R2 = 0.34, slope = 0.09, P < 0.0001; low: R2 = 0.12, slope = 0.05, P = 0.01). 256 

However, the majority of this growth increase occurred from 1950 to 1990, followed by no 257 

trend since then (Fig. S4). 258 

 259 

Factors controlling growth 260 

Growth was controlled by different factors across the distribution of Scots pine. The timing 261 

and strength of climatic variables affecting growth shifted with latitude and altitude, with 262 

earlier and stronger signals in lower sites, and the intensity of the effect of summer 263 

variables related to water availability decreasing with latitude (Tables 2, 3). According to 264 

the selected models, temperature is the main factor driving growth at central and northern 265 

populations (Table 2). Selected models including climate, age and previous BAI explained 266 

between 84 % and 88 % of growth variability across sites (Fig. 2), with climatic variables 267 

as the most important factors (Table 3; Fig. S5).  268 

 269 
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Across the latitudinal gradient, summer temperature was the main factor positively 270 

affecting radial growth in Scots pine at the northern edge, although increased temperature 271 

during spring and the previous autumn, and higher precipitation during winter and spring 272 

also had a positive effect on growth. At central latitude, all temperature variables except 273 

that of summer of the year of ring formation positively affected tree growth. In addition, 274 

autumn precipitation also had a positive effect on radial growth.  By contrast, precipitation 275 

exerted a stronger effect on growth at treeline populations from the southern edge of the 276 

species. Precipitation during summer was positively related with growth, whereas it had a 277 

negative effect during winter and spring. Additionally, higher winter temperature increased 278 

radial growth, and growth was reduced in case that higher temperature occurred during 279 

autumn.  280 

 281 

Across the altitudinal gradient, temperature of spring and of previous autumn negatively 282 

affected tree growth at medium and low elevations. However, the effect of summer 283 

temperature differed across the altitudinal gradient, with a positive effect at medium 284 

altitude and negative effect at low sites (Table 3). Precipitation had a similar effect across 285 

elevations, with a positive effect during summer and negative effect during winter. 286 

Although significant, tree age had little effect on tree growth across the species’ latitudinal 287 

and altitudinal distributions, explaining between 0.2 % and 1.6 % of the variance (Table 3). 288 

However, growth of the previous year explained between 9 % and 16 % of the variability 289 

of radial growth, with a positive relationship in all cases.   290 

 291 

Forecasted growth 292 

In response to the changes in climate forecasted by the ECHAM5 A1B scenario, our 293 

models predict a growth increase in treeline populations of Scots pine across the latitudinal 294 
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gradient up to year 2100 (Fig. 3). At the start of the simulations, southern-edge populations 295 

present the highest BAI, and BAI is expected to continue rising up to 2060, when growth it 296 

becomes more stable (R2 = 0.79, slope = 0.11 cm2 year-1, P < 0.0001 for the period 2012-297 

2100). Populations at central latitude present the higher responsiveness (R2 = 0.95, slope = 298 

0.23 cm2 year-1, P < 0.0001), with a steep BAI increase from 2040 onwards, and reaching 299 

similar values to southern populations by the end of the 21st Century. Finally, trees at the 300 

northernmost distribution of the species are also expected to increase growth (R2 = 0.97, 301 

slope = 0.16 cm2 year-1, P < 0.0001), but at a lower rate that at central distribution. Across 302 

the altitudinal gradient, trees at mid altitude follow a similar growth trend up to year 2100 303 

as at treeline (R2 = 0.60, slope = 0.08 cm2 year-1, P < 0.0001). However, trees at the lowest 304 

limit follow a completely different pattern, with BAI decreasing after year 2030 (R2 = 0.54, 305 

slope = -0.10 cm2 year-1, P < 0.0001 for the 2012-2100 period). 306 

 307 

Discussion 308 

Latitudinal and altitudinal variation in growth 309 

Ecological theory predicts distribution shifts in woody species as the climate warms. 310 

Range expansion to higher altitudes and latitudes, as well as increasing population density, 311 

is expected following enhanced growth and reproduction at upper elevation and poleward 312 

range limits (Harsch et al., 2009). Decreasing growth, as well as declining recruitment, is 313 

expected at the rear range edge (Walther et al., 2002; Linares & Tíscar, 2011; Candel-314 

