Pd-catalyzed directed ortho-C–H alkenylation of phenylalanine derivatives

Alfonso García-Rubia,† Eduardo Laga,†,‡ Carlos Cativiela,‡ Esteban P. Urriolabeitia,‡ Ramón Gómez-Arrayás†* and Juan C. Carretero†*

† Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. ‡ Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.

ABSTRACT: A practical Pd-catalyzed ortho-olefination of enantioenriched N-(SO2Py)-protected arylalanine and norephedrine derivatives with electron deficient alkenes has been developed using N-fluoro-2,4,6-trimethylpyridinium triflate as the terminal oxidant. The reaction occurs efficiently with excellent mono-substitution selectivity and without loss of enantiopurity. This cross coupling proved to be broad
in scope, tolerating a variety of steric and electronic changes to both coupling partners. Removal of the directing group under mild conditions provides access to optically active tetrahydroisoquinoline-3-carboxylic acid derivatives (Tics) with good diastereoselectivity and with very small erosion of enantiomeric purity.

Keywords: Palladium; C–H Olefination; Phenylalanine; Norephedrine; 2-Pyridylsulfonyl; Tetrahydroisoquinoline.

The direct functionalization of C–H bonds is an area of great interest because of its potential to streamline synthetic routes. The use of directing groups has become a common strategy to address the challenge of achieving predictable selectivity in substrates that lack strong steric or electronic biases or to override the inherent substrate biasing elements.

Coordination-directed C–H bond functionalization of nitrogen-containing compounds, such as α-amino acids, is particularly attractive given their prevalence in natural products and therapeutic agents. Moreover, the incorporation of flexible functional handles into the amino acid skeleton provide products that offer high versatility as building blocks for their diversification into valuable heterocyclic frameworks. Despite their significance, catalytic metal-controlled direct functionalization of α-amino acids remain underdeveloped. An important challenge is to find a suitable directing function capable of preventing interference by the potentially coordinating proximal α-ester group and overcoming the increased steric restriction caused by the already installed α-stereocenter. An added requirement of such methods is mild functionalization/deprotection conditions tolerant of sensitive functional groups and the easily racemizable α-stereocenter. Most of the reported procedures are suited for N-protected NH-amino acid derivatives, due to the participation of active metal amide intermediate complexes, whereas catalytic direct functionalization of N-substituted substrates (instead of NH-amino acid
derivatives) remains an important ongoing challenge. Additionally, controlling mono- vs. disubstitution selectivity is often problematic in this type of processes.10

Within this field, the PdII-catalyzed oxidative coupling between arenes and olefins (Fujiwara-Moritani reaction) is arguably one of the most important reactions in this field.11,12 Recently, our group introduced the use of the \(N\)-(2-pyridyl)sulfonyl (SO\textsubscript{2}Py) moiety as an easily installable and removable protecting/directing group in a variety of Pd-catalyzed C–H functionalization reactions.13 In particular, it showed a high directing ability, as well as structural flexibility, in the PdII-catalyzed aryl C–H ortho alkenylation of anilines, benzylamines and phenethylamines with electron-deficient alkenes.13c Subsequently, Yu and co-workers demonstrated the suitability of this \(N\)-SO\textsubscript{2}Py-strategy for PdII-catalyzed intramolecular C–H amination of phenethylamine derivatives, including optically active phenylalanine derivatives.7h Herein, we report a practical and efficient PdII-catalyzed mono-ortho-olefination of enantioenriched phenylalanine derivatives. The use of the \(N\)-SO\textsubscript{2}Py-protecting group allows for facile deprotection and subsequent cyclization via aza-Michael addition of the free amino group to the acrylate moiety to form disubstituted tetrahydroisoquinolines with good diastereococontrol.

On the basis of the knowledge acquired in our previous contribution,13c the enantiomerically pure \(N\)-methyl-\(N\)-(SO\textsubscript{2}Py)-protected phenylalanine ethyl ester derivative (\(S\))-1 was probed for its potential in the olefination reaction with butyl acrylate (2.0 equiv) using Pd(OAc)\textsubscript{2} as catalyst (10 mol%) and \(N\)-fluoro-2,4,6-trimethylpyridinium triflate [F+] as stoichiometric oxidant,14 at 110 °C for 18 h. The results of this optimization study are shown in Table 1. The reaction in DCE showed poor conversion (40%, entry 1), while changing the solvent to AcOH resulted in a slightly higher conversion (entry 2). Despite the low conversions, the reactions were very clean and in the latter case the desired ortho-olefination product (\(S\))-2 was isolated in 45% yield. It is important to note that the stereochemical information present in the starting phenylalanine derivative (\(S\))-1 was preserved in the olefin-bearing product (\(S\))-2 with minimal erosion in the enantiomeric purity (97% ee, entry 2; the starting (\(S\))-1 was prepared from
commercially available L-phenylalanine of \(\geq 98\% \) ee). The use of hexafluoroisopropanol (HFIP), a solvent that proved to be highly effective in C–H functionalization of \(\alpha \)-amino acid derivatives, resulted in a boost in conversion up to 94%. However, this increase in reactivity (83% yield of the desired product 2) came at the cost of a loss of enantiomeric purity (88% ee, entry 3).

Table 1. Optimization of reaction conditions.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>([F^+]) (equiv)</th>
<th>Conversion(%)(^b)</th>
<th>ee(%)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCE</td>
<td>2.0</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>AcOH</td>
<td>2.0</td>
<td>53 (45)(^d)</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>HFIP</td>
<td>2.0</td>
<td>94 (83)(^d)</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>AcOH</td>
<td>2.5</td>
<td>72</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>AcOH</td>
<td>3.0</td>
<td>>98</td>
<td>–</td>
</tr>
<tr>
<td>6(^e)</td>
<td>AcOH</td>
<td>3.0</td>
<td>>98 (84)(^d)</td>
<td>97</td>
</tr>
</tbody>
</table>

\(^a\) Conditions: (--)-1 (0.15 mmol), Pd(OAc)\(_2\) (0.015 mmol), [F\(^+\)] (0.45 mmol), AcOH (1 mL) at 110 °C, butyl acrylate (0.30 mmol). \(^b\) By \(^1\)H NMR from the crude mixture, measuring the relative ratio of 2 to starting 1 by integration of characteristic, baseline separated signals. \(^c\) Enantiomeric excess of (S)-2, determined by chiral stationary phase HPLC. \(^d\) In parenthesis, isolated yield after chromatography. \(^e\) Reaction time: 6 hours.

To our satisfaction, the solution to the problem of low reactivity without compromising the stereochemical integrity was found by increasing the amount of the oxidant. Thus, the model reaction of 1a with butyl acrylate in AcOH in the presence of 2.5 equivalents of [F\(^+\)] led to 72% conversion of 2 (entry 4), while further increase of [F\(^+\)] to 3.0 equivalents allowed for complete conversion (entry 5).
Furthermore, under these latter conditions complete conversion was observed after only 6 hours, affording the acrylate 2 in good yield (84%) without appreciable loss of enantiopurity (97% ee, entry 6). It should be noted that, in contrast to literature precedents,11 in which mono-olefination selectivity is often difficult to control, complete mono-substitution selectivity was observed under our reaction conditions.

After the optimal reaction parameters had been established, the effect of electronic and structural variations on the alkene was studied. For that purpose, a variety of monosubstituted electrophilic alkenes were surveyed in the reaction with the parent substrate 1 (Scheme 1). For this study, racemic (±)-1 was used in most cases. Not only acrylates (products 2 and 3), but also dimethyl vinyl phosphonate (4), phenyl vinyl sulfone (5) and phenyl vinyl sulfonate (6) coupled efficiently with 1 to give the corresponding ortho-alkenylation products with excellent regioselectivity, mono-substitution selectivity and E-stereoselectivity in synthetically useful yields (68–84%). Other carbonyl derivatives such as methyl vinyl ketone (7) or acrolein (8) resulted less efficient coupling partners (43% and 25% yield, respectively). Interestingly, styrene derivatives bearing electron-withdrawing substituents (pentafluoro, NO$_2$ or CF$_3$) at the phenyl ring were found to be also capable reactants for the alkenylation reaction, affording the corresponding products in acceptable yields (products 9-11, 37-56% yield). Unfortunately, styrene itself provided poor reactivity (<10% conversion, not shown). We confirmed again that the alkenylation reaction takes place with no appreciable racemization, as demonstrated in the reaction with phenyl vinyl sulfone (product (S)-5, 79% yield, >98% ee).
Scheme 1. Scope with regard to the olefin coupling partner.

Encouraged by the good tolerance of our catalyst system towards different functional groups, structurally diverse phenylalanine derivatives were subjected to the catalytic olefination with butyl acrylate in order to evaluate the scope and limitations with regard to the aromatic substitution of the amino acid counterpart. This scope study was limited by the number of commercially available arylalanines. The results are presented in Scheme 2. Both electron-rich such as (OMe and Me), and electron-deficient groups (F, Cl, Br) were tolerated, although substrates with electron-releasing groups are generally more reactive. Thus, the p-OMe product 12 (a derivative of tyrosine) was obtained with
71% yield, whereas no reactivity was observed in the substrate holding a \(p \)-NO\(_2\) group (<10% conversion, result not shown in Scheme 2). Nevertheless, a number of mono \(\text{ortho} \)-olefinated phenylalanine derivatives were isolated in acceptable yields (24-72%). It should be noted that in the case of \(p \)-Cl or \(p \)-Br substituted substrates, the incomplete conversions and the difficulty in the complete chromatographic separation of the products from the starting material and trace amount of unidentified byproducts resulted in low yields upon isolation (products 15 and 16, 24% and 29% yield, respectively).\(^{15}\) Despite these shortcomings, the partial tolerance to halogen-containing substrates is useful for subsequent product derivatization since it provides orthogonal reactivity relative to the Pd\(^{0}\)-catalyzed cross-coupling chemistry.

When a substrate having blocked the \(\text{meta} \) position was employed, as in the case of the 2-naphthyl derivative, the reaction occurred at a sterically more accessible site (C-3’) to avoid the steric congestion (product 18, 52% yield). However, \(\text{meta} \)-fluoro-substitution caused the formation of a mixture of the two \(\text{ortho} \)-olefination regioisomers (17\(a \) and 17\(b \) were isolated with 72% yield in a 43:57 relative ratio), probably arising from the low steric discrimination of the two \(\text{ortho} \) positions by the small fluoro substituent. The 1-naphthyl derivative underwent clean olefination at the available C-2’ position (19, 69% yield).
Scheme 2. Scope with regard to the substitution at the aromatic ring.

\[\text{Pd(OAc)}_2 \text{(10 mol\%)} \quad \text{[F$^+$] (3.0 equiv)} \quad \text{AcOH, 110 ºC, 18 h} \]

Notably, this method can be further extended to chiral enantiomerically pure α,β-disubstituted phenethylamines, such as the norephedrine derivative 20 (Scheme 3). Compound 20 was smoothly alkenylated under the standard reaction conditions with butyl acrylate or phenyl vinyl sulfone (1.0 equiv) to give the corresponding products in good yields (74%-78%) without epimerization, according to 1H NMR.
Scheme 3. Extension to norephedrine derivatives

The easy reductive removal of the \(N \)-(2-pyridyl)sulfonyl protecting/directing group under smooth conditions (Zn powder, 1:1 THF/sat. aq NH\(_4\)Cl, 65 °C) without affecting the sensitive acrylate moiety enabled the direct access to valuable 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic)\(^{16}\) skeletons in synthetically useful yields (Scheme 4). For example, \(N \)-deprotection of product (±)-2 simultaneously triggers the cyclization of the free amine under the reaction conditions to afford 23 in 71% yield and good diastereoselectivity (anti/syn = 80:20).\(^{17}\) When the enantiomerically pure product (S)-5 (>98% ee) was submitted to identical conditions, the same \(N \)-deprotection/intramolecular aza-Michael sequence was produced, affording the corresponding bicyclic product 24 in similar yield (74%) and diastereocontrol (anti/syn = 80:20), albeit with a small degree of racemization (95% ee in the major anti diastereomer).

Scheme 4. \(N \)-deprotection/cyclization to afford tetrahydroisoquinolines
In conclusion, we have demonstrated that the directing ability of the easily removable \(N \)-(2-pyridyl)sulfonyl group can be extended to the Pd\(^{II}\)-catalyzed direct ortho-olefination of \(N \)-substituted phenylalanine and norephedrine derivatives in acceptable yields and with preservation of enantiopurity of the starting substrate. This protocol features good structural versatility in both alkene and nitrogen arene components. The smooth \(N \)-deprotection without affecting the acrylate moiety enables rapid access to enantioenriched tetrahydroisoquinoline derivatives.

