1	Distinct fatty acid composition of some edible by-
2	products from bovines fed high or low silage diets
3	
4	Cristina M. Alfaia ¹ , Susana P. Alves ¹ , José M. Pestana ^{1,2} , Marta S.
5	Madeira ¹ , Olga Moreira ³ , José Santos-Silva ³ , Rui J. B. Bessa ¹ ,
6	Fidel Toldrá ⁴ and José A. M. Prates ¹
7	
8	¹ CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa,
9	Portugal
10	² UNIVATES, Centro Universitário Univates, 95900-000 Lajeado, RS, Brasil
11	³ UIPA, Instituto Nacional de Investigação Agrária e Veterinária, 2005-048 Vale de
12	Santarém, Portugal
13	⁴ Instituto de Agroquímica y Tecnología de Alimentos, Avenue Agustí Escardino 7, 46980
14	Paterna, Valencia, Spain
15	
16	ABSTRACT
17	Fatty acid composition, including conjugated linoleic acid (CLA) isomers, of the most
18	relevant beef by-products (brain, heart, kidney, liver, pancreas and tongue) from young
19	bulls fed distinct silage levels was assessed. Data indicated a large variation on fatty acid

20 profile and CLA composition among edible by-products. The most abundant fatty acids

21 were C16:0 (kidney), C18:0 (heart and liver), and C18:1*c*9 (brain, pancreas and tongue)

22	followed by C20:4n-6, except in brain (C22:6n-3 predominates). Brain, as shown by
23	Principal Components Analysis, presents a distinct fatty acid composition compared to
24	the other beef by-products analysed. In addition, high silage diet relative to low silage
25	diet promoted an increase of n -3 PUFA, $t11,t13$ and $t11,c13$ CLA in heart, kidney, liver
26	and pancreas. Overall, data suggested that fatty acid composition, including CLA
27	isomers, of beef by-products may contribute for their added-value. Nevertheless, from a
28	nutritional point of view they are recommended only in small amounts as part of a
29	balanced diet.
30	
31	Keywords
32	Edible by-products, fatty acids, CLA isomers, bulls, diet, silage
33	
34	Corresponding author
35	José A. M. Prates
36	Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
37	Email: japrates@fmv.ulisboa.pt

38 INTRODUCTION

39 Fatty acid (FA) content and composition of ruminant meat have been the focus of 40 intensive research due to its impact on human nutrition and health. Notwithstanding the 41 high concentration of saturated fatty acids (SFA) and *trans* fatty acids (TFA), which are 42 associated with the development of several chronic diseases, ruminant edible fats 43 contribute also with health beneficial nutrients, including *n*-3 long-chain polyunsaturated 44 fatty acids (n-3 LC-PUFA) and conjugated linoleic acid (CLA) isomers. The n-3 LC-45 PUFA, eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, 46 C22:6*n*-3) are structural components of phospholipids in animal tissues, particularly in 47 brain, heart, liver and kidney, and the precursors of eicosanoids with anti-inflammatory properties (Christie, 2003; Tinoco, 1982). In addition, the cis-9,trans-11 CLA 48 49 (C18:2c9,t11) is naturally found at higher proportions in mammalian tissues with a 50 multitude of biological actions on cancer, body fat, and immune response (Dilzer and 51 Park, 2012). CLA isomers are produced in ruminant animals through ruminal microbial biohydrogenation of dietary polyunsaturated fatty acids (PUFA) and endogenously by Δ^9 52 53 desaturation of trans monoenes in the adipose tissue and mammary gland (Palmquist et 54 al., 2004; Nuernberg et al., 2005). Beyond genetics, the FA composition of ruminant meat 55 can be improved through animal nutrition with use of forages and dietary lipids (Scollan 56 et al., 2006).

Edible animal by-products, in general, are defined as the edible part of carcass fit for human consumption, which includes internal organs. Even the consumption of organ meat can be more or less popular around the countries, which depends on the tradition, culture and religion, edible by-products may be used as value-added and functional

61 ingredients in the meat industry (Mora et al., 2014; Nollet and Toldrá, 2011; Toldrá et al., 2012). Moreover, edible meat by-products may provide valuable amounts of essential 62 63 amino acids, fatty acids, minerals and vitamins (Aristoy and Toldrá, 2011; Honikel, 64 2011). However, to our best knowledge, the characterization of FA composition from the 65 most consumed edible beef by-products is still somewhat scarce (Florek et al., 2012; 66 Prates et al., 2011). The major aim of the present study was, therefore, to evaluate and compare the FA composition, including CLA isomeric profile, in the most consumed beef 67 by-products (brain, heart, kidney, liver, pancreas and tongue) from young Barrosã bulls. 68 69 In addition, we also investigated whether there is an organ specific response to different 70 dietary silage /concentrate levels.

71

72 MATERIALS AND METHODS

73 Animals and management

74 Animal trial and the experimental procedures were carried out according to the 75 recommendations of the Animal Care Committee of National Veterinary Authority 76 (Direcção-Geral de Veterinária) following the appropriated European Union guidelines 77 (Directive 86/609/EEC). Nine male bulls from autochthonous Barrosã breed were 78 randomly assigned to either higher (70% silage/30% concentrate, n=4) or low (30%) 79 silage/70% concentrate, n=5) silage diets, with individual control of feed intake. During 80 the experiment, animals were individually fed twice a day and had *ad libitum* access to 81 water. The proximate and FA compositions of the experimental diets are displayed in 82 Table 1. Animals were slaughtered at 18 month-old, with approximately 485 ± 31 kg of 83 live body weight, at the experimental abattoir (UIPA-INIAV, Unidade de Investigação

84	em Produção Animal, Instituto Nacional de Investigação Agrária e Veterinária), after
85	stunning with cartridge-fired captive bolt stunner and exsanguination. Then, carcasses
86	were suspended from the Achilles tendon and chilled at 10 °C. The internal organs (brain,
87	heart, kidney, liver, pancreas and tongue) were collected, vacuum packed and frozen at
88	-80 °C until analysis.
89	
90	Please insert Table 1 here
91	
92	Lipid extraction and methylation
93	Total lipids were extracted, in duplicate, from lyophilized samples (-60 °C and 2.0 hPa;
94	Edwards High Vacuum International, UK) according to the method of Folch et al. (1957)
95	modified by Carlson (1985) and gravimetrically measured by weighting the fatty residue
96	after solvent evaporation.
97	
98	Analysis of fatty acid methyl esters
99	Fatty acid methyl esters (FAME) were prepared from FA through a combined base/acid
100	methylation method using 0.5 mol/L sodium methoxide in anhydrous methanol (Sigma-
101	Aldrich Ltd., St. Louis, MO, USA) for 30 min at 50 °C, followed by hydrochloric acid in
102	methanol (1:1 v/v) for 10 min at 50 °C (Raes et al., 2001). FAME were extracted with <i>n</i> -
103	hexane and analysed by GC (chromatograph HP 6890; Hewlett-Packard, Avondale, PA,
104	USA) fitted with a flame ionisation detector (FID). For the separation of FAME was used
105	a long fused-capillary column (CP-Sil 88 100 m, 0.25 mm i.d., 0.20 µm film thickness;
106	Chrompack, Varian Inc., Walnut Creek, CA, USA) according to Alves and Bessa (2009).

107 Nonadecanoic acid methyl ester (C19:0; Sigma) was added to the samples prior to
108 methylation as an internal standard. FA identification was based on FAME standard
109 (FAME mix with 37 components, Supelco, Inc., Bellefonte, PA) and confirmed by
110 electron impact mass spectrometry using a Shimadzu GC-MS QP2010 Plus (Shimadzu).
111 Each FA was expressed as g/100 g of total FA.

112

113 Analysis of individual CLA isomers

114 Geometric and positional CLA isomers were separated by silver ion high performance 115 liquid chromatography (Ag⁺-HPLC) using a chromatograph system (Agilent 1100 Series, 116 Agilent Technologies Inc., Palo Alto, CA, USA) with three columns in series (ChromSpher 5 Lipids; 250 mm \times 4.6 mm i.d., 5 µm particle size; Chrompack, 117 118 Bridgewater, NJ, USA) and equipped with a diode array detector (DAD) set to 233 nm 119 according to Cruz-Hernandez et al. (2006). Commercial standards (c9,t11, t10,c12, 120 c11,t13, c9,c11 and t9,t11 from Matreya Inc., Pleasant Gap, PA, USA) were used to 121 identify the individual CLA isomers. Quantitation of CLA isomers was based on their Ag⁺-HPLC areas relative to the area of the main isomer c9,t11 determined by GC-FID 122 123 (plus t7,c9 and t8,c10 isomers) as described by Kraft et al. (2003). Total CLA was 124 expressed as gravimetric content (mg/g tissue) and the individual isomers as a percentage 125 of the sum of CLA isomers (% total CLA).

126

127 Statistical analysis

Data was analyzed using the PROC MIXED and checked for variance heterogeneity
using the software package (SAS, 2009). The statistical model included the feeding effect

130 as repeated measure. Data were reported as mean \pm standard error (SE). Least squares 131 means (LSMEANS), with the option PDIFF adjusted with Tukey–Kramer method, were 132 determined to compare groups. The level of significance was set at *P*-value below 0.05.

133 The principal component analysis (PCA) of FA composition and CLA isomers (as a 134 percentage of total FA) in beef by-products (brain, heart, kidney, liver, pancreas and 135 tongue) were carried out using the STATISTICA software (StatSoft, Inc., 2004).

