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Abstract: There is an increasing interest in researchers and companies on the combination of
Distributed Acoustic Sensing (DAS) and a Pattern Recognition System (PRS) to detect and classify
potentially dangerous events that occur in areas above fiber optic cables deployed along active
pipelines, aiming to construct pipeline surveillance systems. This paper presents a review of the
literature in what respect to machine learning techniques applied to pipeline surveillance systems
based on DAS+PRS (although its scope can also be extended to any other environment in which
DAS+PRS strategies are to be used). To do so, we describe the fundamentals of the machine learning
approaches when applied to DAS systems, and also do a detailed literature review of the main
contributions on this topic. Additionally, this paper addresses the most common issues related to real
field deployment and evaluation of DAS+PRS for pipeline threat monitoring, and intends to provide
useful insights and recommendations in what respect to the design of such systems. The literature
review concludes that a real field deployment of a PRS based on DAS technology is still a challenging
area of research, far from being fully solved.

Keywords: distributed acoustic sensing; fiber optic systems; φ-OTDR; pipeline integrity threat
monitoring; pattern recognition systems; review

1. Introduction

The most sustainable and safest transmission method to transport energy sources from the
producing facilities to the various end-users relies on pipeline transmission. In this environment,
pipeline integrity is crucial for a safe operation, and must be specially pursued when crossing urban
areas. Despite all safeguard measures taken by the system operators, zero risk does not exist, being the
energy transmission an industrial activity, so that extra care must be taken to avoid the pipeline to be
damaged. This is especially important if we take into account that most incidents involving natural
gas transmission infrastructures occur due to external interference (between 50% and 60% of the
reported incidents according to [1,2], well above the second main cause (construction defect or material
failure, which account for between 16% and 25% of the cases, respectively)), mainly due to third party
works in the pipeline vicinity, some of which unfortunately lead to human casualties. In addition to
personal losses, the incidents leading to interruption of energy supply and leaked fuel associated also
derive in high economic losses (as a consequence of supply disruption) and environmental damage.
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To provide an example, as reported in [2], between 1984 and 2004, the documented incidents in
natural gas distribution pipelines in the United States (2842) led to a property damage value of over
323 million dollars, with 337 fatalities and 1525 injured people.

The security of pipelines has significantly improved, but there is still a high demand for
high-performance and cost-effective solutions for continuous monitoring potential threats to the
integrity of pipelines. Given the length and linearity of the transmission pipelines, often spanning
hundreds of kilometers, distributed acoustic sensing (DAS) technology is specially well suited for
this task [3–11], as it allows monitoring large distances with a single interrogation unit. The fact
that deployment of fiber optic bundles when building pipelines is a routine well established action,
also contributes to the feasibility of DAS-based pipeline integrity monitoring systems.

Distributed acoustic sensors are able to detect vibrations that occur on the ground nearby the top
of a buried optical fiber deployed along a pipeline, and hence monitor activities near it. This represents
a promising solution as the vibrations associated to potentially dangerous activities can be detected,
so that a preventive action can be undertaken. If machine learning strategies are employed to develop
a pattern recognition system (PRS) that can further classify the sensed vibration into a set of relevant
activities, we can increase the cost-effectiveness of the system, as the provided information will be
richer, and the number of false alarms can be significantly reduced.

Although some works have been presented in this direction [3,12–27], there is still, many times,
a lack of understanding of how a reliable and efficient system can be built, and what is the adequate
and rigorous methodology to apply in the system evaluation processes. In addition, to the best of our
knowledge, no thorough written report that summarizes the main characteristics of these systems
exists in the literature applied to DAS+PRS technology. So, the purpose of this paper is two-fold:

• Present the first extensive review of the machine learning techniques applied on DAS-based
surveillance systems.

• Provide meaningful recommendations for a methodology that aims to build a DAS-based
surveillance system based on machine learning techniques.

We want also to stress the fact that even when the paper focuses on the application of pipeline
monitoring, its scope and discussion can also be applied and extended to any other environment or
structure in which DAS+PRS technology is to be used.

The rest of the paper is organized as follows: Section 2 presents some previous works on DAS,
and works related to machine/vehicle classification that employ other sensors rather than distributed
acoustic ones. Section 3 presents the principles of the machine learning strategy applied to DAS.
Section 4 presents a literature review of the published approaches employed for DAS+PRS, along
with their results. Discussion of the corresponding approaches is presented in Section 5, and real field
deployment system issues are presented in Section 6. Some practical recommendations for applying
machine learning techniques on DAS are given in Section 7, and the paper is concluded in Section 8.

2. Related Work

2.1. Distributed Acoustic Sensing and Pattern Recognition Systems (DAS+PRS)

As described in [24], fiber optic distributed acoustic sensing with phase-sensitive optical
time-domain reflectometer (φ-OTDR) technology shows good performance for long perimeter
monitorization aiming to detect potential threats or intruders on the ground [3,28–31], or vibration in
general [4,32–39].

The high sensitivity of conventional φ-OTDR-based sensors, with sensing ranges in the order of
tens of kilometers and spatial resolutions in the meter range, provides the possibility of detecting low
energy activities, such as people walking over a buried fiber [3]. Sensing ranges above 100 km have
also been demonstrated with the use of optical amplification [4,5,35,40]. Post-processing denoising
methods have also been applied to improve the signal-to-noise ratio (SNR) and therefore the limits of
detection [33,35,41,42].
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Even though the information provided by DAS is very powerful, the current and future trends
will undoubtedly make extensive use of it in combination with PRS and machine learning techniques,
as a way to provide relevant, richer, and higher level information on the surveilled systems.

In 2016, the authors of [23] presented the first extensive reported work on a pipeline integrity
threat detection and identification system that employed DAS+PRS and was rigorously evaluated
on realistic field data, showing promising results in terms of accuracy, and thus its potential for
real world applications. Their work was developed under a GERG (The European Gas Research
Group) supported project titled PIT-STOP (Early Detection of Pipeline Integrity Threats using a SmarT
Fiber-OPtic Surveillance System), which addressed three main targets:

• The rigorous application of machine learning methods and methodologies to the area of pipeline
integrity surveillance, using distributed acoustic sensing.

• The generation of extensive, varied, and realistic field data, using real machinery carrying out
real activities sensed by state-of-the-art DAS systems on optical fibers deployed along active
gas pipelines.

• The application of objective evaluation metrics on the realistic data, so that the results could
provide a real perspective on the actual capabilities of the DAS+PRS in the real world.

Most of the φ-OTDR-based reported works relied and focused on directly measuring changes in
the optical trace, or were based on applying simple threshold-based strategies on the trace energy to
detect perturbations. However, there is an increasing interest of employing more advanced techniques
on more and more challenging and realistic scenarios.

As described in [23], from the few works that actually employed PRS techniques, most of them
exhibited relevant problems that did not allow to objectively assess the validity of their claims, or their
extensibility to realistic field deployments.

In some of them, no real classification was conducted [17], or no classification results were
reported [18,43]. In others, there were no details of the system description [30], there were no details
on the classification strategy [26], or not enough details of the experimental procedure (training and
testing conditions, recording protocol, etc.) were given [19,21,26,43].

A major and generalized problem relates to the data generation process, since this is, in most cases,
far from a real field environment: either the sensing system is very close to the sensed area [3,17], or the
sensed area is small [17,19,35]. In some cases, no real acquired signals are used, but only simulated
data [4,5,19,33,35,40–42,44].

Some recent works present significant improvements over those previously reported,
by generating recording environments with longer optical fibers (in the range of tens of kilometers),
such as [45] (17 km), [21] (20 km), [27] (24 km), [46] (50 km), and [26] (220 km), thus approaching
the idea of a more realistic environment. Also, their experimental procedure is more rigorous [45,46],
even applying cross-validation (CV) techniques [21]. However, some of them generate all the
measurements from a single position [27,46], hence biasing the system to recognize the position
instead of the real event, which we demonstrated in [23] that was a major issue when facing realistic
environments. In addition, the number of tested signals in the latter two works is small, with no
additional details regarding the actual recording durations.