Pérez et al., 2012). Case studies demonstrate that such processes are underway for a wide 315 

variety of species (Walther et al., 2002; Harsch et al., 2009), although widespread growth 316 

decline and distributional shifts in some range edges are not necessarily as straightforward 317 

as theoretical predictions (Cavin & Jump, 2016).  318 

 319 
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Results presented here show positive growth trends in treeline populations of Scots pine 320 

across the complete latitudinal distribution during the last 50 years (Table 1). Although this 321 

trend was consistent, there were important differences in responsiveness (different rates) 322 

among sites. Growth increase was highest at the southernmost limit of the species and 323 

lowest at the northern edge, which overall agrees with the trend of increasing temperature 324 

detected in these areas (Fig. S3; Galván et al., 2015). This generalised growth increase in 325 

response to increasing temperature is consistent across the latitudinal gradient since 326 

treeline populations usually are not usually water-limited during the growing period. 327 

Although long-term changes in temperature alone are not able to explain the geographical 328 

growth trends, they can be also explained by the absolute values of temperature, decreasing 329 

as latitude increases. This positive growth trend is consistent with the pattern of increased 330 

reproductive investment and recruitment already recorded from the same populations 331 

(Hofgaard et al. 2013; Matías & Jump, 2015). Together this evidence points to improved 332 

population performance in the absence of interactions with other factors such as pest and 333 

pathogen abundance. However, other non-climatic factors such as changing management 334 

practices could be acting simultaneously, potentially contributing to the strong increase of 335 

BAI at the southern site since 1960.  336 

 337 

Regarding the long-term persistence of relict southernmost Scots pine populations, our 338 

results illustrate the variability in plant responses to different climatic drivers along 339 

altitudinal gradients (Linares & Tíscar, 2011; Candel-Pérez et al., 2012; Herrero et al., 340 

2013; Galván et al., 2015; Arzac et al., 2016). While the temperature response differed 341 

with altitude, a positive growth response to summer rainfall was observed along the whole 342 

altitudinal gradient of southernmost Scots pine populations, suggesting the reactivation of 343 

cambial activity in response to summer storms. However, while populations at the 344 
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southernmost range edge appear buffered against rising drought stress to some degree, 345 

their recovery could be limited when severe drought impacts occur (Sánchez-Salguero et 346 

al. 2015; Cavin & Jump, 2016).  347 

 348 

The differential latitudinal and altitudinal growth pattern discussed above relies on 349 

different factors controlling growth across the distribution range. Regarding climatic 350 

variables, P. sylvestris growth is subject to temperature as the most important limiting 351 

factor at northern and central latitude (Antonova & Stasova, 1993; Heikkinen et al. 2002; 352 

Tuovinen, 2005; Kullman, 2007; Helama et al., 2011; Moir et al., 2011). Increased 353 

performance in the central and northern latitudinal sites, where climatic conditions are less 354 

stressful (Matías & Jump, 2015), was accompanied by positive growth trends and higher 355 

growth rates at the upper elevations of the drought-limited southernmost edge. However, 356 

rising temperature during previous autumn, spring and summer imposes negative effects at 357 

the low southern edge. Despite the general positive effect of winter temperature, seasonal 358 

variables affect this species differentially through the altitudinal gradient, with more 359 

negative effects of high temperature as elevation diminishes (Linares & Tíscar, 2011; 360 

Candel-Pérez et al., 2012). This finding is in concordance with previous studies indicating 361 

that southern lowland populations are more sensitive to increased temperature (Herrero et 362 

al., 2013; Sánchez-Salguero et al., 2015) and with impacts on demographic processes 363 

already detected (Matías & Jump, 2015). 364 

 365 

The effect of precipitation on BAI also differs across the latitudinal and altitudinal 366 

gradients. Although precipitation has been traditionally considered to have little effect on 367 

tree growth at high latitudes, we detect high importance of winter and spring precipitation 368 

at the northern edge (26.4 % of the variance explained by precipitation). Higher winter and 369 
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spring precipitation in boreal forests means higher snow cover, which provides 370 

thermoinsulation of roots (Helama et al., 2011), and can prevent the premature yellowing 371 

of pine needles (Jalkanen 1993), translating into a higher radial growth (Tuovinen, 2005). 372 

However, precipitation gains in importance at the southern limit of the species (see also 373 

Swidrak et al., 2011). Winter precipitation negatively affects tree growth along the studied 374 

altitudinal gradient (and during spring at southern treeline). This negative correlation of 375 

growth with precipitation might be also explained by the association between precipitation 376 

and cloudiness, which reduces the photosynthetic activity and carbon reserves for growth 377 