136

137 **RESULTS AND DISCUSSION**

138 Fatty acid composition

139 Total lipids of some edible by-products (brain, heart, kidney, liver, pancreas and tongue) 140 from Barrosã bulls fed HS or LS diets are shown in Tables 2 and 3. Total lipids were 141 higher in brain (6.8-7.0%), intermediate in pancreas (3.8-4.0%), tongue (2.9-3.6%) and 142 liver (2.7%) and lower in kidney and heart (2.1% and 1.7%, respectively), although no 143 differences were found between feeding strategies (P > 0.05). The contents of total lipids 144 in beef by-products were comparable to lean meat (<5%), except in brain. However, these 145 results were relatively lower than those reported by Honikel (2011) for the same by-146 products, probably, due to differences in breed, gender, age and feeding regimens. 147 Indeed, breed and diet are the main factors influencing lipid content and composition.

The cholesterol content (mg/100 g tissue) in edible by-products from Barrosã bulls is presented in Tables 2 and 3. Diet had no effect on cholesterol levels of beef-products. Total cholesterol was higher in brain (1640-2075 mg/100 g) of Barrosã bulls from both feeding regimens when compared to the remaining organs. Similar cholesterol levels in beef brain (1456-3010 mg/100 g) were reported elsewhere (Mustafa, 1988; USDA,

153 2009). In addition, our results of cholesterol contents in kidney (304-309 mg/100 g), liver 154 (154-158 mg/100 g) and heart (99-102 mg/100 g) agree with those found by Bragagnolo 155 (2011) in beef kidney (100-517 mg/100 g), liver (159-162 mg/100 g) and heart (72-150 156 mg/100 g). It has long been known that cholesterol plays an important role for body 157 function, as a main lipid constituent of the cell membranes and the precursor of steroid 158 hormones, vitamins and bile acids. Cholesterol can be synthesized endogenously, within 159 the liver and intestines, and obtained from the diet by animal-derived products. Yet, high 160 serum cholesterol levels have been associated with an increased risk of chronic diseases, 161 whereby the recommended maximum cholesterol intake should be less than 300 mg per 162 day (American Heart Association, 2008). Regarding cholesterol in organ meats, the 163 values of cholesterol can increase 3- to 5-fold up than in lean meat (Bragagnolo, 2011).

164 The FA composition (g/100 g of total FA), partial sums and ratios of FA in beef by-165 products (brain, heart, kidney, liver, pancreas and tongue) from bulls fed HS or LS diets are also presented in Tables 2 and 3. The most representative FA in beef by-products 166 167 were C18:1c9 (9-36% of total FAME), C18:0 (11-32 %) and C16:0 (8-22%). Our 168 research group has previously found a similar FA pattern in meat from Barrosã bulls 169 (Costa et al., 2013). Nevertheless, the order of appearance of the FA detected in beef by-170 products was quite different. The main LC-PUFA in beef by-products was arachidonic 171 acid (ARA, 20:4*n*-6), except in brain where DHA (7%) and ARA (6%) predominates. 172 These data are in agreement with the study of Cordain et al. (2002), who also reported 173 higher DHA levels in brain of wild ruminant animals (8.9% in elk, 9.2% in antelope and 174 9.6% in deer) compared to other internal organs. DHA, EPA and ARA can be synthesized by a series of reactions involving Δ^6 desaturation, elongation and Δ^5 desaturation from the 175

176 precursors substrates α -linolenic acid (C18:3*n*-3, ALA) and linoleic acid (C18:2*n*-6, LA), 177 respectively (Burdge and Calder, 2005). Thus, the conversion of these essential fatty 178 acids (ALA and LA) into more desaturated FA depends on the type of dietary PUFA 179 (Harnack et al., 2009). Diet influenced the percentages of minor FA in beef by-products, 180 except in brain. Bulls fed the HS diet had higher percentages of a-C15:0 (P<0.05), C15:0 181 (P<0.01), i-C16:0 (P<0.05), i-C17:0 (P<0.05), a-C17:0 (P<0.001), C17:0 (P<0.05), 182 C20:0 (P<0.05), C18:3n-3 (P<0.01) and C20:5n-3 (P<0.05) in heart than those fed the LS 183 diet. Moreover, the HS diet promoted the deposition of C14:1c9 (P<0.01), *i*-C15:0 184 (P<0.05), i-C16:0 (P<0.01), i-C17:0 (P<0.01), C18:3n-3, C20:5n-3 and C22:5n-3 185 (P < 0.05) in kidney when compared to the LS diet. Only the proportion of C18:1c13 186 (P<0.05) was higher in the LS diet. A similar FA pattern was observed in pancreas, 187 except for C20:5*n*-3 and C22:5*n*-3 (*P*>0.05). Barrosã bulls fed the HS diet had the highest 188 percentages of C15:0, C18:3n-3 and C22:5n-3 in liver whereas the percentages of DMA-189 C18:1, C18:1t9, C18:1t10 and C18:1c13 in those fed the LS diet. Feeding the HS diet 190 also promoted higher percentages of minor FA in tongue (i-C15:0 (P<0.01), a-C15:0 191 (P<0.05), i-C16:0 (P<0.05), i-C17:0 (P<0.01), a-C17:0 (P<0.01), C18:1c14+t16 192 (P<0.05) and C18:3n-3 (P<0.05)) compared to LS diet.

The pattern obtained for the partial sums of FA (Tables 2 and 3) reflected the values described for individual FA. Besides genetic and nutritional factors, the fatty acid composition depends largely on the fat level and tissue (Wood et al., 2008). Pancreas and liver of Barrosã bulls had higher SFA and lower monounsaturated fatty acids (MUFA) percentages. In contrast, tongue presented higher MUFA and lower SFA percentages. However, no differential response to dietary silage level was detected for SFA and

199 MUFA contents (P>0.05). These results are in line with those reported by Florek et al. 200 (2012), who observed distinctly higher SFA and MUFA percentages in offal of veal 201 calves and suckler beef. The former authors found that liver presented the highest SFA 202 and the lowest MUFA, and consequently the lowest SFA/MUFA ratio, while tongue 203 showed the highest percentage of MUFA. Beef by-products, with exception of heart, are 204 relatively saturated mainly due to the percentages of C16:0 and C18:0 (and C18:1c9), 205 which suggest a strong contribution of *de novo* synthesis of FA in these tissues. The 206 different rates of *de novo* FA biosynthesis have been ascribed to the activity of lipogenic 207 enzymes. Steroyl-CoA desaturase (SCD) is a rate-limiting enzyme that catalyzes the 208 MUFA biosynthesis, and therefore, with a specific role in lipid deposition (Taniguchi et 209 al., 2004). In contrast to SFA and MUFA, the content of TFA in beef by-products is very 210 low (ranging from 2-6% of the total FA) with vaccenic acid (C18:1t11) predominating, 211 except in brain. However, feeding the LS diet, rich in starch, promoted the deposition of 212 C18:1t10 in liver of Barrosã bulls in comparison to the HS diet (P < 0.05). It has been 213 suggested that the use of concentrate in ruminant diets induces changes in the rumen 214 microbiota, which tend to shift the pattern of major biohydrogenation intermediates 215 (C18:1*t*11 and CLA isomers) towards C18:1*t*10 production (Bessa et al., 2015; Glasser et 216 al., 2008; Griinari and Bauman, 1999). Relatively to PUFA, as expected, heart (41%) 217 kidney (38%) and liver (35%) had the highest proportions of these FA due to the lowest 218 values of total lipids, although no variation between diets was observed (P > 0.05). In 219 general, the PUFA percentages of the n-3 family were relatively low in the beef by-220 products analysed, except in brain. These results are consistent with those described by 221 Prates et al. (2011) for beef and pork by-products. Moreover, the HS diet (rich in C18:3*n*- 222 3) promoted higher n-3 PUFA percentages in liver, heart and kidney in comparison to the 223 LS diet (P < 0.01). Finally, the proportions of dimethylacetals (DMA) in beef by-products 224 varied greatly contributing for total FA with 1-3% in pancreas, liver, tongue and kidney, 225 6-8% in brain and 11-13% in heart. In addition, Pérez-Palacios et al. (2007) have shown 226 that DMA may be influenced by dietary FA composition. In the present study, the 227 proportions of DMA in the beef by-products analysed were unaffected by diets (P>0.05) 228 but, in contrast to our data, Aldai and co-workers (2011) found higher proportions of 229 DMA in ruminant meat promoted by HS diet. Minor proportions of *iso-* and *anteiso-* of 230 branched chain fatty acids (BCFA) were found in beef by-products. While feeding HS or 231 LS diets had no influence on BCFA of brain and liver (P>0.05), the HS diet promoted the 232 deposition of BCFA in heart (P < 0.001), kidney and tongue (P < 0.01) and pancreas 233 (P < 0.05) in comparison to the LS diet.