Some companies also offer solutions for pipeline surveillance monitoring, although they do not
usually provide any details on their strategies, nor objective data for evaluation. As an example,
in [43], a gas leak detection system based on simple energy thresholding (i.e., not using any pattern
recognition techniques), and a third party intrusion detection tool, which seems to employ some kind
of classification based on neural networks, are presented. However, the number of classes involved in
the system is not stated and no experiments nor performance results are described.
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2.2. Machine/Vehicle Classification from Other Sensing Systems

To provide some contrast on works that aim to a similar target, and compared with the few works
that have employed DAS for signal acquisition, significant research has been conducted regarding
the general task of classifying different types of vehicles/machinery by employing other sensing
systems. We include here some references in this area to quantify the state of the art results that can
be expected in this related research scenario, in which various strategies for the design of the PRS
(mainly feature extraction and classification) have been used [47–61]. Table 1 shows the main features
of those signal classification systems, in terms of the sensing method, feature extraction, classification
algorithm employed, classification task, and classification accuracy. All these works differ from the
works that employ DAS in the fundamental fact that the sensing method is based on a linear and stable
transduction mechanism between the vehicle physical effects (acoustic or seismic) and the acquired
signal. On the contrary, in φ-OTDR-based systems, the transduction function will not be stationary
as it will be heavily affected by environmental conditions, varying along time and location. This is
specially relevant when the DAS system is based on amplitude measurements, which inherently imply
a non-linear behavior, except for very small perturbations. This non-stationary (and in some cases
non-linear) response, can be clearly observed by analyzing the signal resulting from the detection
of pure vibration frequencies: the φ-OTDR-based recorded signal will include amplitude varying
harmonics and sub-harmonics along with the original vibration frequency. The linear transduction
mechanism of the sensing systems shown in Table 1 implies that the acquired signals will have a
reasonably consistent behavior, thus providing a favorable scenario for the classification task.

Table 1. Vehicle classification related work systems. ‘MFCC’ stands for Mel Frequency Cepstrum
Coefficients, ‘FFT’ for Fast-Fourier Transform, ‘PSD’ for Power Spectral Density, ‘PCA’ for Principal
Component Analysis, ‘LDB’ for Local Discriminant Bases, ‘NN’ for neural network, ‘k-NN’ for k-nearest
neighbor, ‘GMM’ for Gaussian Mixture Model, ‘SVM’ for Support Vector Machine, ‘ML’ for Maximum
Likelihood, and ‘UAV’ for Unmanned Aerial Vehicles.

Sensing System Feature Extraction Pattern Classification Classification Task Accuracy

Acoustic and
Seismic [47] MFCC GMM Heavy wheeled truck,

tracked vehicle, and noise 94%

Microphone [48] Energy NN Car, truck,
and bike 67%

Acoustic [49] Wavelet k-NN, SVM,
NN

Helicopter, vehicle,
fighter, UAV,

tank, and cruise missile
90%

Acoustic [50] PSD+PCA SVM Truck, tractor,
and car 89%

Acoustic [51] Wavelet NN Two types
of vehicles 90%

Seismic [52] Wavelet k-NN
Pedestrian, tracked

vehicle, wheeled
vehicle, and helicopter

95%

Acoustic and
Seismic [53]

PSD,
wavelet+PCA k-NN Three types of

military vehicles 85%

Acoustic and
Seismic [54] Wavelet+LDB Fuzzy logic Person, wheeled vehicle,

and tracked vehicle 95%

Acoustic and
Seismic [55] Energy k-NN, ML Three types of

military vehicles 90%

Acoustic [56] Energy GMM Light and
heavy vehicles 93%

Acoustic and
Seismic [57] PSD k-NN, SVM,

GMM
Wheeled and

tracked vehicles 95%

Quasi-Distributed
Fiber Seismic [58] PSD, Wavelet SVM, NN,

GMM
Wheeled and

tracked vehicles 90%

Acoustic [59] PSD+PCA NN Truck, tractor,
and car 93%

Acoustic [60] FFT-based GMM Wheeled and
tracked vehicles 84%

Microphone [61] MFCC NN, k-NN Light, medium,
and heavy cars 73%
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2.3. Summary

Most of the works reported in the literature that combine DAS with PRS have severe limitations,
mainly related to the facts that classification results were not presented, there was a lack of realistic
experimental conditions, and the experimental approach and procedures were not rigorous (evaluation
metrics, database building, signal acquisition, reduced distances, etc.). Additionally, we can find a lot
of works in the literature that also aim to detect different events (machinery types in general, as well
as possible threats), with sensing methods that are completely different in nature and characteristics
to those used in DAS systems. From these related works, the DAS+PRS strategy could benefit by
importing their methodologies and techniques (in what respect to feature extraction, classification
methods, experimental design, etc.).

3. Principles of Machine Learning for DAS

3.1. Introduction

With the increasing amount of data in high-performance storage centers, machine learning
technology provides a common framework for processing these data so that powerful and high
level information aids in decision making processes. Many areas benefit from the application of this
technology, such as general signal and text processing, speech processing, automatic translation, web
page ranking, biometrics, risk analysis, anomaly detection, robotics, big data, etc. The distributed
acoustic sensing area is rather novel, and can provide high quality data that are able to characterize
physical effects in very long distances, and that needs to be further exploited to provide qualitative
information on the actual causes of these physical effects.

Specifically, machine learning algorithms are employed to make predictions for unknown data
sets from a previously set of data obtained in similar conditions. This set of data is typically employed
to build statistical models that can then be used to make predictions.

The typical architecture of a simplified DAS+PRS is shown in Figure 1, where the Acquisition
Equipment, connected to the fiber optic, is in charge of generating the acoustic signals that will be
used for the training and classification stages (we refer to these signals as acoustic, considering that
their frequency content in these sensing scenarios is in the audible range). The modules that comprise
the Training Stage (in the lower part of Figure 1) are in charge of generating suitable models that
accurately represent the input data characteristics for each of the considered classes. The Classification
Stage modules (in the upper part of Figure 1) decide which of the trained models more accurately
represent the input acoustic signals to generate a final decision. In both stages, the signal acquired
is given to a feature extraction module, where meaningful patterns (feature vectors) are obtained.
Next, the corresponding feature vectors (or sequence of vectors) are given to a pattern classification or
training algorithm that classifies the feature vector as a certain class or is used to generate adequate
models, depending on whether we are referring to the classification or training stages, respectively.

Figure 1. Standard architecture of a DAS+PRS (adapted from [24]).
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3.2. Feature Extraction

Feature extraction aims to extract meaningful and discriminative information from the raw
acoustic signals recorded by the DAS system so that each different activity occurring at the top of the
fiber can be next identified by the pattern classification module.

Feature extractors typically generate sequences of feature vectors x corresponding to the input
signal, with components that are meant to be useful for the pattern classification task.

Features computed by the so-called feature extraction methods can be divided into three different
categories: time domain features [62], frequency domain features [63], and time-frequency domain
features [64]. The time domain features are suitable for non-stationary signals. Typically, these
features comprise the energy of the signal, zero crossing rate (ZCR), correlation, auto-correlation,
and Singular Spectrum Analysis (SSA), among others. The frequency domain features comprise
spectrum-derived features, Fast Fourier Transform (FFT)-based features, formant/harmonic
frequency-based features, Power Spectral Density (PSD), and Harmonic Line Association (HLA),
among others. These frequency-based features are especially suitable for stationary or quasi-stationary
signals. The time-frequency domain features try to get advantage of the time and frequency domains
simultaneously, such as wavelet-based features (from the discrete or continuous Wavelet Transform
(DWT or CWT)) and Short Time Fast Fourier Transform (STFFT)-based features. In some cases,
dimensionality reduction techniques such as Principal Component Analysis (PCA) are also applied.

An important issue when dealing with DAS is that the distance of the sensed position to the
sensing equipment implies significant signal degradation for increasing distances, thus decreasing the
SNR. To cope with this issue, normalization strategies on the acoustic signals or the feature vectors
must be applied [23,24].