EXPERIMENTAL SECTION

1.1 General methods

Solvents were used as received from commercial sources. They were not distilled nor subjected to additional purification. All reactions were carried out without special protections against air and moisture. Column liquid chromatography was performed on silica gel (70-230 mesh). The \(^1\)H, \(^{13}\)C\(^{1}\)H, \(^{19}\)F and \(^{31}\)P\(^{1}\)H) NMR spectra were recorded in CDCl\(_3\) solutions at 25 °C on 300, 400 or 500 MHz spectrometers (\(\delta\), ppm; \(J\), Hz); \(^1\)H and \(^{13}\)C\(^{1}\)H) spectra were referenced using the solvent signal as internal standard, while \(^{19}\)F and \(^{31}\)P NMR spectra were referenced to CFCl\(_3\) and H\(_3\)PO\(_4\) (85%), respectively. HRMS and ESI (ESI+) mass spectra were recorded using an MicroToF Q, API-Q-ToF ESI with a mass range from 20 to 3000 m/z and mass resolution 15000 (FWHM). HPLC experiments were conducted on an Agilent 1100 instrument, using Daicel Chiralpak IA, AD, AS-H and Chiralcel OJ-H columns as chiral stationary phase. Optical rotations were measured on a polarimeter and they are reported as follows: \([\alpha]_{\text{wavelength, temperature}}\) (\(c\), solvent). Melting points were determined in open-end capillary tubes.
Synthesis of the starting \(N\)-(2-pyridyl)sulfonyl phenylalanine ethyl ester derivatives from aryl-alanines

Step 1: Protection of the carboxylic acid group as ethyl ester

Typical procedure: synthesis of (S)-ethyl 2-amino-3-phenylpropanoate (S)-I. To an ice-cooled solution (\(-5^\circ C\)) of (S)-phenylalanine (2.00 g, 12.11 mmol; \(\geq 98\%\) ee) in ethanol (10 mL) was added thionyl chloride (1.32 mL, 18.16 mmol). The resulting mixture was heated to reflux for 3 hours, it was allowed to reach room temperature and the solvent was evaporated. The solid residue was treated with a sat. aq solution of sodium hydrogen carbonate (10 mL) and extracted with ethyl acetate (3×10 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered and concentrated to give (S)-I as a clear yellow oil; yield: 1.82 g (78%)

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 7.29 - 7.10 (m, 5H)\), 4.09 (q, \(J = 7.1\) Hz, 2H), 3.63 (t, br, \(J = 5.3\) Hz, 1H), 3.01 (dd, \(J = 13.5, 5.3\) Hz, 1H), 2.81 (dd, \(J = 13.5, 7.6\) Hz, 1H), 1.58 (s, br, 2H), 1.17 (t, \(J = 7.2\) Hz, 3H). \(^{13}\)C\(^{1}\)H NMR (75 MHz, CDCl\(_3\)): \(\delta 174.7, 137.1, 129.0, 128.2, 126.4, 60.5, 55.5, 40.9, 13.9\). ESI-HRMS: Calcd for C\(_{11}\)H\(_{16}\)NO\(_2\) [M+H]\(^+\): 194.1176. Found: 194.1185. [\(\alpha\)]\(_D\)\(^{298}\) = \(-7.04\) (c 1.09, CHCl\(_3\)).

\(\pm\)-Ethyl 2-amino-3-(4-methoxyphenyl)propanoate [(\(\pm\)-II)]

Following the typical procedure, thionyl chloride (445.9 \(\mu\)L, 6.15 mmol) reacted with O-methyltyrosine (800.0 mg, 4.10 mmol) in ethanol (5 mL) to give, after workup, (\(\pm\)-II) as a pale yellow oil; yield: 694.4 mg (76%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 6.96 (d, J = 8.6\) Hz, 2H), 6.68 (d, \(J = 8.6\) Hz, 2H), 4.00 (q, \(J = 7.2\) Hz, 2H), 3.60 (d, \(J = 1.0\) Hz, 3H), 3.50 (dd, \(J = 7.5, 5.5\) Hz, 1H), 2.85 (dd, \(J = 13.6, 5.4\) Hz, 1H), 2.67 (dd, \(J = 13.6, 7.5\) Hz, 1H), 1.74 (s, br, 2H), 1.09 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C\(^{1}\)H NMR (75 MHz, CDCl\(_3\)): \(\delta 174.6, 158.0, 129.8, 128.8, 113.4, 60.3, 55.4, 54.6, 39.7, 13.7\). ESI-HRMS: Calcd for C\(_{12}\)H\(_{18}\)NO\(_3\) [M+H]\(^+\): 224.1281. Found: 224.1276.
(±)-Ethyl 2-amino-3-((p-tolyl)propanoate [(±)-III]. Following the typical procedure, thionyl chloride (242.9 µL, 3.35 mmol) reacted with p-methylphenylalanine (400.0 mg, 2.23 mmol) in ethanol (10 mL) to give, after workup, (±)-III as a pale yellow oil; yield: 461.0 mg (99%).

1H NMR (300 MHz, CDCl3): δ 7.14 – 7.01 (m, 4H), 4.15 (q, J = 7.2 Hz, 2H), 3.66 (dd, J = 7.8, 5.2 Hz, 1H), 3.02 (dd, J = 13.5, 5.2 Hz, 1H), 2.80 (dd, J = 13.5, 7.8 Hz, 1H), 2.30 (s, 3H), 1.49 (s, 2H), 1.23 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 175.0, 136.2, 134.1, 129.1, 129.1, 60.8, 55.8, 40.6, 21.0, 14.1. ESI-HRMS: Calcd for C12H18NO2 [M+H]+: 208.1332. Found: 208.1327.

(±)-Ethyl 2-amino-3-(4-fluorophenyl)propanoate [(±)-IV]. Following the typical procedure, thionyl chloride (475.2 µL, 6.55 mmol) reacted with p-fluorophenylalanine (800.0 mg, 4.37 mmol) in ethanol (5 mL) to give, after workup, (±)-IV as a pale yellow oil; yield: 851.0 mg (92%).

1H NMR (300 MHz, CDCl3): δ 7.11 – 6.99 (m, 2H), 6.92 – 6.81 (m, 2H), 4.03 (q, J = 7.1 Hz, 2H), 3.56 (s, br, 1H), 2.91 (dd, J = 13.5, 5.3 Hz, 1H), 2.74 (dd, J = 13.6, 7.4 Hz, 1H), 1.51 (s, br, 2H), 1.11 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 174.6, 161.5 (d, J_{C-F} = 244.6 Hz), 132.9 (d, J_{C-F} = 3.2 Hz), 130.5 (d, J_{C-F} = 7.9 Hz), 115.0 (d, J_{C-F} = 21.2 Hz), 60.6, 55.5, 40.0, 13.9. δF: -115.88. ESI-HRMS Calcd for C11H15FNO2 [M+H]+: 212.1081. Found: 212.1080.

(±)-Ethyl 2-amino-3-(4-chlorophenyl)propanoate [(±)-V]. Following the typical procedure, thionyl chloride (545.1 µL, 7.51 mmol) reacted with p-chlorophenylalanine (1.00 g, 5.01 mmol) in ethanol (10 mL) to give, after workup, (±)-V as a pale yellow oil; yield: 1.12 g (99%).

1H NMR (300 MHz, CDCl3): δ 7.21 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 3.62 (t, J = 6.9 Hz, 1H), 2.97 (dd, J = 13.4, 5.4 Hz, 1H), 2.78 (dd, J = 13.6, 7.7 Hz, 1H), 1.43 (s, br, 2H), 1.19 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 174.7, 135.8, 132.5, 130.6, 128.5, 60.9, 55.6, 40.3, 14.1. ESI-HRMS: Calcd for C11H15ClNO2 [M+H]+: 228.0786. Found: 228.0772.
(±)-Ethyl 2-amino-3-(4-bromophenyl)propanoate [(±)-VI]. Following the typical procedure, thionyl chloride (445.8 μL, 6.14 mmol) reacted with p-bromophenylalanine (1.00 g, 4.10 mmol) in ethanol (10 mL) to give, after workup, (±)-VI as a pale yellow oil; yield: 1.04 g (93%).

1H NMR (300 MHz, CDCl3): δ 7.45 – 7.34 (m, 2H), 7.13 – 7.02 (m, 2H), 4.14 (q, J = 7.1 Hz, 2H), 3.65 (dd, J = 7.8, 5.4 Hz), 3.00 (dd, J = 13.6, 5.4 Hz, 1H), 2.80 (dd, J = 13.6, 7.7 Hz, 1H), 1.43 (s, 2H), 1.22 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 174.87, 136.46, 131.62, 131.10, 120.77, 61.07, 55.73, 40.53, 14.27. ESI-HRMS: Calcd for C11H15BrNO2 [M+H]+: 272.0286. Found: 272.0269.

(±)-Ethyl 2-amino-3-(3-fluorophenyl)propanoate [(±)-VII] Following the typical procedure, thionyl chloride (207.1 μL, 2.85 mmol) reacted with m-fluor phenylalanine (366.4 mg, 2.00 mmol) in ethanol (5 mL) to give, after workup, (±)-VII as a pale yellow oil; yield: 333.5 mg (79%).

1H NMR (300 MHz, CDCl3): δ 8.82 (s, br, 2H), 7.29 (m, 1H), 7.12 (t, J = 8.1 Hz, 2H), 6.95 (t, J= 7.8 Hz, 1H), 4.44 (m, 1H), 4.13 (m, 2H), 3.51 (m, 1H), 3.36 (m, 1H), 1.15 (t, J = 6.8 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 168.8, 162.0 (d, J_C-F = 46.5 Hz), 136.9 (d, J_C-F = 7.8 Hz), 130.3 (d, J_C-F = 8.2 Hz), 125.4 (d, J_C-F = 2.9 Hz), 116.7 (d, J_C-F = 21.4 Hz), 114.5 (d, J_C-F = 20.9 Hz), 62.5, 54.2, 36.0, 13.8.

(±)-Ethyl 2-amino-3-(naphthalen-1-yl)propanoate [(±)-VIII]. Following the typical procedure, thionyl chloride (207.1 μL, 2.85 mmol) reacted with 1-naphtylalanine (430.3 mg, 2.00 mmol) in ethanol (5 mL) to give, after workup, (±)-VIII as a pale yellow oil; yield: 340.6 mg (70%).

1H NMR (300 MHz, CDCl3): δ 8.07 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.40-7.18 (m, 6H), 4.43 (m, 1H), 3.97 (m, 1H), 3.64 (m, 3H), 0.63 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 169.5, 133.8, 131.9, 131.0, 128.7, 128.5, 128.1, 126.5, 125.7, 125.5, 123.6, 62.1, 53.9, 34.0, 13.3. ESI-HRMS: Calcd for C15H18NO2 [M+H]+: 244.1332. Found: 244.1335.
(±)-Ethyl 2-amino-3-(naphthalen-2-yl)propanoate [(±)-IX]. Following the typical procedure, thionyl chloride (207.1 μL, 2.85 mmol) reacted with 2-naphtylalanine (430.3 mg, 2.00 mmol) in ethanol (5 mL) to give, after workup, (±)-IX as a pale yellow oil; yield: 384.4 mg (79%).

1H NMR (300 MHz, CDCl$_3$): δ 8.88 (s, br, 2H), 7.80-7.74 (m, 4H), 7.44-7.39 (m, 3H), 4.52 (t, J = 7.1 Hz, 1H), 3.97 (m, 2H), 3.67 (dd, J = 5.4, 14.1 Hz, 1H), 3.50 (dd, J = 7.9, 13.9 Hz, 1H), 0.96 (t, J = 7.0 Hz, 3H). 13C$\{^1$H$\}$ NMR (75 MHz, CDCl$_3$): δ 169.0, 133.4, 132.6, 131.9, 128.7, 128.3, 127.8, 127.6, 127.4, 126.1, 125.8, 62.3, 54.3, 36.6, 13.7. ESI-HRMS: Calcd for C$_{15}$H$_{18}$NO$_2$ [M+H]$^+$: 244.1332. Found: 244.1338.

Step 2: N-sulfonylation reaction

Typical procedure: synthesis of (S)-ethyl 3-phenyl-2-(pyridine-2-sulfonamido)propanoate [(S)-X]. To a solution of (S)-I (1.82 g, 9.43 mmol) and pyridine (2.7 mL, 33.96 mmol) in dry THF (20 mL), cooled to −5 °C and under Ar atmosphere, was added drop-wise a solution of 2-pyridylsulfonyl chloride (2.01 g, 11.32 mmol) in dry THF (5 mL). The resulting mixture was allowed to reach room temperature and stirred for further 18 h before it was filtered and concentrated to dryness. The resulting solid residue was triturated in a 1:1 mixture of hexane:water (20 mL) and then filtered to give compound (S)-X as a white solid; yield: 2.69 g (85%); mp: 131 – 133 °C.

1H NMR (300 MHz, CDCl$_3$): δ 8.59 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 7.90 (dt, J = 7.8, 1.1 Hz, 1H), 7.84 (td, J = 7.7, 1.7 Hz, 1H), 7.43 (ddd, J = 7.5, 4.7, 1.4 Hz, 1H), 7.26 – 7.16 (m, 3H), 7.15 – 7.09 (m, 2H), 5.57 (d, J = 8.9 Hz, 1H), 4.58 (dt, J = 8.8, 6.0 Hz, 1H), 3.98 (qq, J = 7.1, 3.6 Hz, 2H), 3.10 (d, J = 6.1 Hz, 2H), 1.10 (t, J = 7.1 Hz, 3H). 13C$\{^1$H$\}$ NMR (75 MHz, CDCl$_3$): δ 170.9, 157.8, 149.8, 138.0, 135.2, 129.6, 128.5, 127.2, 126.7, 121.7, 61.7, 57.6, 39.8, 14.0. ESI-HRMS: Calcd for C$_{16}$H$_{19}$N$_2$O$_4$S [M+H]$^+$: 335.1060. Found: 335.1052. [α]$_D^{298}$ = −9.75 (c = 1.11, CHCl$_3$).