234 The FA ratios of beef by-products from Barrosã bulls fed HS or LS diets are also 235 presented on Tables 2 and 3. According to nutritional guidelines, the PUFA/SFA ratio in 236 the human diet should be above 0.45 and the *n*-6/*n*-3 ratio should not exceed 4.0 237 (Department of Health, 1994). The PUFA/SFA ratios in beef by-products were within the 238 recommended values, except in pancreas and tongue. Florek et al. (2012) found similar 239 PUFA/SFA ratios in offal from suckler beef and veal calves, however, the values were 240 higher in offal from suckler beef compared with those from veal calves. In ruminants, a 241 large amount of dietary PUFA is biohydrogenated by rumen microorganisms into high 242 levels of SFA available for deposition in muscle tissue, and the net result is a lower 243 PUFA/SFA ratio. Diet did not affect the PUFA/SFA ratio (P>0.05). Raes et al. (2004) 244 suggested that the ratio between PUFA and SFA fatty acids is mainly influenced by 245 genetics rather than nutrition. In contrast, the *n*-6/*n*-3 ratios were above the recommended 246 values in all beef by-products. The values of *n*-6/*n*-3 ratios were higher in heart (16-22), 247 intermediate in pancreas and tongue (8-13) and lower in brain and liver (1-6). Moreover, 248 the *n*-6/*n*-3 ratio was consistently higher in LS diet compared to those from HS diet 249 (P<0.05), except in brain. It has been shown that the use of cereals-based diets (poor in *n*-250 3 FA) changes the FA composition creating an unfavourable *n*-6/*n*-3 FA ratio (Garcia et 251 al., 2008: Wood et al., 2008).

252

253 Please insert Tables 2 and 3 here

254

255 CLA isomeric profile

256 Total CLA content (mg/100 g tissue) and CLA isomeric profile (% of total CLA) of beef 257 by-products are displayed in Table 4. Pancreas (10.9-11.6), tongue (11.9-15.1), kidney 258 (10.5) and liver (9.3-9.4) of Barrosã bulls showed the highest values of total CLA 259 whereas brain (1.2-1.6) and heart (2.4-2.6) the lowest ones. However, no differential 260 response to dietary silage level was observed for total CLA (P>0.05). The large variation 261 in total CLA contents among beef by-products may be explained by the distinct 262 concentration of triacylglycerols in these tissues. Florek et al. (2012) also found high 263 contents of CLA (C18:2c9t11/t10c12) in offal from veal calves (liver > tongue > heart > 264 kidney). CLA contents vary substantially between species as well as from animal to 265 animal and within different tissues (Prates and Bessa, 2009; Schmid et al., 2006). The major CLA isomer (c9,t11) as well as the usually second most prevalent isomer (t7,c9)266 are mainly produced in the tissues through Δ^9 desaturation of *trans* C18:1 and in the 267

268 rumen during microbial biohydrogenation of dietary C18 PUFA (Griinari and Bauman, 269 1999; Palmquist et al., 2004; Prates and Bessa, 2009). Even though the major dietary 270 sources of CLA are ruminant-derived products, the levels of intake remain to be 271 established. It has been recommended a daily intake of 0.8-3.0 g/day based on the anti-272 cancer effects of CLA (Parish et al., 2003; Schmid et al., 2006). Specific physiological 273 effects have been linked to CLA isomers, the t10,c12 CLA isomer may play an important 274 role in lipid metabolism, while the c9,t11 and the t10,c12 isomers seem to be equally effective in anticarcinogenesis (Pariza et al., 2001). 275

276 The most abundant CLA isomer in beef by-products was, as in ruminant meat, the 277 c9,t11 isomer (62-84% of total CLA) followed by t7,c9 (3.5-6.3%), except in brain. 278 t11,c13 (20%) was the second predominant isomer in brain. As far as we know, this 279 preferential deposition of $t_{11,c_{13}}$ CLA in brain remains to be established (Prates et al., 280 2011). The t10,c12 CLA isomer was only residual in beef by-products. In addition, 281 c9,t11 was more accumulated (84%) in liver and kidney while the t10,c12 was relatively 282 incorporated (up to 1%) into heart and tongue. The studies carried out by Kramer et al. 283 (1998) and Li and Warkins (1998) also reported a preferential accumulation of c9,t11284 isomer in liver, serum, bone and marrow and a higher incorporation of the t10,c12 into 285 spleen, muscle and heart.

Data in Table 4 also shows that bulls fed the HS diet had the highest percentages of t11,t13 and t11,c13 in heart, kidney, liver and pancreas when compared to those fed the LS diet. In contrast, feeding the LS diet to Barrosã bulls increases the proportions of t10,c12 in liver and kidney. CLA composition of ruminant meat has been related to pasture *vs.* cereal-based concentrate diet (Alfaia et al, 2009; Raes et al., 2004; Schmid et

al., 2006). Indeed, meat from grass-fed ruminants have been shown to had highest proportions of t11,c13, t11,t13, and t12,t14 isomers and lowest percentage of t7,c9 CLA isomer than meat from ruminants fed on high grain diets (Dannenberger et al., 2005).

271

295 Please insert Table 4 here

296

297 **Principal component analysis**

298 The projection of the first (PC1) and second (PC2) components in the plane using the 299 percentage of FA and CLA isomers determined in the six meat organs (brain, heart, 300 kidney, liver, pancreas and tongue) is displayed in Fig. 1A. The score plot of the first two 301 principal components explained 58.2% of the total variance, with 39% for PC1 and 302 19.2% for PC2 (Table 5). In addition, the pattern in Fig. 1A suggests that PC1 303 differentiates the FA derived from the endogenous synthesis (positive PC1 loadings) and 304 PC2 the FA derived from ruminal biohydrogenation (negative PC1 loadings). The PC1 305 was characterised by variables with positive loadings, such as C20:5n-3 (0.941), DMA-306 C18:1 (0.901), C22:6n-3 (0.855), C20:1c11 (0.841) and C22:5n-6 (0.836), and by 307 variables with negative loadings, like a-C17:0 (-0.959), i-C17:0 (-0.897), C18:1t11 (-308 0.854), C18:1t9 (-0.820), c9,t11 (-0.815) and t7,c9 (-0.781). The PC2 was positively 309 defined by C18:1c9:0 (0.870), C16:0 (0.852), C18:1c13 (0.799) and C14:0 (0.743), and 310 negatively by C22:5n-3 (-0.841), C22:0 (-0.823), C20:4n-6 (-0.750), C18:3n-3 (-0.714), 311 C18:0 (-0.657), C18:2n-6 (-0.634) and t11,t13 (-0.627). However, the score plot from 312 $PC1 \times PC2$ plane does not discriminates between HS and LS treatments (both C18:2*n*-6 313 and C18:3*n*-3 formed a cluster in quadrant *d*).

In addition, projection of scores of the first two PCs (Figure 1B) was arranged in four clusters, corresponding to the six organs. Tongue and pancreas were located in quadrant *a*, brain in quadrant *b*, heart in quadrant *c*, liver in quadrant *d* and heart was dispersed across all quadrants. Summing up, it is important to notice a clear separation of brain from the remaining organs, which may contribute the highest percentages of DHA in this tissue.

320

321 Please insert Table 5 and Figure 1 here

322

323 CONCLUSIONS

324 Beef by-products (brain, heart, kidney, liver, pancreas and tongue) from bulls fed HS and 325 LS diets had, in general, higher contents of cholesterol, SFA, and TFA, as well as high 326 levels of CLA. The major FA in beef by-products were oleic acid, stearic and palmitic 327 acids, as well as arachidonic acid, except in brain. FA composition of brain, compared to 328 the other internal organs, presented higher *n*-3 LC-PUFA, particularly DHA. In addition, 329 heart, kidney, liver and pancreas of bulls fed HS diet, compared to those from bulls fed 330 LS diet, had the most favourable FA profile, specially greater proportions of n-3 PUFA, 331 and *t*11,*t*13 and *t*11,*c*13 CLA isomers, as a result of the beneficial effects of grass silage. 332 Based on these nutritional characteristics, it is recommended to consume these beef by-333 products in small amounts and integrated in a balanced diet.

334 ACKNOWLEDGEMENTS

- 335 The authors are grateful to António Sequeira and Paula Menezes from the UIPA-INIAV
- 336 for their cooperation in organ sampling.
- 337

338 FUNDING

- 339 Individual fellowships to Susana Alves (SFRH/BPD/76836/2011) and Marta Madeira
- 340 (SFRH/BPD/97432/2013) and financial support from Fundação para a Ciência e a
- 341 Tecnologia (Lisboa, Portugal) grants (PTDC/CVT/2006/66114 and
- 342 UID/CVT/00276/2013) are acknowledged.
- 343

344 **CONFLICT OF INTERESTS**

345 The authors declare no conflicts of interest.

346 **REFERENCES**

- 347 Aldai N, Dugan MER, Kramer JKG, Martínez A, López-Campos O, Mantecón AR and
- 348 Osoro K. (2011). Length of concentrate finishing affects the fatty acid composition 349 of grass-fed and genetically lean beef: an emphasis on *trans*-18:1 and conjugated
- 350 linoleic acid profiles. *Animal* 5: 1643–1652.
- 351 Alfaia CPM, Alves SP, Martins SIV, Fontes CMGA, Lemos JPC, Bessa RJB and Prates
- JAM. (2009). Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. *Food Chemistry* 114: 939–946.
- Alves SP and Bessa RJB. (2009). Comparison of two gas–liquid chromatographic
 columns for the analysis of fatty acids in ruminant meat. *Journal of Chromatographic A* 1216: 5130–5139.
- American Heart Association. (2008). Diet and lifestyle recommendations. Available at:
 http://www.americanheart.org/
- 360 Aristoy MC and Toldrá F. (2011). Essential amino acids. In: Nollet LML and Toldrá F
- 361 (eds) Handbook of analysis of edible animal by-products. USA: CRC Press, pp.
 362 123–135.
- Bessa RJB, Alves SP and Santos-Silva J. (2015). Constraints and potentials for the
 nutritional modulation of the fatty acid composition of ruminant meat. *European Journal of Lipid Science and Technology* 117: 1325–1344.
- 366 Bragagnolo N. (2011). Analysis of cholesterol in edible animal by-products. In: Nollet
- 367 LML and Toldrá F (eds) Handbook of analysis of edible animal by-products. USA:
- 368 CRC Press, pp. 43–63.