3.3. Pattern Classification

The goal of a pattern classification system [65] is to classify each input feature vector x (or sequence
of feature vectors) as corresponding to a given class ĉ from a predefined set of previously learned
models Ω = {c1, c2, . . . , cC}. To do so, the so-called Maximum a Posteriori (MAP) criterion is typically
used, so that the assigned class label ĉ is selected as the one that maximizes the posterior probability of
the class given the input feature vector, which can be calculated by applying the Bayes rule:

ĉ = argmax
k

[p(ck|x)] = argmax
k

[
p(x|ck)p(ck)

p(x)

]
= argmax

k
[p(x|ck)] , (1)

where p(x|ck) is the likelihood of the input feature vector given the class, p(ck) is the prior probability
of the class (usually equal for all classes), and p(x) serves for normalization, and can be typically
ignored for classification purposes.

The main problem in pattern classification is the derivation of p(x|ck), for which many alternatives
can be used. In all cases, the objective is the estimation of those likelihoods from a set of previously
labeled training data, which can encounter difficulties for high dimensional feature vectors.

Therefore, to build a pattern classification system, two different stages are necessary: training and
classification (testing), for which the counterpart data are employed in each stage: The training stage
consists in learning some (usually statistical) models given the corresponding set of feature vectors in
the training data. These statistical models will then be used in the classification stage.

In general, there are two types of statistical models: generative or discriminative ones [66]:

• A generative model is able to randomly generate observable data values given some hidden
parameters. This can be seen as a full probabilistic model of all variables, can be used to simulate
values of any variable in the model, and typically trains a model for each event to identify. Some
examples of generative models are Gaussian Mixture Model (GMM), Hidden Markov Model
(HMM), Naive Bayes (NB), and Restricted Boltzmann Machine (RBM), among others.
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• A discriminative model is used in machine learning to model the dependence of an unobserved
variable y on an observed variable x. Contrary to the generative model, the discriminative model
only allows sampling of the target variables conditional on the observed values. The discriminative
model typically builds a single model (contrary to the generative model) from all the data with
some parameters learned that make predictions possible. Some discriminative models are Logistic
Regression (LR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree
(DT), and Conditional Random Field (CRF), among others.

The choice of using a generative model or a discriminative model highly depends on the
application, although discriminative models have been proved to outperform generative models
when enough training data are available [67].

Additionally, and in contrast to statistical models, rule-based pattern classification algorithms
can also be built [68]. These are normally employed for easy classification tasks, or when the recorded
data are not enough to build reliable statistical models. Instead, they are typically based on thresholds
set on one or more parameters (usually derived from the feature vectors computed in the previous
stage) from the training data. Instead of threshold-based decisions, specific rules can also be designed
and applied to the input data. These algorithms include energy threshold-based pattern classification,
phase threshold-based pattern classification, etc. In this case the model is simply defined by the
threshold/s used, and the decision rules themselves.

The classification stage runs the system with the models generated in the training stage to make
predictions. These predictions are then taken by evaluation metrics (described in Section 3.4.2) to get
an objective idea about how well the system performs.

3.4. Experimental Procedure

When designing a DAS+PRS, it is of outmost importance to follow a rigorous experimental
procedure. In this section we provide relevant information on the associated relevant issues, namely
the database generation process, the evaluation metrics, and the system configuration details.

3.4.1. Database Generation

To build a robust machine learning system, the availability of a well designed and adequately
labeled database is essential. This database contains the data that will be used to build the
system models.

Depending on the application, the database may contain data from different sources. For example,
to build speech recognition systems, speech acquired from as many speakers as possible that covers all
the phone set in a certain language is necessary. In general, to build signal or text processing systems,
the corresponding signal sets or text sets must be previously acquired. In many application scenarios,
obtaining the database is the most difficult issue (economic factors play a very important role), and this
should be obtained in similar conditions to those of the production system environment.

For DAS systems, the database will consist on a set of acoustic signals recorded for different
activities (those that will be next identified and classified by the machine learning algorithms) using
distributed acoustic sensors. Any activity that needs to be detected along the fiber needs to be
represented by a set of previously recorded acoustic signals (as an example, these can comprise specific
machines/elements carrying out certain activities that need to be identified: excavator excavating,
pneumatic hammer compacting the ground, light vehicles moving, person walking, etc.).

Given the high variance (in terms of soil conditions, weather conditions, signal degradation,
distances to the fiber, etc.) obtaining data from as many different locations as possible is a must
(c.f. Section IV.C of [23]). In addition, to mitigate this high variance in the signal recordings, the data
should also be obtained along different days, which spread over time if possible. When reporting
the database generation strategy, it is very important to provide precise quantitative details on the
actual amount of recorded material, and not only the number of recorded signals (that provides no
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information on the actual database size). The longer the duration is, the larger the database will
be, and the more robust the trained models will be, as the training procedure will be exposed to a
higher variability.

To provide a real example of a database generation process, the authors of [23] recorded, to the
best of our knowledge, the most extensive database being used for the prevention of pipeline integrity
threats using a DAS+PRS. Section IV.A of [23] describes how recordings were conducted on a fiber
optic installed along an active gas transmission pipeline operated by Fluxys Belgium S.A. To deal
with environmental variability, the recordings were done along four consecutive days at six different
locations with varying soil and weather conditions, and at different distances to the sensing equipment.
Table 2 includes the general details of the recording scenarios (distance from the sensing system, soil
and weather conditions, and location type), and also information on the normal activity that is expected
to happen at the given location. The expected activity can provide details on the expected “background
noise” that can be detected, but taking into account that if an activity generates an energy level that
is high enough to indicate a possible threat, this should be modeled in the system as a relevant class
(even if it is not an actual threat).

This kind of descriptive details on the database generation process should always be included in
any paper dealing with the application of machine learning methods for DAS systems. This information
will allow readers to assess the actual variability of the recording conditions, which greatly influences
the validation of the final results from a realistic deployment point of view.

Table 2. Example of table showing the environmental and distance details on locations where data
recordings took place (reproduced with permission from [23]. Copyright IEEE, 2016).

LOC1 LOC2 LOC3 LOC4 LOC5 LOC6

Distance
from sensor (km) 22.24 22.49 23.75 27.43 27.53 34.27

Soil condition Grass & clay Grass Concrete,
grass & clay Wet clay Clay Grass in

forest

Location type Agricultural field
Next to public
street. Private
house nearby

Agricultural field Forest. Country
road nearby

Expected normal activity Agricultural Road traffic Agricultural Agricultural. Country
road traffic

Weather condition Sunny/cloudy Sunny Rainy Cloudy Sunny

Another issue that must be considered in the recording process relates to the inherent
non-stationarity of the sensing mechanism in DAS. This implies that there will be variations in
local sensitivity at different fiber positions near the vibration source being measured, and that they
will also vary along time and fiber location. To allow for proper coverage of varying sensitivities, it is
important to generate recordings for a reasonably long section of the fiber around the sensed area.
As an example, in [23], their authors decided to record 400 positions (with a 1 m readout resolution)
around a so-called reference meter position, 200 m at each side. This decision allowed them to carry
out extensive experimentation on different strategies for signal selection in the classification process,
which turned out to be fundamental for a successful application.

For database building, it is highly important to obtain similar durations of the recorded examples
for each activity to be classified. This is also a critical factor when recording a database, since the
machine learning algorithm will typically generate non-robust models for activities for which not
enough data exist in the database. Data scarcity typically derives in poor models for a given activity,
so that the machine learning algorithm will probably fail in the prediction.

One of the most important issues affecting the final performance of the pattern classification
system is the availability of a careful labeling of the database. This means that all the recorded activities
must be carefully annotated in what respect to their time intervals and the actual activity being carried
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out. For this, special attention has to be paid in assigning the corresponding initial and end times
to each recording along with some additional factors that could affect in a great extent the signal
acquisition: date, time, soil and weather conditions, distance between the elements involved in the
activity and the sensing fiber, trajectory of the elements carrying out the activity to be classified
(if they are actually moving), etc. Also, the specific characteristics of the elements must be annotated
(for example, the model and characteristics of the moving equipment). The temporal and activity
labels are usually referred to as the ground truth, and all the evaluation processes compare the output
of the DAS+PRS against this ground truth to generate the final performance metrics. This is the main
reason why an accurate labeling is required.

