Indole, a Privileged Structural Core Motif

Isaac Giménez Sonsona

Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catalálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
sonsona@unizar.es

Published online: 14.08.2015

Isaac Giménez Sonsona was born in Zaragoza, Spain, in 1991. He received his B.S. in chemistry at the University of Zaragoza in 2014. He is currently working towards his PhD degree in the Department of Organic Chemistry at the University of Zaragoza under the supervision of Dr. Raquel P. Herrera and Dr. Eugenia Marqués-López. His primary research interest focuses on the enantioselective organocatalytic study of different organic reactions aimed at the asymmetric synthesis of potential biologically active compounds.

Introduction

Indole (1), denominated by some authors as The Lord of the Rings of heterocyclic compounds1 due to its importance in fields like chemistry, biology, and medicine,2 represents the structural core of many natural and non-natural products with a wide range of biological properties, including antiviral3 and anticancer4 activities. An example of this spectrum of utilities is utilities is Arbidol (2), which is administered as a drug in Russia and China against influenza and other respiratory viral infections.5 Recent examples of other applications of indole-containing compounds are their potential use in SPECT imaging or detecting Aβ plaques in Alzheimer’s disease, as compound 3,6 or their use as ligands in the synthesis of organometallic complexes with optoelectronic properties and with potential use in the construction of light-emitting devices.7

![Figure 1 Indole-based target compounds](image)

Table 1 Use of Indole, a Privileged Structural Core Motif

(A) N1 Reactivity:
The total synthesis of the monoterpene alkaloid mersicarpine (10) was reported in 2014 by Liang’s group.10 The synthesis involves the nucleophilic attack of the NH of the indole 7 to the activated carboxylic acid 8, giving the corresponding amide intermediate 9. This allows access to indole analogue 10, an unusual seven-membered cyclic imine fused with a δ-lactam with two stereogenic centers.

![Scheme 1 Fischer synthesis of indole derivatives](image)

(B) C2 Activation:
Zhang and co-workers11 reported the synthesis of N-(6-(indol-2-yl)pyridine-3-sulfonylamine 13 starting from the substituted indole 11. The mechanism involves the boronic acid intermediate 12.

![Diagram](image)
(C) C3 Reactivity:
In 2014, McLaughlin’s group published the synthesis of the violacein scaffold, a microbial pigment with antimicrobial and anticancer activities. Indole derivatives react at the C3 position with the acyl chloride derivative to afford the main product, key in the construction of violacein analogues.

(D) C4 Activation:
Lanke and Prabhu reported the direct functionalization of N-protected indole-3-carboxaldehyde derivatives at the C4 position under mild conditions employing ruthenium as a catalyst and with the aldehyde functionality as the directing group. This reaction could be crucial in the synthesis of organic targets such as ergot- and related alkaloids.

(E) C5 Activation:
In 2013, Liebhold and Li reported the benzylation of tryptophan derivatives at the C5 position of the indole ring using the fungal di-amine transferase FgaPT2. This method gives access to pharmacologically active lipophilic chain containing compounds in moderate yield.

(F) C6 Reactivity:
In 2014, Shi and co-workers developed a Brønsted acid organocatalyzed arylation of 3-indolylmethanol derivatives, affording a direct method for C6 functionalization of substituted indoles, leading to scaffolds.

References