- 369 Burdge GC and Calder PC. (2005). Alpha-Linolenic acid metabolism in adult humans:
- 370 the effects of gender and age on conversion to longer-chain polyunsaturated fatty
- acids. *European Journal of Lipid Science and Technology* 107: 426–439.
- 372 Carlson LA. (1985). Extraction of lipids from human whole serum and lipoproteins and
- from rat liver tissue with methylene chloride-methanol: a comparison with extraction
- with chloroform-methanol. *Clinica Chimica Acta* 149: 89–93.
- 375 Christie WW. (2003). *Lipid analysis Isolation, separation, identification and structural*376 *analysis of lipids*. Scotland: The oily press.
- 377 Costa ASH, Silva MP, Alfaia CPM, Pires VMR, Fontes CMGA, Bessa RJB and Prates
- JAM. (2013). Genetic background and diet impact on beef fatty acid composition
 and stearoyl-CoA desaturase mRNA expression. *Lipids* 48: 369–381.
- 380 Cruz-Hernandez C, Kramer JK, Kraft J, Santercole V, Rashid M, Deng ZY, Dugan MER,
- 381 Delmonte P and Yurawecz MP. (2006). Systematic analysis of *trans* and conjugated
- 382 linoleic acids in the milk and meat of ruminants. In: Yurawecz P, Kramer JK,
- 383 Gudmundsen O, Pariza MW and Banni S (eds.) Advances in Conjugated Linoleic
- 384 *Acid Research*, Vol. 3. USA: AOCS Press, pp. 45–93.
- 385 Dannenberger D, Nuernberg K, Nuernberg G, Scollan N, Steinhart H and Ender K.
- 386 (2005). Effect of pasture *vs.* concentrate diets on CLA isomer distribution in different
 387 tissue lipids of beef cattle. *Lipids* 40: 589–598.
- 388 Department of Health. (1994). British Department of Health Nutritional aspects of
 389 cardiovascular disease. London: HMSO.
- 390 Dilzer A and Park Y. (2012). Implication of conjugated linoleic acid (CLA) in human
- 391 health. *Critical Review of Food Science and Nutrition* 52: 488–513.

392	Folch J, Lees M and Stanley GHS. (1957). A simple method for the isolation and
393	purification of total lipids from animal tissues. Journal of Biology and Chemistry
394	226: 497–509.

- 395 Florek M, Litwińczuk Z, Skałecki P, Kędzierska-Matysek M and Grodzicki T. (2012).
- Chemical composition and inherent properties of offal from calves maintained under
 two production systems. *Meat Science* 90: 402–409.
- 398 Garcia PT, Casal JJ, Fianuchi S, Magaldi JJ, Rodriguez FJ and Nancucheo JA. (2008).
- Conjugated linolenic acid (CLA) and polyunsaturated fatty acids in muscle lipids of
 lamb from the Patagonian area of Argentina. *Meat Science* 79: 541–548.
- Glasser F, Schmidely P, Sauvant D and Doreau M. (2008). Digestion of fatty acids in
 ruminants: a meta-analysis of flows and variation factors: 2. C18 fatty acids. *Animal*2: 691–704.
- 404 Griinari JM and Bauman DE. (1999). Biosynthesis of conjugated linoleic acid and its 405 incorporation into meat and milk in ruminants. In: Yurawecz MP, Mossoba MM,
- 406 Kramer, JKG, Pariza MW and Nelson GJ (eds) *Advances in conjugated linoleic acid*
- 407 *research*, vol 1 USA: AOCS Press, pp: 180–200.
- Harnack K, Andersen G and Somoza V. (2009). Quantitation of alpha-linolenic acid
 elongation to eicospentaenoic and docosahexaenoic acid as affected by the ratio of n6/n-3 fatty acids. *Nutrition and Metabolism* 6: 8.
- 411 Honikel KO. (2011). Composition and calories. In: Nollet LML and Toldrá F (eds)
- 412 *Handbook of analysis of edible animal by-products.* USA: CRC Press, pp. 105–121.
- 413 Kraft J, Collomb M, Mockel P, Sieber R and Jahreis G. (2003). Differences in CLA
- 414 isomer distribution of cow's milk lipids. *Lipids* 38: 657–664.

Kramer JK, Sehat N, Dugan ME, Mossoba MM, Yurawecz MP, Roach JA, Eulitz K,
Aalhus JL, Schaefer AL and Ku Y. (1998). Distributions of conjugated linoleic acid
(CLA) isomers in tissue lipid classes of pigs fed a commercial CLA mixture
determined by gas chromatography and silver ion–high-performance liquid
chromatography. *Lipids* 33: 549–558.

- Li Y and Warkins BA. (1998). Conjugated linoleic acids alter bone fatty acid
 composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3
 fatty acids. *Lipids* 33: 417–425.
- 423 Mustafa FA. (1988). Moisture, fat and cholesterol content of some raw, barbecue and
- 424 cooked organs meats from beef and mutton. *Journal of Food Science* 53: 270–271.
- Nollet LML and Toldrá F. (2011). Introduction- offal meat: definitions, regions, cultures
 and generalities. In: Nollet LML and Toldrá F (eds) *Handbook of analysis of edible animal by-products*. USA: CRC Press, pp. 3–11.
- 428 Nuernberg K, Dannenberger D, Nuernberg G, Ender K, Voigt J, Scollan ND, Wood JD,
- Nute GR and Richardson RI. (2005). Effect of a grass-based and a concentrate
 feeding system on meat quality characteristics and fatty acid composition of
 longissimus muscle in different cattle breeds. *Livestock Production Science* 94:
 137–147.
- Palmquist DL, St-Pierre S and McClure KE. (2004). Tissue fatty acid profiles can be used
 to quantify endogenous rumenic acid synthesis in lambs. *Journal of Nutrition* 134:
 2407–2414.
- Parish Jr FC, Wiegand BR, Beitz DC, Ahn D, Du M and Trenkle AH. (2003). Use of
 dietary CLA to improve composition and quality of animal-derived foods. In:

- 438 Sebedio JL, Christie WW and Adlof R (eds) *Advances in conjugated linoleic acid*439 *research*. USA: AOCS Press, pp. 189–217.
- 440 Pérez-Palacios T, Antequera T, Muriel E, Martín D and Ruiz J. (2007). Stereospecific
- 441 analysis of phospholipid classes in skeletal muscle from rats fed different fat sources.

442 *Journal of Agricultural and Food Chemistry* 55: 6191–6197.

- Prates J, Alfaia C, Alves S and Bessa R. (2011). Fatty acids. In: Nollet LML and Toldrá F
 (eds) *Handbook of analysis of edible animal by-products*. USA: CRC Press, pp.
 137–159.
- 446 Prates JAM and Bessa RJB. (2009). Trans and n-3 fatty acids. In: Nollet LML and Toldrá

447 F (eds) Handbook of muscle foods analysis. USA: CRC Press, pp. 399–417.

448 Raes K, De Smet SD and Demeyer D. (2001). Effect of double-muscling in Belgian Blue

young bulls on the intramuscular fatty acid composition with emphasis on conjugated
linoleic acid and polyunsaturated fatty acids. *Animal Science* 73: 253–260.

- 451 Raes K, De Smet S and Demeyer D. (2004). Effect of dietary fatty acids on incorporation
- 452 of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef
- 453 and pork meat: a review. *Animal Feed Science and Technology* 113: 199–221.
- 454 SAS (2009) SAS/STAT 9.2 User's Guide, 2nd ed. Cary, NC: SAS Institute Inc.
- 455 Schmid A, Collomb M, Sieber R and Bee G. (2006). Conjugated linoleic acid in meat and
- 456 meat products: a review. *Meat Science* 73: 29–41.
- 457 Scollan N, Hocquette JF, Nuernberg K, Dannenberger D, Richardson I and Moloney A.
- 458 (2006). Innovations in beef production systems that enhance the nutritional and
- 459 health value of beef lipids and their relationship with meat quality. *Meat Science* 74:
- 460 17–33.

461	Taniguchi M, Mannen H, Oyama K, Shimakura Y, Oka A, Watanabe H, Kojima T,
462	Komatsu M, Harper GS and Tsuji S. (2004). Differences in stearoyl-CoA desaturase
463	mRNA levels between Japanese Black and Holstein cattle. Livestock Production
464	Science 87: 215–220.
465	Tinoco J. (1982). Dietary requirements and functions of alpha-linolenic acid in animals.

- 466 *Progress in Lipid Research* 21: 1–45.
- 467 Toldrá F, Aristoy M-C, Mora L and Reig M. (2012). Innovations in value-addition of
 468 edible meat by-products. *Meat Science* 92: 290–296.
- 469 Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR
- 470 and Enser M. (2008). Fat deposition, fatty acid composition and meat quality: a
 471 review. Meat Science 78: 343–358.
- 472 USDA. (2009). United States Department of Health. National Nutrient Database for
- 473 *Standard Reference*, Release 22; available at <u>http://www.ars.usda.gov/ba/bhnrc/ndl</u>.

475 FIGURE CAPTION

- 476 **Figure 1**. Loading plot of the first (PC1) and second (PC2) principal components of the
- 477 pooled data (A) and components score vectors (B) for the beef by-products (brain, heart,
- 478 kidney, liver, pancreas and tongue).