To provide a real example, we show in Table 3 a summary of the quantitative details of the
recordings done in [23]. In that work, eight events were recorded, corresponding to the combination
of four different machines (two excavators, a pneumatic hammer, and a plate compactor) carrying
out several activities (moving, hitting, scrapping, and compacting). All the recordings were labeled
with the machine+activity type, time intervals, and were also assigned a threat/non-threat label for
classification purposes.

Table 3. Example of table showing details on an experimental database in which different machines
carried out certain activities. ‘Big excavator’ is a 5 ton Kubota KX161-3. ‘Small excavator’ is a 1.5 ton
Kubota KX41-3V (reproduced with permission from [23]. Copyright IEEE, 2016).

Machine Activity Duration (in Seconds) Threat
Non-ThreatLOC1 LOC2 LOC3 LOC4 LOC5 LOC6 Total

Big
excavator

Moving along the ground 1100 1100 3540 1740 1620 4160 13,260 Non-threat

Hitting the ground 120 140 240 220 80 260 1060 Threat

Scrapping the ground 460 460 920 620 200 580 3240 Threat

Small
excavator

Moving along the ground 600 500 1700 820 820 1660 6100 Non-threat

Hitting the ground 200 180 220 220 80 240 1140 Threat

Scrapping the ground 420 340 780 360 180 520 2600 Threat

Pneumatic
hammer

Compacting ground
660 0 580 1320 0 1320 3880

Non-threat
Plate

compactor 740 0 740 1240 0 1680 4400

3.4.2. Evaluation Metrics

Evaluating a system is crucial in machine learning, so that the suitability of the system for
real deployment can be measured. Depending on the application, the evaluation metric may vary.
In multi-class classification systems, the accuracy is a widely used metric, being defined as the number
of events correctly classified divided by the total number of evaluated events, with higher value
meaning better performance. For a two-class classification problem that represents event detection
(e.g., threat/non-threat, presence/absence, etc.), true detection rate (TDR) and false alarm rate (FAR)
are widely used. The true detection rate is defined as the number of positive events correctly classified
divided by the number of total events, with higher value meaning better performance. The false
alarm rate is defined as the number of false alarms that the system generates divided by the total
number of events, with lower value indicating better performance. A false alarm is generated when
the system detects a positive event that actually did not occur. In Table 4, we provide a real example
of the results obtained in [24], in which classification accuracy, TDR, and FAR are provided for each
event (machine+activity/threat) using different algorithms (baseline, and using short, medium and
long signal window sizes).



Appl. Sci. 2017, 7, 841 10 of 26

Table 4. Example of table showing classification results. Class classification accuracy and overall
classification accuracy for the machine+activity identification mode, and threat detection rate (TDR),
false alarm rate (FAR), and overall classification accuracy for the threat detection mode, with the
best results in bold font. ‘Acc.’ stands for Accuracy, ‘Mov.’ for Moving, ‘Hit.’ for Hitting, ‘Scrap.’
for Scrapping, and ‘Compact.’ for Compacting (reproduced with permission from [24]).

Machine+Activity Identification Threat Detection

Big Excavator Small Excavator Pneumatic
Hammer

Plate
Compactor Acc. TDR FAR Acc.

Window Size Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.

Baseline [23] 49.1% 20.1% 26.0% 50.5% 13.8% 30.2% 71.8% 39.5% 45.2% 80.7% 40.3% 64.3%

Short 60.6% 17.0% 32.0% 55.9% 11.6% 27.8% 75.6% 54.0% 52.8% 78.9% 36.3% 67.1%

Medium 66.1% 19.0% 36.9% 62.0% 10.8% 30.3% 75.9% 49.7% 56.0% 76.6% 32.3% 69.7%

Long 74.4% 21.5% 30.2% 59.2% 13.4% 28.5% 81.1% 43.4% 57.8% 71.6% 31.2% 69.4%

In addition to the standard classification metrics (that characterize the system behavior with a
single figure), confusion matrices are also widely used. These matrices show the percentage of times
where a given event (real class) has been classified as any of the events in the database (recognized
class). As an example, Table 5 shows the confusion matrix obtained in [24] in which the authors also
added a cell background color scale to provide a better visual interpretation of the results (empty cells
correspond to performance values below chance).

The metrics describe above are the standard ones typically used for evaluating system
performance. However, some other metrics can be used: equal error rate (EER), figure-or-merit
(FOM), area under the curve (AUC), receiver operating characteristic (ROC) curve, detection error
trade-off (DET) curve, mean square error (MSE), etc.

Finally, it is usually useful to provide explicit details on which are the improvements of any
proposal with respect to others. These improvement metrics can be expressed either as absolute or
relative improvements, being the latter more useful for comparison. As an example, Table 6 shows
the comparison results presented in [24] between a baseline system (first row) and a novel proposal
(second row), with the relative improvement shown in the third row.

Table 5. Example of confusion matrix table. Classification Accuracy is shown in each cell. The values
between brackets represent the number of frames that are classified as the recognized class, or that
belong to the real class. ‘Pneu.’ stands for Pneumatic, ‘hamm.’ for hammer, and ‘compact.’ for
compactor (reproduced with permission from [24]).

Recognized Class

Big Excavator Small Excavator Pneumatic
Hammer

Plate
Compactor

[236845]
Moving

[40432]
Hitting

[81899]
Scrapping

[94597]
Moving

[61857]
Hitting

[91389]
Scrapping

[77049]
Compacting

[56292]
Compacting

R
ea

lc
la

ss

Big
excavator

[275145] Moving 66.09
[21995] Hitting 30.60 22.15 19.21
[67230] Scrapping 24.64 33.74 18.39

Small
excavator

[126575] Moving 57.91 16.92
[23655] Hitting 17.03 14.01 14.32 29.55
[53950] Scrapping 15.55 12.62 36.57

Pneu. hamm. [80510] Compacting 78.38
Plate compact. [91300] Compacting 14.24 16.29 41.28
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Table 6. Example of table including classification results for two systems (baseline and a novel proposal),

and their comparison in terms of relative improvement, calculated as 100 · (novelaccuracy−baselineaccuracy)
baselineaccuracy

(reproduced with permission from [24]).

Big Excavator Small Excavator Pneumatic
Hammer

Plate
Compactor Averages

Moving Hitting Scrapping Moving Hitting Scrapping Compacting Compacting

Baseline 49.05% 20.11% 26.03% 50.50% 13.78% 30.22% 71.84% 39.51% 45.15%
Novel Proposal 66.09% 22.15% 33.74% 57.9% 14.32% 36.57% 78.38% 41.28% 54.92%

Relative improvement 34.74% 10.14% 29.62% 12.89% 3.92% 21.01% 9.10% 4.48% 21.30%

3.4.3. System Configuration

In what respect to the system configuration, two issues must be addressed and clearly reported:

• The signal processing conditions, which are related to the definition of the signal analysis window.
• The division of the database to rigorously carry out the training, validation, and testing processes.

Related to the database size, the recording process must set the length of each individual recording
that represents each event to form the so-called chunks. This length should be long enough to ease the
signal processing procedures, especially for the training stage, for which long segments are required to
accurately model low frequency behavior, and include activities that can probably span along several
seconds. As an example, in [23] the signal chunk size was set to 20 s.

For the signal processing (if any) and feature extraction process, the signal analysis window must
be specified. This implies the definition of the signal window length (that will affect the temporal
and spectral characteristics of the generated feature vector), the window overlap (that will affect the
update rate of the classification results), and the windowing function to apply (if any). Typical window
lengths (in acoustic processing) range from a few milliseconds to a few seconds. All these details must
be clearly stated in the description of the system configuration. As an example, in [23] the window
length was set to 1 s, the overlap was set to 95%, and the windowing function was a hamming one.

Another relevant issue is the database division to objectively assess the system performance.
To provide a rigorous approach, the full recorded database should be typically divided into three
different subsets:

• Training subset, which will be used to generate the system trained models.
• Validation subset (if required) which, if available, is used to estimate how well the models actually

represent the events to be classified, and possibly to do further fine tuning or adaptation in the
training procedures.

• Testing subset, which will provide assessment on the actual system performance, and on which
the selected evaluation metrics will be calculated.