(Gimeno et al., 2012). Higher precipitation during summer enhances tree growth 378 

consistently across altitudes (Candel-Pérez et al., 2012; Herrero et al., 2013; Sánchez-379 

Salguero et al., 2015). On the contrary, extended droughts usually lead to reduced growth 380 

and, in the most severe cases, to hydraulic failure and/or carbon starvation and the 381 

consequent tree death (Martínez-Vilalta and Piñol, 2002; Galiano et al., 2011; Allen et al., 382 

2015). 383 

 384 

Forecasted growth for the 21
st
 Century 385 

Across the latitudinal gradient, treeline populations are expected to increase BAI up to the 386 

end of the present century, although not at the same rate. Current growth is highest at the 387 

southern edge, and it will continue rising up to year 2050, when BAI becomes more stable. 388 

This stabilization might represent the maximum growth potential of the species, with 389 

similar values to those currently found in areas where temperature and water availability 390 

are not limiting tree growth (Michelot et al., 2012; Viguera et al. 2013; Zang & Rothe, 391 

2013), and maintaining it until year 2100. Central-latitude populations are expected to 392 

present the highest response to the predicted climate alterations, reaching similar values to 393 

those of the southern populations by 2100. Consequently, Scots pine populations currently 394 
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located at treeline at southern and central latitudes will have a similar BAI by the end of 395 

the present century, being close to the maximum potential growth of the species (Michelot 396 

et al., 2012; Viguera et al. 2013; Zang & Rothe, 2013).  397 

 398 

These findings have two main implications: on one hand, current treelines are expected to 399 

support healthy populations with higher growth rates and even become denser if there are 400 

no recruitment limitations (Camarero & Gutiérrez, 2004). On the other hand, treeline 401 

populations have the potential to expand their limits upslope in those areas where 402 

topography and soil conditions allow it due to the amelioration of climatic limitations 403 

(assuming favourable conditions for establishment; Körner, 2012; Rabasa et al., 2013). 404 

Finally, populations located at the northern distribution limit are expected to increase their 405 

growth during the 21st Century, although at a lower rate than at the other latitudes (Hickler 406 

et al., 2012). This implies that northern populations have the potential to continue 407 

increasing their growth after 2100, which does not seem to be the case at central and 408 

southern latitude. 409 

 410 

Across the altitudinal distribution at the southern edge, treeline and mid-elevation 411 

populations follow a similar growth trend, with BAI increase during the first part of the 412 

century and a stabilised period during the second half (Fig. 3). This finding indicates that 413 

the scenario simulated by our model predicts the persistence of these southernmost 414 

populations, at least at medium and high elevations. However, a completely different 415 

pattern appeared for lowland populations. Our model predicted a short phase of growth 416 

increase during the next 10-20 years, but a consistent declining trend is predicted up to the 417 

end of the century, which is a strongly negative indication for population persistence 418 

(Pedersen, 1998; Jump et al., 2006; Galiano et al., 2011). According to our results, the 419 
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growth increase predicted for medium and high altitude and the declining growth trends at 420 

low elevations, linked with the current mortality trends already detected in the field 421 

(Matías & Jump, 2015), might lead to a range migration upslope where physical conditions 422 

allow it, or to range contraction from low altitude areas of the southern range edge of the 423 

species during the 21st Century.  424 

 425 

Although geographical variations in climatic sensitivity were evident in our study (see also 426 

Martínez Vilalta et al., 2009), the timing of the climatic response may also shift over time 427 

as a response to changing climatic conditions (Lebourgeois et al., 2012; Galván et al., 428 

2015). This possibility could be a shortcoming of our modelling approach, as we assume 429 

steady climate sensitivity over the 21st Century when forecasting tree growth responses. 430 

Although this issue has not been accounted for in this paper, it might be expected that 431 

global warming during the past and current centuries may be increasing temperature 432 

sensitivity as well as the effect of water limitation (Andreu et al., 2007; Camarero et al., 433 

2015). Furthermore, increased frequency and severity of drought events in future climates 434 

may be critical (Giorgi & Lionello, 2008), and that the combined effect drought increase 435 

and heat waves (hotter drought, Allen et al., 2015) might induce physiological tipping 436 

points, likely resulting in unexpected and long-lasting reductions in growth and subsequent 437 

tree mortality (Cavin et al. 2013; Matías et al., 2012). Consequently, our results regarding 438 

growth stability at the upper elevations of southern P. sylvestris forests over the 21st-439 