	HS	LS
Proximate composition (%DM)		
Crude protein	14.2	12.5
Crude fat	2.87	3.17
Crude fibre	19.8	15.0
NDF	40.3	32.1
ADF	24.9	18.6
Ash	5.53	6.17
Starch	28.5	37.6
Gross energy (MJ/kg DM)	19.1	18.6
Fatty acid composition (mg/g DM)		
C16:0	16.1	16.5
C18:0	4.05	6.33
C20:0	5.22	2.61
C18:1 <i>c</i> 9	12.1	11.0
C18:2 <i>n</i> -6	35.1	28.2
C18:3 <i>n</i> -3	7.36	4.21

480 **Table 1.** Composition of the experimental diets.

481 HS, silage diet based on 30/70% of concentrate and silage, respectively (n = 3); LS, low

482 silage diet based on 70/30% of concentrate and silage, respectively (n = 3); DM = dry

483 matter; NDF = neutral detergent fibre; ADF = acid detergent fibre.

484 Table 2. Total lipids (%), total cholesterol (mg/100 g) and fatty acid composition (g/100 g total fatty acids) of beef brain, heart and kidney from Barrosã bulls fed high (HS) or low
485 silage (LS) diets.

			Brain					Heart		Kidney					
	H	IS]	LS		Н	S	L	S		HS		LS		
	Mean	SE	Mean	SE	<i>P</i> value	Mean	SE	Mean	SE	P value	Mean	SE	Mean	SE	P value
Total lipids	6.98	0.626	6.84	0.463	ns	1.63	0.175	1.70	0.141	ns	2.09	0.191	2.06	0.131	ns
Total cholesterol	2075	339	1640	292	ns	102	1.94	99.0	1.30	ns	304	7.03	309	4.12	ns
Fatty acid compos	ition														
C14:0	0.53	0.009	0.53	0.023	ns	0.44	0.075	0.40	0.051	ns	0.46	0.032	0.48	0.032	ns
C14:1 <i>c</i> 9	0.14	0.011	0.12	0.011	ns	0.27	0.016	0.22	0.013	ns	0.25	0.013	0.17	0.013	**
<i>i</i> -C15:0	nd	nd	nd	nd	-	0.07	0.004	0.06	0.004	ns	0.16	0.013	0.12	0.002	*
<i>a</i> -C15:0	nd	nd	nd	nd	-	0.19	0.017	0.11	0.011	*	0.11	0.008	0.08	0.010	ns
C15:0	0.12	0.011	0.13	0.007	ns	0.25	0.008	0.17	0.014	**	0.42	0.021	0.35	0.021	ns
DMA-C16:0	2.36	0.403	2.90	0.253	ns	6.71	0.332	8.29	0.204	**	2.53	0.116	2.43	0.107	ns
<i>i</i> -C16:0	0.05	0.007	0.04	0.007	ns	0.16	0.017	0.08	0.008	*	0.21	0.009	0.12	0.015	**
C16:0	16.1	0.386	16.0	0.248	ns	11.3	0.412	10.8	0.173	ns	15.7	0.369	15.8	0.207	ns
C16:1	0.11	0.008	0.10	0.005	ns	0.08	0.008	0.08	0.013	ns	0.23	0.036	0.21	0.040	ns
<i>i</i> -C17:0	nd	nd	nd	nd	-	0.28	0.003	0.21	0.010	**	0.33	0.014	0.26	0.011	**
C16:1 <i>c</i> 7	0.47	0.008	0.50	0.021	ns	0.11	0.011	0.11	0.011	ns	0.42	0.021	0.41	0.022	ns
C16:1 <i>c</i> 9	0.33	0.011	0.35	0.007	ns	0.48	0.094	0.55	0.059	ns	0.77	0.063	0.95	0.111	ns

<i>a</i> -C17:0	nd	nd	nd	nd	-	0.32	0.008	0.25	0.005	***	0.45	0.022	0.38	0.013	ns
C17:0	0.43	0.016	0.44	0.011	ns	0.48	0.030	0.39	0.024	*	0.66	0.019	0.63	0.021	ns
DMA-C18:0	2.55	0.433	3.26	0.250	ns	4.14	0.259	3.76	0.143	ns	0.78	0.052	0.67	0.043	ns
DMA-C18:1	1.37	0.245	1.71	0.135	ns	0.53	0.032	0.61	0.032	ns	0.12	0.017	0.13	0.010	ns
C18:0	17.5	0.569	16.8	0.368	ns	15.5	0.419	13.9	0.230	*	12.9	0.115	12.4	0.245	ns
C18:1 <i>t</i> 6+ <i>t</i> 8	0.03	0.001	0.04	0.008	ns	0.09	0.011	0.07	0.006	ns	0.15	0.019	0.13	0.006	ns
C18:1 <i>t</i> 9	0.04	0.004	0.05	0.004	ns	0.09	0.007	0.07	0.006	ns	0.13	0.023	0.12	0.007	ns
C18:1 <i>t</i> 10	0.07	0.004	0.06	0.014	ns	0.09	0.011	0.11	0.019	ns	0.13	0.034	0.16	0.022	ns
C18:1 <i>t</i> 11	0.04	0.005	0.05	0.002	ns	0.79	0.130	0.62	0.058	ns	0.57	0.096	0.59	0.057	ns
C18:1 <i>t</i> 12	0.39	0.008	0.40	0.016	ns	0.19	0.020	0.16	0.010	ns	0.28	0.021	0.30	0.020	ns
C18:1 <i>c</i> 9	20.5	0.418	20.2	0.404	ns	9.33	1.112	8.83	0.757	ns	15.5	0.443	16.1	0.505	ns
C18:1 <i>c</i> 11+ <i>t</i> 15	4.61	0.123	4.39	0.048	ns	1.99	0.025	2.29	0.176	ns	3.13	0.117	3.63	0.213	ns
C18:1 <i>c</i> 12	0.45	0.107	0.35	0.037	ns	0.62	0.030	0.62	0.039	ns	0.45	0.064	0.48	0.026	ns
C18:1 <i>c</i> 13	0.20	0.019	0.20	0.015	ns	0.08	0.006	0.07	0.003	ns	0.13	0.023	0.23	0.026	*
C18:1 <i>c</i> 14+ <i>t</i> 16	0.07	0.016	0.08	0.010	ns	0.10	0.010	0.08	0.004	ns	0.18	0.024	0.17	0.011	ns
C18:1 <i>c</i> 15	nd	nd	nd	nd	-	nd	nd	nd	nd	-	0.08	0.009	0.08	0.004	ns
C18:2 <i>n</i> -6	0.42	0.024	0.42	0.020	ns	27.9	1.515	28.8	0.920	ns	20.5	0.644	20.4	0.754	ns
C20:0	0.19	0.012	0.20	0.010	ns	0.15	0.011	0.11	0.008	*	0.29	0.012	0.30	0.013	ns
C18:3 <i>n</i> -3	0.11	0.013	0.10	0.006	ns	0.88	0.049	0.57	0.038	**	0.98	0.037	0.82	0.047	*
C20:1 <i>c</i> 11	2.22	0.223	2.18	0.044	ns	0.08	0.008	0.10	0.012	ns	0.33	0.022	0.37	0.008	ns

C18:2 <i>c</i> 9 <i>t</i> 11	0.04	0.006	0.03	0.002	ns	0.17	0.020	0.18	0.020	ns	0.33	0.040	0.42	0.050	ns
C18:4 <i>n</i> -3	0.43	0.026	0.42	0.018	ns	nd	nd	nd	nd	-	nd	nd	nd	nd	-
C20:2 <i>n</i> -6	0.09	0.002	0.09	0.005	ns	0.16	0.013	0.19	0.013	ns	0.55	0.054	0.50	0.032	ns
C22:0	0.47	0.018	0.42	0.028	ns	1.09	0.151	1.01	0.104	ns	0.82	0.127	0.73	0.053	ns
C20:3 <i>n</i> -6	0.14	0.022	0.17	0.013	ns	0.08	0.008	0.08	0.007	ns	0.09	0.009	0.09	0.010	ns
C20:3 <i>n</i> -3	0.08	0.005	0.09	0.006	ns	nd	nd	nd	nd	-	0.24	0.019	0.19	0.018	ns
C20:4 <i>n</i> -6	6.27	0.159	5.86	0.278	ns	9.91	0.412	11.1	0.433	ns	12.7	0.688	12.8	0.573	ns
C20:5 <i>n</i> -3	nd	nd	nd	nd	-	0.50	0.040	0.37	0.027	*	0.47	0.029	0.34	0.012	*
C22:4 <i>n</i> -6	4.14	0.030	4.12	0.049	ns	0.35	0.010	0.44	0.046	ns	0.66	0.057	0.68	0.027	ns
C22:5 <i>n</i> -6	2.28	0.302	1.95	0.106	ns	0.10	0.012	0.13	0.015	ns	0.13	0.017	0.14	0.024	ns
C22:5 <i>n</i> -3	0.35	0.008	0.36	0.006	ns	0.82	0.028	0.74	0.046	ns	1.28	0.062	1.03	0.042	*
C22:6n-3	7.40	0.502	7.44	0.458	ns	0.13	0.011	0.14	0.007	ns	0.39	0.051	0.31	0.028	ns
Others	5.61	0.471	6.29	0.446	ns	3.05	0.149	3.17	0.059	ns	2.99	0.160	3.37	0.073	ns
Fatty acid partial	sums														
Σ SFA	35.3	0.964	34.4	0.592	ns	29.2	0.926	26.8	0.458	ns	31.4	0.375	30.6	0.307	ns
$\sum cis$ MUFA	24.4	0.613	23.8	0.452	ns	11.0	1.16	10.5	0.786	ns	17.9	0.582	18.7	0.655	ns
\sum TFA	5.40	0.158	5.20	0.071	ns	3.58	0.201	3.67	0.163	ns	5.34	0.241	5.80	0.228	ns
Σ PUFA	23.0	0.773	22.3	0.654	ns	40.8	1.74	42.5	0.929	ns	38.0	0.617	37.2	0.859	ns
$\sum n$ -6 PUFA	13.3	0.361	12.6	0.296	ns	38.5	1.68	40.7	0.883	ns	34.6	0.529	34.5	0.850	ns