(±)-Ethyl 3-(4-methoxyphenyl)-2-(pyridine-2-sulfonamido)propanoate [(±)-XI]. Following the typical procedure, (±)-II (694.4 mg, 3.11 mmol) and pyridine (905.6 μL, 11.20 mmol) in THF (20 mL)
reacted with a soln of 2-pyridylsulfonyl chloride (662.9 mg, 3.73 mmol) in THF (5 mL) to give (±)-XI as a white solid; yield: 829.4 g (73%); mp: 125 – 128 ºC.

\[\text{H NMR (300 MHz, CDCl}_3\text{): } \delta \text{ 8.59 (d, } J = 4.6 \text{ Hz, 1H), 7.89 (d, } J = 8.0 \text{ Hz, 1H), 7.84 (td, } J = 7.7, 1.7 \text{ Hz, 1H), 7.43 (ddd, } J = 7.4, 4.7, 1.3 \text{ Hz, 1H), 7.03 (d, } J = 8.6 \text{ Hz, 2H), 6.75 (d, } J = 8.6 \text{ Hz, 2H), 5.53 (d, } J = 8.8 \text{ Hz, 1H), 4.53 (dt, } J = 8.8, 5.9 \text{ Hz, 1H), 3.98 (m, 2H), 3.75 (s, 3H), 3.04 (d, } J = 5.9 \text{ Hz, 2H), 1.12 (t, } J = 7.1 \text{ Hz, 3H).} \]

\[\text{13C}^{1\text{H}} \text{ NMR (75 MHz, CDCl}_3\text{): } \delta \text{ 170.9, 158.8, 157.9, 149.8, 138.0, 130.6, 127.1, 126.7, 121.7, 113.9, 61.6, 57.7, 55.3, 38.9, 14.1. ESI-HRMS: Caled for C}_{17}\text{H}_{20}\text{N}_2\text{O}_5\text{S [M+H]}^+: 365.1166. \text{ Found: 365.1143.} \]

(±)-Ethyl 2-(pyridine-2-sulfonamido)-3-(p-tolyl)propanoate [(±)-XII]. Following the typical procedure, (±)-III (461.0 mg, 2.22 mmol) and pyridine (647.6 μL, 8.00 mmol) in THF (20 mL) reacted with a soln of 2-pyridylsulfonyl chloride (474.0 mg, 2.67 mmol) in THF (5 mL) to give (±)-XII as a yellow solid. Further purification by column chromatography (hexane-EtOAc, 2:3) provided (±)-XII as a white powder; yield: 389.3 mg (50%); mp: 129 – 131 ºC.

\[\text{H NMR (300 MHz, CDCl}_3\text{): } \delta \text{ 8.59 (dq, } J = 4.7, 1.3 \text{ Hz, 1H), 7.89 (dt, } J = 7.8, 1.3 \text{ Hz, 1H), 7.84 (td, } J = 7.6, 1.7 \text{ Hz, 1H), 7.43 (ddd, } J = 7.3, 4.7, 1.5 \text{ Hz, 1H), 7.05 – 6.98 (m, 4H), 5.46 (d, } J = 8.9 \text{ Hz, 1H), 4.56 (dt, } J = 8.8, 5.9 \text{ Hz, 1H), 3.99 (qd, } J = 7.1, 2.2 \text{ Hz, 2H), 3.06 (d, } J = 5.9 \text{ Hz, 2H), 2.28 (s, 3H), 1.12 (t, } J = 7.1 \text{ Hz, 3H).} \]

\[\text{13C}^{1\text{H}} \text{ NMR (75 MHz, CDCl}_3\text{): } \delta \text{ 170.9, 158.8, 157.9, 149.8, 138.0, 130.6, 127.1, 126.7, 121.7, 113.9, 61.6, 57.7, 55.3, 38.9, 14.0. ESI-HRMS: Caled for C}_{17}\text{H}_{21}\text{N}_2\text{O}_4\text{S [M+H]}^+: 349.1217. \text{ Found: 349.1212.} \]

(±)-Ethyl 3-(4-fluorophenyl)-2-(pyridine-2-sulfonamido)propanoate [(±)-XIII]. Following the typical procedure, (±)-IV (851.0 mg, 4.03 mmol) and pyridine (1170 μL, 14.50 mmol) in THF (20 mL) reacted with a soln of 2-pyridylsulfonyl chloride (858.7 mg, 4.835 mmol) in THF (5 mL) to give (±)-XIII as a white solid. Yield: 1.24 g (87%); mp: 132 – 134 ºC.
1H NMR (300 MHz, CDCl₃): δ 8.59 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H), 7.90 (dt, J = 7.8, 1.3 Hz, 1H), 7.85 (td, J = 7.6, 1.7 Hz, 1H), 7.45 (ddd, J = 7.4, 4.7, 1.4 Hz, 1H), 7.11 (m, 2H), 6.91 (m, 2H), 5.60 (d, J = 8.7 Hz, 1H), 4.55 (dt, J = 8.7, 6.0 Hz, 1H), 4.00 (qd, J = 7.1, 3.1 Hz, 2H), 3.10 (dd, J = 13.8, 6.0 Hz, 1H), 3.05 (dd, J = 13.6, 6.1 Hz, 1H), 1.12 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl₃): δ 170.84, 162.13 (d, J = 245.5 Hz), 157.88, 149.91, 138.14, 131.20 (d, JCF = 8.1 Hz), 131.05 (d, JCF = 3.3 Hz), 126.81, 121.76, 115.43 (d, JCF = 21.3 Hz), 61.86, 57.71 (d, JCF = 1.4 Hz), 39.05, 14.12. 19F{1H} NMR: δ -115.55 (s). ESI-HRMS: Calcd for C₁₆H₁₈FN₂O₄S [M+H]+: 353.0966. Found: 353.0991.

(±)-Ethyl 3-(4-chlorophenyl)-2-(pyridine-2-sulfonamido)propanoate [(±)-XIV]. Following the typical procedure, (±)-V (1.12 g, 4.93 mmol) and pyridine (718.2 μL, 8.88 mmol) in THF (20 mL) reacted with a soln of 2-pyridylsulfonyl chloride (1.05 g, 5.92 mmol) in THF (5 mL) to give (±)-XIV as a white solid; yield: 1.42 g (78%); mp: 129 – 131 ºC.

1H NMR (300 MHz, CDCl₃): δ 8.59 (dt, J = 4.8, 1.3 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.85 (td, J = 8.0, 1.5 Hz, 1H), 7.45 (ddd, J = 6.9, 4.8, 1.8 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 5.47 (d, J = 8.6 Hz, 1H), 4.58 (dt, J = 8.6, 6.0 Hz, 1H), 4.03 (qd, J = 7.1, 1.7 Hz, 2H), 3.12 (dd, J = 13.9, 5.9 Hz, 1H), 3.04 (dd, J = 13.9, 6.2 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl₃): δ 170.7, 149.9, 138.1, 133.8, 133.2, 131.0, 128.7, 126.8, 121.7, 61.9, 57.6, 39.2, 14.1 [The quaternary C atom of the π fragment was not observed, in spite of the use of long accumulation periods]. ESI-HRMS: Calcd for C₁₆H₁₈ClN₂O₄S [M+H]+: 369.0670. Found: 369.0663.

(±)-Ethyl 3-(4-bromophenyl)-2-(pyridine-2-sulfonamido)propanoate [(±)-XV]. Following the typical procedure, (±)-VI (1.04 g, 3.82 mmol) and pyridine (556.4 μL, 6.88 mmol) in THF (5 mL) reacted with a soln of 2-pyridylsulfonyl chloride (814.5 mg, 4.59 mmol) in THF (20 mL) to give (±)-XV as a white solid; yield: 1.217 g (77%); mp: 126 – 128 ºC.

1H NMR (300 MHz, CDCl₃): δ 8.58 (dt, J = 4.6, 1.3 Hz, 1H), 7.88 (d, J = 7.0 Hz, 1H) 7.84 (td, J = 7.9, 1.4 Hz, 1H), 7.45 (ddd, J = 6.8, 4.8, 2.1 Hz, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.01 (d, J = 8.3 Hz, 2H), 5.59
(±)-Ethyl 3-(3-fluorophenyl)-2-(pyridine-2-sulfonamido)propanoate [(±)-XVI]. Following the typical procedure, (±)-VII (316.8 mg, 1.50 mmol) and pyridine (548.8 µL, 6.78 mmol) in THF (20 mL) reacted with a soln of 2-pyridylsulfonyl chloride (401.7 mg, 2.26 mmol) in THF (5 mL) to give (±)-XVI as a white solid; yield: 422.8 mg (80%); mp: 144 – 146 ºC.

{1H} NMR (300 MHz, CDCl3): δ 8.53 (dt, J = 0.7, 4.7 Hz, 1H), 7.85 (dd, J = 0.7, 7.5 Hz, 1H), 7.80 (dt, J = 1.6, 8.9 Hz, 1H), 7.39 (m, 1H), 7.16 (m, 1H), 6.88-6.74 (m, 3H), 5.27 (d, J = 8.5 Hz, 1H), 4.52 (m, 1H), 3.95 (dt, J = 5.5, 7.0 Hz, 2H), 3.04 (d, J = 5.8 Hz, 2H), 1.07 (t, J = 7.1 Hz, 3H).

{13C} NMR (75 MHz, CDCl3): δ 170.6, 157.8, 149.8, 137.8 (d, J_C-F = 7.1 Hz), 137.7 (d, J_C-F = 7.1 Hz), 130.0 (d, J_C-F = 8.2 Hz), 126.7, 125.3 (d, J_C-F = 2.7 Hz), 121.6, 116.4 (d, J_C-F = 20.0 Hz), 114.1 (d, J_C-F = 20.9 Hz), 61.8, 57.4, 39.5, 14.0.

ESI-HRMS: Calcd for C_{16}H_{18}BrN_{2}O_{4}S [M+H]⁺: 413.0165. Found: 413.0159.

(±)-Ethyl 3-(naphthalen-1-yl)-2-(pyridine-2-sulfonamido)propanoate [(±)-XVII]. Following the typical procedure, (±)-VIII (364.9 mg, 1.50 mmol) and pyridine (548.8 µL, 6.78 mmol) in THF (20 mL) reacted with a soln of 2-pyridylsulfonyl chloride (401.7 mg, 2.26 mmol) in THF (5 mL) to give (±)-XVII as a colorless oil; yield: 409.5 mg (71%).

{1H} NMR (300 MHz, CDCl3): δ 8.53 (m, 1H), 7.85-7.72 (m, 5H), 7.59 (s, 1H), 7.48-7.49 (m, 2H), 7.34-7.25 (m, 3H), 4.70 (m, 1H), 4.05 (c, J = 7.0 Hz, 2H), 3.31-3.27 (m, 2H), 1.13 (t, J = 7.2 Hz, 3H).

{13C} NMR (75 MHz, CDCl3): δ 171.0, 157.6, 149.7, 137.8, 133.3, 133.0, 132.5, 128.4, 128.1, 127.7, 127.6, 127.5, 126.4, 126.0, 125.8, 121.5, 61.7, 57.8, 39.8, 14.0. ESI-HRMS: Calcd for C_{20}H_{21}N_{2}O_{4}S [M+H]^+: 385.1217. Found: 385.1211.
(±)-Ethyl 3-(naphthalen-2-yl)-2-(pyridine-2-sulfonamido)propanoate [(±)-XVIII]. Following the typical procedure, (±)-IX (364.9 mg, 1.50 mmol) and pyridine (548.8 µL, 6.78 mmol) in THF (20 mL) reacted with a soln of 2-pyridylsulfonyl chloride (401.7 mg, 2.26 mmol) in THF (5 mL) to give (±)-XVIII as a white solid; yield: 440.0 mg (77%); mp: 53 – 55 ºC.

1H NMR (300 MHz, CDCl$_3$): δ 8.36 (d, $J = 4.6$ Hz, 1H), 7.95 (d, $J = 7.2$ Hz, 1H), 7.75-7.64 (m, 5H), 7.44-7.39 (m, 2H), 7.28-7.20 (m, 2H), 5.42 (d, $J = 8.8$ Hz, 1H), 4.61 (c, $J = 7.0$ Hz, 1H), 3.83 (m, 2H), 3.46 (d, $J = 7.1$ Hz, 2H), 0.90 (t, $J = 7.0$ Hz, 3H) 13C(1H) NMR (75 MHz, CDCl$_3$): δ 171.3, 157.7, 149.6, 137.7, 133.8, 131.8, 131.6, 128.8, 128.1, 128.0, 126.4, 126.3, 125.7, 125.3, 123.5, 121.4, 61.6, 57.2, 37.2, 13.8. ESI-HRMS: Calcd for C$_{20}$H$_{21}$N$_2$O$_4$S [M+H]$^+$, 385.1217. Found: 385.1215.

Step 3: N-methylation

Typical procedure: synthesis of (S)-ethyl 2-(N-methylpyridine-2-sulfonamido)-3-phenylpropanoate [(S)-1]. To a solution of (S)-X (2.69 g, 8.05 mmol) and K$_2$CO$_3$ (2.23 g, 16.11 mmol) in MeCN (20 mL), was added methyl iodide (1.5 mL, 24.16 mmol). The reaction mixture was refluxed for 16 h before it was cooled to room temperature and concentrated to dryness. The residue was purified by flash chromatography (n-hexane-EtOAc 9:1) to give compound (S)-1. Further purification by trituration in a 1:2 mixture n-hexane-Et$_2$O gave (S)-1 as a white solid; yield: 2.21 g (79%); mp: 119 – 121 ºC.