The most important conditions that the three subsets must hold is that they must be fully
independent, that is, they must not share any common data. If this principle is not followed, the final
performance measurements will be severely biased. As a limit example, if the training and testing
subsets are the same, the classification rates obtained will be much higher than those found in a real
system deployment, as the trained models will be tuned to the testing data. In this case, the results on
field unseen data will be unpredictable, and the evaluation process will be useless, as the generated
metrics will not be related at all to the expected performance in field.

As a general rule, the amount of recorded data should be as large as possible, since the trained
models will be more robust (i.e., more capable to represent more variability in the analyzed signals)
as data size increases. Also, a larger testing subset will lead to more statistically significant results,
which is important if comparisons between different algorithmic strategies or with other proposals in
the literature are presented.
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When the amount of data does not allow a proper training/validation/testing division,
the so-called cross-validation approach can be applied [69]. Cross-validation involves dividing the
full dataset in a number of folds and using different combinations of folds to compose the training,
validation, and testing subsets. By repeating the training+validation+testing processes over different
fold combinations, the robustness of the training process is increased (as more data can be used for
training), and the classification accuracy will be more statistically significant (as this will be calculated
as the average performance for all the combinations). As an example, in [23,24], the experiments were
carried out using a leave-one-out CV strategy, on a location basis: The data were recorded in 6 different
locations (the CV comprises 6 folds), where the data recorded in all the locations except one were
used for training, and the evaluation was done on data of the unused location (thus ensuring full
independence between the training and testing subsets).

4. Literature Review on DAS+PRS

In this section we will provide a detailed literature review on the most relevant works addressing
the design, description, and evaluation of DAS+PRS.

4.1. Feature Extraction

Feature extraction approaches for DAS+PRS are divided into the three categories described in
Section 3.2: time domain-based methods, frequency domain-based methods, and time-frequency
domain-based methods. A summary of the systems that belong to each group is presented in Table 7.
Next, we describe the main proposals in the literature.

Table 7. Summary of the feature extraction (FE) approaches reported in the literature for DOFS+PRS.
‘LCR’ stands for level crossing rate, ‘MLP’ for multi-layer perceptron, ‘STFFT’ for short time fast Fourier
transform, ‘PSD’ for power spectral density, ‘PCA’ for principal component analysis, ‘DWT’ for discrete
wavelet transform, and ‘freq.’ for frequency.

Reference Feature Extraction Category Feature Extraction Method

[3]

Frequency domain

Signal Phase[28]
[29]
[31]

[24]
Tandem features

(MLP from Energy in Frequency Bands) + normalization

[17] STFFT

[18] Time domain LCR

[26] Time-Frequency domain
DWT

(low + high freq. decomposition)

[19] Frequency domain Singular Spectrum Analysis

[21] Other
Morphology from
image processing

[46] Frequency domain Energy related from FFT

[27] Time-Frequency domain
DWT

(low + high freq. decomposition)

[23] Frequency domain Energy in Frequency Bands + normalization

[12]
Time domain

Raw signal
[13]

[14] Normalized Raw Signal

[15]

Frequency domain

FFT + PSD
[16]

[22] Energy in Frequency Bands

[25] Energy in Frequency Bands + normalization

[45] Energy based from FFT + PCA

[20] Time-Frequency domain
Energy in Frequency

Bands from DWT
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4.1.1. Time Domain-Based Feature Extraction Methods

In the published works that use time domain features, some of them did not carry out any feature
extraction process [12,13], and the raw recorded signal was given to the pattern classification algorithm.
The authors of [14] also employed the raw recorded signal, but normalized between −1 and 1 as an
input to the pattern classification algorithm. These works are considered as time domain methods
since the original signal actually represents the amplitude of the data along the time. As an alternative,
the level crossing rate (LCR) as the single feature in the system is employed in [18].

4.1.2. Frequency Domain-Based Feature Extraction Methods

Most of the works that employed frequency domain-based feature extractors generate
estimations related to the signal energy calculated from the FFT or estimations from the FFT itself.
For example, in [15,16] the authors first computed the FFT of the acquired signals, and then the power
spectral density (PSD) was calculated (the first 12 values of the PSD form each feature vector).

In [46], the FFT of the recorded signals is first computed. Then, the total energy, the energy of low
frequency, the peak value, and the mean value of the spectrum were computed. Finally, the energy
ratio of a low frequency to total energy, the total energy, and the ratio of peak value to mean value
were calculated to build a 3-dimensional feature vector for each recorded signal.

The authors of [45] also employed an FFT-based feature extraction. First, the FFT is computed
and then, the frequency space is divided into 10 bins to reduce the number of features. Next, the
coefficients that fed in each bin are summed and normalized by the sum of all the coefficients. After
that, PCA was applied for dimensionality reduction to build each 2-dimensional feature vector.

Other approaches directly calculate the energy in frequency bands. For example, the authors
of [22,23] employed energy in frequency bands as features in the system. In the latter, two signal
normalization methods were applied to deal with the signal degradation issue when the distance
between the sensor and the recording scenario significantly varies. In [22], the authors normalize
the signal according to the position of the recording, and in [23] the signal is normalized according
to the energy of the signal in the high frequencies (from 100 Hz). The authors of [25] employed the
energy in frequency bands as features, and applied the normalization based on the energy of the
signal in the high frequencies presented in [23]. In [24] feature-level contextual information is added
to the feature vector obtained in [23], from a neural network-based approach and employing the
normalization based on the energy of the signal in the high frequencies. This approach is based on
discriminatively-trained multi-layer perceptrons (MLPs) from feature vectors that spread different
temporal contexts (short, medium, and long). These feature vectors, which form the input to the MLPs,
comprise the energy in frequency bands. Then, the MLPs produce for each original feature vector a
set of posterior probabilities that contain the probability given by the MLP to each class (the so-called
Tandem Features [70]). This set of posterior probabilities is then added to the original feature vectors to
form the contextual feature vectors, leading to significant improvements as compared to the baseline
system.

As an alternative, in [3,28,29,31] the phase of the recorded signal is extracted as a feature, and the
authors of [19] employed singular spectrum analysis for feature extraction.

4.1.3. Time-Frequency Domain-Based Feature Extraction Methods

Wavelet transforms and STFFT were mostly employed in these methods. For example, in [20] the
energy in frequency bands computed from multi-scale wavelet decomposition is employed, using
8 different frequency bands. The authors of [26,27] computed the discrete-time wavelet transform for
each signal, and assigned high and low decomposition levels based on the low and high frequency
components of the signal, respectively. This multi-scale decomposition was then used to compute the
energy distribution for each scale. These energy distributions form the feature vector in those works.
On the other hand, in [17], the authors employed the STFFT to compute spectrogram-based features.
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4.1.4. Other Feature Extraction Methods

The proposal of [21] is usingmorphological features of time-space domain signals borrowed from
image processing technology such as the amplitude of the time-space domain signal, the minimum
interval between regions, the roundness of the region, the pixel number of the convex hull, the pixel
number of the region, the eccentricity of the ellipse which has the same second moment as the event
region, the length of the long axis of the ellipse which has the same second moment as the event region,
the length of the short axis of the ellipse which has the same second moment as the event region,
the diameter of a circle which has the same total area as the event region, and the remaining number of
objects, excluding holes in the image region. Next, a feature selection technique was applied, based on
the eigenvector distribution in the one-dimensional space that selected the features with the smallest
variance in the class and the largest distance between classes. This strategy reduced the final set of
features employed to these: minimum interval between regions, roundness of the region, amplitude of
the time-space domain signal, and the pixel number of the region.

4.2. Pattern Classification

Pattern classification approaches for DAS+PRS are divided according to the type of
model/approach these employ, as described in Section 3.3: rule-based pattern classification systems,
generative model-based pattern classification systems, and discriminative model-based pattern
classification systems. A summary of the systems that belong to each group is presented in Table 8.
Next, we describe the main proposals in the literature.

Table 8. Summary of the pattern classification approaches reported in the literature for DOFS+PRS.
‘GMM’ stands for gaussian mixture model, ‘BP’ for backpropagation, ‘ANN’ for artificial neural
network, ‘RVM’ for relevance vector machine, ‘SVM’ for support vector machine, ‘RBF’ for radial basis
function, ‘FF’ for feedforward, and ‘FE’ for feature extractor.