	$\sum n$ -3 PUFA	9.65	0.437	9.68	0.399	ns	2.33	0.069	1.82	0.078	**	3.37	0.110	2.70	0.062	**
	$\sum n$ -6 LC-PUFA	12.9	0.347	12.2	0.281	ns	10.6	0.410	11.9	0.473	ns	14.1	0.717	14.2	0.602	ns
	$\sum n$ -3 LC-PUFA	9.12	0.451	9.16	0.426	ns	1.45	0.068	1.25	0.072	ns	2.39	0.114	1.88	0.071	*
	$\sum DMA$	6.28	1.06	7.87	0.586	ns	11.4	0.559	12.7	0.287	ns	3.43	0.178	3.23	0.150	ns
	Σ BCFA	0.07	0.013	0.02	0.014	ns	1.02	0.031	0.72	0.019	***	1.25	0.046	0.97	0.036	**
	Fatty acid ratios															
	PUFA/SFA	0.65	0.007	0.65	0.009	ns	1.41	0.108	1.59	0.060	ns	1.21	0.025	1.22	0.032	ns
	<i>n-6/n-3</i>	1.38	0.036	1.31	0.040	ns	16.5	0.370	22.5	0.869	**	10.3	0.241	12.8	0.343	***
486	Data are means \pm standa	rd error	(SE). SFA =	∑ C14:0, C	16:0, C18:0), C20:0 and	1 C22:0; cis M	$UFA = \sum C$	C14:1 <i>c</i> 9, C16:1	c7, C16:1c9	9, C18:1 <i>c</i> 9,	C18:1 <i>c</i> 12, C	18:1 <i>c</i> 13, 0	C18:1 <i>c</i> 15 and	d C20:1 <i>c</i> 11	; TFA = Σ
487	C18:1 <i>t</i> 6+ <i>t</i> 8-, C18:1 <i>t</i> 9, C	218:1 <i>t</i> 10,	C18:1 <i>t</i> 11, C	C18:1 <i>c</i> 11+ <i>t</i> 1	5, C18:1 <i>t</i> 12	2, C18:1 <i>c</i> 14	+ <i>t</i> 16 and C18:	2 <i>c</i> 9 <i>t</i> 11; PU	$JFA = \sum C18:2$	2 <i>n-</i> 6, C18:3	n-3, C18:4n	-3, C20:2 <i>n</i> -6	5, C20:3 <i>n</i> -	6, C20:3 <i>n</i> -3,	C20:4 <i>n</i> -6,	C20:5 <i>n</i> -3,
488	C22:4 <i>n</i> -6, C22:5 <i>n</i> -6, C2	2:5n-3 a	nd C22:6 <i>n</i> -3	3; <i>n-</i> 6 PUFA	$=\sum C18:2$	n-6, C20:2i	n-6, C20:3 <i>n</i> -6,	C20:3 <i>n</i> -3,	C20:4 <i>n</i> -6, C22	2:4 <i>n</i> -6 and 0	C22:5n-6; n-	3 PUFA = 2	∑ C18:3 <i>n</i> -	3, C18:4 <i>n</i> -3,	C20:3 <i>n</i> -3,	C20:5 <i>n</i> -3,
489	C22:5 <i>n</i> -3 and C22:6 <i>n</i> -3;	n-6 LC-	-PUFA = n-6	5 long chain-	$-PUFA = \Sigma$	C20:2 <i>n</i> -6,	C20:3n-6, C20	:3 <i>n</i> -3, C20:	:4 <i>n</i> -6, C22:4 <i>n</i> -	6 and C22:	5n-6; n-3 LC	C-PUFA = n	-3 long ch	ain-PUFA =	\sum C20:3 <i>n</i> -	3, C20:5 <i>n</i> -

490 3, C22:5*n*-3 and C22:6*n*-3; DMA = dimethylacetals = Σ DMA-C16:0, DMA-C18:0 and DMA-C18:1; BCFA = branched chain fatty acids = Σ *i*-C15:0, *a*-C15:0, *i*-C16:0, *i*-C17:0 and *a*-C17:0.

491 Table 3. Total lipids (%), total cholesterol (mg/100 g tissue), total fatty acids (g/100 g tissue) and composition (g/100 g total fatty acids) of beef liver, pancreas and tongue from
492 Barrosã bulls fed high (HS) or low silage (LS) diets.

			Liver					Pancreas		Tongue					
	H	IS	Ι	LS		Н	S	L	S		HS		L	LS	
	Mean	SE	Mean	SE	<i>P</i> value	Mean	SE	Mean	SE	P value	Mean	SE	Mean	SE	P value
Total lipids	2.66	0.286	2.62	0.200	ns	3.77	0.226	4.03	0.202	ns	3.59	0.750	2.89	0.335	ns
Total cholesterol	154	10.2	158	2.47	ns	157	7.69	153	3.92	ns	65.6	3.98	68.1	2.37	ns
Fatty acid compos	sition														
C14:0	0.30	0.025	0.33	0.065	ns	1.68	0.187	1.59	0.098	ns	2.59	0.329	2.62	0.067	ns
C14:1 <i>c</i> 9	0.25	0.026	0.15	0.033	ns	0.13	0.014	0.14	0.013	ns	0.76	0.096	0.83	0.039	ns
<i>i</i> -C15:0	0.13	0.013	0.09	0.012	ns	0.18	0.018	0.11	0.009	*	0.11	0.007	0.07	0.002	**
<i>a</i> -C15:0	0.14	0.016	0.11	0.014	ns	0.22	0.030	0.14	0.016	ns	0.15	0.018	0.09	0.002	*
C15:0	0.23	0.017	0.18	0.011	*	0.47	0.052	0.34	0.047	ns	0.39	0.021	0.34	0.025	ns
DMA-C16:0	0.91	0.078	1.06	0.127	ns	0.71	0.144	0.89	0.097	ns	1.54	0.476	1.67	0.260	ns
<i>i</i> -C16:0	0.14	0.019	0.11	0.012	ns	0.32	0.036	0.16	0.014	*	0.22	0.035	0.10	0.012	*
C16:0	8.51	0.338	8.83	1.01	ns	21.6	0.455	21.6	0.630	ns	18.9	1.43	19.7	0.568	ns
C16:1	0.08	0.012	0.08	0.007	ns	0.09	0.015	0.10	0.007	ns	0.06	0.005	0.06	0.007	ns
<i>i</i> -C17:0	0.23	0.022	0.19	0.010	ns	0.49	0.018	0.36	0.019	**	0.36	0.009	0.27	0.012	**

C16:1 <i>c</i> 7	0.18	0.006	0.21	0.019	ns	0.30	0.017	0.29	0.015	ns	0.32	0.012	0.32	0.014	ns
C16:1 <i>c</i> 9	0.53	0.048	0.68	0.152	ns	1.77	0.074	2.45	0.276	ns	3.74	0.363	4.46	0.330	ns
<i>a</i> -C17:0	0.42	0.056	0.38	0.021	ns	0.72	0.049	0.64	0.032	ns	0.67	0.022	0.53	0.022	**
C17:0	1.03	0.079	0.92	0.066	ns	0.91	0.079	0.68	0.057	ns	0.82	0.061	0.76	0.043	ns
DMA-C18:0	0.33	0.028	0.30	0.012	ns	0.26	0.057	0.26	0.035	ns	1.07	0.361	0.81	0.124	ns
DMA-C18:1	0.05	0.005	0.07	0.007	*	0.14	0.031	0.14	0.025	ns	0.06	0.015	0.08	0.020	ns
C18:0	31.5	0.367	31.3	0.710	ns	20.0	1.67	16.6	1.25	ns	13.1	0.591	11.2	0.443	ns
C18:1 <i>t</i> 6+ <i>t</i> 8	0.07	0.005	0.08	0.006	ns	0.31	0.018	0.29	0.024	ns	0.14	0.013	0.12	0.008	ns
C18:1 <i>t</i> 9	0.07	0.007	0.09	0.005	*	0.18	0.018	0.18	0.011	ns	0.21	0.015	0.19	0.011	ns
C18:1 <i>t</i> 10	0.08	0.004	0.16	0.019	*	0.24	0.023	0.33	0.048	ns	0.19	0.024	0.23	0.019	ns
C18:1 <i>t</i> 11	0.94	0.111	1.12	0.131	ns	1.37	0.133	1.09	0.142	ns	1.01	0.135	0.76	0.085	ns
C18:1 <i>t</i> 12	0.41	0.029	0.46	0.016	ns	0.22	0.019	0.24	0.019	ns	0.19	0.027	0.16	0.019	ns
C18:1 <i>c</i> 9	10.6	0.236	11.3	1.28	ns	27.3	0.655	28.9	1.41	ns	34.4	1.75	35.6	0.942	ns
C18:1 <i>c</i> 11+ <i>t</i> 15	1.13	0.053	1.40	0.117	ns	1.83	0.038	2.18	0.132	ns	2.57	0.054	2.99	0.146	ns
C18:1 <i>c</i> 12	0.25	0.013	0.31	0.031	ns	0.45	0.027	0.49	0.032	ns	0.40	0.027	0.34	0.028	ns
C18:1 <i>c</i> 13	0.07	0.007	0.11	0.011	*	0.14	0.008	0.22	0.021	*	0.30	0.021	0.42	0.042	ns
C18:1 <i>c</i> 14+ <i>t</i> 16	0.10	0.010	0.12	0.009	ns	0.32	0.008	0.27	0.027	ns	0.20	0.015	0.15	0.013	*
C18:1 <i>c</i> 15	0.05	0.004	0.06	0.004	ns	0.08	0.004	0.09	0.003	ns	0.10	0.018	0.09	0.006	ns
C18:2 <i>n</i> -6	15.2	0.704	15.2	0.674	ns	9.48	1.34	10.7	0.775	ns	7.18	1.15	7.35	0.684	ns