1H NMR (300 MHz, CDCl$_3$): δ 8.61 (dt, $J = 4.7$, 1.6 Hz, 1H), 7.85 – 7.75 (m, 2H), 7.42 (ddd, $J = 6.1$, 4.7, 2.6 Hz, 1H), 7.25 – 7.15 (m, 5H), 4.96 (dd, $J = 8.3$, 7.3 Hz, 1H), 3.95 (q, $J = 7.1$ Hz, 2H), 3.24 (dd, $J = 14.0$, 7.3 Hz, 1H), 3.07 (s, 3H), 2.96 (dd, $J = 14.0$, 8.3 Hz, 1H), 1.05 (t, $J = 7.1$ Hz, 3H). 13C(1H) NMR (75 MHz, CDCl$_3$): δ 170.1, 157.5, 149.8, 137.7, 136.3, 129.1, 128.6, 126.9, 126.4, 122.1, 61.2, 61.0, 35.9, 31.3, 14.0. ESI-HRMS: Calcd for C$_{17}$H$_{21}$N$_2$O$_4$S [M+H]$^+$: 349.1217. Found: 349.1190. $[\alpha]_D^{298} = -19.12$ (c 1.00, CHCl$_3$).
(±)-Ethyl 3-(4-methoxyphenyl)-2-(N-methylpyridine-2-sulfonamido)propanoate [(±)-XIX].

Following the typical procedure, (±)-XI (829.4 mg, 2.28 mmol) reacted with MeI (425.1 µL, 6.828 mmol) in the presence of K₂CO₃ (629.1 mg, 4.55 mmol) in MeCN (10 mL) to give, after column chromatography (n-hexane-EtOAc 8:2), (±)-XIX as a white solid; yield: 669.9 mg (78%); mp: 115 – 117 ºC.

1H NMR (300 MHz, CDCl₃): δ 8.56 (d, J = 4.7 Hz, 1H), 7.84 – 7.67 (m, 2H), 7.39 (t, J = 5.7 Hz, 1H), 7.05 (d, J = 8.3 Hz, 2H), 6.71 (d, J = 8.2 Hz, 2H), 4.87 (t, J = 7.8 Hz, 1H), 3.92 (q, J = 7.1 Hz, 2H), 3.71 (s, 3H), 3.14 (dd, J = 14.2, 7.1 Hz, 1H), 3.03 (s, 3H), 2.85 (dd, J = 14.1, 8.5 Hz, 1H), 1.02 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl₃): δ 170.0, 158.3, 157.3, 149.7, 137.6, 129.9, 128.1, 126.3, 121.9, 113.8, 61.0, 60.9, 55.0, 34.8, 31.1, 13.9. ESI-HRMS: Calcd for C₁₈H₂₃N₂O₅S [M+H]+: 379.1328. Found: 379.1322.

(±)-Ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(p-tolyl)propanoate [(±)-XX]. Following the typical procedure, (±)-XII (389.3 mg, 1.12 mmol) reacted with MeI (208.6 µL, 3.35 mmol) in the presence of K₂CO₃ (308.8 mg, 2.23 mmol) in MeCN (10 mL) to give, after column chromatography (n-hexane-EtOAc 8:2), (±)-XX as a white solid; yield: 387.3 mg (96%); mp: 121 – 123 ºC.

1H NMR (300 MHz, CDCl₃): δ 8.60 (dt, J = 4.7, 1.5 Hz, 1H), 7.87 – 7.73 (m, 2H), 7.42 (ddd, J = 6.7, 4.7, 2.3 Hz, 1H), 7.09 – 7.00 (m, 4H), 4.93 (dd, J = 8.6, 7.0 Hz, 1H), 3.96 (q, J = 7.1 Hz, 2H), 3.20 (dd, J = 14.1, 7.0 Hz, 1H), 3.07 (s, 3H), 2.90 (dd, J = 14.0, 8.5 Hz, 1H), 2.29 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl₃): δ 170.2, 157.6, 149.8, 137.7, 136.4, 133.2, 129.3, 129.0, 126.3, 122.1, 61.2, 61.0, 35.5, 31.3, 21.2, 14.0. ESI-HRMS: Calcd for C₁₈H₂₃N₂O₄S [M+H]+: 363.1373. Found: 363.1388.

(±)-Ethyl 3-(4-fluorophenyl)-2-(N-methylpyridine-2-sulfonamido)propanoate [(±)-XXI]. Following the typical procedure, (±)-XIII (1.24 g, 3.51 mmol) reacted with MeI (656.3 µL, 10.54 mmol) in the
presence of K₂CO₃ (971.4 mg, 7.03 mmol) in MeCN (10 mL) to give, after column chromatography (n-hexane-EtOAc 8:2), (±)-XXI as a white solid; yield: 1.027 g (80%); mp: 121 – 123 ºC.

1H NMR (300 MHz, CDCl₃): δ 8.53 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 7.76 (td, J = 7.7, 1.7 Hz, 1H), 7.71 (ddd, J = 7.9, 1.5, 0.9 Hz, 1H), 7.37 (ddd, J = 7.4, 4.7, 1.5 Hz, 1H), 7.14 – 7.04 (m, 2H), 6.83 (t, J = 8.7 Hz, 2H), 4.85 (dd, J = 8.7, 6.9 Hz, 1H), 3.88 (q, J = 7.1 Hz, 2H), 3.14 (dd, J = 14.2, 6.9 Hz, 1H), 2.99 (s, 3H), 2.86 (dd, J = 14.2, 8.7 Hz, 1H), 0.97 (t, J = 7.1 Hz, 3H). 13C{¹H} NMR (75 MHz, CDCl₃): δ 169.6, 161.5 (d, J_C-F = 244.8 Hz), 157.1, 149.6, 137.6, 131.9 (d, J_C-F = 0.7 Hz), 130.4 (d, J_C-F = 8.0 Hz), 126.3, 121.8, 115.1 (d, J_C-F = 21.3 Hz), 61.0, 60.8 (d, J_C-F = 1.3 Hz), 34.7, 31.00, 13.7. 19F{¹H} NMR: δ -115.99 (s). ESI-HRMS: Calcd for C₁₇H₂₀FN₂O₄S [M+H]+: 367.1122. Found: 367.1113.

(±)-Ethyl 3-(4-chlorophenyl)-2-(N-methylpyridine-2-sulfonamido)propanoate [(±)-XXII].

Following the typical procedure, (±)-XIV (1422 mg, 3.85 mmol) reacted with MeI (719.9 μL, 11.56 mmol) in the presence of K₂CO₃ (1.07 g, 7.71 mmol) in MeCN (10 mL) to give, after column chromatography (n-hexane-EtOAc 8:2), (±)-XXII as a white solid; yield: 145 mg (98%); mp: 122 – 124 ºC.

1H NMR (300 MHz, CDCl₃): δ 8.58 (ddd, J = 4.7, 1.7, 0.9 Hz, 1H), 7.81 (ddd, J = 7.8, 7.3, 1.7 Hz, 1H), 7.75 (ddd, J = 7.9, 1.5, 0.9 Hz, 1H), 7.43 (ddd, J = 7.3, 4.7, 1.5 Hz, 1H), 7.19 – 7.07 (m, 4H), 4.92 (dd, J = 8.8, 6.8 Hz, 1H), 3.98 (q, J = 7.1 Hz, 2H), 3.21 (dd, J = 14.2, 6.8 Hz, 1H), 3.05 (s, 3H), 2.92 (dd, J = 14.2, 8.8 Hz, 1H), 1.08 (t, J = 7.1 Hz, 3H). 13C{¹H} NMR (75 MHz, CDCl₃): δ 169.9, 157.5, 149.8, 137.7, 134.9, 132.8, 130.5, 128.7, 126.4, 122.0, 61.4, 60.9, 35.1, 31.3, 14.0. ESI-HRMS: Calcd for C₁₇H₂₀ClN₂O₄S [M+H]+: 383.0832. Found: 383.0827.

(±)-Ethyl 3-(4-bromophenyl)-2-(N-methylpyridine-2-sulfonamido)propanoate [(±)-XXIII].

Following the typical procedure, (±)-XV (1.22 g, 2.94 mmol) reacted with MeI (549.8 μL, 8.83 mmol) in the presence of K₂CO₃ (813.7 mg, 5.89 mmol) in MeCN (10 mL) to give, after column
chromatography (n-hexane-EtOAc 8:2), (±)-XXIII as a white solid; yield: 1.19 g (95%); mp: 118 – 120 ºC.

\[\begin{align*}
^{1}H \text{ NMR (300 MHz, CDCl}_3\text{: } & \delta 8.57 \text{ (ddd, } J = 4.7, 1.8, 0.9 \text{ Hz, 1H), 7.80 \text{ (ddd, } J = 7.9, 7.4, 1.7 \text{ Hz, 1H),} \\
& 7.73 \text{ (ddd, } J = 7.9, 1.4, 0.9 \text{ Hz, 1H), 7.43 \text{ (ddd, } J = 7.4, 4.7, 1.4 \text{ Hz, 1H),} \\
& 7.33 – 7.27 \text{ (m, 2H), 7.07 – 6.99 \text{ (m, 2H), 4.91 \text{ (dd, } J = 8.9, 6.7 \text{ Hz, 1H),} \\
& 3.98 \text{ (q, } J = 7.1 \text{ Hz, 2H),} \\
& 3.18 \text{ (dd, } J = 14.2, 6.7 \text{ Hz, 1H),} \\
& 3.04 \text{ (s, 3H), 2.89 \text{ (dd, } J = 14.2, 8.9 \text{ Hz, 1H),} \\
& 1.07 \text{ (t, } J = 7.1 \text{ Hz, 3H).} \\
^{13}C \{^{1}H\} \text{ NMR (75 MHz, CDCl}_3\text{: } & \delta 169.8, 157.4, 149.8, 137.7, 135.4, 131.6, 130.8, 126.4, 121.9, 120.8, 61.4, 60.8, 35.2, 31.2, 14.0. ESI-HRMS: \text{ Calcd for } C_{17}H_{20}BrN_{2}O_{4}S \ [M+H]^+: 427.0322. \text{ Found: 427.0314.} \\
\end{align*} \]

(±)-Ethyl 3-(3-fluorophenyl)-2-(N-methylpyridine-2-sulfonamido)propanoate [(±)-XXIV].

Following the typical procedure, (±)-XVI (352.4 mg, 1.00 mmol) reacted with MeI (186.8 µL, 3.00 mmol) in the presence of K$_2$CO$_3$ (276.3 mg, 2.00 mmol) in MeCN (10 mL) to give, after column chromatography (n-hexane-EtOAc 8:2), (±)-XXIV as a colorless oil; yield: 311.4 mg (85%).

\[\begin{align*}
^{1}H \text{ NMR (300 MHz, CDCl}_3\text{: } & \delta 8.66 \text{ (d, } J = 4.7 \text{ Hz, 1H),} \\
& 7.86 \text{ (m, 2H),} \\
& 7.48 \text{ (m, 1H),} \\
& 7.24 \text{ (m, 1H),} \\
& 7.03 \text{ (d, } J = 7.7 \text{ Hz, 1H),} \\
& 6.93 \text{ (m, 2H),} \\
& 4.99 \text{ (t, } J = 8.0 \text{ Hz, 1H),} \\
& 4.01 \text{ (c, } J = 7.1 \text{ Hz, 2H),} \\
& 3.27 \text{ (dd, } J = 7.2, 14.0 \text{ Hz, 1H),} \\
& 3.10 \text{ (s, 3H),} \\
& 3.00 \text{ (dd, } J = 8.3, 14.0 \text{ Hz, 1H),} \\
& 1.12 \text{ (t, } J = 7.1 \text{ Hz, 3H).} \\
^{13}C \{^{1}H\} \text{ NMR (75 MHz, CDCl}_3\text{: } & \delta 169.8, 162.7 \text{ (d, } J_{C-F} = 46.0 \text{ Hz),} \\
& 157.3, 149.8, 138.9 \text{ (d, } J_{C-F} = 7.1 \text{ Hz),} \\
& 137.8, 130.0 \text{ (d, } J_{C-F} = 9.2 \text{ Hz),} \\
& 126.5, 124.8 \text{ (d, } J_{C-F} = 3.0 \text{ Hz),} \\
& 121.9, 115.9 \text{ (d, } J_{C-F} = 21.4 \text{ Hz),} \\
& 113.8 \text{ (d, } J_{C-F} = 20.9 \text{ Hz),} \\
& 61.2, 60.8, 35.5, 31.2, 13.9. \text{ $^{19}F \{^{1}H\} \text{ NMR (282 MHz, CDCl}_3\text{: } \delta$ -113.0. ESI-HRMS: \text{ Calcd for } C_{17}H_{20}FN_{2}O_{4}S \ [M+H]^+: 367.1122. \text{ Found: 367.1128.} \\
\end{align*} \]

(±)-Ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(naphthalen-1-yl)propanoate [(±)-XXV].