Reference Pattern Classification Category Pattern Classification Method

[3]

Rule-based Threshold[28]
[29]
[31]

[24] Generative model-based GMM + system combination

[17] - None: just visual analysis of FE
[18]

[26] Rule-based Threshold

[19]

Discriminative model-based

BP ANN

[21] RVM

[46] SVM (RBF)

[27] BP ANN

[23] Generative model-based GMM

[12]

Discriminative model-based

BP + momentum ANN
[13]

[14]
FF ANN[15]

[16]

[22]
Generative model-based

GMM

[25] GMM + postprocessing

[45]
Discriminative model-based

SVM (RBF)

[20] SVM
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4.2.1. No Pattern Classification

Some of the revised proposals did not report any pattern classification experiment, and just a
visual analysis of the feature extraction was reported [17,18].

4.2.2. Rule-Based Methods

For the rule-based methods, the authors of [3,28,29,31] employed a threshold-based approach
from the phase computed as feature, and in [26] a pattern classification algorithm that seems to rely
on a threshold on the energy distribution of the multi-scale wavelet decomposition is employed (the
authors did not provide enough details on their strategy).

4.2.3. Generative Model-Based Methods

A GMM-based pattern classification algorithm was employed in [22–25]. First, each class was
modeled by a single-component GMM in the training stage. Then, the testing stage assigns each
feature vector the class with the highest probability given the set of GMMs. The strategy in [25] added
two post-processing methods to the output of the GMM-based pattern classification system, which
classifies machine+activity pairs and also aimed to threat detection: (1) a majority voting decision,
for which each acoustic trace is classified as the class to which more frames are assigned, and (2) a
temporal and spatial analysis procedure, in which acoustic traces corresponding to activities that do
not spread more than 80 s around 40 m are considered spurious and are removed from the system.
In the same way, acoustic traces classified as threat in the threat detection mode of the system are
grouped in a same threat in case these are separated less than 80 s in time and 40 m in position to avoid
generating many threat decisions. The authors of [24] also added a post-processing method to combine
the outputs of the pattern classification system from the feature vectors that spread different temporal
contexts (short, medium, and long). This combination was done at the likelihood level and consists
in computing a new likelihood for each original feature vector to classify this as the class with the
highest likelihood. Three methods were employed to conduct the likelihood combination: (1) The sum
method added the likelihoods obtained from the contextual feature vectors and normalized this sum
by the number of temporal contexts (3 in this case), (2) the product method multiplied the likelihoods
obtained from the contextual feature vectors and normalized the result by the number of temporal
contexts (3 in this case), and (3) the maximum method assigned the original feature vector the class
with the highest likelihood given the contextual feature vectors.

4.2.4. Discriminative Model-Based Methods

These methods are typically based on artificial neural networks [12–16,19,27] or support vector
machine [20,45,46] models. In [12], a 3-layer backpropagation and momentum backpropagation ANNs
is employed, while in [13] the authors use a momentum backpropagation ANN. The authors of [14–16]
employed a 3-layer feed forward ANN for pattern classification. In [19,27], 3-layer backpropagation
ANN is employed; while in [20,45,46] a SVM was used as the pattern classification algorithm,
employing a radial basis function (RBF) as kernel function in the last two references.

Among other methods, the authors of [21] employed Relevance Vector Machine (RVM) as
the pattern classification algorithm. RVM is based on the Bayesian framework and is sparser than
the SVM, which causes shorter classification time and higher accuracy. The Gauss kernel function
was employed in that work. Since the pattern classification algorithm is used with three different
classes (see Section 4.3), and the RVM technique was originally designed for a two-class classification
problem, a one-to-one multi-category technique was used in that work to recognize the three classes.
Each classifier recognizes two classes, so that there are three classifiers for the classification of the
three classes. During the testing stage, the class assigned to each feature vector is that output by
two classifiers.
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4.3. Experimental Procedure

To assess the suitability of the feature extraction and pattern classification methods,
an experimental procedure and the corresponding results are needed. As described in Section 3,
there are many issues to be considered when defining the experimental procedure (i.e., number of
classes, target classification, optical fiber cable length, etc.). For a better understanding, the reviewed
works are grouped based on the number of classes, as shown in Table 9, making an explicit distinction
between the binary classification (2 classes), and the multi-class classification (referring to a number of
classes higher than 2).

Table 9. Summary of the experimental procedures based on the number of classes in the system.
‘m’ stands for meters, ‘km’ for kilometers, ‘f’ for feet, ‘Acc.’ for accuracy, ‘TDR’ for true detection rate,
and ‘FAR’ for false alarm rate.

Reference Number of Classes Fiber Optic Length Distance to the Sensor Acc. TDR FAR2 More Than 2

[3] 2 44 m 0 m 100% - -

[28] 2 5 m 0 m 100% - -

[29] 2 8.5 km 3.3–8.4 km 59% - -

[31] 2
12 km

(sensed segment 44 m) 2 km 100% - -

[24] 2 8 45 km 22–34 km 55% 81% 35%

[17] 3
12 km

(sensed segment 44 m) 50 f - - -

[18] 3 - - - - -

[26] 3 220 km - 96% - -

[19] 3
20.6 km

(sensed segment 20 m) 14.1 km - 94% 6%

[21] 3 20 km - 98% - -

[46] 3 50 km 20 km 93% - -

[27] 3
23.7 km

(sensed segment 1 km) 13 km 89% 86% 1.75%

[23] 2 8 45 km 22–34 km 45% 80% 40%

[12] 2 200 m 0 m 100% - -

[13] 2 200 m 0 m 100% - -

[14] 6 1 km - 100% - -

[15] 9 1 km - 95% - -

[16] 9 500 m - 92% - -

[22] 2 45 km 22–34 km - 68% 56%

[25] 2 45 45 km 22–34 km 46% 80% 10%

[45] 2
15 km

(sensed segment 1 km) - 99.6% - -

[20] 3 150 m 0 m 97% - -

4.3.1. 2-Class Classification

People, train, threat, and water are the most common classes to detect by the works in the literature
in the 2-class classification systems.
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For example, the proposals in [3,28,29,31] aimed to detect a person walking along the fiber. In [3],
the length of the optical fiber cable was 44 m, and the signals were recorded near the sensor. 12 s of
signal recordings were employed for testing. Classification accuracy was 100%. In [28], the length of the
optical fiber cable was 5 m, and the signals were also recorded near the sensor. Classification accuracy
was 100%. In [29], the length of the optical fiber cable was 8.4 km, and the signals were recorded
between 3.3 km and 8.4 km far from the sensor. Classification accuracy was 59%. Finally, in [31] the
length of the optical fiber cable was 12 km, although only 44 m were sensed for the experiments. The
signal recordings were carried out 2 km far from the sensor. Classification accuracy was 100%.

The works presented in [12,13] aimed to detect water along the fiber. In [12], the length of the
sensed fiber segment is 200 m. The sensor is 250 m far from the beginning of the optical fiber cable
and signal recordings were carried out near the sensor. 24 h of data (presence and absence of water)
were recorded. A set of 5 data was used for testing (4 data with presence of water and 1 data with
absence of water), and the rest for ANN training. A classification accuracy of 100% was obtained.
In [13], the length of the sensed fiber section is 200 m. Two sensors were employed for signal recording.
The first one is 250 m far from the beginning of the optical fiber cable and the second one is 290 m far
from the beginning of the optical fiber cable. Signal recordings were carried out near the sensors. 24 h
of data (presence and absence of water) were recorded. A set of 5 data was used for testing (4 data
with presence of water and 1 data with absence of water), and a set of 40 data was employed for ANN
training. A classification accuracy of 100% was obtained for both sensors.

It must be noted that all these systems only aim to detect one target. However, since the target
has to be distinguished from nothing, these works belong to the 2-class category for classification.