C20:0	0.06	0.004	0.06	0.004	ns	0.14	0.011	0.11	0.010	ns	0.08	0.009	0.07	0.007	ns
C18:3 <i>n</i> -3	1.18	0.100	0.87	0.032	*	0.76	0.047	0.61	0.040	*	0.59	0.048	0.39	0.034	*
C20:1 <i>c</i> 11	0.08	0.005	0.09	0.010	ns	0.16	0.013	0.21	0.018	ns	0.20	0.015	0.19	0.024	ns
C18:2 <i>c</i> 9 <i>t</i> 11	0.42	0.039	0.48	0.061	ns	0.35	0.031	0.43	0.042	ns	0.49	0.062	0.47	0.051	ns
C18:4 <i>n</i> -3	0.06	0.006	0.05	0.003	ns	nd	nd	nd	nd	-	nd	nd	nd	nd	-
C20:2 <i>n</i> -6	0.31	0.031	0.27	0.033	ns	0.06	0.006	0.07	0.002	ns	0.07	0.017	0.07	0.010	ns
C22:0	2.98	0.539	2.76	0.306	ns	0.22	0.067	0.22	0.034	ns	0.34	0.102	0.32	0.058	ns
C20:3 <i>n</i> -6	nd	nd	nd	nd	-	0.05	0.005	0.05	0.003	ns	nd	nd	nd	nd	-
C20:3 <i>n</i> -3	0.08	0.004	0.07	0.011	ns	0.04	0.006	0.05	0.003	ns	nd	nd	nd	nd	-
C20:4 <i>n</i> -6	9.65	0.227	9.68	0.498	ns	2.81	0.680	3.04	0.240	ns	2.24	0.727	2.25	0.366	ns
C20:5 <i>n</i> -3	0.40	0.035	0.34	0.023	ns	0.18	0.042	0.13	0.015	ns	0.11	0.031	0.09	0.015	ns
C22:4 <i>n</i> -6	2.50	0.224	2.41	0.304	ns	0.19	0.038	0.27	0.019	ns	0.31	0.094	0.31	0.048	ns
C22:5 <i>n</i> -6	0.52	0.066	0.56	0.067	ns	0.04	0.008	0.06	0.006	ns	0.06	0.018	0.09	0.021	ns
C22:5 <i>n</i> -3	3.59	0.080	2.83	0.223	*	0.52	0.106	0.49	0.046	ns	0.46	0.132	0.36	0.060	ns
C22:6n-3	1.25	0.146	0.99	0.105	ns	0.07	0.013	0.08	0.008	ns	0.09	0.023	0.08	0.027	ns
Others	3.12	0.044	3.19	0.249	ns	2.49	0.167	2.72	0.192	ns	3.34	0.447	3.01	0.053	ns
Fatty acid partial	sums														
Σ SFA	42.8	0.265	42.5	0.400	ns	45.4	2.32	41.5	1.74	ns	36.3	1.46	35.0	0.434	ns
$\sum cis$ MUFA	11.9	0.258	12.9	1.42	ns	30.3	0.647	32.7	1.59	ns	40.2	1.97	42.2	1.25	ns

	\sum TFA	2.17	0.175	2.60	0.144	ns	4.63	0.134	4.74	0.165	ns	4.64	0.242	4.72	0.199	ns
	Σ PUFA	34.7	0.608	33.2	1.50	ns	14.2	2.27	15.5	1.03	ns	11.1	2.19	11.0	1.20	ns
	$\sum n$ -6 PUFA	28.1	0.407	28.1	1.28	ns	12.6	2.062	14.2	0.940	ns	9.86	1.97	10.1	1.10	ns
	$\sum n$ -3 PUFA	6.50	0.256	5.10	0.274	**	1.58	0.214	1.36	0.097	ns	1.25	0.221	0.93	0.112	ns
	$\sum n$ -6 LC-PUFA	13.0	0.334	12.9	0.812	ns	3.14	0.727	3.48	0.257	ns	2.68	0.851	2.72	0.432	ns
	$\sum n$ -3 LC-PUFA	5.33	0.228	4.23	0.278	*	0.81	0.167	0.75	0.069	ns	0.66	0.175	0.54	0.094	ns
	\sum DMA	1.29	0.089	1.43	0.135	ns	1.11	0.231	1.29	0.154	ns	2.66	0.850	2.56	0.394	ns
	Σ BCFA	1.06	0.122	0.88	0.051	ns	1.93	0.141	1.39	0.072	*	1.51	0.084	1.06	0.039	**
	Fatty acid ratios															
	PUFA/SFA	0.81	0.016	0.78	0.040	ns	0.32	0.073	0.38	0.036	ns	0.31	0.073	0.32	0.036	ns
	<i>n-6/n-3</i>	4.34	0.148	5.53	0.181	**	7.95	0.261	10.4	0.264	***	7.76	0.237	10.9	0.611	**
494	Data are means \pm standa	ard error	(SE). $SFA = \sum_{i=1}^{N}$	Σ C14:0, C	16:0, C18:0), C20:0 and	C22:0; cis M	$UFA = \sum C$	14:1 <i>c</i> 9, C16:1	c7, C16:1c	9, C18:1 <i>c</i> 9,	C18:1 <i>c</i> 12, C	218:1 <i>c</i> 13, C	C18:1 <i>c</i> 15 and	I C20:1 <i>c</i> 11	; TFA = \sum
495	C18:1 <i>t</i> 6+ <i>t</i> 8-, C18:1 <i>t</i> 9, C	C18:1 <i>t</i> 10,	C18:1 <i>t</i> 11, C1	18:1 <i>c</i> 11+ <i>t</i> 1	5, C18:1 <i>t</i> 12	2, C18:1 <i>c</i> 14-	+ <i>t</i> 16 and C18:	2 <i>c</i> 9 <i>t</i> 11; PU	$FA = \sum C18:2$	2 <i>n-</i> 6, C18:3	n-3, C18:4n	-3, C20:2 <i>n</i> -6	5, C20:3 <i>n</i> -0	5, C20:3 <i>n</i> -3,	C20:4 <i>n</i> -6,	C20:5 <i>n</i> -3,
496	C22:4 <i>n</i> -6, C22:5 <i>n</i> -6, C2	2:5 <i>n</i> -3 a	nd C22:6 <i>n</i> -3;	n-6 PUFA	$=\sum C18:2$	n-6, C20:2n	-6, C20:3 <i>n</i> -6,	C20:3 <i>n</i> -3,	C20:4 <i>n</i> -6, C22	2:4 <i>n</i> -6 and 0	C22:5n-6; n	-3 PUFA = 2	∑ C18:3 <i>n-</i> :	3, C18:4 <i>n</i> -3,	C20:3 <i>n</i> -3,	C20:5 <i>n</i> -3,
497	C22:5 <i>n</i> -3 and C22:6 <i>n</i> -3	; n-6 LC-	PUFA = n-6	long chain	-PUFA = Σ	C20:2 <i>n</i> -6, C	C20:3n-6, C20	:3 <i>n</i> -3, C20:	4n-6, C22:4n-	6 and C22::	5n-6; n-3 LO	C-PUFA = n	-3 long cha	ain-PUFA =	∑ C20:3 <i>n</i> -3	3, C20:5 <i>n</i> -
498	3, C22:5 <i>n</i> -3 and C22:6 <i>n</i>	-3; DMA	a = dimethylad	cetals = $\sum 1$	DMA-C16:0), DMA-C18	3:0 and DMA-	C18:1; BC	FA = branched	l chain fatty	acids = $\sum i$	-C15:0, <i>a</i> -C1	15:0, <i>i-</i> C16	:0, <i>i</i> -C17:0 a	nd <i>a-</i> C17:0).

Table 4. Conjugated linoleic acid (CLA) content (mg/100 g tissue) and isomeric distribution (% CLA) of beef brain, heart and kidney from Barrosã bulls fed high (HS) or low
 silage (LS) diets.