Following the typical procedure, (±)-XVII (384.5 mg, 1.00 mmol) reacted with MeI (186.8 µL, 3.00 mmol) in the presence of K$_2$CO$_3$ (276.3 mg, 2.00 mmol) in MeCN (10 mL) to give, after column chromatography (n-hexane-EtOAc 8:2), (±)-XXV as a colorless oil; yield: 354.6 mg (89%).
1H NMR (300 MHz, CDCl3): δ 8.46 (d, J = 4.3 Hz, 1H), 7.81 (m, 1H), 7.73 (m, 2H), 7.65 (d, J = 7.9 Hz, 1H), 7.59-7.51 (m, 2H), 7.50-7.46 (m, 2H), 7.35 (dd, J= 1.1, 8.6 Hz, 1H), 7.20 (m, 1H), 5.12 (dd, J = 6.8, 8.9 Hz, 1H), 4.05 (c, J = 7.2 Hz, 2H), 3.44 (dd, J = 6.7, 14.0 Hz, 1H), 3.18 (s, 3H), 3.13 (dd, J = 9.8, 14.0 Hz, 1H), 1.13 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 170.0, 157.3, 149.5, 137.3, 133.9, 133.3, 132.4, 128.2, 127.8, 127.6, 127.1, 126.0, 125.7, 121.5, 61.3, 61.1, 35.9, 31.3, 14.0. ESI-HRMS: Calcd for C21H23N2O4S [M+H]+: 399.1379. Found: 399.1372.

(±)-Ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(naphthalen-2-yl)propanoate [(±)-XXVI].

Following the typical procedure, (±)-XVIII (384.5 mg, 1.00 mmol) reacted with MeI (186.8 µL, 3.00 mmol) in the presence of K2CO3 (276.3 mg, 2.00 mmol) in MeCN (10 mL) to give, after column chromatography (n-hexane-EtOAc 8:2), (±)-XXVI as a colorless oil; yield: 318.8 mg (80%).

1H NMR (300 MHz, CDCl3): δ 8.58 (d, J = 4.5 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.74-7.69 (m, 3H), 7.61-7.50 (m, 2H), 7.39 (m, 1H), 7.32-7.28 (m, 2H), 5.17 (t, J = 7.3 Hz, 1H), 3.98 (c, J = 7.0 Hz, 2H), 3.74 (dd, J = 8.0, 14.0 Hz, 1H), 3.50 (dd, J = 7.3, 14.0 Hz, 2H), 3.26 (s, 3H), 1.03 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 170.2, 157.3, 149.6, 137.6, 133.8, 132.2, 131.8, 128.9, 127.9, 127.7, 126.4, 126.3, 125.7, 125.3, 123.4, 121.8, 61.1, 60.0, 33.4, 31.2, 13.9. ESI-HRMS: Calcd for C21H23N2O4S [M+H]+: 399.1379. Found: 399.1375.

N-((1R,2S)-1-Methoxy-1-phenylpropan-2-yl)-N-methylpyridine-2-sulfonamide [(-)-20]

Potassium hydride (1.04 g of a 35 % suspension in oil, 364 mg, 9.1 mmol) was weighted into a 100 ml 3 neck round bottom flask. The KH was washed with hexane (3 x 4 mL) to remove the mineral oil and THF (7 mL) was added to the dry KH powder. To the resulting suspension, cooled to 0 ºC, was added drop-wise (over 10 min) a soln of L-norpseudoephedrine (1.37 g, 9.1 mmol) in THF (15 mL). The reaction was stirred at room temperature for 10 min before Mel (0.567 mL, 9.1 mmol) was added. The mixture was stirred for 1.5 h before a 2 N soln of sodium thiosulfate (25 mL) was added. The mixture was extracted with diethyl ether (3 x 50 mL) and the combined organic phase was dried
(MgSO₄) and concentrated to dryness. The resulting methyl ether intermediate [(1R,2S)-XXVII] was of sufficient purity for use in the next step.

To a solution of crude (1R,2S)-XXVII (9.1 mmol) and pyridine (1.08 mL, 13.65 mmol) in dry THF (20 mL), cooled to −5 °C and under Ar atmosphere, was added drop-wise a solution of 2-pyridylsulfonyl chloride (2.4 g, 13.65 mmol) in dry THF (5 mL). The mixture was stirred at room temperature for 18 h and then it was filtered through a small pad of silica gel and the filtrate concentrated to dryness. The resulting solid residue was triturated in a 1:1 mixture of n-hexane-water (20 mL) and filtered, to give (1R,2S)-XXVIII as a white solid that was used in the next step without further purification.

To a solution of (1R,2S)-XXVIII (9.1 mmol) and K₂CO₃ (2.51 g, 18.2 mmol) in MeCN (20 mL) at room temperature was added methyl iodide (1.0 mL, 16.1 mmol). The reaction mixture was refluxed for 16 h before it was concentrated to dryness. The residue was purified by column chromatography (n-hexane-EtOAc 8:2) to afford the desired compound (1R,2S)-20 as a colorless oil; yield: 2.011g (69%).

^1H NMR (300 MHz, CDCl₃): δ 8.45 (d, J = 4.8 Hz, 1H), 7.83–7.51 (m, 2H), 7.23 (ddd, J = 7.4, 4.7, 1.4 Hz, 1H), 7.18–6.88 (m, 5H), 4.29 (d, J = 3.5 Hz, 1H), 4.00 (dd, J = 7.0, 3.4 Hz, 1H), 3.05 (s, 3H), 2.83 (s, 3H), 0.79 (d, J = 7.0 Hz, 3H). ^13C{^1H} NMR (75 MHz, CDCl₃): δ 155.6, 147.6, 136.8, 135.4, 125.9, 125.2, 124.3, 123.9, 120.0, 85.3, 56.1, 54.8, 28.6, 8.1. ESI-HRMS: Calcd for C₁₆H₂₁N₂O₃S (M+H)+: 321,1267. Found: 321,1261. [α]D₂⁹⁺⁻ = −68.23 (c 0.68, CHCl₃).

Typical procedure for the C–H activation reaction: Synthesis of (S,E)-Butyl 3-(2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl) phenyl)acrylate [(S)-2] A screw-capped test tube was charged with N-(2-pyridyl)sulfonyl phenylalanine ethyl ester derivative (S)-1 (52.3 mg, 0.15 mmol), 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) and Pd(OAc)₂ (3.4 mg, 0.015 mmol). The tube was sealed with a rubber septum and then evacuated and backfilled with nitrogen (3x) before acetic acid (1 mL) and butyl acrylate (43.0 μL, 0.30 mmol) were successively added. The septum was replaced with a Teflon-coated screw cap and the resulting solution was heated and vigorously stirred at
110 °C for 6 hours. Then, it was cooled to room temperature and diluted with CH₂Cl₂ (5 mL). The resulting suspension was filtered through a plug of Celite (washed with CH₂Cl₂). The clear solution was washed with sat. aq soln of NaHCO₃ (2×10 mL), dried with anhydrous MgSO₄ and then concentrated to dryness. The residue was then purified by column chromatography (n-hexane-EtOAc 85:15) to afford (S)-2 as a yellow oil; yield: 59.8 mg (84%).

\[\alpha \]D²⁰ = −13.7 (c 0.89, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.57 (dd, \(J = 0.6, 7.5 \) Hz, 1H), 7.98 (d, \(J = 15.0 \) Hz, 1H), 7.75-7.70 (m, 2H), 7.55-7.40 (m, 1H), 7.40-7.35 (m, 2H), 7.30-7.10 (m, 2H), 6.73 (d, \(J = 15.0 \) Hz, 1H), 4.80 (t, \(J = 8.0 \) Hz, 1H), 3.95-3.80 (m, 2H), 3.33 (dd, \(J = 7.3 \) Hz, 1H), 3.10 (dd, \(J = 7.3 \) Hz, 1H), 3.01 (s, 3H), 1.73 (m, 2H), 1.48 (m, 2H), 1.10 (t, \(J = 7.0 \) Hz, 3H), 0.98 (t, \(J = 7.1 \) Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 169.7, 166.8, 157.4, 149.8, 141.3, 137.6, 135.8, 133.8, 130.6, 130.0, 127.5, 126.9, 126.3, 122.0, 120.8, 64.5, 61.3, 60.7, 32.6, 31.4, 30.8, 19.2, 13.9, 13.8. ESI-HRMS: Calcd for C₂₄H₃₁N₂O₆S [M+H]⁺: 475.1897. Found: 475.1891. HPLC: Daicel Chiralpak AD, hexane-isopropanol 90-10, flow rate 0.7 mL/min (\(\bar{c} = 254 \) nm), \(t_R \): 28.0 min (3R)-2 and 33.8 min (3S)-2.

(±)-(E)-methyl 3-(2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)phenyl)acrylate [(±)-3] Following the typical procedure, (±)-1 (52.3 mg, 0.15 mmol) reacted with methyl acrylate (27.0 μL, 0.30 mmol) in the presence of Pd(OAc)₂ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 85:15), product (±)-3 as yellow oil; yield: 49.5 mg (77%). ¹H NMR (300 MHz, CDCl₃): δ 8.55 (d, \(J = 4.5 \) Hz, 1H), 7.96 (d, \(J = 15.9 \) Hz, 1H), 7.80-7.70 (m, 3H), 7.45 (d, \(J = 7.7 \) Hz, 1H), 7.35 (m, 1H), 7.25-7.15 (m, 2H), 6.29 (d, \(J = 15.9 \) Hz, 1H), 4.84 (m, 1H), 3.88 (dd, \(J = 7.0 \) Hz, 1H), 3.00 (s, 3H), 3.31 (dd, \(J = 7.0, 14.0 \) Hz, 1H), 3.06 (dd, \(J = 7.0, 14.0 \) Hz, 1H), 3.01 (s, 3H), 0.99 (t, \(J = 7.1 \) Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 169.7, 167.1, 157.4, 149.8, 141.6, 137.7, 135.9, 133.8, 130.7, 130.1, 127.6, 126.9, 126.3, 122.1, 120.4, 61.3, 60.8, 51.7, 32.7, 31.4, 13.9. ESI-HRMS: Calcd for C₂₁H₂₅N₂O₆S [M+H]⁺: 433.1428. Found: 433.1420.
(±)-(E)-Ethyl 3-(2-(2-(dimethoxyphosphoryl)vinyl)phenyl)-2-(N-methylpyridine-2-sulfonamido)propanoate [(±)-4]. Following the typical procedure, (±)-1 (52.3 mg, 0.15 mmol) reacted with dimethyl vinylphosphonate (35.6 μL, 0.30 mmol) in the presence of Pd(OAc)₂ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 50:50), product (±)-4 as yellow oil, yield: 49.3 mg (68%).

¹H NMR (300 MHz, CDCl₃): δ 8.56 (m, 1H), 7.82-7.74 (m, 3H), 7.44 (dd, J = 1.9, 7.7 Hz, 1H), 7.36 (m, 1H), 7.25-7.15 (m, 3H), 6.12 (t, J = 7.7 Hz, 1H), 4.88 (m, 1H), 3.73 (d, J = 5.0 Hz, 2H), 3.71 (d, J = 4.8 Hz, 6H), 3.31 (d, J = 6.6, 14.2 Hz, 1H), 3.07 (d, J = 8.5, 14.2 Hz, 1H), 3.01 (s, 3H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 169.7, 157.3, 149.9, 146.3 (d, Jc-p = 5.0 Hz), 137.7, 135.5, 134.4 (d, Jc-p = 43.7 Hz), 130.7, 130.2, 127.6, 126.8, 126.4, 122.1, 115.5 (d, Jc-p = 160.6 Hz), 61.3, 60.7, 52.6, 32.7, 31.4, 13.9. ESI-HRMS: Calcd for C₂₁H₂₈N₂O₇PS [M+H]⁺: 483.1349. Found: 483.1356.

(S,E)-ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(2-(2-(phenylsulfonyl)vinyl)phenyl)propanoate [(S)-5]. Following the typical procedure, (S)-1 (52.3 mg, 0.15 mmol) reacted with phenyl vinyl sulfone (50.46 mg, 0.30 mmol) in the presence of Pd(OAc)₂ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (S)-5 as yellow oil, yield: 61.1 mg (79%).

[α]D²⁰= -11.0 (c 2.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.57 (dd, J = 0.6, 4.5 Hz, 1H), 7.98 (d, J = 15.0 Hz, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.75-7.70 (m, 2H), 7.55-7.40 (m, 3H), 7.40-7.35 (m, 2H), 7.30-7.10 (m, 3H), 6.73 (d, J = 15.0 Hz, 1H), 4.80 (t, J = 8.0 Hz, 1H), 3.95-3.80 (m, 2H), 3.33 (d, J = 7.3 Hz, 1H), 3.10 (dd, J = 7.3 Hz, 1H), 3.01 (s, 3H), 0.98 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 169.5, 157.2, 149.9, 140.5, 139.4, 137.7, 136.6, 133.8, 131.7, 131.1, 131.0, 129.6, 129.4,
127.9, 127.7, 127.4, 126.5, 122.1, 61.4, 61.0, 32.7, 31.4, 13.9. ESI-HRMS: Calcd for C25H27N2O6S2 [M+H]+: 515.1305. Found: 515.1310. HPLC: Daicel Chiralpak AD, hexane-isopropanol 85-15, flow rate 0.7 mL/min (\(\bar{c} = 254\) nm), \(t_R: 87.0\) min (3S)-5 and 93.4 min (3R)-5.