The work presented in [22] aimed to classify threats and non-threats occurring in a long pipeline.
The length of the fiber cable is 45 km, and the signal recording was carried out in different locations
that spread different optical fiber positions (from 22.24 km far from the sensor to 34.27 km far from
the sensor) and different soil/weather conditions. Experiments were run by 5-fold CV on a location
basis for GMM training and testing. The database used for experiments consists of 10 h of recordings
(1700 acoustic signals) corresponding to different machines carrying out different activities: big
excavator moving, big excavator hitting, big excavator scrapping, small excavator moving, small
excavator hitting, small excavator scrapping, plate compactor, and pneumatic hammer. These classes
were further divided into threat and non-threat classes. Results showed a 68% of threat detection rate
(true detection rate) and a 56% of false alarm rate.

Other works such as [45] aimed to train and background noise classification, where an optical
fiber cable of 17-km length was employed for the experiments. Two different signal recordings that
amount to 1 h each were carried out. From these, 1500 s were used for SVM training, 1 h was used for
CV, and the rest (2100 s) was employed for testing. Results showed an accuracy of 99.6%.

It is important to note that in the cases where the authors report results evaluated on just a few
signals, the statistical significance of the results is extremely low. As an example, consider the cases
of [12,13], where the tests were done on 5 data and the reported accuracy was 100%. If one of the
evaluated data had failed, the accuracy would have dropped to 75%, and the confidence interval
would be of ±38% (for a confidence level of 95%), which is unacceptable.

4.3.2. Multi-Class Classification

People carrying out certain activities, vehicle/machinery, gas leakage, and interferences are the
most common classes in the 3-class classification systems.

For example, for people and vehicle/machinery-related activities, the authors of [17] aimed to
classify humans on foot, vehicle traffic, and construction-like vehicle activity. The fiber cable length
is 12-km long, but the sensed area is restricted to 44 m, and the recording scenario is just a few feet
(50 or less) from the optical fiber sensor. This work did not report any results in terms of classification
accuracy. The proposal in [18] aimed to classify climbing up the wall by a person, kicking at the
wall by a person, and water. This work did not report either any results in terms of classification
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accuracy. The work described in [21] aimed to classify vehicles, digging, and walking. The fiber cable
length is 20 km. 100 different signals were recorded for each event, and 5-fold CV was applied for the
experiments. A classification accuracy of 98% was obtained.

Among works aiming to classify people activities and interferences, the proposal in [19] classified
background noises, sound interferences for simulating the effects of air movement, and hand
perturbation. The fiber cable length is 20.6 km, and the sensed area is 20-m long, located 14.1 km far
from the optical fiber sensor. Results showed a classification accuracy of 94% for 165 feature vectors
that correspond to 55 signals per class. The authors of [26] aimed to classify intrusions, environmental
interferences, and background noises along the optical fiber cable of 220-km length. Results showed
an accuracy of 96% for a set of 1200 signal recordings. The target of [27] aimed to classify background
noise, hand perturbation, and hand clapping. The length of the optical fiber cable is 1 km and the
testing point is about 13 km far from the sensor. The signal recordings comprise a set of 92 training
acoustic signals, which were divided into 35 background noise, 35 hand perturbation, and 22 hand
clapping signals, and a set of 148 testing acoustic signals, which were divided into 65 background
noise, 65 hand perturbation, and 18 hand clapping signals. Results showed an accuracy of 89%.

Finally, the work presented in [20] aimed to classify gas leakage, digging, and human walk. 150 m
of optical fiber cable were employed, and the sensor was located near the recording scenario. 20 signals
of each class were employed for SVM training, and 30 signals of each class were used for testing.
The classification accuracy was 97%.

The work described in [46] aimed to classify five different events: stable state, walk on the lawn
and fence exposed to wind, shake the fence, walk on the lawn, and vibration exceter. An optical fiber
cable of 50-km length was employed for the experiments, and recordings were carried out 20 km far
from the sensor. 1300 signals corresponding to the five events were recorded in total. Half of them
were used for SVM training and the other half for testing. The classification accuracy was 93%.

Among the works that employ more than 5 classes in their system, different works have been
proposed to detect different chemical products. For example, the proposal in [14] aimed to classify
the following combinations of air, ethanol, and water from three different sensors: air+ethanol+water,
water+air+ethanol, ethanol+water+air, air+water+ethanol, water+ethanol+air, and ethanol+air+water.
The length of the optical fiber cable is 1 km, and the sensors were placed at 665 m, 756 m, and 857 m.
ANN training was carried out with 270 recorded signals (45 for each class), and the testing was
done with 6 signals for each of the 6 combinations, which results in 36 testing signals in total.
The classification accuracy was 100%. The authors of [15] aimed to classify air, ethanol, and water in
each of the two sensors integrated in the system, whose combination derives in 9 different classes.
The length of the optical fiber cable is 1 km, and the two sensors were placed at 665 m and 756 m.
360 signals (40 signals for each class) were used for ANN training, and 90 signals (10 signals for each
class) were used for testing. The classification accuracy was 95%. The proposal described in [16]
aimed to classify different ethanol quantities in water. The length of the optical fiber cable was 500 m.
5 different sensors were employed for signal acquisition, located each at 87 m, 215 m, 307 m, 397 m,
and 436 m. A combination of 9 ethanol quantities from the 5 sensors was intended to be detected,
which derives in a 9-class classification problem. 675 signals which correspond to 75 signals per class
were employed for ANN training, and 135 signals which correspond to 15 signals per class were
employed for testing. The classification accuracy was 92%.

Other works focused on machine+activity classification and threat/non-threat classification.
For example the works presented in [23,24] shared the same experimental setup, and aimed to two
different types of classification: (1) machine+activity classification, where the same classes as those
recorded in [22] were analyzed, and (2) threat detection. These works share the same recording protocol,
optical fiber cable configuration, and cross-validation experimental setup that [22]. In [24], the same
data employed for GMM training were used for MLP training. Results presented in [23] showed
an accuracy of 45% on machine+activity classification, and 80% of TDR and 40% of FAR for threat
detection. Results presented in [24] showed an accuracy of 55% on machine+activity classification, and



Appl. Sci. 2017, 7, 841 19 of 26

81% of TDR and 35% of FAR for threat detection. The authors of [25] aimed to classify a series of blind
machines carrying out certain activities and threat detection occurring in a long pipeline. A database
that comprises 45 machine+activity pairs (30 of them are threats, and the rest are non-threats) with
22.5 h of signal recordings was employed for GMM training. The testing was done in two different
stages: (1) the first blind tests were carried out one day in a 400-m pipeline section where the sensor was
placed at the beginning of this section, and (2) the second round of blind tests was carried out a different
day in a 5 km pipeline section placed 35 km far from the sensor. Results showed a 46% of accuracy
when doing machine+activity classification, and 80% of TDR with 10% of FAR in threat detection.

Regarding the statistical significance of the results, the same considerations described at the end
of Section 4.3.1 also apply here. Consider for example the case of [15], where the tests were done on
90 signals and the reported accuracy was 95%. The confidence interval in this case would be of ±4.5%
(for a confidence level of 95%), which is rather high.

5. Discussion

Many of the works presented in the previous sections that deal with DAS+PRS techniques
employed a reduced set of fiber optic events for classification (mostly three-class classification
problems), and the experimental setup is far from being a realistic scenario in terms of the length of the
fiber cables, signal recording durations, and rigorous experimental design. Most of the reported works
claim an accuracy above 90%, mainly due to the low number of classes involved in the experiments
and the favorable experimental conditions. The most relevant exceptions are the works presented
in [22–25]. These works provided a robust experimental setup in terms of signal recording durations,
recording scenario, and classification experiments. The rates presented in those works are worse
than the rest, mainly due to the more difficult and realistic experimental setup (e.g., different weight
excavators are aimed to be correctly identified). Nevertheless, these results have been generated by
the worst possible case in what respect to the sensing mechanism: a DAS unit based on amplitude
measurements [44,71]. Recent advances in the design of DAS interrogators with a linear behavior
(either based on chirped pulses [72] or phase detection [73,74]) will undoubtedly generate improved
and more consistent signals, so that the pattern classification processes will be greatly benefited.
With these improvements, we can expect that the classification results will be better than the ones
reported here.