Century climate change might not be assumed to continue indefinitely. 440 

 441 

Conclusions 442 

By simulating future tree growth based on current climate-growth relationships and 443 

predicted climate changes, we identified contrasting growth responses along the altitudinal 444 

Page 18 of 34Global Change Biology



19 

 

 

gradient at the southernmost P. sylvestris range edge, with stable growth at the mid- to 445 

upper-elevation belts but high susceptibility to decline at low elevation. Across  a 446 

latitudinal gradient, core and northern P. sylvestris populations show a sustained 447 

temperature-related increase in growth, although water availability also affects overall 448 

growth patterns at the northern range edge. While we simulated a conservative climatic 449 

scenario, our models forecast a clear increase in radial growth at treeline populations 450 

throughout the distribution of the species up to the end of the present century, which would 451 

likely lead to upland and northward expansions through the species’ distribution.  452 

However, these predictions should be interpreted with caution, since other factors such as 453 

limiting soil conditions, extreme climatic events or biotic interactions can strongly 454 

influence demographic responses. Our results also imply that rear edge populations are 455 

able to persist at medium or high elevations but, after an initial growth increase, a rapid 456 

decline is expected for those populations located at low elevations. This lowland decline 457 

might be even more important than described here when extreme climatic events are 458 

considered or if tipping points are reached. The results we present stress the importance of 459 

including geographical variability in growth response to improve resolution in predictive 460 

models. Our methodology also highlights the value of the use of past responses to climate 461 

based on reliable growth data for prediction of future population dynamics under climate 462 

change. 463 
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Table 1: Main characteristics of the studied populations across latitudinal (northern, 69º47ʹ N; 27º02ʹ E; central, 57º08ʹ N; 3º40ʹ W; southern, 37º22ʹ 655 

N; 2º51ʹW) and altitudinal gradients (treeline, medium, low): climate (TWM, temperature of the warmest month in ºC; TCM, temperature of the 656 

coldest month in ºC; PDM, precipitation of the driest month in mm; mean values for the 1960-211 period), elevation (m a.s.l.), tree density 657 

(individuals ha-1), registered period, tree age (estimated at sampling moment from the number of rings measured, in years), diameter at breast 658 

height (DBH, in cm), and basal area increment (BAI, in cm2 year-1) and growth trends during the last century separated in two periods (1910-659 

1960 and 1961-2011). Values are mean ±SD. 660 

Latitude Altitude Climate Elevation Density Period Age DBH BAI 
1910-1960 

Trend 
1910-1960 

BAI 
1961-2011 

Trend 
1961-2011 

  TWM TCM PDM          
Northern Treeline 13.0±1.7 -14.5±4.1 19±9 221±13 360±60 1728-2011 177.9±7.7 39.8±1.3 6.4±1.9 0.108 6.4±1.1 0.054 
Central Treeline 13.1±1.2 1.1±2.1 53±29 448±4 426±26 1718-2011 206.6±6.5 47.2±1.3 5.1±0.6 0.020 7.7±1.8 0.111 
Southern Treeline 22.7±1.1 4.4±1.3 5±9 2163±6 290±14 1750-2011 132.5±6.3 47.4±1.3 5.6±1.1 0.021 11.5±3.2 0.189 
Southern Medium    2015±3 372±98 1828-2011 124.6±3.5 51.4±1.7 8.3±1.7 0.018 14.4±2.1 0.079 
Southern Low    1879±2 340±80 1802-2011 126.6±3.5 45.5±1.5 5.3±1.5 0.018 12.2±2.0 0.033 

 661 
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Table 2: Linear mixed models explaining the effect of climate on basal area increment 
(BAI) after accounting for ontogenetic effects for the different sites across the 
latitudinal and altitudinal gradients. Selected models are highlighted in bold. The null 
model considered the effect of BAI as a constant. The best models were selected on the 
basis of the Akaike Information Criteria corrected by sample size (AICc). K represents 
the number of variables included in the model plus constant and error terms, ∆AICc is 
the difference in AIC respect the best model, and Wi is the relative probability to be the 
best model for the observed data. Taup, Twi, Tsp, Tsu, Tau are standardised temperatures of 

previous autumn and winter, spring, summer and autumn of current year, respectively. Similar 
names for standardised precipitation values (Paup, Pwi, Psp, Psu, Pau). 