\((\pm)-(E)\)-ethy l 2-(N-methylpyridine-2-sulfonamido)-3-(2-(2-(phenoxysulfonyl)vinyl)phenyl)propanoate [(±)-6]. Following the typical procedure, \((\pm)-1\) (52.3 mg, 0.15 mmol) reacted with phenyl vinyl sulfonate (55.2 mg, 0.30 mmol) in the presence of Pd(OAc)\(_2\) (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product \((\pm)-6\) as yellow oil, yield: 58.1 mg (73%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 8.55\) (m, 1H), 7.83 (d, \(J = 15.1\) Hz, 1H), 7.76-7.48 (m, 2H), 7.45-7.20 (m, 10H), 6.73 (d, \(J = 15.1\) Hz, 1H), 4.77 (dd, \(J = 6.3, 8.8\) Hz, 1H), 3.88 (dc, \(J = 1.6, 7.6\) Hz, 2H), 3.21 (dd, \(J = 6.3, 14.5\) Hz, 1H), 2.99-2.90 (m, 4H), 0.98 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C\{\(^1\)H\} NMR (75 MHz, CDCl\(_3\)): \(\delta 169.3, 157.2, 149.8, 149.6, 143.3, 137.7, 136.9, 131.4, 131.3, 131.0, 129.9, 127.9, 127.4, 127.2, 126.4, 123.1, 122.5, 122.1, 61.5, 60.9, 32.4, 31.9, 13.9. ESI-HRMS: Calcd for C\(_{25}\)H\(_{27}\)N\(_2\)O\(_7\)S\(_2\) [M+H]+: 531.1254. Found: 531.1259.

\((\pm)-(E)-ethyl\) 2-(N-methylpyridine-2-sulfonamido)-3-(2-(3-oxobut-1-en-1-yl)phenyl)propanoate [(±)-7]. Following the typical procedure, \((\pm)-1\) (52.3 mg, 0.15 mmol) reacted with 3-buten-2-one (24.3 \(\mu\)L, 0.30 mmol) in the presence of Pd(OAc)\(_2\) (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (diethyl ether-hexane 50:50), product \((\pm)-7\) as yellow oil, yield: 26.5 mg (43%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): 8.62 (dt, \(J = 4.7, 1.4\) Hz, 1H), 7.94 (d, \(J = 16.1\) Hz, 1H), 7.87 – 7.81 (m, 2H), 7.61 – 7.55 (m, 1H), 7.44 (q, \(J = 4.6\) Hz, 1H), 7.31 – 7.22 (m, 2H), 6.64 (d, \(J = 16.1\) Hz, 1H), 4.90 (dd, \(J = 8.3, 6.9\) Hz, 1H), 3.90 (q, \(J = 7.1\) Hz, 2H), 3.40 (dd, \(J = 14.0, 8.3\) Hz, 1H), 3.23 (dd, \(J = 14.0,
6.9 Hz, 1H), 3.09 (s, 3H), 2.44 (s, 3H), 0.98 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 199.1, 169.6, 157.3, 149.9, 140.3, 137.9, 136.0, 134.1, 131.3, 130.2, 130.1, 127.9, 127.0, 126.6, 122.4, 61.3, 60.7, 33.7, 31.4, 27.4, 14.0. ESI-HRMS: Calcd for C$_{21}$H$_{24}$N$_{2}$O$_{5}$S [M+H]$^+$: 417.1479. Found: 417.1510.

(±)-(E)-ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(2-(3-oxoprop-1-en-1-yl)phenyl)propanoate [(±)-8]. Following the typical procedure, (±)-1 (52.3 mg, 0.15 mmol) reacted with acrolein (20.1 µL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (diethyl ether-hexane 50:50), product (±)-8 as yellow oil, yield: 15.3 mg (25%).

1H NMR (300 MHz, CDCl3): 9.77 (d, J = 7.7 Hz, 1H), 8.63 (d, J = 4.3 Hz, 1H), 8.05 (d, J = 15.7 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.66 – 7.60 (m, 1H), 7.46 (td, J = 5.1, 3.0 Hz, 1H), 7.36 – 7.27 (m, 3H), 6.69 (dd, J = 15.7, 7.7 Hz, 1H), 4.90 (dd, J = 8.9, 6.1 Hz, 1H), 3.92 (qd, J = 7.1, 1.0 Hz, 2H), 3.43 (dd, J = 13.9, 8.9 Hz, 1H), 3.28 (dd, J = 13.9, 6.2 Hz, 1H), 3.08 (s, 3H), 0.98 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 94.3, 169.5, 157.3, 149.4, 149.4, 137.9, 136.3, 133.5, 131.6, 131.0, 130.8, 128.0, 127.2, 126.7, 122.5, 61.4, 60.8, 33.8, 31.4, 14.0. ESI-HRMS: Calcd for C$_{20}$H$_{23}$N$_{2}$O$_{5}$S [M+H]$^+$: 403.1328. Found: 403.1322.

(±)-(E)-Ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(2-(2-(perfluorophenyl)vinyl)phenyl)propanoate [(±)-9]. Following the typical procedure, (±)-1 (52.3 mg, 0.15 mmol) reacted with 2,3,4,5,6-pentafluorostyrene (41.4 µL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (diethyl ether-hexane 50:50), product (±)-9 as yellow oil, yield: 45.0 mg (56%).

1H NMR (300 MHz, CDCl3): 8.58 (s, 1H), 7.83 – 7.71 (m, 2H), 7.76 (d, J = 16.5 Hz, 1H), 7.56 (dd, J = 6.9, 1.8 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.29 – 7.20 (m, 3H), 6.86 (d, J = 16.5 Hz, 1H), 4.94 (dd, J = 4.0 Hz, 4.0 Hz, 10.3 Hz, 10.3 Hz, 1H), 3.92 (qd, J = 6.1 Hz, 2H), 3.08 (s, 3H), 0.98 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 94.3, 169.5, 157.3, 149.4, 149.4, 137.9, 136.3, 133.5, 131.6, 131.0, 130.8, 128.0, 127.2, 126.7, 122.5, 61.4, 60.8, 33.8, 31.4, 14.0. ESI-HRMS: Calcd for C$_{22}$H$_{25}$N$_{2}$O$_{5}$S [M+H]$^+$: 408.1322. Found: 408.1322.
8.5, 6.7 Hz, 1H), 3.96 (q, J = 7.1 Hz, 2H), 3.42 (dd, J = 14.3, 6.7 Hz, 1H), 3.11 (dd, J = 14.3, 6.7 Hz, 1H), 3.11 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl$_3$): δ 169.8, 157.3, 149.6, 144.8 (q, $J_{C,F} = 252.12$ Hz), 139.8 (q, $J_{C,F} = 252.12$ Hz), 137.6, 137.6 (q, $J_{C,F} = 252.12$ Hz), 136.0, 134.7, 134.5 (td, $J_{C,F} = 8.1, 2.4$ Hz), 130.6, 128.8, 127.6, 126.3, 126.1, 121.9, 115.3 (d, $J_{C,F} = 3.2$ Hz), 112.43 (m), 61.2, 60.5, 33.2, 31.3, 13.8. 19F{1H} NMR: δ -142.55 (dd, $J_{C,F} = 21.2, 7.6$ Hz, 2F), -156.30 (t, $J_{C,F} = 20.8$ Hz, 1F), -162.94 (td, $J_{C,F} = 21.2, 7.6$ Hz, 2F). ESI-HRMS: Calcd for C$_{25}$H$_{22}$F$_{5}$N$_{2}$O$_{4}$S [M+H]$^+$: 541.1215. Found: 541.1251.

(±)-(E)-Ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(2-(3-nitrostyryl)phenyl)propanoate [(±)-10]. Following the typical procedure, (±)-1 (52.3 mg, 0.15 mmol) reacted with 3-nitrostyrene (41.8 µL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (diethyl ether-hexane 50:50), product (±)-10 as yellow oil, yield: 36.3 mg (49%).

1H NMR (300 MHz, CDCl$_3$): 8.58 (dt, J = 4.7, 1.4 Hz, 1H), 8.38 (t, J = 2.1 Hz, 1H), 8.10 – 8.05 (m, 1H), 7.95 (dt, J = 8.0, 1.5 Hz, 1H), 7.84 – 7.80 (m, 2H), 7.71 (d, J = 16.0 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.30 – 7.24 (m, 1H), 7.22 – 7.18 (m, 2H), 7.08 (d, J = 15.8 Hz, 1H), 5.00 (dd, J = 8.5, 6.7 Hz, 1H), 3.94 (q, J = 7.1 Hz, 2H), 3.40 (dd, J = 13.8, 8.5 Hz, 1H), 3.28 (dd, J = 13.8, 6.7 Hz, 1H), 3.10 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl$_3$): δ 169.8, 157.2, 149.8, 148.9, 139.3, 137.8, 136.0, 134.5, 132.6, 131.1, 129.6, 129.0, 128.7, 128.4, 127.8, 126.6, 126.2, 122.5, 122.2, 121.7, 61.2, 60.5, 34.0, 31.2, 14.0. ESI-HRMS: Calcd for C$_{25}$H$_{26}$N$_{3}$O$_{6}$S [M+H]$^+$: 496.1537. Found: 496.1541.

(±)-(E)-ethyl 2-(N-methylpyridine-2-sulfonamido)-3-(2-(3-(trifluoromethyl)styryl)phenyl)propanoate [(±)-11]. Following the typical procedure, (±)-1 (52.3 mg, 0.15 mmol) reacted with 3-(trifluoromethyl)styrene (44.5 µL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after
purification by column chromatography (diethyl ether-hexane 50:50), product (±)-11 as yellow oil, yield: 28.7 mg (37%).

\[^1\text{H NMR (300 MHz, CDCl}_3\text{): } \delta = 8.56 (s, 1H), 7.86 – 7.73 (m, 4H), 7.62 (d, \text{J} = 15.6 \text{ Hz, 1H}), 7.61 (d, \text{J} = 8.4 \text{ Hz, 1H}), 7.52 – 7.48 (m, 1H), 7.48 – 7.43 (m, 1H), 7.43 – 7.35 (m, 1H), 7.31 – 7.23 (m, 1H), 7.21 – 7.16 (m, 2H), 7.05 (d, \text{J} = 16.1 \text{ Hz, 1H}), 5.00 (dd, \text{J} = 8.3, 6.9 \text{ Hz, 1H}), 3.93 (q, \text{J} = 7.1 \text{ Hz, 2H}), 3.39 (dd, \text{J} = 13.9, 8.3 \text{ Hz, 1H}), 3.26 (dd, \text{J} = 13.8, 6.8 \text{ Hz, 1H}), 3.11 (s, 3H), 1.00 (t, \text{J} = 7.1 \text{ Hz, 3H}). \]

\[^{13}\text{C}\{^1\text{H}\} \text{NMR (75 MHz, CDCl}_3\text{): } \delta = 169.93, 157.30, 149.83, 138.29, 137.79, 136.38, 134.33, 131.09 (q, J_{CF} = 32.24 \text{ Hz}), 131.05, 129.99, 129.20, 128.14, 127.71, 127.52, 126.54, 126.17, 124.25 (q, J_{CF} = 3.8 \text{ Hz}), 123.77 (q, J_{CF} = 3.77 \text{ Hz}), 122.44, 61.23, 60.47, 33.93, 31.31, 13.97. \]

The CF$_3$ carbon was not observed, in spite of the use of long accumulation trials. \[^{19}\text{F}\{^1\text{H}\} \text{NMR: } \delta = 62.75. \]

\[^{1}\text{ESI-HRMS: Calcd for C}_{26}\text{H}_{25}\text{F}_{3}\text{N}_{2}\text{O}_{4}\text{S}[\text{M+H}]^+: 519.1560. \text{ Found: 519.1578.} \]

\[(±)-(E)-\text{Butyl 3-(2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)-5-methoxyphenyl)-acrylate [(±)-12]. Following the typical procedure, sulfonamide (±)-XIX (56.8 mg, 0.15 mmol) reacted with butyl acrylate (43.0 \mu\text{L}, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (±)-12 as yellow oil, yield: 53.7 mg (71%). \]

\[^1\text{H NMR (300 MHz, CDCl}_3\text{): } \delta = 8.54 (d, \text{J} = 4.5 \text{ Hz, 1H}), 7.90 (d, \text{J} = 15.6 \text{ Hz, 1H}), 7.80-7.65 (m, 2H), 7.35 (m, 1H), 7.07 (d, \text{J} = 8.3 \text{ Hz, 1H}), 6.94 (d, \text{J} = 2.6 \text{ Hz, 1H}), 6.75 (dd, \text{J} = 2.6, 8.3 \text{ Hz, 1H}), 6.26 (d, \text{J} = 15.6 \text{ Hz, 1H}), 4.79 (dd, \text{J} = 2.8, 8.7 \text{ Hz, 1H}), 4.14 (t, \text{J} = 6.6 \text{ Hz, 2H}), 3.90 (dc, \text{J} = 1.0, 7.9 \text{ Hz, 2H}), 3.73 (s, 3H), 3.25 (dd, \text{J} = 6.6, 14.1 \text{ Hz, 1H}), 3.01 (m, 4H), 1.62 (m, 2H), 1.36 (m, 2H), 1.00 (t, \text{J} = 7.1 \text{ Hz, 3H}), 0.89 (t, \text{J} = 7.1 \text{ Hz, 3H}). \]

\[^{13}\text{C}\{^1\text{H}\} \text{NMR (75 MHz, CDCl}_3\text{): } \delta = 169.7, 166.7, 158.7, 157.5, 149.7, 141.3, 137.6, 134.8, 131.8, 128.1, 126.2, 122.0, 120.8, 116.1, 111.5, 64.5, 61.2, 60.9, 55.3, 31.9, 31.4, 30.8, 19.2, 13.9, 13.7. \text{ ESI-HRMS: Calcd for } C_{26}H_{33}N_{2}O_{7}S [M+H]^+: 505.2003. \text{ Found 505.2009.} \]
(+)-(E)-Butyl 3-(2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)-5-methylphenyl)-acrylate [(±)-13]. Following the typical procedure, sulfonamide (±)-XX (54.5 mg, 0.15 mmol) reacted with butyl acrylate (43.0 µL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (±)-13 as yellow oil; yield: 31.3 mg (43%).