Deciding which is the best feature extraction method and pattern classification algorithm based
on the results obtained by these different works is a hard task. The different experimental setups
of these works both in terms of the number of events to classify and the recording scenarios make
impossible a relevant and rigorous comparison. To make this possible, the same experimental setup
should be used in the works to compare. With respect to this problem, we would suggest future
proposals in the literature to provide both the used data and the applied algorithms (provided there
are no intellectual property issues) to the scientific community, in line with the reproducible research
movement [75]. This would ease the comparison, foster competition, and very probably lead to
significant improvements, as more research teams would be able to work on a common database.

What is very clear from the review is that real field deployment of a pattern recognition system
based on DAS technology is still a challenging area of research, far from being fully solved. Better
performance rates and realistic solutions in field deployment should be developed to allow an industry
wide adoption of the DAS+PRS strategy for pipeline surveillance.

6. Real Field Deployment of Systems Based on DAS+PRS

Almost all the approaches presented in this review regarding to DAS+PRS are evaluated on
controlled conditions with respect to data acquisition ([22–26] are the only exceptions, but the authors
of [26] do not provide enough details in its experimental procedure). In this sense, both the training,
validation, and testing data were first recorded and then, the system evaluation was carried out in an
off-line mode.
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After the off-line system evaluation, and once the system performance has accomplished the
required performance level, facing at real field deployment of surveillance systems that employ
DAS+PRS is the next step. This implies that all the system modules must run in an on-line mode, and in
real time (or close to real time).

There are several issues dealing with real field deployment that must be addressed, which are
presented next.

6.1. Data Acquisition and Processing in a Field Deployed System

When the system runs continuously and the sensed positions are in the order of thousands,
recording all the acoustic traces along the full fiber length is not possible due to processing times
and communication throughput restrictions. Therefore, a careful selection of the positions which will
actually be evaluated in search of possible threats must be carried out so that the actual processing in
the PRS side will only be done for these selected traces.

This selection may use a threshold-based strategy from the energy measurements of the vibrations
along the fiber, as presented in [25]. In this work, when the energy of the vibrations occurring in any
point of the fiber optic cable is above a predefined threshold, an acoustic trace is recorded to indicate a
possible suspicious activity occurring at that point, so that the trace is further processed by the PRS.

The problem with the threshold-based approach is that the energy profile along the full fiber
length will heavily depend on the different activities that are present at each position. For example,
in agricultural areas, the energy profile will be low, but in sections passing under or near heavy
traffic roads or industrial areas, the sensed energy values will be higher. Also, the energy profile will
significantly vary along the day (consider for example the expected traffic and industrial activity level
variations between day and night).

In addition to this activity and time-related dependence, different fiber locations posses different
sensitivity, which increases the complexity of the threshold estimation procedure.

To approach the calculation of these location-dependent thresholds, recordings that spread wide
temporal ranges must be carried out, so that an accurate average energy profile behavior can be
estimated. Ideally, these recordings should also be dependent on time and date (for example, we could
have different energy profiles for week days, weekends, holidays, etc., and for day and night times).

To provide an example, in [25] 5 min of background noise were recorded for every sensed fiber
location along the surveilled zone, and the energy profile values corresponding to the measurements
were used to define the detection thresholds to be used in the real system deployed in field.

6.2. System Evaluation in a Field Deployed System

Once the energy detection threshold for each point of the surveilled zone has been set, a procedure
to estimate the real performance of the system in real field deployment is necessary.

The most objective evaluation procedure in field is commonly referred to as blind field tests,
since the ideal approach is doing the tests without any prior knowledge about what is happening in
any location of the surveillance zone. These blind field tests consist in carrying out some activities at
certain locations along the surveillance area at certain times within a given time interval (spanning
from a few hours to days). The DAS+PRS is being run during all the time interval, and their results are
final compared against the ground truth of the blind field test activities. To do so, these activities must
be properly labeled (as described in Section 3.4.1 with respect to the database generation).

As an example, in [25] the authors describe their blind field tests procedures: two round of blind
field tests were carried out in different locations, times, and days. The performance of the real field
deployment system was found to be affected to a great extent due to several issues, which typically do
not arise in off-line system evaluations:

• There may be defects in the correct labeling of the blind field test activities, which in some cases is
not as precise as required to have meaningful comparisons with the PRS output results.
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• There may be events for which no model exists in the system. These events will generate a
classification error, which must also be considered to properly assess the real system performance.

Finally, the blind field test evaluation procedures will face the problem of the statistical significance
of the results. In most cases, the number of tests that can be performed will be much lower than the
total amount of tests conducted during the database generation process. Therefore, the reported results
in the off-line evaluation will have a higher statistical significance than those from the blind field tests.
This must be taken into account to design a broad enough blind field test campaign.

7. Recommended Practices

Given the exhaustive literature review and the contributions of the related works, the main
recommendations to consider when applying machine learning methods to surveillance tasks in
DAS are:

• The database recordings must cover the broadest possible range of acoustic conditions, which are
influenced by:

– Environmental and soil conditions (that will have an impact in the characteristics of the
generated signals),

– Geographical conditions (in what respect to the distance to the sensing equipment, which will
have an impact in the SNR of the generated signals).

This is due to the need of generating robust models that are able to properly generalize when the
system faces unseen data (that can be obtained at any location along the fiber trajectory).

• The database labeling must be accurate enough to provide precise time alignment between the
labels and the actual activities being recorded. On the one hand, this is important to generate
models that actually correspond to the desired activity (otherwise, the models will also contain
information of wrong activities). On the other hand, that is also important to provide accurate
labels for system evaluation (a wrong label will generate a classification error).

• The database size should be large enough to provide enough data for generating robust models
and also to ensure the statistical significance of the results. It is very difficult to provide a
recommendation on the actual database size, but according to the experience acquired in
the PIT-STOP project [23,24], and for initial system development purposes, we may initially
recommend 30 min per event, per day, with at least five recording days and locations. Also,
precise information on the actual duration of the recordings must be provided.

• The training subset must be completely independent of the validation/testing subsets to ensure
that the obtained results are not biased due to over-training issues. If the database size is not large
enough, cross-validation techniques must be applied.

• Regarding the feature extraction module, we recommend the use of frequency domain-based
features, since these have provided good results in the systems presented in the literature review,
and they can actually integrate all the meaningful behavior of the analyzed signals.

• The acquired signals must be properly normalized (either at the signal or feature levels) to deal
with the signal degradation due to the distance to the sensing equipment.

• Regarding the pattern classification algorithm, it is not possible to propose any of the alternatives
as being superior to the others. The choice is affected by multiple factors: database size
(discriminative models typically need larger datasets than generative ones), signal variability
and number of classes (for more complex signals and more classes, more complex models are
needed, thus demanding larger datasets), signal properties (those generated by linear processes
may, in general, be handled by less complex models), etc. Therefore, the best approach would
be to select different pattern classification techniques, and make a thorough evaluation of
their performance.
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• The evaluation metrics must be precisely described, so that there is no doubt about how these are
being calculated.

• The evaluation process should provide details on the statistical significance of the results to
properly assess their impact. As stated above, this also requires precise information of the
experimental procedure (training/validation/testing subset partition, recording durations, etc.).

8. Conclusions

This paper has presented a review of the main approaches for the application of machine learning
techniques in pipeline surveillance systems based on distributed acoustic sensing.

We have first addressed a general review of related work, concluding that, in general, there is a
lack of understanding of the adequate and rigorous methodology to apply in the design and evaluation
of DAS+PRS strategies. This fact motivated the introduction of the principles of machine learning
applied to DAS systems in pipeline surveillance applications, after which we presented a detailed
review on the proposals found in the literature, and a general discussion on the main findings.

We have also provided a description of relevant issues related to the real field deployment
and evaluation of DAS+PRS approaches for pipeline threat monitoring, and also detailed some
recommended practices in what respect to the design of such systems.

All these issues and the works presented here clearly show that the task is far from being
fully solved, so that there is much room for improvement with respect to the application of pattern
recognition techniques for distributed acoustic sensing-based systems applied to pipeline surveillance.
Therefore, we expect a lot of research activity in this area in the following years, with a solid foundation
in the application of rigorous methodologies.
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