Latitude Altitude Growth model K AICc ∆AICc Wi 
Northern Treeline Taup+Tsp+Tsu+Pwi+Psp 7 13280.3 0.0 55.5 

  Taup+Tsp+Tsu+Pwi+Psp+Pau 8 13281.6 1.3 29.2 
  Taup+Tsp+Tsu+Psp 6 13283.1 2.8 13.5 
  Taup+Twi+Tsp+Tsu+Pwi+Psp+Pau 9 13287.5 7.2 1.5 
  Taup+Twi+Tsp+Tsu+Paup+Pwi+Psp+Pau 10 13291.1 10.8 0.2 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Pau 11 13296.4 16.1 0.0 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Psu+Pau 12 13303.0 22.7 0.0 
  Null model 2 13456.5 176.2 0.0 
Central Treeline Taup+Twi+Tsp+Tau+Pau 7 15232.0 0.0 47.2 

  Taup+Twi+Tsp+Tau+Psp+Pau 8 15233.1 1.2 26.4 
  Taup+Tsp+Tau+Pau 6 15233.6 1.6 20.9 
  Taup+Twi+Tsp+Tau+Pwi+Psp+Pau 9 15238.9 6.9 1.5 
  Taup+Twi+Tsp+Tsu+Tau+Pwi+Psp+Pau 10 15245.1 13.1 0.1 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Pau 11 15251.9 19.9 0.0 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Psu+Pau 12 15258.6 26.6 0.0 
  Null model 2 15611.2 379.3 0.0 
Southern Treeline Twi+Tau+Pwi+Psp+Psu 7 17599.9 0.0 91.7 

  Twi+Tau+Paup+Pwi+Psp+Psu 8 17605.3 5.4 6.3 
  Twi+Pwi+Psp+Psu 6 17608.3 8.4 1.4 
  Twi+Tsu+Tau+Paup+Pwi+Psp+Psu 9 17610.1 10.1 0.6 
  Twi+Tsu+Tau+Paup+Pwi+Psp+Psu+Pau 10 17617.0 17.0 0.0 
  Taup+Twi+Tsu+Tau+Paup+Pwi+Psp+Psu+Pau 11 17623.2 23.3 0.0 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Psu+Pau 12 17628.9 28.9 0.0 
  Null model 2 17740.5 140.6 0.0 
Southern Medium Taup+Twi+Tsp+Tsu+Tau+Pwi+Psu 9 17278.9 0.0 44.8 

  Taup+Twi+Tsp+Tau+Pwi+Psu 8 17279.2 0.3 37.9 
  Taup+Twi+Tsp+Pwi+Psu 7 17282.0 3.1 9.4 
  Taup+Twi+Tsp+Tsu+Tau+Pwi+Psp+Psu 10 17282.4 3.6 7.5 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Psu 11 17289.1 10.2 0.3 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Psu+Pau 12 17296.5 17.6 0.0 
  Null model 2 17370.7 91.8 0.0 
Southern Low Taup+Twi+Tsp+Tsu+Pwi+Psu 8 17284.3 0.0 71.7 
  Taup+Twi+Tsp+Tsu+Paup+Pwi+Psu 9 17287.6 3.3 14.0 
  Taup+Twi+Tsp+Tsu+Paup+Pwi+Psp+Psu 10 17287.8 3.5 12.5 
  Taup+Twi+Tsp+Pwi+Psu 7 17293.1 8.8 0.9 
  Taup+Twi+Tsp+Tsu+Paup+Pwi+Psp+Psu+Pau 11 17293.1 8.8 0.9 
  Taup+Twi+Tsp+Tsu+Tau+Paup+Pwi+Psp+Psu+Pau 12 17299.6 15.3 0.0 
  Null model 2 17649.3 365.0 0.0 
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Table 3: Regression coefficients of the final full model explaining the basal area 

increment. Value, standard error (SE) and explained variance (VE, %) are indicated for 

each variable (see Table 2 for variable names). 