1H NMR (300 MHz, CDCl$_3$): δ 8.61 (dt, $J = 4.8$, 1.5 Hz, 1H), 7.98 (d, $J = 15.7$ Hz, 1H), 7.85 – 7.75 (m, 2H), 7.42 (ddd, $J = 6.7$, 4.7, 2.1 Hz, 1H), 7.33 (d, $J = 1.8$ Hz, 1H), 7.13 (d, $J = 7.8$ Hz, 1H), 7.08 (dd, $J = 7.8$, 1.8 Hz, 1H), 6.34 (d, $J = 15.7$ Hz, 1H), 4.89 (dd, $J = 8.8$, 6.6 Hz, 1H), 4.21 (t, $J = 6.7$ Hz, 2H), 3.97 (qd, $J = 7.1$, 1.4 Hz, 2H), 3.35 (dd, $J = 14.4$, 6.6 Hz, 1H), 3.07 (dd, $J = 14.4$, 8.8 Hz, 1H), 2.32 (s, 3H), 1.73 – 1.64 (m, 2H), 1.48 – 1.40 (m, 2H), 1.07 (t, $J = 7.1$ Hz, 3H), 0.96 (t, $J = 7.4$ Hz, 3H). 13C{1H} NMR (75 MHz, CDCl$_3$): δ 169.9, 167.0, 157.5, 149.8, 141.5, 137.7, 137.1, 133.6, 133.0, 131.0, 130.7, 127.5, 126.3, 122.1, 120.5, 64.6, 61.4, 60.9, 32.3, 31.5, 30.9, 21.2, 19.3, 14.0, 13.9. ESI-HRMS: Calcd for C$_{25}$H$_{32}$N$_2$NaO$_6$S [M+Na]$^+$: 511.1873. Found: 511.1867.

(+)-(E)-Butyl 3-(2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)-5-fluorophenyl)-acrylate [(±)-14]. Following the typical procedure, sulfonamide (±)-XXI (55.0 mg, 0.15 mmol) reacted with butyl acrylate (43.0 µL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (±)-14 as yellow oil; yield: 29.6 mg (40%).

1H NMR (300 MHz, CDCl$_3$): δ 8.65 (d, $J = 3.7$ Hz, 1H), 7.98 (d, $J = 15.8$ Hz, 1H), 7.90-7.80 (m, 2H), 7.47 (m, 1H), 7.30-7.13 (m, 2H), 7.01 (m, 1H), 6.37 (d, $J = 15.8$ Hz, 1H), 4.91 (m, 1H), 4.25 (t, $J = 6.8$ Hz, 2H), 4.01 (m, 2H), 3.40 (dd, $J = 6.4$, 14.5 Hz, 1H), 3.16-3.10 (m, 4H), 1.73 (m, 2H), 1.48 (m, 2H), 1.11 (t, $J = 7.2$ Hz, 3H), 1.00 (t, $J = 7.2$ Hz, 3H). 13C{1H} NMR (75 MHz, CDCl$_3$): δ 169.5, 166.4, 166.3, 161.7, 156.1, 149.5, 144.2, 137.5, 133.9, 133.2, 130.7, 127.8, 126.4, 122.1, 120.7, 64.5, 61.3, 60.7, 32.6, 31.5, 30.9, 21.2, 19.4, 14.0, 13.9.
157.4, 149.8, 140.1 (2C), 137.7, 135.7 (d, $J_{C-F} = 7.3$ Hz), 132.4 (d, $J_{C-F} = 7.3$ Hz), 131.7, 126.3, 122.0, 121.9, 116.9 (d, $J_{C-F} = 22.0$ Hz), 113.2 (d, $J_{C-F} = 22.6$ Hz), 64.7, 61.4, 60.9, 32.0, 31.4, 30.7, 19.2, 13.9, 13.7. 19F $\{^1\text{H}\}$ NMR (282 MHz, CDCl$_3$): δ -114.7. ESI-HRMS: Calcd for C$_{24}$H$_{30}$FN$_2$O$_6$S $[M+H]^+$: 493.1803. Found: 493.1805.

(±)-(E)-Butyl 3-(5-chloro-2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)phenyl)-acrylate [(±)-15]. Following the typical procedure, sulfonamide (±)-XXII (57.5 mg, 0.15 mmol) reacted with butyl acrylate (43.0 μL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (±)-15 as yellow oil; yield: 18.2 mg (24%). It should be noted that the difficulty in the complete chromatographic separation of the products from the starting material and trace amount of unidentified byproducts resulted in low yields upon isolation.

1H NMR (300 MHz, CDCl$_3$): δ 8.60 (ddd, $J = 4.7, 1.7, 0.9$ Hz, 1H), 7.91 (d, $J = 15.7$ Hz, 1H), 7.82 (td, $J = 7.7, 1.7$ Hz, 1H), 7.76 (tt, $J = 7.9, 1.0$ Hz, 1H), 7.46 (d, $J = 2.1$ Hz, 1H), 7.44 (ddd, $J = 7.6, 4.7, 1.2$ Hz, 1H), 7.20 (dd, $J = 8.3, 2.1$ Hz, 1H), 7.17 – 7.15 (m, 1H), 6.34 (d, $J = 15.7$ Hz, 1H), 4.87 (dd, $J = 9.0, 6.4$ Hz, 1H), 4.21 (t, $J = 6.7$ Hz, 2H), 4.03 – 3.98 (m, 2H), 3.35 (dd, $J = 14.5, 6.4$ Hz, 1H), 3.08 (dd, $J = 14.5, 9.0$ Hz, 1H), 3.07 (s, 3H), 1.71 – 1.65 (m, 2H), 1.46 – 1.40 (m, 2H), 1.09 (t, $J = 7.1$ Hz, 3H), 0.96 (t, $J = 7.4$ Hz, 3H). 13C $\{^1\text{H}\}$ NMR: δ 169.5, 166.5, 157.4, 149.9, 139.9, 137.8, 135.6, 134.4, 133.4, 132.1, 129.9, 126.8, 126.4, 122.1, 122.0, 64.7, 61.6, 60.8, 32.1, 31.5, 30.8, 19.3, 14.0, 13.8. ESI-HRMS: Calcd for C$_{24}$H$_{30}$ClN$_2$O$_6$S $[M+H]^+$: 509.1508. Found: 509.1499.

(±)-(E)-Butyl 3-(5-bromo-2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)phenyl)-acrylate [(±)-16]. Following the typical procedure, sulfonamide (±)-XXIII (64.0 mg, 0.15 mmol) reacted with butyl acrylate (43.0 μL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1
mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (±)-16 as yellow oil; yield: 23.8 mg (29%). It should be noted that the difficulty in the complete chromatographic separation of the products from the starting material and trace amount of unidentified byproducts resulted in low yields upon isolation.

1H NMR (300 MHz, CDCl$_3$): δ 8.60 (ddd, $J = 4.6$, 1.6, 0.8 Hz, 1H), 7.90 (d, $J = 15.7$ Hz, 1H), 7.82 (td, $J = 7.7$, 1.7 Hz, 1H), 7.75 (tt, $J = 7.9$, 1.0 Hz, 1H), 7.61 (d, $J = 2.1$ Hz, 1H), 7.44 (ddd, $J = 7.6$, 4.7, 1.2 Hz, 1H), 7.33 (ddd, $J = 8.7$, 7.4, 2.0 Hz, 1H), 7.10 (d, $J = 8.3$ Hz, 1H), 6.33 (d, $J = 15.7$ Hz, 1H), 4.88 (dd, $J = 9.0$, 6.3 Hz, 1H), 4.21 (t, $J = 6.7$ Hz, 2H), 4.03 – 3.99 (m, 2H), 3.33 (dd, $J = 14.5$, 6.3 Hz, 1H), 3.07 (s, 3H), 3.07 (dd, $J = 14.5$, 5.9 Hz, 1H), 1.73 – 1.64 (m, 2H), 1.47 – 1.41 (m, 2H), 1.10 (t, $J = 7.2$ Hz, 3H), 0.96 (t, $J = 7.4$ Hz, 3H). 13C {1H} NMR: δ 169.6, 166.5, 157.4, 149.9, 139.8, 137.8, 135.9, 134.9, 132.8, 132.3, 129.8, 126.4, 122.2, 122.0, 121.5, 64.8, 61.6, 60.7, 32.2, 31.5, 30.8, 19.3, 14.1, 13.8. ESI-HRMS: Calcd for C$_{24}$H$_{30}$BrN$_2$O$_6$S [M+H]$^+$: 553.1002. Found: 553.1027.

(±)-(E)-Butyl 3-(2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)-6-fluorophenyl)acrylate [(±)-17a] and (±)-(E)-Butyl 3-(2-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)-4-fluorophenyl)acrylate [(±)-17b]. Following the typical procedure, sulfonamide (±)-XXIV (55.0 mg, 0.15 mmol) reacted with butyl acrylate (43.0 μL, 0.30 mmol) in the presence of Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford a 1:1.3 isomeric mixture of (17a + 17b) which was separated upon purification by column chromatography (n-hexane-EtOAc 80:20).

Product (±)-17a was obtained as yellow oil; yield: 22.6 mg (31%). 1H NMR (300 MHz, CDCl$_3$): δ 8.53 (d, $J = 4.5$ Hz, 1H), 7.70-7.65 (m, 2H), 7.65 (d, $J = 16.0$ Hz, 1H), 7.35 (m, 1H), 7.15 (m, 1H), 7.00 (d, $J = 7.5$ Hz, 1H), 6.90 (m, 1H), 6.47 (d, $J = 16.0$ Hz, 1H), 4.84 (dd, $J = 6.0$, 9.0 Hz, 1H), 4.14 (t, $J = 6.7$ Hz, 2H), 3.90 (dc, $J = 2.0$, 4.6 Hz, 2H), 3.32 (dd, $J = 9.0$, 14.5 Hz, 1H), 3.06 (dd, $J = 9.0$, 14.5 Hz, 1H), 3.00 (m, 3H), 1.62 (m, 2H), 1.36 (m, 2H); 1.01 (t, $J = 7.1$ Hz, 3H), 0.90 (t, $J = 7.1$ Hz, 3H).
13C{1H} NMR (75 MHz, CDCl3): δ 169.5, 166.9, 157.4, 149.8, 138.4, 137.6, 134.9, 130.5 (d, J_{C-F} = 13.0 Hz), 126.3, 126.2 (d, J_{C-F} = 23.4 Hz), 125.5, 125.3, 121.9, 115.1, 114.1, 64.6, 61.4, 60.6, 32.7, 31.5, 30.7, 19.2, 13.9, 13.7. 19F{1H} NMR (282 MHz, CDCl3): δ -110.2. ESI-HRMS: Calcd for C24H30FN2O6S [M+H]+: 493.1803. Found: 493.1808.

Product (±)-17b was obtained as yellow oil; yield: 30.5 mg (41%). 1H NMR (300 MHz, CDCl3): δ 8.55 (m, 1H), 7.87 (d, J = 15.8 Hz, 1H), 7.76-7.74 (m, 2H), 7.45 (dd, J = 6.0, 8.4 Hz, 1H), 7.37 (m, 1H), 6.90-6.83 (m, 2H), 6.24 (d, J = 15.8 Hz, 1H), 4.84 (dd, J = 4.7, 8.6 Hz, 1H), 4.14 (t, J = 6.5 Hz, 2H), 3.91 (c, J = 6.0 Hz, 2H), 3.30 (dd, J = 6.7, 14.3 Hz, 1H), 3.06 (m, 1H), 3.00 (s, 3H), 1.62 (m, 2H), 1.35 (m, 2H); 1.01 (t, J = 7.1 Hz, 3H), 0.88 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (75 MHz, CDCl3): δ 169.5, 166.7, 162.4, 157.3, 149.9, 140.1, 138.5, 137.7, 137.0, 129.9 (d, J_{C-F} = 8.3 Hz), 126.4, 122.0, 120.6 (d, J_{C-F} = 1.9 Hz), 117.5 (d, J_{C-F} = 22.0 Hz), 114.8 (d, J_{C-F} = 22.0 Hz), 64.6, 61.5, 60.7, 32.6, 31.5, 30.8, 19.2, 13.9, 13.8. 19F{1H} NMR (282 MHz, CDCl3): δ -110.5. ESI-HRMS: Calcd for C24H30FN2O6S [M+H]+: 493.1803. Found: 493.1808.