			Brain			Heart					Kidney					
	H	IS	I	LS		Н	S	L	.S		H	IS	L	S		
	Mean	SE	Mean	SE	P value	Mean	SE	Mean	SE	P value	Mean	SE	Mean	SE	P value	
Total CLA ⁺	1.56	0.258	1.23	0.137	ns	2.59	0.447	2.36	0.219	ns	10.5	1.20	10.5	1.90	ns	
CLA profile																
<i>t</i> 12, <i>t</i> 14	1.65	0.380	0.92	0.195	ns	1.43	0.127	1.15	0.144	ns	0.87	0.199	0.67	0.079	ns	
<i>t</i> 11, <i>t</i> 13	2.77	0.113	3.04	0.128	ns	3.85	0.182	2.17	0.161	***	2.36	0.145	1.50	0.121	**	
<i>t</i> 10, <i>t</i> 12	0.36	0.039	0.44	0.055	ns	1.06	0.094	0.95	0.151	ns	0.23	0.060	0.32	0.035	ns	
<i>t</i> 9, <i>t</i> 11	2.80	0.107	3.13	0.266	ns	1.66	0.166	1.90	0.190	ns	3.11	0.740	3.67	0.847	ns	
<i>t</i> 8, <i>t</i> 7	0.90	0.093	0.71	0.139	ns	0.28	0.082	0.30	0.076	ns	0.24	0.026	0.38	0.056	ns	
<i>t</i> 7, <i>t</i> 9	2.17	0.278	1.75	0.126	ns	1.21	0.317	0.78	0.165	ns	1.36	0.275	1.09	0.284	ns	
<i>t</i> 6, <i>t</i> 8	0.66	0.384	1.34	0.095	ns	0.97	0.334	0.81	0.225	ns	0.43	0.134	0.59	0.071	ns	
<i>c/t</i> 12,14	1.25	0.099	1.48	0.096	ns	0.58	0.043	0.75	0.042	*	0.38	0.090	0.32	0.030	ns	
<i>t</i> 11, <i>c</i> 13	20.0	1.04	19.7	0.244	ns	3.52	0.268	2.11	0.205	**	1.04	0.042	0.67	0.083	**	
<i>c</i> 11, <i>t</i> 13	2.15	0.088	2.08	0.166	ns	2.00	0.157	1.95	0.090	ns	0.99	0.017	1.10	0.101	ns	
<i>t</i> 10, <i>c</i> 12 ⁺⁺	n.d.	-	n.d.	-	-	1.12	0.075	1.31	0.187	ns	0.62	0.076	0.89	0.073	*	

<i>c</i> 9, <i>t</i> 11 ⁺⁺⁺	61.9	0.780	62.1	0.691	ns	78.3	1.35	81.9	1.05	ns	84.2	1.05	84.1	1.29	ns
<i>t</i> 7, <i>c</i> 9	3.47	0.035	3.23	0.153	ns	4.00	0.547	4.00	0.440	ns	4.32	0.303	4.73	0.367	ns
Partial sums															
Total trans, trans	11.3	0.454	11.3	0.688	ns	10.5	0.541	8.0	0.627	*	8.49	0.879	8.22	1.233	ns
Total cis/trans	88.7	0.454	88.7	0.688	ns	89.5	0.541	92.0	0.627	*	91.5	0.879	91.8	1.23	ns
		Liver						Pancreas			Tongue				
	HS LS		S		Н	S	L	S		Н	IS	L	LS		
	Mean	SE	Mean	SE	P value	Mean	SE	Mean	SE	P value	Mean	SE	Mean	SE	P value
Total CLA ⁺	9.40	1.10	9.34	1.73	ns	10.9	2.16	11.6	1.26	ns	15.1	6.19	11.9	3.01	ns
CLA profile															
<i>t</i> 12, <i>t</i> 14	0.87	0.199	0.67	0.079	ns	1.05	0.080	0.68	0.080	*	0.65	0.037	0.56	0.053	ns
<i>t</i> 11, <i>t</i> 13	2.36	0.145	1.50	0.121	**	2.30	0.315	1.05	0.181	*	0.96	0.118	0.62	0.074	ns
<i>t</i> 10, <i>t</i> 12	0.23	0.060	0.32	0.035	ns	0.59	0.120	0.52	0.076	ns	0.37	0.053	0.33	0.037	ns
<i>t</i> 9, <i>t</i> 11	3.11	0.740	3.67	0.847	ns	1.75	0.226	1.84	0.292	ns	1.12	0.122	1.06	0.081	ns
<i>t</i> 8, <i>t</i> 7	0.24	0.026	0.38	0.056	ns	0.65	0.061	0.43	0.078	ns	0.42	0.064	0.32	0.040	ns
<i>t</i> 7, <i>t</i> 9	1.36	0.275	1.09	0.284	ns	0.91	0.163	0.66	0.101	ns	0.86	0.177	0.60	0.069	ns
<i>t</i> 6, <i>t</i> 8	0.43	0.134	0.59	0.071	ns	0.75	0.055	0.48	0.108	ns	0.53	0.068	0.27	0.050	*
<i>c/t</i> 12,14	0.38	0.090	0.32	0.030	ns	0.56	0.044	0.47	0.044	ns	0.68	0.064	0.99	0.143	ns
<i>t</i> 11, <i>c</i> 13	1.04	0.042	0.67	0.083	**	2.05	0.302	1.05	0.065	*	2.38	0.129	2.33	0.114	ns

<i>c</i> 11, <i>t</i> 13	0.99	0.017	1.10	0.101	ns	1.03	0.158	1.11	0.052	ns	0.68	0.152	1.02	0.132	ns
<i>t</i> 10, <i>c</i> 12	0.62	0.076	0.89	0.073	*	0.67	0.096	0.89	0.111	ns	1.27	0.243	1.71	0.331	ns
<i>c</i> 9, <i>t</i> 11 ⁺⁺⁺	84.2	1.05	84.1	1.29	ns	81.4	1.02	84.2	1.05	ns	83.8	0.837	83.4	0.955	ns
<i>t</i> 7, <i>c</i> 9	4.32	0.303	4.73	0.367	ns	6.31	0.234	6.71	0.713	ns	6.28	0.286	6.78	0.508	ns
Partial sums															
Total trans, trans	8.49	0.879	8.22	1.23	ns	8.00	0.875	5.56	0.475	ns	4.92	0.537	3.74	0.261	ns
Total cis/trans	91.5	0.879	91.8	1.23	ns	92.0	0.875	94.4	0.475	ns	95.1	0.537	96.3	0.261	ns

⁺ Total CLA was determined by the combination of GC-FID and Ag⁺-HPLC techniques, as described in the text.

504 ⁺⁺ In brain and kidney samples, this minor CLA isomer co-eluted with the major *c*9,*t*11 isomer.

505 ⁺⁺⁺ This CLA isomer co-eluted with minor amounts of the *t*9,*c*11 isomer.

506 n.d., not detected.

Variable	PC1	PC2
C14:0	-0.591	0.743
C14:1 <i>c</i> 9	-0.394	0.427
<i>i</i> -C15:0	-0.785	-0.259
a-C15:0	-0.753	-0.253
C15:0	-0.745	0.250
DMA-C16:0	0.389	-0.210
<i>i</i> -C16:0	-0.689	0.001
C16:0	-0.314	0.852
C16:1 <i>t</i> 9	0.089	-0.130
<i>i</i> -C17:0	-0.897	0.027
C16:1 <i>c</i> 7	0.379	0.552
C16:1 <i>c</i> 9	-0.624	0.661
<i>a</i> -C17:0	-0.959	0.112
C17:0	-0.686	-0.239
DMA-C18:0	0.684	0.008
DMA-C18:1	0.901	0.253
C18:0	-0.069	-0.657
C18:1 <i>t</i> 6- <i>t</i> 8	-0.703	0.273
C18:1 <i>t</i> 9	-0.820	0.488
C18:1 <i>t</i> 10	-0.692	0.376
C18:1 <i>t</i> 11	-0.854	-0.199
C18:1 <i>t</i> 12	0.383	-0.398

C18:1 <i>c</i> 9	-0.391	0.870
C18:1 <i>c</i> 11+ <i>t</i> 15	0.664	0.577
C18:1 <i>c</i> 12	0.037	0.030
C18:1 <i>c</i> 13	-0.187	0.799
C18:1 <i>t</i> 16+ <i>c</i> 14	-0.738	0.322
C18:1 <i>c</i> 15	-0.818	0.230
C18:2 <i>n</i> -6	-0.207	-0.634
C20:0	0.363	0.081
C18:3 <i>n</i> -3	-0.570	-0.714
C20:1 <i>c</i> 11	0.841	0.376
C20:2 <i>n</i> -6	-0.027	-0.579
C22:0	-0.025	-0.823
C20:3 <i>n</i> -6	0.798	0.207
C20:3 <i>n</i> -3	0.158	-0.228
C20:4 <i>n</i> -6	0.285	-0.750
C20:5 <i>n</i> -3	0.941	0.073
C22:4 <i>n</i> -6	0.773	-0.101
C22:5 <i>n</i> -6	0.836	0.158
C22:5 <i>n</i> -3	-0.155	-0.841
C22:6n-3	0.855	0.235
<i>t</i> 12, <i>t</i> 14	-0.704	-0.256
<i>t</i> 11, <i>t</i> 13	-0.556	-0.627
<i>t</i> 10, <i>t</i> 12	-0.735	-0.010
<i>t</i> 9, <i>t</i> 11	-0.419	-0.586
<i>t</i> 8, <i>t</i> 10	-0.779	0.126

<i>t</i> 7, <i>t</i> 9	-0.454	-0.443
<i>t</i> 6, <i>t</i> 8	-0.584	-0.258
<i>c/t</i> 12,14	-0.666	0.413
<i>t</i> 11, <i>c</i> 13	0.013	0.279
<i>c</i> 11, <i>t</i> 13	-0.639	-0.230
t10,c12	-0.626	0.229
<i>c</i> 9, <i>t</i> 11	-0.815	-0.080
<i>t</i> 7, <i>c</i> 9	-0.781	0.135
Proportion of variance (%)	38.96	19.19
Cumulative variance (%)	38.96	58.15

¹PC: principal component