 

Latitude Altitude Variable Value SE VE 
Northern Treeline Taup 0.178 0.039 9.1 
  Tsp 0.228 0.043 11.7 
  Tsu 0.489 0.049 25.1 
  Pwi 0.245 0.084 12.6 
  Psp 0.269 0.064 13.8 
  BAIp 0.686 0.011 15.5 
  Age 138.988 3.338 0.3 
  Total VE (%)   88.0 

Central Treeline Taup 0.338 0.035 18.5 
  Twi 0.155 0.054 8.5 
  Tsp 0.351 0.044 19.2 
  Tau 0.377 0.034 20.6 
  Pau 0.166 0.047 9.1 
  BAIp 0.616 0.011 12.2 
  Age 186.532 3.767 0.2 
  Total VE (%)   88.3 

Southern Treeline Twi 0.391 0.063 15.5 
  Tau -0.246 0.065 9.8 
  Pwi -0.344 0.046 13.7 
  Psp -0.460 0.059 18.3 
  Psu 0.273 0.054 10.8 
  BAIp 0.646 0.011 16.4 
  Age 291.521 24.368 1.6 
  Total VE (%)   86.0 

Southern Medium Taup -0.330 0.072 10.9 
  Twi 0.420 0.070 13.8 
  Tsp -0.448 0.069 14.8 
  Tsu 0.201 0.080 6.6 
  Tau -0.237 0.067 7.8 
  Pwi -0.296 0.047 9.7 
  Psu 0.306 0.058 10.1 
  BAIp 0.550 0.012 10.3 
  Age 248.602 6.823 1.4 
  Total VE (%)   85.3 

Southern Low Taup -0.318 0.071 9.7 
  Twi 0.485 0.067 14.8 
  Tsp -0.763 0.067 23.3 
  Tsu -0.292 0.076 8.9 
  Pwi -0.233 0.043 7.1 
  Psu 0.357 0.056 10.9 
  BAIp 0.523 0.013 9.3 
  Age 268.110 5.851 0.3 
  Total VE (%)   84.3 
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Figure 1: Yearly variations in temperature and precipitation across the latitudinal 

gradient (northern: Kevo, Finland; central: Cairngorms, UK; southern: Sierra de Baza, 

Spain) for the 1902-2011 period. Standardised precipitation index (SPI, blue lines) and 

standardised temperature index (STI, red lines) are normalized by subtracting the 

average temperature from each value for the period 1961–1990 and dividing by the 

standard deviation of the same period. Data from 1960-2011 obtained from Kevo 

Subarctic Research Station, Braemar meteorological station and Narvaez meteorological 

station for northern, central and southern sites, respectively. Data from 1902-1959 

obtained from CRU (Climate Research Unit, University of East Anglia). 

 

Figure 2: Mean basal area increment (BAI, black line) ± SD (dashed lines) of Scots 

pine sites at treeline across its latitudinal distribution gradient during the 1960-2011 

period (period with instrumental climate data availability). Grey line represents the 

predicted growth by the full model based on age, climate and previous BAI. 

 

Figure 3: Mean basal area increment (BAI) per site for the different Scots pine sites 

across the latitudinal (top panel) and altitudinal (bottom panel) gradients. Values for the 

1900-2011 series are the site means of observed individual BAI (N = 60), whereas for 

the 2012-2100 period are the predictions for the full model using climatic data predicted 

by the General Circulation Models, scenario ECHAM A2 (IPCC 2013). Vertical lines 

represent ±SD for the model predictions based on the simulation of 1000 trees. 
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Figure 1: Yearly variations in temperature and precipitation across the latitudinal gradient (northern: Kevo, 
Finland; central: Cairngorms, UK; southern: Sierra de Baza, Spain) for the 1902-2011 period. Standardised 
precipitation index (SPI, blue lines) and standardised temperature index (STI, red lines) are normalized by 

subtracting the average temperature from each value for the period 1961–1990 and dividing by the 
standard deviation of the same period. Data from 1960-2011 obtained from Kevo Subarctic Research 
Station, Braemar meteorological station and Narvaez meteorological station for northern, central and 

southern sites, respectively. Data from 1902-1959 obtained from CRU (Climate Research Unit, University of 
East Anglia).  
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Figure 2: Mean basal area increment (BAI, black line) ± SD (dashed lines) of Scots pine sites at treeline 
across its latitudinal distribution gradient during the 1960-2011 period (period with instrumental climate 
data availability). Grey line represents the predicted growth by the full model based on age, climate and 

previous BAI.  
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Mean basal area increment (BAI) per site for the different Scots pine sites across the latitudinal (top panel) 
and altitudinal (bottom panel) gradients. Values for the 1900-2011 series are the site means of observed 
individual BAI (N = 60), whereas for the 2012-2100 period are the predictions for the full model using 

climatic data predicted by the General Circulation Models, scenario ECHAM A2 (IPCC 2013). Vertical lines 
represent ±SD for the model predictions based on the simulation of 1000 trees.  
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