(±)-(E)-Butyl 3-(3-(3-ethoxy-2-(N-methylpyridine-2-sulfonamido)-3-oxopropyl)naphthalen-2-yl)acrylate [(±)-18]. Following the typical procedure, sulfonamide (±)-XXVI (59.8 mg, 0.15 mmol) reacted with butyl acrylate (43.0 μL, 0.30 mmol) in the presence of Pd(OAc)2 (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (±)-18 as yellow oil; yield: 40.9 mg (52%).

1H NMR (300 MHz, CDCl3): δ 8.47 (d, J = 4.2 Hz, 1H), 8.16-8.11 (m, 2H), 7.75 (d, J = 6.7 Hz, 1H), 7.69-7.63 (m, 2H), 7.56-7.45 (m, 3H), 7.30 (m, 1H), 6.32 (d, J = 15.7 Hz, 1H), 5.01 (t, J = 7.4 Hz, 1H), 4.15 (t, J = 6.7 Hz, 2H), 3.90-3.75 (m, 3H), 3.56 (dd, J = 7.6, 14.5 Hz, 1H), 3.10 (s, 3H), 1.62 (m, 2H), 1.38 (m, 2H), 0.90 (m, 6H). 13C{1H} NMR (75 MHz, CDCl3): δ 169.8, 166.9, 157.2, 149.7, 142.1, 137.6, 134.3, 133.0, 132.1, 131.6, 128.9, 128.3, 127.3, 126.8, 126.3, 124.4, 123.6, 121.9, 120.9, 64.5,
61.3, 60.4, 31.8, 30.8, 28.8, 19.2, 13.8. ESI-HRMS: Calc'd for C_{28}H_{33}N_2O_6S [M+H]^+: 525.2054. Found: 525.2059

(±)-(E)-Butyl 3-(1-(3-ethoxy-2-((N)-methylpyridine-2-sulfonamido)-3-oxopropyl)naphthalen-2-yl)acrylate [(±)-19]. Following the typical procedure, sulfonamide compound (±)-XXV (59.8 mg, 0.15 mmol) reacted with butyl acrylate (43.0 μL, 0.30 mmol) in the presence of Pd(OAc)\(_2\) (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (±)-19 as yellow oil; yield: 54.3 mg (69%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 8.33 (d, \(J = 4.5\) Hz, 1H), 8.03 (d, \(J = 15.7\) Hz, 1H), 7.89 (s, 1H), 7.70 (m, 1H), 7.61 (m, 1H), 7.55-7.35 (m, 5H), 7.07 (m, 1H), 6.42 (d, \(J = 15.7\) Hz, 1H), 4.95 (dd, \(J = 6.0, 9.1\) Hz, 1H), 4.27 (t, \(J = 6.7\) Hz, 2H), 3.94 (dc, \(J = 1.5, 7.0\) Hz, 2H), 3.47 (dd, \(J = 6.0, 14.5\) Hz, 1H), 3.15 (dd, \(J = 6.0, 14.5\) Hz, 1H), 3.10 (m, 3H), 1.62 (m, 2H), 1.40 (m, 2H), 1.01 (t, \(J = 7.1\) Hz, 3H), 0.90 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C\{\(^1\)H\} NMR (75 MHz, CDCl\(_3\)): δ = 169.8, 166.7, 157.5, 149.5, 141.6, 137.3, 133.8, 132.7, 132.4, 132.3, 129.3, 128.0, 127.5, 127.0, 126.9, 126.4, 125.9, 121.5, 121.4, 64.6, 61.4, 60.7, 33.0, 31.5, 30.8, 19.2, 14.0, 13.8. ESI-HRMS: Calc'd for C_{28}H_{33}N_2O_6S [M+H]^+: 525.2054. Found: 525.2059.

(E)-Butyl 3-(2-((IR,2S)-1-methoxy-2-((N)-methylpyridine-2-sulfonamido)propyl)phenyl)acrylate [(-)-21]. Following the typical procedure, (−)-20 (48.1 mg, 0.15 mmol) reacted with butyl acrylate (21.5 μL, 0.15 mmol) in the presence of Pd(OAc)\(_2\) (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (n-hexane-EtOAc 80:20), product (−)-21 as colorless oil; yield: 51.4 mg (74%).

[α]_D^{298}= -73.8 (c 0.5, CHCl\(_3\)). \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 8.77 – 8.63 (m, 1H), 8.25 (d, \(J = 15.7\) Hz, 1H), 8.05 – 7.93 (m, 1H), 7.87 (td, \(J = 7.7, 1.7\) Hz, 1H), 7.58 (d, \(J = 7.7\) Hz, 1H), 7.52 – 7.25 (m, 4H), 6.38 (d, \(J = 15.7\) Hz, 1H), 4.85 (d, \(J = 4.3\) Hz, 1H), 4.23 (dt, \(J = 8.7, 5.5\) Hz, 2H), 3.25 (s, 3H), 3.07 (s,
3H), 1.87 – 1.60 (m, 3H), 1.03 (d, \(J = 7.0\) Hz, 3H), 0.98 (t, \(J = 7.4\) Hz, 3H). \(^{13}\)C\(^{1}\){\(^{1}\)}H NMR (75 MHz, CDCl\(_3\)): \(\delta 166.7, 158.0, 149.8, 141.3, 137.9, 137.7, 133.8, 129.6, 127.9, 127.4, 126.8, 126.1, 122.5, 121.2, 84.5, 64.4, 57.2, 57.1, 31.3, 30.7, 19.1, 13.7, 11.1. ESI-HRMS: Calcd for C\(_{23}\)H\(_{31}\)N\(_2\)O\(_5\)S \[M+H\]^+: 447.1948. Found: 447.1952.

\(\text{N-}((1R,2S)-1\text{-Methoxy-1-}(2-((E)-2-(\text{phenylsulfonyl})\text{vinyl})\text{phenyl})\text{propan-2-yl})\text{-N-methylpyridine-2-sulfonamide} \) \([\text{(-)-22}]\). Following the typical procedure, \((-\text{-20})\) (48.1 mg, 0.15 mmol) reacted with phenyl vinyl sulfone (25.2 mg, 0.15 mmol) in the presence of Pd(OAc)\(_2\) (3.4 mg, 0.015 mmol), and 1-fluoro-2,4,6-trimethylpyridinium triflate (130.2 mg, 0.45 mmol) in acetic acid (1 mL), to afford, after purification by column chromatography (\(n\)-hexane-EtOAc 80:20), product \((-\text{-22})\) as colorless oil; yield: 56.9 mg (78%).

\([\alpha]_D^{298} = -63.51 \text{ (c 0.4, CHCl}_3\)\). \(^{1}\)H NMR (300 MHz, CDCl\(_3\)): \(\delta 8.84 – 8.60 \text{ (m, 1H)}, 8.27 \text{ (d,} \(J = 15.1\) \text{ Hz, 1H)}, 8.15 – 8.03 \text{ (m, 2H)}, 8.05 – 7.95 \text{ (m, 1H)}, 7.90 \text{ (td,} \(J = 7.7, 1.8\) \text{ Hz, 1H)}, 7.73 – 7.35 \text{ (m, 7H), 7.31 \text{ (td,} \(J = 7.2, 1.9\) \text{ Hz, 1H)}, 6.85 \text{ (d,} \(J = 15.2\) \text{ Hz, 1H)}, 4.84 \text{ (d,} \(J = 4.7\) \text{ Hz, 1H)}, 4.18 \text{ (tt,} \(J = 7.0, 3.5\) \text{ Hz, 1H)}, 3.21 \text{ (s, 3H), 3.04 \text{ (s, 3H)}, 1.05 \text{ (d,} \(J = 7.0\) \text{ Hz, 3H}). \(^{13}\)C\(^{1}\){\(^{1}\)}H NMR (75 MHz, CDCl\(_3\)): \(\delta 157.8, 149.9, 140.5, 139.6, 138.7, 137.8, 133.2, 131.6, 130.6, 129.7, 129.2, 128.2, 128.1, 128.0, 127.4, 126.3, 122.6, 84.7, 57.5, 57.2, 31.2, 11.5. ESI-IRMS: Calcd for C\(_{24}\)H\(_{27}\)N\(_2\)O\(_5\)S\(_2\) \([M+H]\)^+: 487.1356. Found: 487.1351.

Typical procedure for the Zn-promoted reductive N-desulfonylation: synthesis of \((1R^*,3S^*)\)-Ethyl 1-(2-butoxy-2-oxoethyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate \([\text{(+)-23}]\). A suspension of \((\pm)\)\(^{-}\)2 (47.5 mg, 0.1 mmol) and Zn powder (346 mg, 5 mmol) in a 1:1 mixture of THF and sat. aq NH\(_4\)Cl solution (2 mL) was stirred at 65 ºC until consumption of the starting material (TLC monitoring, 72 h). The mixture was diluted with EtOAc (15 mL) and filtered over a plug of Celite to remove the Zn (washed with EtOAc). The combined filtrate was washed with brine (10 mL) and the combined organic phase was dried (MgSO\(_4\)) and concentrated to dryness. The residue was purified by
flash chromatography (n-hexane-EtOAc 9:1) to afford the tetrahydroisoquinoline derivative (±)-23 as yellow oil (80:20 mixture of diastereomers); yield: 22.4 mg (71%).

1H NMR (300 MHz, CDCl$_3$): δ 7.10-7.00 (m, 4H), 4.31 (t, $J = 6.8$ Hz, 1H), 4.14 (m, 1H), 4.10-3.95 (m, 3H), 3.77 (dd, $J = 5.6$, 7.6 Hz, 1H), 3.04 (dd, $J = 16.3$, 7.5 Hz, 1H), 2.93 (dd, $J = 16.5$, 5.5 Hz, 1H), 2.73 (dd, $J = 14.9$, 6.5 Hz, 1H), 2.63 (dd, $J = 15.0$, 6.2 Hz, 1H), 2.41 (s, 3H), 1.49 (m, 2H), 1.23 (m, 2H), 1.12 (t, $J = 7.2$ Hz, 3H), 0.84 (m, 3H). 13C{1H} NMR (75 MHz, CDCl$_3$): δ 172.6, 171.7, 137.0, 132.2, 128.8, 126.9, 126.4, 126.3, 64.3, 60.5, 60.3, 58.4, 42.1, 39.1, 28.5, 27.5, 19.1, 14.2, 13.7. ESI-HRMS: Calcd for C$_{19}$H$_{28}$NO$_4$ [M+H]$^+$: 334.2013. Found: 334.2016.

(\pm,\pm)-Ethyl 2-methyl-1-((phenylsulfonyl)methyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylate [(±)-24]. Following the typical procedure, (S)-5 (51.4 mg, 0.1 mmol) and Zn powder (346 mg, 5 mmol) to afford, after flash chromatography (n-hexane-EtOAc 9:1), product (+)-24 as yellow oil (80:20 mixture of diastereomers); yield: 26.2 mg (74%) (95% ee for a pure sample of anti-(+)-24).

[α]$_D^{298} = +38.88$ (c 0.18, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 8.03-7.97 (m, 2H), 7.70-7.55 (m, 3H), 7.26-7.08 (m, 4H), 4.53 (m, 1H), 4.09 (c, $J = 7.1$ Hz, 2H), 3.75-3.64 (m, 2H), 3.50 (dd, $J = 4.0$, 15.0 Hz, 1H), 3.02 (dd, $J = 16.5$, 7.8 Hz, 1H), 2.95 (dd, $J = 6.1$, 17.1 Hz, 1H), 2.36 (s, 3H), 1.20 (t, $J = 7.1$ Hz, 3H). 13C{1H} NMR (75 MHz, CDCl$_3$): δ 171.7, 140.5, 135.2, 133.3, 132.5, 129.0, 128.9, 128.2, 127.4, 127.1, 127.0, 63.0, 60.6, 58.8, 57.6, 38.3, 27.5, 14.2. ESI-HRMS: Calcd for C$_{20}$H$_{24}$NO$_4$S [M+H]$^+$: 374.1421. Found: 374.1427. HPLC: Daicel Chiralpak IA, hexane-isopropanol 90-10, flow rate 0.7 mL/min ($\bar{\epsilon} = 254$ nm), t_R: 22.7 min (1R,3R)-24 and 34.7 min (1S,3S)-24.

ASSOCIATED CONTENT

Experimental details as well as spectroscopic and analytical data for the synthesis of the starting sulfomamides. HPLC traces for enantienriched compounds. Copies of 1H NMR and 13C NMR of new compounds. Copies of NOE experiments for relative stereochemistry determination of compounds 23.
and 24. Catalyst system optimization studies. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors
ramon.gomez@uam.es; juancarlos.carretero@uam.es.

ACKNOWLEDGMENT. We thank Spanish Government (MINECO, CTQ2012-35790, CTQ2011-22589 and CTQ2013-40855-R) and Aragón government (research groups E40 and E97) for financial support. E. L. thanks Aragón government for a PhD grant.

References

(15) No products resulting from competing Heck-coupling were detected in the crude reaction mixtures of products 15 or 16. In agreement with this observation, no Heck-type side reaction was either observed in our previously reported alkenylation of aniline derivatives with electron-deficient alkenes in substrates holding a chloro or bromo-substituent (see reference 13c).

(16) For a recent review on synthesis and biological significance of the 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) core, see: Kotha, S.; Deodhar, D.; Khedkar, P. Org. Biomol. Chem. 2014, 12, 9054.

(17) The relative configuration of the tetrahydroisoquinoline products has been established by 1H NMR, mainly by NOE experiments (see Supporting Information for details).